2020-2021七年级数学上期末试题带答案
【苏科版】数学七年级上册《期末测试题》(含答案)
2020-2021学年度第一学期期末测试苏科版七年级数学试题一、选择题(本大题共有6小题,每小题3分,共18分)1.3-的倒数是()A. 3B. 13C.13- D. 3-2.如图,要测量两堵围墙形成的∠AOB的度数,先分别延长AO、BO得到∠COD,然后通过测量∠COD的度数从而得到∠AOB的度数,其中运用的原理是( )A. 对顶角相等B. 同角的余角相等C. 等角的余角相等D. 垂线段最短3.某市上半年实现地区生产总值398.35亿元.398.35亿元用科学记数法表示( )A. 3.98×108B. 398.35×108C. 3.9835×1010D. 3.9835×10114.如图,直线a∥b,直线c是截线,如果∠1=50°,那么∠2等于()A. 150°B. 140°C. 130°D. 120°5.若如图的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则a+b=( )A. 5B. 4C. -5D. -46.在55⨯方格纸中将图(1)中的图形N平移后的位置如图(2)中所示,那么正确的平移方法是()(1)(2)A. 先向下移动1格,再向左移动1格;B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格:D. 先向下移动2格,再向左移动2格二、填空题(本大题共有10小题,每小题3分,共30分)7.︱-2︱=____.8.已知∠α与∠β互为补角,若∠β=135°,则∠α=____°. 9.如图,小强出门从甲到乙地有四条路线,其中路线____最短(填“①”、“②”、“③”“④”中的一个).10.若a +2b =-4,则2a +4b +3=____.11.一件商品的原价为a 元,提高50%后标价,再按标价打七折销售,则此时售价为_____元. 12.如图,射线OA ⊥OC ,射线OB ⊥OD ,若∠AOB =40°,则∠COD =____°. 13.如图,∠AOD =80°,OB 是∠AOC 的平分线,∠AOB =30°,则求∠COD =____°.14.如图,直线a ∥b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C .若∠2=32°;则∠1的度数为____°.15.有一运算程序如下:若输出的值是25,则输入的值可以是_____.16.T(x)表示去掉x小数部分后的整数部分,如T(-2.35)=-2、T(4)=4、T(3.12)=3等等,则使T[T(x+3.14)]=-1成立的整数..x的值为_______.三、解答题(本大题共有10题,共102分)17.计算:(1)(-2)+(+5)+(-7);(2)-2-3.6+1+3.6;(3)(-3)2×4÷2;(4)-22-2×(-3)+5×(1 5 -)18.先化简,再求值:(1)5a2-(2a-3)-5a2,其中a=-1;(2)2(3a2b+ab2)-2(-ab2+3a2b),其中a=2、b=1.19.解下列方程:(1) x+5=2;(2) -3(x+1)=9;(3)2(2x+1)=1-5(x-2);(4)141 23xx+=+.20.画出如图所示物体的主视图、左视图、俯视图.21.如图,AD平分∠EAC,若∠C=55°,∠EAC=110°,AD与BC平行吗?为什么?请根据解答过程填空(理由或数学式)解:AD∥BC.理由:∵AD平分∠EAC(已知)∴∠DAC=12∠EAC()∵∠EAC=110°(已知)∴∠DAC=12∠EAC= °∵∠C=55°(已知)∴∠C=∠∴AD∥BC()22.如图,由相同的小正方形组成的网格线的交点叫格点,格点P是∠AOB的边OB上的一点(请利用网格作图,保留作图痕迹).(1)过点P画OB的垂线,交OA于点C;(2)线段的长度是点O到PC的距离;(3)PC<OC的理由是 .23.小丽在水果店里用18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元.小丽买了苹果和橘子各多少千克?24.如图,线段AB=8,点C是AB的中点,点D在线段BC上,已知BD=1.5,求线段CD的长.25.小明利用课余时间学习利用画图软件模拟火柴棒拼图.(1)当他按如左图所示方式画三角形时,那么画10个三角形需要根火柴棒,利用61根火柴棒可以画个三角形;(2)当他按如右图所示方式画正方形时,那么利用61根火柴棒可以画个正方形;(3)小明利用软件绘制正方形并给其中两个顶点加粗时,发现只有“相邻”和“相对”两种结果,分别如图甲和图乙所示,因图丙和图丁分别是图甲和图乙不同摆放方式,故视为同一种结果.那么,要给正六边形的四个顶点加粗,则结果有种.26.某学习小组发现一个结论:已知直线a∥b,若直线c∥a,则c∥b,他们发现这个结论运用很广,请你利用这个结论解决以下问题:已知直线AB∥CD,点E在AB、CD之间,点P、Q分别在直线AB、CD上,连接PE、EQ(1)如图1,运用上述结论,探究∠PEQ与∠APE+∠CQE之间的数量关系,并说明理由;(2)如图2,PF平分∠BPE,QF平分∠EQD,当∠PEQ=140°时,求出∠PFQ的度数;(3)如图3,若点E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延长线交PF于点F,当∠PEQ=70°时,请求出∠PFQ的度数.答案与解析一、选择题(本大题共有6小题,每小题3分,共18分)1.3-的倒数是( ) A. 3 B.13C. 13-D. 3-【答案】C 【解析】 【分析】由互为倒数的两数之积为1,即可求解. 【详解】∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-. 故选C2.如图,要测量两堵围墙形成的∠AOB 的度数,先分别延长AO 、BO 得到∠COD ,然后通过测量∠COD 的度数从而得到∠AOB 的度数,其中运用的原理是( )A. 对顶角相等B. 同角的余角相等C. 等角的余角相等D. 垂线段最短 【答案】A 【解析】 【分析】根据对顶角相等的性质,延长AO 、BO 得到∠AOB 的对顶角∠COD ,测量出对顶角的度数,也就得到了∠AOB 的度数;【详解】解:延长AO 到C ,延长BO 到D ,然后测量∠COD 的度数,根据对顶角相等,∠AOB=∠DOC , 故答案为A【点睛】本题主要考查了对顶角相等的性质,属于基础题.3.某市上半年实现地区生产总值398.35亿元.398.35亿元用科学记数法表示为( ) A. 3.98×108 B. 398.35×108 C. 3.9835×1010 D. 3.9835×1011【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:398.35亿=398 3500 0000=3.9835×1010,故选C.【点睛】此题考查了科学记数法的表示方法.注意科学记数法的形式解题的关键要正确确定a的值以及n 的值.4.如图,直线a∥b,直线c是截线,如果∠1=50°,那么∠2等于()A. 150°B. 140°C. 130°D. 120°【答案】C【解析】解:∵∠1=50°,∴∠1的邻补角是130°,∵a∥b,∴∠2=130°(两直线平行,同位角相等),故选C.5.若如图的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则a+b=( )A. 5B. 4C. -5D. -4【答案】D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,可得到b值,再利用正方体及其表面展开图的特点求出a,然后代入代数式进行计算即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“1”相对,面“b”与面“3”相对,“2”与面“-2”相对.因为相对面上两个数都互为相反数,所以a=-1,b=-3,故a+b=-4,选D.【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.方格纸中将图(1)中的图形N平移后的位置如图(2)中所示,那么正确的平移方法是()6.在55(1)(2)A. 先向下移动1格,再向左移动1格;B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格:D. 先向下移动2格,再向左移动2格【答案】C【解析】【分析】根据题意,结合图形,由平移的概念求解.【详解】解:根据平移的概念,图形先向下移动2格,再向左移动1格或先向左移动1格,再向下移动2格.结合选项,只有C符合.故选:C.【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.二、填空题(本大题共有10小题,每小题3分,共30分)7.︱-2︱=____.【答案】2【解析】数轴上表示-2的点到原点的距离就是-2的绝对值,因此|-2|=2,故答案为:2.8.已知∠α与∠β互为补角,若∠β=135°,则∠α=____°.【答案】45【解析】【分析】互补即两角的和为180°.【详解】解:∵∠α与∠β互为补角,∠β=135°,∴∠α=180°-∠α=180°-135°=45°.【点睛】本题考查了互补的定义,注意互为补角和为180°.9.如图,小强出门从甲到乙地有四条路线,其中路线____最短(填“①”、“②”、“③”“④”中的一个).【答案】③【解析】【分析】考查最短(两点之间,线段最短),结合图形,即可求解.【详解】解:由图可得,因为两点之间,线段最短,所以最短的路线为③.【点睛】能够看懂一些简单的图形,会结合图形找出需要求解路线.10.若a+2b=-4,则2a+4b+3=____.【答案】-5【解析】【分析】所求式子提取2a+4b+3变形后,可变为2(a+2b)+3,将已知等式代入计算即可求出值.【详解】解:∵a+2b=-4,∴2a+4b+3=2(a+2b)+3=-8+3=-5.故答案为-5.【点睛】本题能发现通过提公因式,可以进行整体代入,是解答本题的关键.11.一件商品的原价为a元,提高50%后标价,再按标价打七折销售,则此时售价为_____元.【答案】1.05a【解析】【分析】售价=(1+提高百分比)×原价×折扣.【详解】解:由题意得:实际售价为:(1+50%)a•70%=1.05a(元),故答案为1.05a.【点睛】此题考查了列代数式的知识,解题的关键是联系生活,知道七折就是标价的70%..12.如图,射线OA⊥OC,射线OB⊥OD,若∠AOB=40°,则∠COD=____°【解析】【分析】根据OA⊥OC,OB⊥OD,可得∠AOC=90°,∠BOD=90°,然后得到∠AOB与∠BOC互余,∠COD与∠BOC互余,根据同角的余角相等,继而可求解即可.【详解】解:∵OA⊥OC,OB⊥OD,∴∠AOC=90°,∠BOD=90°,∴∠AOB与∠BOC互余,∠COD与∠BOC互余,∴∠AOB=∠COD =40°,故答案为40°.【点睛】本题考查了余角的知识,关键发现∠AOB、∠COD都是∠BOC余角,根据同角的余角相等解答.13.如图,∠AOD=80°,OB是∠AOC的平分线,∠AOB=30°,则求∠COD=____°.【答案】20【解析】【分析】根据角平分线的定义求得∠AOC的度数,再利用差的关系求∠COD的度数.【详解】解:∵∠AOB=30°,OB是∠AOC的平分线,∴∠AOC=2∠AOB=60°,∴∠COD=∠AOD-∠AOC=80°-60°=20°. 故答案为 20.【点睛】本题注意根据角平分线定义得出所求角与已知角的关系转化求解.14.如图,直线a ∥b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C .若∠2=32°;则∠1的度数为____°.【答案】58 【解析】 【分析】根据平行线的性质得出∠ACB=∠2,∠BAC=90°,根据三角形内角和定理求出即可. 【详解】解:∵直线a ∥b , ∴∠ACB=∠2=32°, ∵AC ⊥BA , ∴∠BAC=90°,∴∠1=180°-∠BAC -∠ACB=180°-90° -32° =58° 故填58.【点睛】本题考查了对平行线的性质和三角形内角和定理的应用,注意本题用到的知识点:①两直线平行,内错角相等,②三角形内角和180°. 15.有一运算程序如下:若输出的值是25,则输入的值可以是_____. 【答案】4或-6 【解析】 【分析】由题可得(x+1)2=25,由此即可求出x 的值. 【详解】解:根据题意可得:(x+1)2=25, x+1=±5, 解得x 1=4,x 2=-6. 故答案为4或-6.【点睛】本题是有关程序图的运算,考查了一元二次方程的解法,本题也可采用倒推法,但需注意平方数等于25的有两个.16.T(x )表示去掉x 小数部分后的整数部分,如T(-2.35)=-2、T(4)=4、T(3.12)=3等等,则使T[T(x +3.14)]=-1成立的整数..x 的值为_______. 【答案】-5 【解析】 【分析】根据题目可以推出T(x +3.14)=-1,再进一步求得-2<x +3.14≤-1,解不等式,即可得到答案. 【详解】由题意知:T[T(x +3.14)]=-1,那么-2<T(x +3.14)≤-1,又因为T(x +3.14)表示去掉x 小数部分后的整数部分,所以T(x +3.14)=-1, 所以-2<x +3.14≤-1,解得:-5.24<x ≤-4.14,所以整数..x 的值为-5.【点睛】本题考查的新定义与有理数、不等式相结合,能理解新定义是解决此题的关键.三、解答题(本大题共有10题,共102分)17.计算:(1)(-2)+(+5)+(-7);(2)-2-3.6+1+3.6; (3)(-3)2×4÷2; (4)-22-2×(-3)+5×(15) 【答案】(1)-4;(2)-1;(3) 18;(4) 1. 【解析】 【分析】利用加法法则,有理数乘法、除法法则,混合运算法则,去计算即可. 【详解】(1)原式=3-7=-4;(2)原式=-2+1+(-3.6+3.6)=-1; (3)原式=9×4÷2=18; (4)原式=-4+6-1=1【点睛】本题考查了有理数的运算法则,需要注意的是混合运算的法则,有乘除有加减的,先算乘除,再算加减.18.先化简,再求值:(1)5a2-(2a-3)-5a2,其中a=-1;(2)2(3a2b+ab2)-2(-ab2+3a2b),其中a=2、b=1.【答案】(1) 5;(2) 8.【解析】【分析】(1)原式去括号合并得到最简结果,把a的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a、b的值代入计算即可求出值;【详解】(1)原式=-2a+3,当a=-时,原式=-2×(-1)+3=5;(2)原式=4ab2,当a=2,b=1时,原式=4×2×12=8【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键,化简时注意,等式前面是负号,去掉括号后,全变号.19.解下列方程:(1) x+5=2;(2) -3(x+1)=9;(3)2(2x+1)=1-5(x-2);(4)141 23xx+=+.【答案】(1)x=-3;(2)x=-4;(3)x=1;(4)x=-0.6.【解析】【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)利用等式基本性质化简,方程移项合并,把x系数化为1,即可求出解;(3)去括号,移项合并,把x系数化为1,即可求出解;(4)去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)移项得,x=2-5x=-3;(2)两边同时除以-3得,x+1=-3移项、合并同类项得,x=-4;(3)去括号得,4x+2=1-5x+10移项、解得,x=1;(4)去分母得,3(x+1)=8x+6移项、解得,x=-0.6.【点睛】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.20.画出如图所示物体的主视图、左视图、俯视图.【答案】画图见解析.【解析】【分析】三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】如图所示:主视图左视图俯视图【点睛】本题考查了三视图,但需要注意在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.21.如图,AD平分∠EAC,若∠C=55°,∠EAC=110°,AD与BC平行吗?为什么?请根据解答过程填空(理由或数学式)解:AD∥BC.理由:∵AD平分∠EAC(已知)∴∠DAC=12∠EAC()∵∠EAC=110°(已知)∴∠DAC=12∠EAC= °∵∠C=55°(已知)∴∠C=∠∴AD∥BC()【答案】见解析.【解析】【分析】根据角平分线定义求出∠DAC,求出∠C=∠DAC,根据平行线的判定(内错角相等;两直线平行)得出即可.【详解】角平分线的定义;55°;∠DAC;内错角相等;两直线平行【点睛】本题考查了平行线的性质和判定的应用,注意找角的等量关系从而得到平行关系.22.如图,由相同的小正方形组成的网格线的交点叫格点,格点P是∠AOB的边OB上的一点(请利用网格作图,保留作图痕迹).(1)过点P画OB的垂线,交OA于点C;(2)线段的长度是点O到PC的距离;(3)PC<OC的理由是 .【答案】(1)见解析;(2)OP;(3)垂线段最短.【解析】【分析】(1)利用尺规作图,过点P作PC⊥OB,交OA于点C即可;(2)根据点到直线距离的定义(点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度)即可得出结论;(3)根据垂线段最短(直线外一点与直线上各点连接的所有线段中,垂线段最短)即可得出结论.【详解】(1)如图所示:(2)OP;(3)垂线段最短【点睛】本题考查的是作图,熟知垂线段及垂线段性质是解答本题的关键.23.小丽在水果店里用18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元.小丽买了苹果和橘子各多少千克?【答案】小丽买了苹果4千克,橘子2千克.【解析】【分析】等量关系为:3.2×苹果千克数+2.6×橘子千克数=18,把相关数值代入即可求解.【详解】解:小丽买了苹果x千克,橘子(6﹣x)千克.由题意得:3.2x+2.6×(6﹣x)=18,解得:x=4,∴6﹣x=2.答:小丽买了苹果4千克,橘子2千克.24.如图,线段AB=8,点C是AB的中点,点D在线段BC上,已知BD=1.5,求线段CD的长.【答案】CD=2.5.【解析】【分析】根据已知条件线段中点的定义求得BC的长度,然后结合图形可以求得CD=BC-DB.【详解】∵点C是AB的中点∴BC=AB∵AB=8∴BC=12×8=4∵BD+CD=BC∴CD=BC-BD∵BD=1.5∴CD=4-1.5=2.5【点睛】本题考查了两点间的距离.从图中很容易能看出各线段之间的关系.利用中点性质转化线段之间的倍分关系是解题的关键.25.小明利用课余时间学习利用画图软件模拟火柴棒拼图.(1)当他按如左图所示方式画三角形时,那么画10个三角形需要根火柴棒,利用61根火柴棒可以画个三角形;(2)当他按如右图所示方式画正方形时,那么利用61根火柴棒可以画个正方形;(3)小明利用软件绘制正方形并给其中两个顶点加粗时,发现只有“相邻”和“相对”两种结果,分别如图甲和图乙所示,因图丙和图丁分别是图甲和图乙的不同摆放方式,故视为同一种结果.那么,要给正六边形的四个顶点加粗,则结果有种.【答案】(1)21,30;(2)20;(3)3.【解析】【分析】(1)根据观察发现n个三角形就需要1+2n根火柴棒,进而求拼成10个三角形需要根数,再利用当1+2n=61时,可求出61根火柴棒可拼成多少个三角形.(2)观察可知:桂林村为3n+1,当用了61根火柴棒时,有3n+1=61 解得n,即可.(3)正六边形有六个顶点,要给四个点加粗,就意味着两个点不加粗,不加粗的点的位置关系有三种情况,具体见详解.【详解】(1)解:第一个三角形有1+2=3根火柴棒组成,以后每多一个三角形就多用2根火柴棒,所以组成n个三角形就需要1+2n根火柴棒;拼成10个三角形需要:1+2×10=21(根)当1+2n=61时,解得n=30即:拼成10个三角形需要21根火柴棒,61根火柴棒可拼成30个三角形.(2)由分析可得:正方形个数 1 2 3 4 5 6 …n火柴棒根数 4 7 10 13 16 19 …3n+1当用了61根火柴棒时,有:3n+1=61解得:n=20即:用了61根火柴棒,可搭成20个这样的正方形.(3)正六边形有六个顶点,要给四个点加粗,就意味着两个点不加粗,不加粗的点的位置关系有“相连”、“相间”和“相对”三种,如下图所示:【点睛】根据题干,从图中特殊的例子推理得出一般的规律是解决此类问题的关键.26.某学习小组发现一个结论:已知直线a∥b,若直线c∥a,则c∥b,他们发现这个结论运用很广,请你利用这个结论解决以下问题:已知直线AB∥CD,点E在AB、CD之间,点P、Q分别在直线AB、CD上,连接PE、EQ(1)如图1,运用上述结论,探究∠PEQ与∠APE+∠CQE之间的数量关系,并说明理由;(2)如图2,PF平分∠BPE,QF平分∠EQD,当∠PEQ=140°时,求出∠PFQ的度数;(3)如图3,若点E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延长线交PF于点F,当∠PEQ=70°时,请求出∠PFQ的度数.【答案】(1)∠PEQ=∠APE+∠CQE,理由见解析;(2)∠PFQ=110°;(3)∠PFQ=145°.【解析】【分析】(1)过E点作EH∥AB,再利用平行线性质,两直线平行内错角相等,可得到∠PEQ=∠APE+∠CQE.(2)过点E作EM∥AB,利用平行线性质,角平分线定义可以得到角的关系,可得到∠PEQ=∠APE+∠CQE =140°,再作NF∥AB,利用平行线性质,角平分线定义可以得到角的关系,得到,∠PFQ=∠BPF+∠DQF 的度数.(3)过点E作EM∥CD,如图,设∠CQM=α,∴∠DQE=180°-α,再利用角平分线性质得到∠DQH=90°-12α,∠FQD=90°+12α,再利用平行线性质、角平分线定义∠BPF=12∠BPE=55°-12α,作NF∥AB,∠PFQ=∠BPF+∠DQF即可求出答案.【详解】(1)过E点作EH∥AB,∠PEQ=∠APE+∠CQE,理由如下:过点E作EH∥AB ∴∠APE=∠PEH ∵EH∥AB,AB∥CD ∴EH∥CD∴∠CQE=∠QEH,∵∠PEQ=∠PEH+∠QEH ∴∠PEQ=∠APE+∠CQE (2)过点E作EM∥AB,如图,同理可得,∠PEQ=∠APE+∠CQE=140°∵∠BPE=180°-∠APE,∠EQD=180°-∠CQE,∴∠BPE+∠EQD=360°-(∠APE+∠CQE)=220°,∵PF平分∠BPE,QF平分∠EQD ∴∠BPF=12∠BPE,∠DQF=12∠EQD∴∠BPF+∠DQF=12(∠BPE+∠EQD)=110°,作NF∥AB,同理可得,∠PFQ=∠BPF+∠DQF=110°(3)过点E作EM∥CD,如图,设∠CQM=α,∴∠DQE=180°-α,∵QH平分∠DQE,∴∠DQH=12∠DQE=90°-12α,∴∠FQD=180°-∠DQH=90°+12α,∵EM∥CD,AB∥CD ∴AB∥EM,∴∠BPE=180°-∠PEM=180°-(70°+α)=110°-α∵PF平分∠BPE ∴∠BPF=12∠BPE=55°-12α,作NF∥AB,同理可得,∠PFQ=∠BPF+∠DQF=145°【点睛】本题主要考查了平行线的性质定理,根据性质定理得到角的关系.。
2020-2021学年江苏省镇江市七年级(上)期末数学试卷(解析版)
2020-2021学年江苏省镇江市七年级第一学期期末数学试卷一、填空题(共12小题).1.的倒数是.2.我市某日的最高温度是7℃,最低温度是﹣1℃,则当天的最高温度比最低温度高℃.3.2020年10月11日至12月10日,第七次全国人口普查开展入户工作.上一次人口普查公告显示中国总人口截至当时约为1370000000人,1370000000用科学记数法表示为.4.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是(填序号).5.下列各数:﹣1,,1.01001…(每两个1之间依次多一个0),0,,3.14,其中有理数有个.6.已知∠α=63°47′,则它的余角等于.7.若x=﹣2是关于x的方程3m﹣2x+1=0的解,则m的值为.8.已知线段AB=11cm,C是直线AB上一点,若BC=5cm,则线段AC的长等于cm.9.如图,已知∠AOB=90°,射线OC在∠AOB内部,OD平分∠AOC,OE平分∠BOC,则∠DOE=°.10.用火柴棒搭成如图所示的图形,第①个图形需要3根火柴棒,第②个图形需要5根火柴棒…,用同样方式,第n个图形需根火柴棒(用含n的代数式表示).11.将四个数2,﹣3,4,﹣5进行有理数的加、减、乘、除、乘方运算,列一个算式(每个数都要用,且只能用一次,写出一个即可),使得运算结果等于24.12.已知关于x的一元一次方程x﹣3=2x+b的解为x=999,那么关于y的一元一次方程(y﹣1)﹣3=2(y﹣1)+b的解为y=.二、选择题(共有6小题,每小题3分,共计18分.)13.下列计算结果正确的是()A.2x2﹣3x2=﹣1B.2x2﹣3x2=x2C.2x2﹣3x2=﹣x2D.2x2﹣3x2=﹣5x214.如果直线l外一点P与直线l上三点的连线段长分别为6cm,8cm,10cm,则点P到直线l的距离是()A.不超过6cm B.6cm C.8cm D.10cm15.丁丁和当当用大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子,请你判断哪个小朋友做成的帽子更高一些()A.丁丁B.当当C.一样高D.不确定16.一个几何体如图所示,它的俯视图是()A.B.C.D.17.如图,将一副三角板叠放在一起,使直角顶点重合于点C,则∠ACE+∠BCD等于()A.120°B.145°C.175°D.180°18.七(1)班全体同学进行了一次转盘得分活动.如图,将转盘等分成8格,每人转动一次,指针指向的数字就是获得的得分,指针落在边界则重新转动一次.根据小红、小明两位同学的对话,可得七(1)班共有学生()人.A.38B.40C.42D.45三、解答题(本大题共有8小题,共计78分.解答时应写出必要的文字说明、证明过程或演算步骤.)19.计算:(1)|﹣6|﹣(+3)+1;(2)×(﹣32×﹣4).20.解方程:(1)4(x﹣2)=2﹣x;(2)1+=.21.如图,所有小正方形的边长都为1个单位,点A、B、C均在格点上.(1)过点C画线段AB的平行线CD;(2)过点A画线段AB的垂线,交线段CB的延长线于点E;(3)线段AE的长度是点到直线的距离;(4)△ABE的面积等于.22.如图,直线AB、CD相交于点O,过点O作OE⊥AB,射线OF平分∠AOC,∠AOF =25°.求:(1)∠BOD的度数;(2)∠COE的度数.23.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是,B的对面是,C的对面是;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.24.我校七年级各班组织了关于“元旦”期间的市场调查社会实践活动.甲、乙、丙三位同学组成的活动小组去A,B两大超市,调查了这两个超市近两年“元旦”期间的销售情况.请根据这三位同学的实践活动报告解决以下问题:(1)去年A、B两超市销售额共为万元;(2)分别求出这两个超市去年“元旦”期间的销售额.25.[读一读]如图1,点A在原点O的左侧,点B在原点O的右侧,点A、B分别对应实数a、b,我们能求出线段AB的长.过程如下:AB=OA+OB=|a|+|b|.因为a<0,b>0,所以|a|=﹣a,|b|=b.所以AB=﹣a+b=b﹣a.[试一试]如图2,若点A、B都在原点O的左侧,且点A距离原点更远,点A、B分别对应实数a、b.求线段AB的长.[用一用]数轴上有一条线段AB,若把线段AB上的每个点对应的数都乘以得到新的数,再把所有这些新数所对应的点都向左平移2个单位后,得到新的线段CD.(1)若点A表示的数是3,点B表示的数是﹣2,则线段CD的长等于;(2)如果线段AB上的一点P经过上述操作后得到的点P'与点P重合,线段AB上的一点Q经过上述操作后得到的点Q′表示的数是Q表示的数的,求线段PQ的长.26.[阅读]材料1:如图1,在透明纸上画一个角,把这个角对折,使角的两边重合,再展平纸片,折痕把这个角分成两个相等的角.我们称这条折痕所在直线l平分这个角.材料2:如图2中,三角板OAB绕点O顺时针旋转60°到三角板OCD的位置,这时,三角板的边OA、OB绕点O顺时针旋转60°到OC、OD的位置;如图3中,三角板OAB 绕点O逆时针旋转90°到三角板OCD的位置,这时,三角板的边OA、OB绕点O逆时针旋转90°到OC、OD的位置.[问题解决](1)将两个大小一样的含30°角的直角三角板按图3的方式摆放(顶点A、C重合).现在将三角板OCD固定不动,从起始位置(图4)开始,将三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°.设三角板OAB转动的时间为t秒.①当三角板OAB转动到图5的位置时,它的一边OA平分∠COD,求t的值;②当三角板OAB的一边OB所在直线平分∠COD时,t=秒;(直接写出结果)(2)将两个大小一样的含30°角的直角三角板按图6的方式摆放(顶点A、O、C在一条直线上).在三角板OAB绕点O以每秒5°的速度顺时针匀速转动的同时,三角板OCD绕点O以每秒3°的速度逆时针匀速转动,当三角板OAB转动一周时停止转动,此时三角板OCD也停止转动.两块三角板同时从起始位置(图6)开始转动,设三角板OAB转动的时间为t秒.当三角板OAB的一边OB所在直线平分∠COD时,t=秒.(直接写出结果)参考答案一、填空题(本大题共有12小题,每小题2分,共计24分.)1.的倒数是2.【分析】根据倒数的定义,的倒数是2.解:的倒数是2,故答案为:2.2.我市某日的最高温度是7℃,最低温度是﹣1℃,则当天的最高温度比最低温度高8℃.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.解:由题意可得:7﹣(﹣1),=7+1,=8(℃).故答案为:8.3.2020年10月11日至12月10日,第七次全国人口普查开展入户工作.上一次人口普查公告显示中国总人口截至当时约为1370000000人,1370000000用科学记数法表示为1.37×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:1370000000用科学记数法表示为1.37×109,故答案为:1.37×109.4.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是②(填序号).解:图①利用垂线段最短;图②利用两点之间线段最短;图③利用两点确定一条直线;故答案为:②.5.下列各数:﹣1,,1.01001…(每两个1之间依次多一个0),0,,3.14,其中有理数有4个.解:在所列实数中,有理数有﹣1、0、、3.14,故答案为:4.6.已知∠α=63°47′,则它的余角等于26°13′.【分析】根据互余的概念:和为90度的两个角互为余角作答.解:根据定义∠a的余角度数是90°﹣63°47′=26°13′.故答案为:26°13′.7.若x=﹣2是关于x的方程3m﹣2x+1=0的解,则m的值为﹣.解:∵x=﹣2是关于x的方程3m﹣2x+1=0的解,∴3m+4+1=0,解得:m=﹣,故答案为:﹣.8.已知线段AB=11cm,C是直线AB上一点,若BC=5cm,则线段AC的长等于6或16 cm.【分析】本题由于点C是直线上的一点,所以点C有可能在线段AB之间,有可能在线段AB的延长线上,从而容易得到答案为6cm或者16cm.【解答】解,当点C在线段AB之间时,AC=AB﹣BC=11﹣5=6cm.当点C在线段AB的延长线上时,AC+BC=11+5=16cm.故答案为:6或16.9.如图,已知∠AOB=90°,射线OC在∠AOB内部,OD平分∠AOC,OE平分∠BOC,则∠DOE=45°°.【分析】根据角平分线的定义得到∠DOC=∠BOC,∠COE=∠COA,结合图形计算即可.解:∵OD平分∠BOC,∴∠DOC=∠BOC,∵OE平分∠AOC,∴∠COE=∠COA,∴∠DOE=∠DOC+∠COE=(∠BOC+∠COA)=∠AOB=45°.故答案为:45°.10.用火柴棒搭成如图所示的图形,第①个图形需要3根火柴棒,第②个图形需要5根火柴棒…,用同样方式,第n个图形需(1+2n)根火柴棒(用含n的代数式表示).【分析】根据已知图形得出火柴棒的根数为序数2倍与1的和,据此可得答案.解:∵第①个图形中火柴棒的根数3=1+2×1,第②个图形中火柴棒的根数5=1+2×2,第③个图形中火柴棒的根数7=1+2×3,……∴第n个图形中火柴棒的根数为1+2n,故答案为:(1+2n).11.将四个数2,﹣3,4,﹣5进行有理数的加、减、乘、除、乘方运算,列一个算式2×[4﹣(﹣3)﹣(﹣5)]=24(答案不唯一)(每个数都要用,且只能用一次,写出一个即可),使得运算结果等于24.【分析】根据2×12=3×8=4×6=24来构造即可.解:2×[4﹣(﹣3)﹣(﹣5)]=2×(4+3+5)=2×12=24,故答案为:2×[4﹣(﹣3)﹣(﹣5)]=24(答案不唯一).12.已知关于x的一元一次方程x﹣3=2x+b的解为x=999,那么关于y的一元一次方程(y﹣1)﹣3=2(y﹣1)+b的解为y=1000.解:∵关于x的一元一次方程x﹣3=2x+b的解为x=999,∴关于y的一元一次方程(y﹣1)﹣3=2(y﹣1)+b中y﹣1=999,解得:y=1000,故答案为:1000.二、选择题(共6小题).13.下列计算结果正确的是()A.2x2﹣3x2=﹣1B.2x2﹣3x2=x2C.2x2﹣3x2=﹣x2D.2x2﹣3x2=﹣5x2【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.解:2x2﹣3x2=(2﹣3)x2=﹣x2;故选:C.14.如果直线l外一点P与直线l上三点的连线段长分别为6cm,8cm,10cm,则点P到直线l的距离是()A.不超过6cm B.6cm C.8cm D.10cm【分析】根据垂线段最短得出两种情况:①当4cm是垂线段的长时,②当4cm不是垂线段的长时,求出即可.解:∵6<8<10,∴根据垂线段最短得出:当6cm是垂线段的长时,点P到直线l的距离是6cm;当6cm 不是垂线段的长时,点P到直线l的距离小于6cm,即点P到直线l的距离小于或等于6cm,即不超过6cm,故选:A.15.丁丁和当当用大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子,请你判断哪个小朋友做成的帽子更高一些()A.丁丁B.当当C.一样高D.不确定【分析】可得丁丁剪成扇形做圆锥形的帽子的底面半径大于当当剪成扇形做圆锥形的帽子的底面半径,由于母线长相等,根据勾股定理可得丁丁做成的帽子更高一些.解:由图形可知,丁丁剪成扇形做圆锥形的帽子的底面半径大于当当剪成扇形做圆锥形的帽子的底面半径,∵扇形的半径相等,即母线长相等,∴由勾股定理可得丁丁做成的圆锥形的帽子更高一些.故选:A.16.一个几何体如图所示,它的俯视图是()A.B.C.D.【分析】根据俯视图的意义,从上面看该几何体所得到的图形结合选项进行判断即可.解:从上面看该几何体,得到的是长方形,且中间有一条竖线,因此选项C中的图形,比较符合题意,故选:C.17.如图,将一副三角板叠放在一起,使直角顶点重合于点C,则∠ACE+∠BCD等于()A.120°B.145°C.175°D.180°【分析】由题意可知∠ACB=∠DCE=90°,根据补角的定义可得∠ACE+∠BCD等于180°.解:∵∠ACB=∠DCE=90°,∴∠ACE+∠BCD=∠DCE+(∠ACD+∠BCD)=∠DCE+∠ACB=180°.故选:D.18.七(1)班全体同学进行了一次转盘得分活动.如图,将转盘等分成8格,每人转动一次,指针指向的数字就是获得的得分,指针落在边界则重新转动一次.根据小红、小明两位同学的对话,可得七(1)班共有学生()人.A.38B.40C.42D.45【分析】可设得3分,4分,5分和6分的共有x人,它们平均得分为y分,分两种情况:根据(1)得分不足7分的平均得分为3分,可得xy﹣3x=13①,根据(2)得3分及以上的人平均得分为4.5分,可得4.5x﹣xy=21.5②,再把它们相加求得x,进一步可求七(1)班共有学生人数.解:设得3分,4分,5分和6分的共有x人,它们平均得分为y分,分两种情况:(1)得分不足7分的平均得分为3分,xy+3×2+5×1=3(x+5+3),xy﹣3x=13①,(2)得3分及以上的人平均得分为4.5分,xy+3×7+4×8=4.5(x+3+4),4.5x﹣xy=21.5②,①+②得1.5x=34.5,解得x=2.3,故七(1)班共有学生23+5+3+3+4=38(人).故选:A.三、解答题(本大题共有8小题,共计78分.解答时应写出必要的文字说明、证明过程或演算步骤.)19.计算:(1)|﹣6|﹣(+3)+1;(2)×(﹣32×﹣4).【分析】(1)先算绝对值,再算加减法;(2)先算乘方,再算乘法,最后算减法;如果有括号,要先做括号内的运算.解:(1)|﹣6|﹣(+3)+1=6﹣3+1=4;(2)×(﹣32×﹣4)=×(﹣9×﹣4)=×(﹣6﹣4)=×(﹣10)=﹣5.20.解方程:(1)4(x﹣2)=2﹣x;(2)1+=.【分析】(1)方程去括号、移项、合并同类项、系数化为1即可;(2)方程去分母、去括号、移项、合并同类项、系数化为1即可.解:(1)4(x﹣2)=2﹣x,去括号,得4x﹣8=2﹣x,移项,得4x+x=2+8,合并同类项,得5x=10,系数化为1,得x=2;(2)1+=,去分母,得6+3(3﹣x)=2(2x+1),去括号,得6+9﹣3x=4x+2,移项,得﹣3x﹣4x=2﹣6﹣9,合并同类项,得﹣7x=﹣13,系数化为1,得x=.21.如图,所有小正方形的边长都为1个单位,点A、B、C均在格点上.(1)过点C画线段AB的平行线CD;(2)过点A画线段AB的垂线,交线段CB的延长线于点E;(3)线段AE的长度是点E到直线AB的距离;(4)△ABE的面积等于4.【分析】(1)根据要求画出图形即可.(2)根据垂线的定义画出图形即可.(3)根据点到直线的距离的定义判断即可.(4)利用三角形的面积公式计算即可.解:(1)如图,直线CD即为所求作.(2)如图,直线AE即为所求作.(3)线段AE的长度是点E到直线AB的距离.故答案为:E,AB.(4)△ABE的面积=×4×2=4,故答案为:4.22.如图,直线AB、CD相交于点O,过点O作OE⊥AB,射线OF平分∠AOC,∠AOF =25°.求:(1)∠BOD的度数;(2)∠COE的度数.【分析】(1)根据角平分的定义和对顶角相等可得答案;(2)根据垂直的定义得∠AOE=90°,然后由角的和差关系可得答案.解:(1)∵射线OF平分∠AOC,∠AOF=25°,∴∠AOC=2∠AOF=50°,∴∠BOD=∠AOC=50°;(2)∵OE⊥AB,∴∠AOE=90°,∵∠AOC=50°,∴∠COE=90°﹣∠AOC=90°﹣50°=40°.23.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是D,B的对面是E,C的对面是F;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.【分析】(1)依据A与B、C、E、F都相邻,故A对面的字母是D;E与A、C、D、F 都相邻,故B对面的字母是E,进一步可求C的对面是F;(2)依据小正方体各对面上的两个数都互为相反数,可求m,n,进一步求出F所表示的数.解:(1)由图可得,A与B、C、E、F都相邻,故A对面的字母是D;E与A、C、D、F都相邻,故B对面的字母是E;故C的对面是F.故答案为:D,E,F;(2)∵字母A表示的数与它对面的字母D表示的数互为相反数,∴|m﹣3|+(+n)2=0,∴m﹣3=0,+n=0,解得m=3,n=﹣,∴C=m﹣3n﹣=3﹣3×(﹣)﹣=5,∴F所表示的数是﹣5.24.我校七年级各班组织了关于“元旦”期间的市场调查社会实践活动.甲、乙、丙三位同学组成的活动小组去A,B两大超市,调查了这两个超市近两年“元旦”期间的销售情况.请根据这三位同学的实践活动报告解决以下问题:(1)去年A、B两超市销售额共为200万元;(2)分别求出这两个超市去年“元旦”期间的销售额.【分析】(1)可设去年A、B两超市销售额共为x万元,根据两超市销售额今年共为242.8万元,列出方程求解即可得出答案;(2)可设A超市去年“元旦”期间的销售额为y万元,则B超市去年“元旦”期间的销售额为(200﹣y)万元,根据两超市销售额今年共为242.8万元,列出方程求解即可得出答案.解:(1)设去年A、B两超市销售额共为x万元,依题意有x+21.4%x=242.8,解得x=200.故去年A、B两超市销售额共为200万元.故答案为:200;(2)设A超市去年“元旦”期间的销售额为y万元,则B超市去年“元旦”期间的销售额为(200﹣y)万元,依题意得:(1+25%)y+(1+15%)(200﹣y)=242.8,解得:y=128,200﹣y=200﹣128=72.故A超市去年“元旦”期间的销售额为128万元,B超市去年“元旦”期间的销售额为72万元.25.[读一读]如图1,点A在原点O的左侧,点B在原点O的右侧,点A、B分别对应实数a、b,我们能求出线段AB的长.过程如下:AB=OA+OB=|a|+|b|.因为a<0,b>0,所以|a|=﹣a,|b|=b.所以AB=﹣a+b=b﹣a.[试一试]如图2,若点A、B都在原点O的左侧,且点A距离原点更远,点A、B分别对应实数a、b.求线段AB的长.[用一用]数轴上有一条线段AB,若把线段AB上的每个点对应的数都乘以得到新的数,再把所有这些新数所对应的点都向左平移2个单位后,得到新的线段CD.(1)若点A表示的数是3,点B表示的数是﹣2,则线段CD的长等于1;(2)如果线段AB上的一点P经过上述操作后得到的点P'与点P重合,线段AB上的一点Q经过上述操作后得到的点Q′表示的数是Q表示的数的,求线段PQ的长.解:[试一试]如图2,AB=OA﹣OB=|a|﹣|b|.∵a<0,b<0,∴|a|=﹣a,|b|=﹣b.∴AB=﹣a+b=b﹣a.[用一用]设点A、B分别对应实数a、b,则C表示的数为,D表示的数为;(1)∵点A表示的数是3,点B表示的数是﹣2,∴C表示的数为=,D表示的数为=,∴线段CD的长为:=1.故答案为:1.(2)设点P表示的数为p,点Q表示的数为q,则P′表示的数为:,Q′表示的数为:.根据题意可得,=p,=,解得p=,q=﹣15,∴线段PQ的长=﹣(﹣15)=.26.[阅读]材料1:如图1,在透明纸上画一个角,把这个角对折,使角的两边重合,再展平纸片,折痕把这个角分成两个相等的角.我们称这条折痕所在直线l平分这个角.材料2:如图2中,三角板OAB绕点O顺时针旋转60°到三角板OCD的位置,这时,三角板的边OA、OB绕点O顺时针旋转60°到OC、OD的位置;如图3中,三角板OAB 绕点O逆时针旋转90°到三角板OCD的位置,这时,三角板的边OA、OB绕点O逆时针旋转90°到OC、OD的位置.[问题解决](1)将两个大小一样的含30°角的直角三角板按图3的方式摆放(顶点A、C重合).现在将三角板OCD固定不动,从起始位置(图4)开始,将三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°.设三角板OAB转动的时间为t秒.①当三角板OAB转动到图5的位置时,它的一边OA平分∠COD,求t的值;②当三角板OAB的一边OB所在直线平分∠COD时,t=60秒;(直接写出结果)(2)将两个大小一样的含30°角的直角三角板按图6的方式摆放(顶点A、O、C在一条直线上).在三角板OAB绕点O以每秒5°的速度顺时针匀速转动的同时,三角板OCD绕点O以每秒3°的速度逆时针匀速转动,当三角板OAB转动一周时停止转动,此时三角板OCD也停止转动.两块三角板同时从起始位置(图6)开始转动,设三角板OAB转动的时间为t秒.当三角板OAB的一边OB所在直线平分∠COD时,t=15或37.5秒.(直接写出结果)解:(1)①由三角板可知∠DOC=60°,∵三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°,∴t秒后,∠AOC=5t.当OA平分∠DOC时,∠AOC=30°,∴5t=30°,解得t=6.答:t的值是6.②∵OB平分∠DOC时,∴∠BOC=30°,∠AOC=90°﹣30°=60°,∴5t=360°﹣60°=300°,解得t=60.故答案为:60.(2)设三角板OAB和三角板OCD旋转后分别为三角板OA′B′和三角板OC′D′,①线段OB平分∠DOC时,如图:∠AOA′=5t,∠COC′=3t,∵∠B′OC′=30°,∴∠A′OC′=60°,∴5t+3t+60°=180°,解得t=15;②直线OB平分∠DOC时,如图:∠AOA′=5t,∠COC′=3t,∠AOA′=90°∵∠B′OC′=30°,∴∠A′OC′=90°+30°=120°,∴5t+3t﹣120°=180°,解得t=37.5;故答案为:15或37.5.。
2020-2021学年辽宁省沈阳某中学七年级(上)期末数学试卷(含解析)
2020-2021学年辽宁省沈阳某中学七年级(上)期末数学试卷(考试时间:90分钟满分:100分)一、选择题(每题2分,共20分)1.下列各数:﹣8,,0.66666…,0,9.8181181118…(每两个8之间1的个数逐渐增加1),0.112134,其中有理数有()A.6个B.5个C.4个D.3个2.如图是正方体的展开图,则原正方体“4”与相对面上的数字之和是()A.10 B.9 C.7 D.53.在研究多边形的几何性质时.我们常常把它分割成三角形进行研究.从八边形的一个顶点引对角线,最多把它分割成三角形的个数为()A.5 B.6 C.7 D.84.在下列调查中,适宜采用普查的是()A.中央电视台《开学第一课》的收视率B.某城市6月份人均网上购物次数C.了解全国中学生的视力情况D.即将发射的气象卫星的零部件质量5.若3x m y2与﹣x3y n的差是单项式,则m n的值为()A.﹣9 B.9 C.D.6.下列说法正确的是()A.的系数为B.用一个平面去截一个圆柱,截面形状一定是圆C.经过两点有一条直线,且只有一条直线D.因为AM=MB,所以M是线段AB的中点7.下列变形中,运用等式的性质变形正确的是()A.若x=y,则x+3=y﹣3 B.若x=y,则﹣4x=﹣4yC.若,则2x=3y D.若ax=ay,则x=y8.某车间有30名工人,生产某种由一个螺栓两个螺母组成的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程正确的是()A.22x=16(30﹣x)B.16x=22(30﹣x)C.2×16x=22(30﹣x)D.2×22x=16(30﹣x)9.已知∠AOB=60°,∠AOC=∠AOB,射线OD平分∠BOC,则∠COD的度数为()A.20°B.40°C.20°或30°D.20°或40°10.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm二、填空题(每题3分,共18分)11.2020年全国抗击新型冠状肺炎病毒的战疫取得全面胜利.截止2020年9月底,国内共累计治愈新冠肺炎病例约86000例,将86000用科学记数法表示为.12.(a﹣1)2+|b+2|=0,则(a+b)2015的值是.13.如图,AB=10,点M是线段AC的中点,点N是线段BC的中点,点C是线段AB上一动点,则MN=.14.如图,将一副三角尺的直角顶点O重合在一起.若∠COB与∠DOA的比是5:13,OE平分∠DOA,则∠EOC=度.15.某商场的家电商场在新年期间开展了消费暖心活动,即本次活动中的家电消费券单笔消费满600元立减128元(每次只能使用一张),某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买电饭煲时,使用一张家电消费券后,又付现金568元,则该电饭煲的进价为元.16.下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为.三、解答题(共62分)17.(6分)计算:﹣14﹣(1﹣0.5)××[3﹣(﹣3)2].18.(6分)解方程:.19.(6分)先化简,再求值:4ab+2(a2+b2)﹣2(a2﹣ab﹣2b2)+1,其中a=﹣1,b=.20.(8分)如图,平面上有四个点A,B,C,D,根据下列语句用没有刻度的直尺和圆规画图:(要求保留作图痕迹,并写明结论)(1)画线段AB;(2)画射线AC;(3)连接CD,并将其反向延长至E,使得DE=2CD;(4)在平面内找到一点P,使P到A,B,C,D四点距离最短.21.(10分)某校随机抽取部分学生,对“学习习惯”进行问卷调查,设计的问题:对自己做错的题目进行整理,分析,改正;答案选项为:A.很少,B.有时,C.常常,D.总是,将调查结果的数据进行了整理,绘制成部分统计图.请根据图中信息,解答下列问题:(1)填空:a=%,b=%,“常常”对应圆心角度数为;(2)请你直接补全条形统计图;(3)若该校有3600名学生,请你估计其中“常常”对错题进行整理,分析,改正的学生有多少名?22.(8分)某人计划以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事晚出发了20分钟,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A,B两地间的距离?23.(8分)O为直线AD上一点,以O为顶点作∠COE=90°,射线OF平分∠AOE.(1)如图①,∠AOC与∠DOE的数量关系为,(2)如图①,如果∠AOC=60°,请你求出∠COF的度数并说明理由;(3)若将图①中的∠COE绕点O旋转至图②的位置,OF依然平分∠AOE,若∠AOC=α,请直接写出∠COF 的度数.24.(10分)已知点A在数轴上对应的数是a,点B对应的数为b,且满足|a+3|+(b﹣5)2=0,(1)点A到点B的距离为.(直接写出结果)(2)如图1,点P是数轴上一点,点P到点A的距离是点P到点B的距离的3倍(即PA=3PB),求点P在数轴上对应的数;(3)动点M从点O出发,以每秒2个单位长度的速度沿数轴负方向运动,动点N从点B出发,以每秒3个单位长度的速度沿数轴负方向运动,且M,N两点同时开始运动,重合后同时停止运动,设点M的运动时间为x秒,则当MN=3时,x的值为(直接写出结果);(4)如图2,点M,N分别从点O,B同时出发,分别以v1,v2的速度沿数轴负方向运动(M在O,A之间,N 在O,B之间),运动时间为t秒,点Q为O,N之间一点,且点Q到N的距离是点A到N的距离的一半(即QN=),若M,N运动过程中Q到M的距离(即QM)总为一个固定的值,则v1与v2的数量关系为(直接写出结果).1.B.2.C.3.B.4.D.5.B.6.C.7.B.8.D.9.D.10.B.11.8.6×10412.﹣1.13.5.14.25.15.580.16.170.17.2.18.y=1.19..20.21.(1)12;36;(2)“常常”所对的人数:200×30%=60(人),如图所示:;(3)3600×30%=1080(人),答:“常常”对错题进行整理,分析.22.解:设A、B两地间的距离为x千米,由题意得:=++,解得x=24.答:A、B两地间的距离为24千米.23.解:(1)∵∠COE=90°,∴∠AOC+∠DOE=180°﹣90°=90°∴∠AOC与∠DOE互余故答案为:互余;(2)∠COF=15°理由如下:∵∠AOC=60°,∠COE=90°∴∠AOE=∠AOC+∠COE=150°∵OF平分∠AOE∴∴∠COF=∠AOF﹣∠AOC=75°﹣60°=15°;(3)∵∠AOC=α,∠COE=90,∴∠AOE=∠COE﹣∠AOC=90°﹣α,∵OF依然平分∠AOE,∴∠AOF=∠AOE=45°﹣,∴∠COF=∠AOC+∠AOF=α+45°﹣=45°+.故答案为:45°+.24.解:(1)6;(2)设点P对应的数为n,根据题意,得|n+3|=3|n﹣5|,解得n=3或n=9.答:点P在数轴上对应的数为5或9.(3)根据题意得(3﹣7)x=5﹣3,解得x=3.故答案为:2;(4)根据题意得MO=v1t,NB=v3t,∴AN=8﹣v2t,AM=5﹣v1t,即AQ=NQ=(8﹣v2t)=4﹣v2t.∴QM=AQ﹣AM=4﹣v2t﹣(3﹣v6t)=1﹣v2t+v1t,∵Q到M的距离(即QM)总为一个固定的值,∴6﹣v3t+v1t=1﹣(v2﹣v2)t的值与t的值无关,∴v6﹣v1=0,∴v2=v4,即v2=2v7.。
2020-2021学年湖北省十堰市七年级(上)期末数学试卷(附答案详解)
2020-2021学年湖北省十堰市七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如果水位升高1米,记作+1米,那么水位下降3米,应记为()米.A. −3B. +3C. −1D. +12.在数轴上,表示不小于−2且小于2之间的整数的点有()A. 3个B. 4个C. 5个D. 无数个3.据报道,2019年我市武当山旅游景区共接待中外游客约10300000人次,数字10300000用科学记数法可表示为()A. 1.03×108B. 0.103×109C. 10.03×106D. 1.03×1074.下列计算结果正确的是()A. 3x2−2x2=1B. 3x2+2x2=5x4C. 3x2y−3yx2=0D. 4x+y=4xy5.若−x3y a与x b y是同类项,则a−b的值为()A. −2B. −4C. 4D. 26.若方程2x−kx+1=5x−2的解为−1,则k的值为()A. 10B. −4C. −6D. −87.如图射线OA的方向是北偏东30°,在同一平面内∠AOB=70°,则射线OB的方向是()A. 北偏东40°B. 北偏西40°或东偏南80°C. 南偏东80°D. 北偏西40°或南偏东80°8.某种商品进价为200元,标价400元,由于该商品积压,商店准备打折销售,但要保证利润率不低于40%,则最多可以打()A. 6折B. 7折C. 8折D. 9折9.有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动90°算一次,则滚动第2021次后,骰子朝下一面的数字是()A. 5B. 4C. 3D. 210.观察下列一组图形中点的个数的规律,第9个图中点的个数是()A. 133B. 136C. 139D. 142二、填空题(本大题共6小题,共18.0分)11.已知∠α与∠β互余,且∠α=40°25′,则∠β=______.12.温度由−4℃上升7℃,达到的温度是________℃。
2020-2021学年安徽省合肥市包河区七年级(上)期末数学试卷及参考答案
2020-2021学年安徽省合肥市包河区七年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在数0,﹣|﹣2|,﹣0.5,﹣(﹣)中,负数的个数是()A.3B.2C.1D.02.(3分)2020年9月11日,巢湖水位终于回落至警戒水位10.50米,这意味着“巢湖保卫战”取得重大胜利.在这场浩大的洪水之战中,合肥市前后出动了超过155万人次抗洪.而数字155万用科学记数法表示为()A.1.55×106B.15.5×105C.1.55×105D.155×104 3.(3分)关于x的一元一次方程2x﹣2+m=4的解为x=1,则m的值为()A.6B.5C.4D.34.(3分)若与kx﹣1=15的解相同,则k的值为()A.8B.2C.﹣2D.65.(3分)某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°6.(3分)已知线段AB=10cm,线段AC=16cm,且AB、AC在同一条直线上,点B在A、C之间,此时AB、AC的中点M、N之间的距离为()A.13cm B.6cm C.3cm D.1.5cm7.(3分)如图,直线AB,CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD的度数是()A.35°B.45°C.30°D.40°8.(3分)若四条直线在平面内交点的个数为a,则a的可能取值有()A.3个B.4个C.5个D.6个9.(3分)某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了85元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元.A.284B.308C.312D.32010.(3分)用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n的值可能是()A.2018B.2019C.2020D.2021二、填空题(共5小题,每题3分,满分15分)11.(3分)﹣0.5的相反数是,倒数是.12.(3分)若代数式x﹣2y=﹣3,则代数式4y﹣2x+1的值为.13.(3分)已知:A和B都在同一条数轴上,点A表示﹣2,又知点B和点A相距5个单位长度,则点B表示的数一定是.14.(3分)按如图所示的运算程序进行运算:则当输入的数为时,运算后输出结果为8.15.(3分)某同学晚上6点多开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针与分针的夹角还是120°,此同学做作业用了分钟.三、解答题(共7大题,满分55分)16.(8分)(1)计算:﹣23×(1﹣)÷0.5;(2)解方程﹣1=.17.(6分)先化简,再求值:(2x2﹣5x+4)﹣3(x2﹣x+1),其中x=﹣2.18.(7分)某学校组织七年级学生参加了“热爱宪法,捍卫宪法”的知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,绘制统计图如图.请根据所给信息,回答下列问题:(1)A组、B组人数占总人数的百分比分别是、;本次共抽查了名学生的成绩;(2)扇形统计图中,D组对应的圆心角的度数为α度,求α的值;(3)该区共有1000名七年级学生参加了此次竞赛,若主办方想把一等奖的人数控制在150人,那么请你通过计算估计:一等奖的分值应定在多少分及以上?19.(7分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.(1)求第5个台阶上的数x是多少?(2)试用含k(k为正整数)的式子表示出数“1”所在的台阶数(此问直接写出结果).20.(8分)某水果店有甲,乙两种水果,它们的单价分别为a元/千克,b元/千克.若购买甲种水果5千克,乙种水果2千克,共花费25元,购买甲种水果3千克,乙种水果4千克,共花费29元.(1)求a和b的值;(2)甲种水果涨价m元/千克(0<m<2),乙种水果单价不变,小明花了45元购买了两种水果10千克,那么购买甲种水果多少千克?(用含m的代数式表示).21.(8分)点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+5|+(b﹣3)2=0.(1)求点A,B所表示的数;(2)点P在直线AB上点B右边一点,且AP=bPB,点Q为PB的中点,求线段AQ的长.22.(11分)已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=10°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数;(3)试猜想∠AOM与∠NOC之间的数量关系,并说明理由.附加题(满分5分,第一空2分,第二空3分,计入总分,但总分不超过100分)23.如图,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周,经过秒后,OM恰好平分∠BOC;(2)若三角板在转动的同时,射线OC也绕O点以每秒5°的速度沿顺时针方向旋转一周,如图,那么经过秒,OC平分∠MON?2020-2021学年安徽省合肥市包河区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【分析】先利用绝对值和相反数的意义得到﹣|﹣2|=﹣2,﹣(﹣)=,然后判断负数的个数.【解答】解:﹣|﹣2|=﹣2,﹣(﹣)=,在数0,﹣|﹣2|,﹣0.5,﹣(﹣)中,负数为,﹣|﹣2|,﹣0.5,所以负数的个数为2.故选:B.【点评】此题考查了正数和负数,以及绝对值,相反数,熟练掌握运算法则是解本题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:155万=1550000=1.55×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】将x=1代入方程2x﹣2+m=4,得到关于m的一元一次方程,解方程即可求出m 的值.【解答】解:∵关于x的一元一次方程2x﹣2+m=4解为x=1,∴2﹣2+m=4,解得m=4.故选:C.【点评】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.4.【分析】解方程就可以求出方程的解,这个解也是方程kx﹣1=15的解,根据方程的解的定义,把这个解代入就可以求出k的值.【解答】解:先解方程得:x=8;把x=8代入kx﹣1=15得:8k=16,k=2.故选:B.【点评】此题考查的知识点是同解方程,本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.5.【分析】根据被抽查的学生中骑车的人数及所占比例,即可求得被调查的学生总人数,根据扇形统计表中的比例关系即可求得每种方式各自有多少人,即可作出判断.【解答】解:A、21÷35%=60人,所以A正确;B、60×(1﹣0.35﹣0.15﹣0.05)=27人,所以B正确;C、2560×0.35=896人,所以C错误;D、360°×15%=54°,所以D正确;综上,故选:C.【点评】本题考查了学生会不会从图表中获取信息,认真审题,明白题意再计算,因为四个选项都要计算,所以选择时花费的时间较多.6.【分析】画出图形,根据中点的性质以及线段的和、差进行运算即可.【解答】解:如图:∵M是AB中点,AB=10cm,∴AM=AB=×10=5(cm),∵N是AC中点,AC=16cm,∴AN=AC=×16=8(cm),∴MN=AN﹣AM=8﹣5=3(cm).故选:C.【点评】本题考查了两点间的距离,关键是利用中点的性质和线段和、差进行计算.7.【分析】先根据垂直的定义求出∠AOC,然后根据对顶角相等即可求出∠BOD的度数.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵∠COE=55°,∴∠AOC=90°﹣∠COE=35°,∴∠BOD=∠AOC=35°.故选:A.【点评】本题考查了对顶角相等的性质,垂直的定义,根据图形找出角的关系代入数据进行计算即可,比较简单.8.【分析】题中直线的位置关系不明确,应分情况讨论,画出每种情况下的图形可得出答案.【解答】解:如图所示:∴则a的可能取值有0,1,3,4,5,6,共6个.故选:D.【点评】本题考查了直线的位置关系.解题的关键是明确在同一平面内,直线的位置关系只有两种:平行和相交,而过直线外有且只有一条直线与已知直线平行.注意画出每种情况的图形,从而很直观的得出答案.9.【分析】根据该超市给出得优惠方案可得出:小敏第一次购物的原价为85元,第二次购物的原价在100元(含100元)以上,350元(不含350元)以内,设小敏第二次购物的原价为x元,根据第二次付款270元,即可得出关于x的一元一次方程,解之即可得出x 的值,再利用把这两次购物改为一次性购物需付款=0.8×两次购物原价之和,即可求出结论.【解答】解:100×0.9=90(元),350×0.9=315(元),350×0.8=280(元),∵85<90,90<270<280,∴小敏第一次购物的原价为85元,第二次购物的原价在100元(含100元)以上,350元(不含350元)以内.设小敏第二次购物的原价为x元,依题意得:0.9x=270,解得:x=300,∴如果小敏把这两次购物改为一次性购物,则小敏需付款0.8×(85+300)=308(元).故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.【分析】设做竖式和横式的两种无盖纸盒分别为x个、y个,然后根据所需长方形纸板和正方形纸板的张数列出方程组,再根据x、y的系数表示出m+n并判断m+n为5的倍数,然后选择答案即可.【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,由题意得:,两式相加得,m+n=5(x+y),∵x、y都是正整数,∴m+n是5的倍数,∵2018、2019、2020、2021四个数中只有2020是5的倍数,∴m+n的值可能是2020,故选:C.【点评】本题考查了二元一次方程组的应用,根据未知数系数的特点,计算出所需两种纸板的张数的和正好是5的倍数是解题的关键.二、填空题(共5小题,每题3分,满分15分)11.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣0.5的相反数是0.5,倒数是﹣2,故答案为:0.5,﹣2.【点评】本题考查了倒数,数的前面加负号就是这个数的相反数,先把小数化成分数,再把分子分母交换位置.12.【分析】首先把4y﹣2x+1化成﹣2(x﹣2y)+1,然后把x﹣2y=﹣3代入化简后的算式计算即可.【解答】解:∵x﹣2y=﹣3,∴4y﹣2x+1=﹣2(x﹣2y)+1=﹣2×(﹣3)+1=6+1=7.故答案为:7.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.13.【分析】点B表示的数一定是:﹣2+5或﹣2﹣5,据此即可求解.【解答】解:点B表示的数一定是:﹣2+5=3或﹣2﹣5=﹣7.故答案是:3或﹣7.【点评】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.14.【分析】根据程序框图列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:若﹣x=8,解得:x=﹣16;若x+3=8,解得:x=5,则输入的数为5或﹣16.故答案为:5或﹣16.【点评】此题考查了解一元一次方程,弄清题中的程序框图是解本题的关键.15.【分析】根据分针每分钟转6°,时针每分钟转0.5°,可列方程求解.【解答】解:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故答案是:44.【点评】本题考查一元一次方程的应用,钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.三、解答题(共7大题,满分55分)16.【分析】(1)首先计算乘方和括号里面的运算,然后从左向右依次计算即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【解答】解:(1)﹣23×(1﹣)÷0.5=﹣8×÷0.5=﹣6÷0.5=﹣12.(2)去分母,可得:3(2x+1)﹣12=2x﹣4(5x﹣1),去括号,可得:6x+3﹣12=2x﹣20x+4,移项,可得:6x﹣2x+20x=4﹣3+12,合并同类项,可得:24x=13,系数化为1,可得:x=.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.17.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:原式=2x2﹣5x+4﹣3x2+3x﹣3=﹣x2﹣2x+1.当x=﹣2时,原式=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1.【点评】本题考查了整式的加减,掌握合并同类项法则是解决本题的关键.18.【分析】(1)由A组、B组所在的扇形统计图中的圆心角度数,占总度数360°的百分比即可,根据A组人数及其圆心角所占比例即可求出被调查的总人数;(2)用360°乘以D组人数所占比例即可;(3)通过计算E组所占整体的百分比,发现与获一等奖的占比相同,都是15%,因此分数应确定为E组的分数.【解答】解:(1)A组人数占总人数的百分比是×100%=10%,B组人数占总人数的百分比是×100%=20%,本次调查的总人数为30÷10%=300(人),故答案为:10%、20%,300;(2)α=360°×=108°;即α=108;(3)∵E组所占百分比为1﹣10%﹣20%﹣=15%,一等奖人数所占比例为×100%=15%,∴一等奖的分值应定在90分.【点评】考查条形统计图、扇形统计图、频率分布直方图的意义和制作方法,理清统计图中的数量和数量之间的关系是正确解答的前提,样本估计总体是统计中常用的方法.19.【分析】(1)根据任意相邻四个台阶上数的和都相等,可以求得x的值;(2)由循环规律即可知“1”所在的台阶数为4k﹣1.【解答】解:(1)∵任意相邻四个台阶上数的和都相等,∴﹣5+(﹣2)+1+9=(﹣2)+1+9+x,解得,x=﹣5,即第5个台阶上的数x是﹣5;(2)数“1”所在的台阶数为4k﹣1.【点评】本题考查一元一次方程的应用和数字的变化类,解答本题的关键是明确题目中数字的变化特点,求出相应的结果.20.【分析】(1)根据等量关系:购买甲5千克,乙2千克,共花费25元;购买甲3千克,乙4千克,共花费29元;列出方程求解即可;(2)可设购买甲种水果x千克,则购买乙种水果(10﹣x)千克,根据花了45元,列出方程即可求解.【解答】解:(1)由题意可得:,解得:,∴a=3,b=5;(2)设购买甲种水果x千克,则购买乙种水果(10﹣x)千克,由题意可得:(3+m)x+5(10﹣x)=45,解得x=.答:购买甲种水果千克.【点评】本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.21.【分析】(1)根据a、b满足|a+5|+(b﹣3)2=0,即可得到a、b的值,从而可以得到点A,B所表示的数;(2)设点P表示的数为m,先根据中点的定义表示点Q,根据数轴上两点的距离表示AP=bPB,列方程可得结论.【解答】解:(1)∵|a+5|+(b﹣3)2=0,∴a+5=0,b﹣3=0,解得a=﹣5,b=3,即点A,B所表示的数分别为﹣5,3;(2)设点P表示的数为m,∵点P在直线AB上点B右边一点,∴m>3,∵点Q为PB的中点,∴点Q表示的数为,∵AP=bPB,∴m+5=b(m﹣3),∵b=3,∴m=7,∴AQ=AB+BQ=+5=+5=10.【点评】本题考查一元一次方程的应用,非负数的性质,数轴,解答本题的关键是明确题意,利用数轴上两点的距离表示线段的长.22.【分析】(1)先根据余角的定义求出∠MOC,再根据角平分线的定义求出∠BOM,然后根据∠AOM=180°﹣∠BOM计算即可;(2)根据角的倍分关系以及角平分线的定义即可求解;(3)令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,根据∠AOM+∠MOC+∠BOC=180°即可得到∠AOM与∠NOC满足的数量关系.【解答】解:(1)∵∠MON=90°,∠CON=10°,∴∠MOC=90°﹣∠CON=80°,∵OC平分∠MOB,∴∠BOM=2∠MOC=160°,∴∠AOM=180°﹣∠BOM=20°;(2)∵∠BON=2∠NOC,OC平分∠MOB,∴∠MOC=∠BOC=3∠NOC,∵∠MOC+∠NOC=∠MON=90°,∴3∠NOC+∠NOC=90°,∴4∠NOC=90°,∴∠BON=2∠NOC=45°,∴∠AOM=180°﹣∠MON﹣∠BON=180°﹣90°﹣45°=45°;(3)∠AOM=2∠NOC.令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,∵∠AOM+∠MOC+∠BOC=180°,∴γ+90°﹣β+90°﹣β=180°,∴γ﹣2β=0,即γ=2β,∴∠AOM=2∠NOC.【点评】考查角平分线的意义、互补、互余的意义,正确表示各个角,理清各个角之间的关系是得出正确结论的关键.附加题(满分0分,第一空2分,第二空3分,计入总分,但总分不超过100分)23.【分析】(1)构建方程即可解决问题;(2)根据∠MOC=45°,分两种情况构建方程即可.【解答】解:(1)旋转前∠MOC=90°﹣∠AOC=60°,当OM平分∠BOC时,∠MOC=∠BOC=(180°﹣30°)=75°,3t=75°﹣60°,t=5,故答案为:5.(2)当0<t≤30时,如图,∠MOC=∠AOM﹣∠AOC=(3t+90°)﹣(30°+5t)=60°﹣2t,若OC平分∠MON,则∠MOC=∠MON,∴60°﹣2t=45°,解得t=7.5.当30<t≤120时,OC回到初始位置,如图,∠AOM=3t﹣270°,∠AOC=30°,∴若OC平分∠MON,则∠MOC=45°,∴3t﹣270°﹣30°=45°,解得t=115.故答案为:7.5或115.【点评】本题考查角平分线的定义、角的和差定义等知识,解题的关键是理解题意,学会构建方程解决问题.。
信阳市罗山县2020—2021年七年级上期末数学试卷含答案解析
信阳市罗山县2020—2021年七年级上期末数学试卷含答案解析一、选择题(本题共小题,每小题3分,共36分)1.下列4个数中:(﹣1)2021,|﹣2|,π,﹣32,其中正数的个数有()个.A.1 B.2 C.3 D.42.2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好以后”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为()A.1.11×104B.11.1×104C.1.11×105D.1.11×1063.下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是34.在解方程﹣=1时,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1 B.3(x﹣1)+2(2x+3)=1 C.3(x﹣1)+2(2+3x)=6 D.3(x﹣1)﹣2(2x+3)=65.有理数a、b在数轴上的位置如图所示,则下列各式错误的是()A.b<0<a B.|b|>|a| C.ab<0 D.a+b>06.以下3个说法中:①在同一直线上的4点A、B、C、D只能表示5条不同的线段;②通过两点有一条直线,同时只有一条直线;③同一个锐角的补角一定大于它的余角.说法都正确的结论是()A.②③B.③C.①②D.①7.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ的值等于()A.45°B.60°C.90°D.180°8.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,如此商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,依照题意列一元一次方程,正确的是()A.(1+50%)x•80%﹣x=8 B.50%x•80%﹣x=8C.(1+50%)x•80%=8 D.(1+50%)x﹣x=8二、填空题(本题共7小题,每小题3分,共21分)9.的倒数是.10.己知关于x的方程3a﹣x=+3的解为2,则a值是.11.57.32°=°′″.12.如图,直线AB、CD相交于点O,∠DOF=90°,OF平分∠AOE,若∠BOD=28°,则∠EOF 的度数为.13.若a2n+1b2与5a3n﹣2b2是同类项,则n=.14.假如关于x的方程2x+1=3和方程的解相同,那么k的值为.15.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.三、解答题(本题共8小题,共75分)16.运算:(1)(﹣3)2÷2÷(﹣)+4+22×(﹣)(2)2﹣(﹣+)×36.17.已知关于x的方程(1﹣x)=1+a的解与方程=+2a的解互为相反数,求x与a的值.18.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.19.如图,D是AB的中点,E是BC的中点,BE=AC=2cm,求线段DE的长.20.小购买了一套经济适用房,地面结构如图所示(墙体厚度、地砖间隙都忽略不计,单位:米),他打算给卧房铺上木地板,其余房间都铺上地砖.依照图中的数据,解答下列问题:(结果用含x、y的代数式表示)(1)求整套住房需要铺多少平方米的地砖?(2)求厅的面积比其余房间的总面积多多少平方米?21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过运算说明OE是否平分∠BOC.22.随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如表),以50km为标准,多于50km的记为“+”,不第一天翌日第三天第四天第五天第六天第七天路程(km)﹣8 ﹣11 ﹣14 0 ﹣16 +41 +8(2)若每行驶100km需用汽油6升,汽油每升5.5元,试估量小明家一个月(按30天计)的汽油费用是多少元?23.为更好的参与“阳光体育”大课间活动,某班将买一些乒乓球和乒乓球拍,现了解情形如下:甲、乙两家商店出售两种同样品牌的兵兵球和乒乓球拍.兵乓球拍毎副定价30元,兵兵球毎盒定价5元,两店促销活动如下:甲店毎买一副球拍赠一盒乒乓球,乙店两种商品均按定价的9折优待.(1)若该班需球拍5副,乒乓球x盒(不小于5盒),请用含x的代数式表示现在甲店和乙店分别所需费用.(2)当购买乒乓球多少盒时,两种优待方法付款一样?(3)当购买10副球拍30盒乒乓球时,请你去办这件事,你打算去如何购买才能最省钱?需要花费多少元?2020-2021学年河南省信阳市罗山县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共小题,每小题3分,共36分)1.下列4个数中:(﹣1)2021,|﹣2|,π,﹣32,其中正数的个数有()个.A.1 B.2 C.3 D.4【考点】正数和负数.【分析】依照大于零的数是正数,可得答案.【解答】解:(﹣1)2021=1>0,|﹣2|=2>0,π是正数,﹣32=﹣9<0是负数.故选:C.【点评】本题考查了正数和负数,化简各数是解题关键,大于零的数是正数,小于零的数是负数.2.2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好以后”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为()A.1.11×104B.11.1×104C.1.11×105D.1.11×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将11.1万用科学记数法表示为1.11×105.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是3【考点】单项式.【分析】依照单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做那个单项式的次数.【解答】解:依照单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.4.在解方程﹣=1时,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1 B.3(x﹣1)+2(2x+3)=1 C.3(x﹣1)+2(2+3x)=6 D.3(x﹣1)﹣2(2x+3)=6【考点】解一元一次方程.【专题】运算题;一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果,即可做出判定.【解答】解:去分母得:3(x﹣1)﹣2(2x+2)=6,故选D【点评】此题考查了解一元一次方程,熟练把握运算法则是解本题的关键.5.有理数a、b在数轴上的位置如图所示,则下列各式错误的是()A.b<0<a B.|b|>|a| C.ab<0 D.a+b>0【考点】数轴;绝对值;有理数大小比较.【分析】依照数轴的特点判定出a、b的正负情形以及绝对值的大小,再依照有理数的大小比较方法与有理数的乘法加法运算法则对各选项分析判定后利用排除法.【解答】解:依照题意得,0<a<1,b<﹣1,∴A、b<0<a,正确;B、|b|>|a|,正确;C、ab<0,正确;D、a+b<0,故本选项错误.故选D.【点评】本题要紧考查了数轴与绝对值,以及有理数的大小比较,依照数轴判定出a、b的正负情形以及绝对值的大小是解题的关键.6.以下3个说法中:①在同一直线上的4点A、B、C、D只能表示5条不同的线段;②通过两点有一条直线,同时只有一条直线;③同一个锐角的补角一定大于它的余角.说法都正确的结论是()A.②③B.③C.①②D.①【考点】余角和补角;直线、射线、线段;直线的性质:两点确定一条直线.【分析】依照线段的概念,直线的性质和余角、补角的定义进行判定.【解答】解:①在同一直线上的4点A、B、C、D只能表示6条不同的线段,故错误;②通过两点有一条直线,同时只有一条直线,正确;③同一个锐角的补角一定大于它的余角,正确.故选A.【点评】此题综合考查线段的概念,直线的性质以及余角和补角的运用,属于基础题型.7.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ的值等于()A.45°B.60°C.90°D.180°【考点】余角和补角.【专题】运算题.【分析】依照互余两角之和为90°,互补两角之和为180°,结合题意即可得出答案.【解答】解:由题意得,∠α+∠β=180°,∠α+∠γ=90°,两式相减可得:∠β﹣∠γ=90°.故选:C.【点评】此题考查了余角和补角的知识,属于基础题,把握互余两角之和为90°,互补两角之和为180°,是解答本题的关键.8.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,如此商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,依照题意列一元一次方程,正确的是()A.(1+50%)x•80%﹣x=8 B.50%x•80%﹣x=8C.(1+50%)x•80%=8 D.(1+50%)x﹣x=8【考点】由实际问题抽象出一元一次方程.【分析】第一依照题意表示出标价为(1+50%)x,再表示出售价为(1+50%)x•80%,然后利用售价﹣进价=利润即可得到方程.【解答】解:设每个双肩背书包的进价是x元,依照题意得:(1+50%)x•80%﹣x=8.故选:A.【点评】此题要紧考查了由实际问题抽象出一元一次方程,关键是正确明白得题意,找出题目中的等量关系,依照等量关系列出方程.二、填空题(本题共7小题,每小题3分,共21分)9.的倒数是﹣3.【考点】倒数.【分析】依照倒数的定义.【解答】解:因为(﹣)×(﹣3)=1,因此的倒数是﹣3.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.己知关于x的方程3a﹣x=+3的解为2,则a值是2.【考点】一元一次方程的解.【专题】推理填空题.【分析】依照关于x的方程3a﹣x=+3的解为2,将x=2代入原方程即可求得a的值,本题得以解决.【解答】解:∵关于x的方程3a﹣x=+3的解为2,∴3a﹣2=解得,a=2,故答案为:2.【点评】本题考查一元一次方程的解,解题的关键是明确题意,能够求得相应的a的值.11.57.32°=57°19′12″.【考点】度分秒的换算.【分析】依照1度等于60分,1分等于60秒,不到一度的化成分,不到一分的化成秒,可得答案.【解答】解:57.32°=57°19′12″,故答案为:57°19′12″.【点评】本题考查了度分秒的换算,大的单位化成小的单位乘以进率.12.如图,直线AB、CD相交于点O,∠DOF=90°,OF平分∠AOE,若∠BOD=28°,则∠EOF 的度数为62°.【考点】对顶角、邻补角;角平分线的定义.【分析】依照平角的性质得出∠COF=90°,再依照对顶角相等得出∠AOC=28°,从而求出∠AOF的度数,最后依照角平分线的性质即可得出∠EOF的度数.【解答】解:∵∠DOF=90°,∴∠COF=90°,∵∠BOD=28°,∴∠AOC=28°,∴∠AOF=90°﹣28°=62°,∵OF平分∠AOE,∴∠EOF=62°.故答案为:62°【点评】此题考查了角的运算,用到的知识点是平角的性质、对顶角、角平分线的性质,关键是依照题意得出各角之间的关系.13.若a2n+1b2与5a3n﹣2b2是同类项,则n=3.【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,依照同类项的定义中相同字母的指数也相同,从而求得n的值.【解答】解:依照同类项的定义,2n+1=3n﹣2,解得n=3.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.14.假如关于x的方程2x+1=3和方程的解相同,那么k的值为7.【考点】同解方程.【专题】运算题.【分析】本题可先依照一元一次方程解出x的值,再依照解相同,将x的值代入二元一次方程中,即可解出k的值.【解答】解:∵2x+1=3∴x=1又∵2﹣=0即2﹣=0∴k=7.故答案为:7【点评】本题考查了二元一次方程与一元一次方程的综合运用.运用代入法,将解出的x 的值代入二元一次方程,可解出k的值.15.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.【考点】规律型:图形的变化类.【专题】规律型.【分析】观看图形专门容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.【解答】解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).【点评】本题是一道找规律的题目,这类题型在中考中经常显现.关于找规律的题目第一应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本题共8小题,共75分)16.运算:(1)(﹣3)2÷2÷(﹣)+4+22×(﹣)(2)2﹣(﹣+)×36.【考点】有理数的混合运算.【专题】运算题.【分析】(1)依照幂的乘方、有理数的除法和加法进行运算即可;(2)依照乘法的分配律和有理数的加法和减法进行运算即可.【解答】解:(1)(﹣3)2÷2÷(﹣)+4+22×(﹣)=9×=﹣6+4﹣6=﹣8;(2)2﹣(﹣+)×36===.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的运算方法.17.已知关于x的方程(1﹣x)=1+a的解与方程=+2a的解互为相反数,求x与a的值.【考点】一元一次方程的解.【专题】运算题.【分析】分别表示出两方程的解,由两个解互为相反数列出方程,求出方程的解即可得到a 的值.【解答】解:解方程(1﹣x)=1+a得:x=﹣1﹣2a,解方程=+2a得:x=,∵两个方程的解互为相反数,∴﹣1﹣2a+=0,解得:a=,代入x=﹣1﹣2a得:x=﹣.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】运算题.【分析】先依照绝对值及完全平方的非负性求出x和y的值,然后对所求的式子去括号、合并同类项得出最简整式,代入x和y的值即可.【解答】解:∵|x﹣2|+(y+1)2=0,∴x=2,y=﹣1,x﹣2(3y2﹣2x)﹣4(2x﹣y2)=x﹣6y2+4x﹣8x+4y2=﹣3x﹣2y2,当x=2,y=﹣1时,原式=﹣6﹣2=﹣8.【点评】本题考查了非负数的性质及整式的化简求值,化简求值是课程标准中所规定的一个差不多内容,它涉及对运算的明白得以及运算技能的把握两个方面,也是一个常考的题材.19.如图,D是AB的中点,E是BC的中点,BE=AC=2cm,求线段DE的长.【考点】两点间的距离.【分析】依照题意分别求出BE、AC的长,依照线段中点的性质进行运算即可.【解答】解:∵BE=AC=2cm,∴BE=2cm,AC=10cm,∵E是BC的中点,∴BC=2BE=4cm,∴AB=AC﹣BC=6cm,∵D是AB的中点,∴DB=AB=3cm,∴DE=DB+BE=5cm.【点评】本题考查的是两点间的距离的运算,把握线段中点的概念、灵活运用数形结合思想是解题的关键.20.小购买了一套经济适用房,地面结构如图所示(墙体厚度、地砖间隙都忽略不计,单位:米),他打算给卧房铺上木地板,其余房间都铺上地砖.依照图中的数据,解答下列问题:(结果用含x、y的代数式表示)(1)求整套住房需要铺多少平方米的地砖?(2)求厅的面积比其余房间的总面积多多少平方米?【考点】列代数式;整式的加减.【分析】(1)依照图中数据可知厨房的长为3,宽为x;卧房的邻边长分别为3和4;(2)设客厅的宽是x,卫生间的宽是y,依照长方形的面积=长×宽,表示出总面积.【解答】解:客厅的面积为6xm2,厨房的面积为6m2,卫生间的面积是2ym2,卧房的面积是12m2;(1)地砖的面积是6x+6+2y(m2);(2)厅的面积比其余房间的总面积多6x﹣(6+2y+12)=6x﹣2y﹣18(m2)【点评】本题考查列代数式及代数式求值问题,得到地面总面积的等量关系是解决本题的关键.21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过运算说明OE是否平分∠BOC.【考点】角的运算;角平分线的定义.【分析】(1)依照角的定义即可解决;(2)依照∠BOD=∠DOC+∠BOC,第一利用角平分线的定义和邻补角的定义求得∠DOC 和∠BOC即可;(3)依照∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【解答】解:(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)∵∠AOC=50°,OD平分∠AOC,∴∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,∴∠BOD=∠DOC+∠BOC=155°.(3)∵∠DOE=90°,∠DOC=25°,∴∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又∵∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.【点评】本题要紧考查了角的度数的运算,正确明白得角平分线的定义,以及邻补角的定义是解题的关键.22.随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如表),以50km为标准,多于50km的记为“+”,不(2)若每行驶100km需用汽油6升,汽油每升5.5元,试估量小明家一个月(按30天计)的汽油费用是多少元?【考点】正数和负数.【分析】(1)依照有理数的加法,可得总路程,依照总路程除以时刻,可得平均路程;(2)依照总路程乘以100千米的耗油量,可得总耗油量,依照有的单价乘以总耗油量,可得答案.【解答】解:(1)总路程为:(50﹣8)+(50﹣11)+(50﹣14)+50+(50﹣16)+(50+41)+(50+8)=350km平均每天路程为:350÷7=50 km,答:这七天中平均每天行驶50千米.(2)估量小明家一个月的汽油费用是(50×7÷100×6)×5.5=495元,答:估量小明家一个月的汽油费用是495元.【点评】本题考查了正数和负数,利用有理数的运算得出总耗油量是解题关键.23.为更好的参与“阳光体育”大课间活动,某班将买一些乒乓球和乒乓球拍,现了解情形如下:甲、乙两家商店出售两种同样品牌的兵兵球和乒乓球拍.兵乓球拍毎副定价30元,兵兵球毎盒定价5元,两店促销活动如下:甲店毎买一副球拍赠一盒乒乓球,乙店两种商品均按定价的9折优待.(1)若该班需球拍5副,乒乓球x盒(不小于5盒),请用含x的代数式表示现在甲店和乙店分别所需费用.(2)当购买乒乓球多少盒时,两种优待方法付款一样?(3)当购买10副球拍30盒乒乓球时,请你去办这件事,你打算去如何购买才能最省钱?需要花费多少元?【考点】一元一次方程的应用.【分析】(1)依照甲、乙两店的优待方式,可得出关于x的表达式.(2)依照等量关系是:甲店的费用=乙店的费用列出方程解答即可;(3)依照最省钱的购买的思想确定方案.【解答】解:(1)甲店:30×5+(x﹣5)×5=(5x+125)元,乙店:(5×30+5x)×0.9=(4.5x+135)元;(2)设当购买乒乓球x盒时,两种优待方法付款一样,可得:(5x+125)=4.5x+135解得:x=50,答:当购买乒乓球50盒时,两种优待方法付款一样.(3)到甲店购买10副球拍,得到10副球拍,10盒球.再到乙店购买20盒乒乓球最省钱.需要30×10+20×5×0.9=390元.【点评】本题考查了一元一次方程的应用,解决本题的关键是明白得两家商店的优待条件,能用代数式表示甲店的费用即乙店的费用.2016年3月2日。
2020-2021学年七年级上学期期末考试数学试题含参考答案
2020年秋学期期末测试七年级数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.﹣3的相反数是()A.1 3B.13-C.3 D.﹣3 2.下列几何体,都是由平面围成的是()A.圆柱B.三棱柱C.圆锥D.球3.下列各式中,正确的是()A.22a b ab+=B.224235x x x+=C.()3434x x--=--D.2222a b a b a b-+= 4.已知关于x的一元一次方程3240x a--=的解是2x=,则a的值为()A.﹣5 B.﹣1 C.1 D.55.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b c+-的值为()A.﹣6 B.﹣2 C.2 D.46.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.34二、填空题(本大题共有10小题,每小题3分,共30分)7.2021的绝对值是.8.双十一购物狂欢节,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,2020年双十一购物狂欢节全网销售额高达267 400 000 000元,将267 400 000 000用科学记数法表示为_____________.9.若∠A=34°,则∠A的补角等于____________°.10.请写出一个系数是﹣3、次数是4的单项式:_______________.11.如图是某个几何体的三视图,则该几何体的名称是_______________.12.已知2320x y-+=,则22(3)5x y-+的值为_______________.13.若一个等腰三角形的两边长分别为4cm 和9cm,则这个等腰三角形的周长是_______cm.14.若多项式23352x kxy--与2123xy y-+的和中不含xy项,则k的值是_________.15.如图,在ΔABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.16.如图,是一个长、宽、高分别为a、b、c(a>b>c)长方体纸盒,将此长方体纸盒沿不同的棱剪(第5题图)(第6题图)(第11题图)(第15题图)(第16题图)开,展成的一个平面图形是各不相同的.则在这些不同的平面图形中,周长最大的值是_______________.(用含a 、b 、c 的代数式表示)三、解答题(本大题共有8小题,共102分.解答时应写出必要的步骤)17.(本题12分)计算: (1)213(4)33⎛⎫---+-+ ⎪⎝⎭; (2)()2020112(3)2---+-÷.18.(本题8分)解下列方程:(1)43211x x -=+; (2)21)1323(x x --=-.19.(本题8分)先化简,再求值:22222(5)2(2)a b ab a b a b ab +-+--,其中1a =-,3b =.20.(本题8分)若方程2(31)12x x +=+的解与关于x 的方程622(3)3kx -=+的解互为倒数,求k 的值.21.(本题10分)如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,△ABC 的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A 画BC 的垂线,并标出垂线所过格点P ;(2)过点A 画BC 的平行线,并标出平行线所过格点Q ; (3)画出△ABC 向右平移8个单位长度后△A ′B ′C ′的位置;(4)△A ′B ′C ′的面积为________.22.(本题10分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =a (a +b ). 例如:1※2=1×(1+2)=1×3=3. (1)求(﹣3) ※5的值;(2)若(﹣2) ※(3x -2)=x +1,求x 的值.23.(本题10分)如图,已知直线AB,CD相交于点O,∠AOE与∠AOC互余.(1)若∠BOD=32°,求∠AOE的度数;(2)若∠AOD:∠AOC=5∶1,求∠BOE的度数.24.(本题10分)如图1,直线MN∥PQ、ΔABC按如图放置,∠ACB=90°,AC、BC分别与MN、PQ相交于点D、E,若∠CDM=40°.(1)求∠CEP的度数;(2)如图2,将△ABC绕点C逆时针旋转,使点B落在PQ上得△A'B'C,若∠CB'E=22°,求∠A'CB的度数.25.(本题12分)全球新冠疫情爆发后,口罩成了急需物资,中国企业积极采购机械生产口罩,为全球抗击疫情作出了贡献.某企业准备采购A、B两种机械共15台,用于生产医用口罩和N95医用防护口罩,A种机械每天每台可以生产医用口罩7万个,B种机械每天每台可以生产N95医用防护口罩2万个,根据疫情需要每天生产的医用口罩要求是N95医用防护口罩的4倍.(1)求该企业A、B两种机械各需要采购多少台?(2)设该企业每天生产数量相同的同一类型口罩,每天销售9万元,并提供优惠政策:购买不超过10天不优惠,超过10天不超过20天的部分打九折,超过20天不超过30天的部分打8折,超过30天的部分打7折.①某国内医疗机构购买了该企业2周的口罩产量,问应付多少钱?②某国外医疗机构一次性付款207万元,问医疗机构购买了多少天的口罩产量?26.(本题14分)两个完全相同的长方形ABCD 、EFGH ,如图所示放置在数轴上. (1)长方形ABCD 的面积是__________.(2)若点P 在线段AF 上,且PE +PF =10,求点P 在数轴上表示的数.(3)若长方形ABCD 、EFGH 分别以每秒1个单位长度、3个单位长度沿数轴正方向移动.设两个长方形重叠部分的面积为S ,移动时间为t .①整个运动过程中,S 的最大值是____________,持续时间是__________秒. ②当S 是长方形ABCD 面积一半时,求t 的值.附加题1.如图①,在长方形 A BCD 中, E 点在 A D 上,并且∠ABE = 28︒ ,分别以 B E 、CE 为折痕进行折叠并压平,如图②,若图②中∠A ED =n ︒,则∠D E C 2. 如上图,已知点A 是射线BE 上一点,过A 作AC ⊥BF ,垂足为C ,CD ⊥BE ,垂足为D ,给出下列结论:①∠1是∠ACD 的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF ;④与∠ADC 互补的角共有3个.其中正确结论有_____. 3.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长. (2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?2020年秋学期期末学业质量测试七年级数学参考答案题号 1 2 3 4 5 6 答案CBDCBD(本大题共有10题,每小题3分,共30分)7. 2021 8. 2.674×1011 9. 146 10.﹣3x 4(答案不唯一) 11. 六棱柱 12. 1 13. 22 14. 8 15. 25 16. 8a +4b +2c三、解答题(本大题共有8题,共102分.解答时应写出必要的步骤)17.(1)解:原式213433=-+-+(2分) 21(34)33⎛⎫=--++ ⎪⎝⎭(2分)71=-+6=- (2分)(2)解:原式12(3)2=-+-⨯(3分) 16=-- (1分) 7=- (2分) 18.(1)解:42311x x -=+ (2分) 214x = (1分) 7x = (1分)(2)解:()32196x x --=- (1分) 32196x x -+=- (1分) 1110x -=- (1分)1011x = (1分) 19.解:原式22222524a b ab a b a b ab =-+-+(2分)22222254a b a b a b ab ab =+--+2ab =- (3分) 当1a =-,3b =时,()2213ab -=--⨯ (2分)9= (1分)20.解: ()23112x x +=+6212x x +=+41x =-14x =- (2分)14-的倒数是4-(2分) 将4-代入方程()62233kx -=+ 则6223k-=-(2分)626k -=- 212k -=-6k = (2分)21.(1)画出垂线(1分) (2)标出格点P (1分) (2)画出平行线(1分)只要标出1个格点Q (1分) (3)画出三角形(2分)标出字母(1分) (4)9.5 (3分)22.解:(1)由题意知,()3-※5()()335=-⨯-+⎡⎤⎣⎦ (2分)()32=-⨯ 6=- (2分)(2)由题意知,()2-※(32)x -()()()2232x =-⨯-+-⎡⎤⎣⎦(2分)()()234x =-⨯- 68x =-+(2分)因为()2-※(32)1x x -=+ 所以681x x -+=+(1分)77x -=-1x = (1分)23.解:(1)因为∠AOC 与∠BOD 是对顶角所以∠AOC =∠BOD =32°(1分) 因为∠AOE 与∠AOC 互余所以∠AOE +∠AOC =90°(1分) 所以∠AOE =90°-∠AOC (1分)=90°-32° =58° (2分)(2)因为∠AOD :∠AOC =5:1所以∠AOD =5∠AOC (1分) 因为∠AOC +∠AOD =180°(1分) 所以6∠AOC =180°∠AOC =30°(1分) 由(1)知∠BOD =∠AOC =30°∠COE =∠DOE =90°(1分)所以∠BOE =∠DOE +∠BOD=90°+30° =120°(1分)24.解:(1)连接DE因为MN ∥PQ所以∠MDE +∠PED =180°(2分)即∠CDM +∠CEP +∠CDE +∠CED =180° 因为∠CDE +∠CED +∠DCE =180°所以∠CDM +∠CEP =∠DCE =90°(1分) 所以∠CEP =90°-∠CDM=90°-40° =50°(2分)(2)由(1)知∠CEP =50°因为∠CEP +∠CEB '=180° 所以∠CEB '=180°-∠CEP=180°-50° =130°(1分)因为∠ECB '+∠CEB '+∠CB 'E =180° 所以∠ECB '=180°-∠CEB '-∠CB 'E=180°-130°-22° =28°(1分)因为∠A 'CB '是由∠ACB 旋转得到 所以∠A 'CB '=∠ACB =90°(1分) 所以∠A 'CB =∠A 'CB '+∠ECB '=90°+28° =118°(2分)25.解:(1)设采购A 种机械x 台,则采购B 种机械(15-x )台.(1分)由题意得742(15)x x =⨯-(3分)解得8x =151587x -=-=答:采购A 种机械8台,采购B 种机械7台.(2分) (2)①两周=14天9×10+9×0.9×4 (1分) =90+32.4=122.4(万元)答:应付122.4万元.(1分)②购买20天费用:9×10+8.1×10=171(万元)购买30天费用:9×10+8.1×10+7.2×10=243(万元) 171<207<243设国外医疗机构购买了y 天的口罩产量(20<y <30) 则9×10+8.1×10+7.2×(y -20)=207(2分) 解得y =25答:国外医疗机构购买了25天的口罩产量.(2分)26.(1)48 (3分)(2)设点P 在数轴上表示的数是x , 则(10)10PE x x =--=+(4)4PF x x =--=+ (1分) 因为10PE PF +=所以(10)(4)10x x +++= (1分) 解得2x =-答:点P 在数轴上表示的数是﹣2.(1分)(3)①36;1 (4分) ②由题意知移动t 秒后,点E 、F 、A 、B 在数轴上分别表示的数是 103t -+、43t -+、2t +、10t + 情况一:当点A 在E 、F 之间时(43)(2)26AF t t t =-+-+=- 由题意知148242AF AD S ⋅==⨯= 所以()62624t ⋅-=解得5t =(2分)情况二:当点B 在E 、F 之间时()()10103202BE t t t =+--+=-由题意知148242BE BC S ⋅==⨯=所以()620224t ⋅-= 解得8t =(1分)综上所述,当S 是长方形ABCD 面积一半时,5t =或8.(1分)附加题1.(28+1/2 n )°2. 答案为①④.3. 【答案】解:(1)∵OA =10cm ,OB =5cm ,∴AB =OA +OB =15cm . ∵点C 是线段 AB 的中点,∴AC =12AB =7.5cm ,∴CO =AO -AC =10-7.5=2.5(cm ). (2)①∵PQ =1,∴|15-(4x -3x )|=1,∴|15-x |=1,∴15-x =±1,解得:x =14或16.②∵PM =10+7x -4x =10+3x ,OQ =5+3x ,OM =7x ,∴4PM +3OQ ﹣mOM =4(10+3x )+3(5+3x )-7mx =55+(21-7m )x ,要使4PM +3OQ ﹣mOM定值,则21-7m =0,解得:m =3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t -2t =90,解得:t =22.5; ②如图2,根据题意得:6t +90=360+2t ,解得:t =67.5.综上所述:当t =22.5秒和67.5秒时,射线 OC ⊥OD .。
湖南省常德市2020-2021学年七年级上学期期末数学试题(含答案解析)
湖南省常德市2020-2021学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.2的相反数是( ) A .2B .-2C .12D .12-2.已知:有理数a 、b 、c 满足0a b +>,0bc >,b c >,则将a 、b 、c 在数轴上可以表示为( ) A . B .C .D .3.已知线段AB=6cm ,C 为AB 的中点,D 是AB 上一点,CD=2cm ,则线段BD 的长为( ) A .1cmB .5cmC .1 cm 或5cmD .4cm4.如果单项式22m x y +-与n x y 的和仍然是一个单项式,则m 、n 的值是( ) A .2,2m n ==B .1,2m n =-=C .2,1m n ==-D .2,2m n =-=5.永辉超市同时售出两台冷暖空调,每台均卖990元,按成本计算,其中一台盈利10%,另一台亏本10%,则出售这两台空调永辉超市( )A .不赔不赚B .赚20元C .赚90元D .亏20元6.小明把自己一周的支出情况,用右图所示的统计图来表示,下面说法正确的是( )A .从图中可以直接看出具体消费数额B .从图中可以直接看出总消费数额C .从图中可以直接看出各项消费数额占总消费额的百分比D .从图中可以直接看出各项消费数额在一周中的具体变化情况7.如图所示的立方体,如果把它展开,可以是下列图形中的( )A .B .C .D .8.小颖按如图所示的程序输入一个正数x ,最后输出的结果为656,则满足条件的x 的不同值最多有( )A .2个B .3个C .4个D .5个二、填空题9.2019年12月1日,我国自行研制的探月三期工程先导星“嫦娥三号”在西昌点火升空,准确入轨赴月“嫦娥三号”开始上升的飞行速度约10800米/秒,把这个数据用科学记数法表示为__________米/秒.10.已知∠α与∠β互余,且∠α=35°18′,则∠β=_____°_____′.11.如果关于x 的方程1237ax +=的根是5x =,则=a ________.12.某服装的标价是132元,若以8折售出,仍可获利a 元,则该服装的进价是_______元.13.单项式12ab 的系数是____________;次数是_____________.14.如图,已知长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF .将BEF ∠对折,点B 落在直线EF 上的点B '处,得折痕EM ,AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN ,则图中与B ME '∠互余的角是________(只需填写三个角).15.如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是______.16.1a 是不为1的有理数,我们把111a -记作2a ,211a -记作3a …依此类推,若已知114a =-,则2013a =_________.三、解答题 17.解方程: (1)32641632x x -=+ (2)13234x x+-=. 18.计算:(1)6(23)7(4)ab a a ab +--(2)()22373221a a a a a ⎡⎤-+---⎣⎦(3)221(2)(10)4---⨯- (4)4321(1)(0.751)(2)32⎡⎤⎛⎫--⨯-÷-+- ⎪⎢⎥⎝⎭⎣⎦19.先化简,再求值:()()226122269x x x x ++-++,其中12x =. 20.检修小组人员从A 地出发,在东西走向的路上检修线路,如果规定向东为正,向西为负,一天中每次行驶记录如下(单位:千米);-4,+7,-9,+8,+6,-4,-3. (1)收工时检修小组人员在A 地的哪个方向?距A 地有多远? (2)检修小组人员距A 地最远的是哪一次?(3)若每千米耗油0.3升,检修车从出发到收工共耗油多少升?21.为迎接2013年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息, 解答下列问题:(1)请将表示成绩类别为“中”的条形统计图补充完整;(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是_____________度.22.某单位计划购买电脑若干台,现从两家商场了解到同一型号电脑每台报价均为5000元,并且多买都有一定的优惠.甲商场优惠的条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.设该单位计划购买电脑x 台,根据题意回答下列问题:(1)若到甲商场购买,需用_____________元(填最简结果);若到乙商场购买,需用__________元(填最简结果). (2)什么情况下两家商场的收费相同?23.已知AOB ∠是一个直角,作射线OC ,再分别作AOC ∠和BOC ∠的平分线OD 、OE .(1)如图∠,当70BOC ∠=︒时,求DOE ∠的度数;(2)如图∠,当射线OC 在AOB ∠内绕O 点旋转时,DOE ∠的大小是否发生变化,说明理由;(3)当射线OC 在AOB ∠外绕O 点旋转且AOC ∠为钝角时,画出图形,直接写出相应的DOE ∠的度数(不必写出过程).24.已知数轴上两点A 、B 对应的数分别是 6,﹣8,M 、N 、P 为数轴上三个动点,点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,点P 从原点出发速度为每秒1个单位.(1)若点M 向右运动,同时点N 向左运动,求多长时间点M 与点N 相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?参考答案:1.B 【解析】 【详解】 2的相反数是-2. 故选:B. 2.C 【解析】 【分析】根据选项中数轴上点的位置,看看是否符合条件a +b >0,bc >0,b >c 即可. 【详解】解:∠0a b +>,0bc >,b c >, ∠A 、0a b +<,故本选项错误; B 、0a b +<,故本选项错误;C 、符合0a b +>,0bc >,b c >,故本选项正确;D 、0bc <,故本选项错误; 故选:C . 【点睛】本题考查了数轴和有理数的大小比较的应用,主要考查学生的理解能力和计算能力. 3.C 【解析】 【分析】根据题意画出图形,由于点D 的位置不能确定,故应分两种情况进行讨论. 【详解】解:线段6AB cm =,C 为AB 的中点,132AC BC AB cm ∴===. 当点D 如图1所示时,325BD BC CD cm =+=+=;当点D 如图2所示时,321BD BC CD cm =-=-=.∴线段BD 的长为1cm 或5cm .故选:C .【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解. 4.B 【解析】 【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m 和n 的值. 【详解】解:由单项式22m x y +-与n x y 的和仍然是一个单项式,得 22m x y +-与n x y 是同类项,21,2m n +==. 解得1,2m n =-=, 故选:B 【点睛】本题主要考查同类项的定义,根据同类项的定义列出关于m 和n 的等式是解决问题的关键. 5.D 【解析】 【分析】设盈利10%的这台空调的进价为x 元,亏损10%的这台空调的进价为y 元,由销售问题的数量关系建立方程求出其解即可 【详解】解:设盈利10%的这台空调的进价为x 元,亏损10%的这台空调的进价为y 元,由题意得 (110%)990,(110%)990x y +=-=,解得:900,1100x y ==,所以这次销售的进价为:90011002000+=元, ∠售价和为:9909901980+=元,-=-元.利润为:1980200020∠出售这两台空调永辉超市亏20元.故选:D.【点睛】本题考查了一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键,此题要运用销售问题的数量关系利润=售价-进价,此题难度不大.6.C【解析】【分析】因为没有总数,所以无法直接看出具体消费数额和各项消费数额在一周中的具体变化情况,由此即可作出选择.【详解】解:因为没有总数,所以无法直接看出具体消费数额和各项消费数额在一周中的具体变化情况.但是从图中可以直接看出各项消费数额占总消费数额的百分比,故选C.7.B【解析】【分析】根据圆面、正方向面、三角形面是临面,且圆面、正方形面与三角形面只有一个公共顶点,可得答案.【详解】解:根据图形得:A、C、D选项中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;B选项中折叠后与原立方体符合,所以正确的是B.故选:B【点睛】本题考查了几何体的展开图,根据题意得到圆面、正方形面与三角形面只有一个公共顶点是解题的关键.8.C【解析】【分析】结合题意,根据一元一次方程的性质计算,即可得到答案.【详解】∠输出结果是656,∠51656x+=,∠131x=,∠51131x+=,解得:26x=,5126x+=,解得:5x=,515x+=,解得:45x=,∠4 515 x+=解得:125 x=-∠小颖按如图所示的程序输入一个正数x,∠125x=-不符合题意∠输入的x的不同值最多可以是45,5,26,131,共4个故选:C.【点睛】本题考查了一元一次方程的知识,解题的关键是熟练掌握一元一次方程的性质,从而完成求解.9.41.0810⨯【解析】【分析】科学记数法的表示形式为10na⨯的形式,其中1||10a<,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值10时,n是正数;当原数的绝对值1<时,n是负数.【详解】解:将10800用科学记数法表示为:41.0810⨯. 故答案为:41.0810⨯. 【点睛】此题考查科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值. 10. 54 42 【解析】 【详解】由题意得∠β=90°-35°18′=54°42′. 11.5 【解析】 【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x =5代入方程ax +12=37就得到关于a 的方程,从而求出a 的值. 【详解】解:把x =5代入ax +12=37得:5a +12=37, 解得:a =5. 故答案为:5. 【点睛】本题考查了一元一次方程的解和解一元一次方程,关键是能根据题意得出一个关于a 的方程.12.(105.6)a - 【解析】 【分析】根据进价=售价−获利列式即可. 【详解】解:进价1320.8105.6a a =⨯-=-. 故答案为:(105.6)a -. 【点睛】本题考查了列代数式,解题关键是在于理清八折的意义.13.122.【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:由单项式的定义知,单项式12ab的系数是12,次数是2.故答案是:12;2.【点睛】考查了单项式的定义,解题的关键是确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数.14.∠B′EM,∠MEB,∠A′NE【解析】【分析】由折叠的性质得到∠MB′E=∠B=90°,∠NA′E=∠A=90°,∠MEB=∠MEB′,∠AEN=∠A′EN,再由平角的定义得到NE与ME垂直,根据同角(等角)的余角相等,即可在图中找出与∠B′ME互余的角.【详解】解:由折叠及长方形ABCD可得:∠MB′E=∠B=90°,∠NA′E=∠A=90°,∠MEB=∠MEB′,∠AEN=∠A′EN,∠∠MEB+∠MEB′+∠AEN+∠A′EN=180°,∠∠MEB+∠AEN=∠MEB′+∠A′EN=90°,则图中与∠B′ME互余的角是∠B′EM,∠MEB,∠A′NE.故答案为:∠B′EM,∠MEB,∠A′NE.【点睛】本题考查了余角和补角,以及翻折变换,熟练掌握图形折叠的性质是解本题的关键.15.8 ;【解析】【分析】根据数轴的单位长度,判断墨迹盖住部分的整数,然后求出其和.【详解】解:由图可知,左边盖住的整数数值是-2,-3,-4,-5;右边盖住的整数数值是0,1,2,3;所以他们的和是(-2)+(-3)+(-4)+(-5)+0+1+2+3=-8.故答案为:-8.【点睛】此题考查了数轴上表示的数,此题的关键是先看清盖住了哪几个整数值,然后相加. 16.5【解析】【分析】 已知114a =-,可依次计算出a 2、a 3、a 4,即可发现每3个数为一个循环,然后用2013除以3,即可得出答案.【详解】解:∠把111a -记作2a ,211a -记作3a …依此类推,114a =-, ∠2141514a ==⎛⎫-- ⎪⎝⎭, 315415a ==-,411154a ==--,… 每3个数据一循环,∠20133671÷=,∠201335a a ==.故答案为:5.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a 2、a 3、a 4,找出数字变化的规律.17.(1)6x =(2)4x =-【解析】【分析】(1)按解一元一次方程的一般步骤即可.(2)按解一元一次方程的一般步骤即可.(1)解:32641632x x -=+移项得:32163264x x -=+,合并同类项得:1696x =,系数化为1得:6x =.(2)13234x x +-=. 去分母得:4(1)924x x +-=,去括号得:44924x x +-=,移项得:49244x x -=-,合并同类项得:520x -=,系数化为1得:4x =-.【点睛】此题考查了一元一次方程的解法,解题的关键是:熟记解法的一般步骤.18.(1)1910ab a -(2)22+a(3)-21(4)5【解析】【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果;(3) 先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(4)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(1)解:原式=12182871910ab a a ab ab a +-+=-;(2)解:原式2223732422a a a a a a =-+-++=+;(3)解:原式=14-1004⨯42521=-=-; (4) 解:原式()=22=1112---8=1-4-8=1--62413323-⎡⎤⎛⎫⎛⎫⎛⎫⨯÷⨯⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1+4=5. 【点睛】本题考查了整式的加减,有理数的混合运算,熟练掌握运算法则和有理数混合运算顺序是解本题的关键.19.2416x -,-15【解析】【分析】先去括号,合并同类项算化简,然后把字母的值代入代数式计算即可.【详解】解:原式222612*********x x x x x =++---=-, 当12x =时,原式11615=-=-. 【点睛】先去括号,合并同类项化简,然后把字母的值代入代数式计算即可.20.(1)A 地的东边,距A 地1千米;(2)第5次;(3)12.3升【解析】【分析】(1)根据有理数的加减法,可得每次距A 地的距离,根据有理数的大小比较,可得答案;(2)根据有理数的加法,可得和,根据和的大小,可得答案;(3)根据行车就耗油,可得耗油量.【详解】解:(1) -4+7-9+8+6-4-3=+1,则收工时检修小组人员在A 地的东边,距A 地1千米;(2)第一次距A 地|-4|=4千米;第二次:|-4+7|=3千米;第三次:|-4+7-9|=6千米;第四次:|-4+7-9+8|=2千米;第五次:|-4+7-9+8+6|=8千米;第六次:|-4+7-9+8+6-4|=4千米;第七次:|-4+7-9+8+6-4-3|=1千米.所以检修小组人员距A 地最远的是第5次.(3)|-4|+|+7|+|-9|+|+8|+|+6|+|-4|+|-3|=4+7+9+8+6+4+3=41(千米)41×0.3=12.3(升)答:从A 地出发到收工回A 地检修车共耗油12.3升.【点睛】本题考查的知识点是正数和负数,解题关键是有理数的加法运算.21.(1)见解析(2)72【解析】【分析】(1)首先根据成绩类别为“差”的是8人,占总人数的16%,据此即可求得总人数,然后利用总人数乘以“中”的类型所占的百分比即可求出“中”的类型的人数,补全图统计图即可; (2)利用360°乘以对应的百分比即可求解.(1)解:总人数是:816%50÷=(人),则类别是“中”的人数是:5022%11⨯=(人). 条形统计图:(2)表示成绩类别为“优”的扇形所对应的圆心角是360(116%20%44%)=72⨯---︒度. 故答案是:72.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)37501250x +;4000x(2)当购买5台电脑时,两家商场的收费相同【解析】【分析】(1)根据题意分别求出两商场的费用,即可求解;(2)根据题意可得当(1)中两代数式的值相等时,两家商场的收费相同,列出方程,即可求解.(1)解:甲商场需要花费:50005000(125%)(1)37501250x x +⨯--=+;乙商场需要的花费为:5000(120%)4000x x ⨯-=;(2)解:由题意有375012504000x x +=,解得:5x =.答:当购买5台电脑时,两家商场的收费相同.【点睛】本题主要考查了列代数式,一元一次方程的应用,明确题意,准确得到数量关系是解题的关键.23.(1)45︒(2)DOE ∠的大小不变,理由见解析(3)45︒或135︒【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠BOC 的一半,而∠DOE =∠COD +∠COE ,即可求出∠DOE 度数为45°;(3)分两种情况考虑,利用角平分线的定义计算,如图3,∠DOE 为45°;如图4,∠DOE 为135°.(1)如图,9020AOC BOC ∠=︒-∠=︒,∠OD OE 、分别平分AOC ∠和BOC ∠, ∠1110,3522COD AOC COE BOC ∠=∠=∠︒∠==︒, ∠45DOE COD COE ∠=∠+∠=︒;(2)DOE ∠的大小不变,理由是:1111()452222DOE COD COE AOC COB AOC COB AOB ∠=∠+∠=∠+∠=∠+∠=∠=︒; (3)DOE ∠的大小发生变化情况为,如图3,则DOE ∠为45︒;如图4,则DOE ∠为135︒,分两种情况:如图3所示,∠OD OE 、分别平分AOC ∠和BOC ∠,∠11,22COD AOC COE BOC ∠=∠∠=∠, ∠1()452DOE COD COE AOC BOC ∠=∠-∠=∠-∠=︒; 如图4所示,∠OD OE 、分别平分AOC ∠和BOC ∠, ∠11,22COD AOC COE BOC ∠=∠∠=∠, ∠11()27013522DOE COD COE AOC BOC ∠=∠+∠=∠∠︒+=⨯=︒. 【点睛】此题考查了角的计算,角平分线定义,注意分情况讨论是解本题的关键.24.(1)5;(2)72或13. 【解析】【详解】试题分析:(1)设经过x 秒点M 与点N 相距54个单位,由点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过x 秒点P 到点M ,N 的距离相等,得出(2t+6)﹣t=(6t ﹣8)﹣t 或(2t+6)﹣t=t ﹣(6t ﹣8),进而求出即可.试题解析:(1)设经过x 秒点M 与点N 相距54个单位.依题意可列方程为:26+1454x x +=,解方程,得5x =.答:经过5秒点M 与点N 相距54个单位.(算术方法对应给分)(2)设经过t 秒点P 到点M ,N 的距离相等.()()2668t t t t +-=--或()()2668t t t t +-=--,658t t +=-或685t t +=-,解得:72t =或13t =, 答:经过72或13秒点P 到点M ,N 的距离相等. 考点:1.一元一次方程的应用;2.数轴.。
【苏科版】数学七年级上册《期末考试题》(带答案)
2020-2021学年度第一学期期末测试苏科版七年级数学试题一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上). 1.下列是3-的相反数是( )A. 3B. -1 3C. 13 D. -32.如图,数轴的单位长度为1,如果点A 表示的数为-2,那么点B 表示的数是( )A. 3B. 2C. 0D. -13.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是( )A. +B. -C. ×D. ÷4.下列运算正确的是( )A . 225a 3a 2-= B. 2242x 3x 5x += C. 3a 2b 5ab += D. 7ab 6ba ab -= 5.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 不确定 6.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A. 秦B. 淮C. 源D. 头7.小明在某月日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是( )填写在答题卡相应位置上)9.在-4,0,π,1.010010001,-227,1.3•这6个数中,无理数有______个.10.2019上半年溧水实现GDP为420.3亿元,增幅排名全市11个区第一,请用科学计数法表示2019上半年溧水GDP为_________元.11.若x=-1是关于x的方程2x+a=1的解,则a的值为_____.12.已知a+2b=3,则7+6b+3a=________.13.当温度每下降100℃时,某种金属丝缩短0.2mm.把这种15℃时15mm长的金属丝冷却到零下5℃,那么这种金属丝在零下5℃时的长度是__________mm.14.已知∠α=25°15′,∠β=25.15°,则∠α_______∠β(填“>”,“<”或“=”).15.正方体切去一块,可得到如图几何体,这个几何体有______条棱.16.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.A. B. C. D. 8.下列说法:①两点之间,直线最短;②若AC=BC,则点C是线段AB的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接17.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.18.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.三、解答题(本大题共8题,共64分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)1+(―2)+|-3|;(2)2115524326⎛⎫-⨯-+ ⎪⎝⎭. 20.先化简,再求值:()()2222233a b abab a b ---+,其中1a =-,13b =. 21.解方程: (1)1﹣3(x ﹣2)=4; (2)213x +﹣516x -=1. 22.如图,所有小正方形的边长都为1,点O 、P 均在格点上,点P 是∠AOB 的边 OB 上一点,直线PC ⊥OA ,垂足为点C .(1)过点 P 画 OB 的垂线,交OA 于点D ;(2)线段 的长度是点O 到直线PD 的距离;(3)根据所画图形,判断∠OPC ∠PDC (填“>”,“<”或“=”),理由是 .23.工厂生产某种零件,其示意图如下(单位:mm)(1)该零件的主视图如图所示,请分别画出它的左视图和俯视图(2)如果要给该零件的表面涂上防锈漆,请你计算需要涂漆的面积.24.如图,点O是直线AB上一点,OC⊥OE,OF平分∠AOE,∠COF=25°,求∠BOE的度数.25.小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天12 x明天26.如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.(1)数轴上点C表示的数是;(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P、Q相遇时,两点都停止运动,设运动时间为t(t>0)秒.①当t为何值时,点O恰好是PQ的中点;②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)答案与解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上).1.下列是3 的相反数是()A. 3B. -13C.13D. -3【答案】A【解析】【分析】根据相反数的定义,即可解答.【详解】-3的相反数是3.故选A.【点睛】本题考查了相反数的定义,解决本题的关键是熟记相反数的定义.2.如图,数轴的单位长度为1,如果点A表示的数为-2,那么点B表示的数是()A. 3B. 2C. 0D. -1【答案】A【解析】【分析】根据数轴的单位长度为1,点B在点A的右侧距离A点5个单位长度,直接计算即可.【详解】解:点B在点A的右侧距离A点5个单位长度,∴点B 表示的数为:-2+5=3,故选:A.【点睛】本题主要考查数轴,解决此题时,明确数轴上右边的数总是比左边的数大是解题的关键.3.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是()A. +B. -C. ×D. ÷【答案】C【解析】【分析】将运算符号放入方框,计算即可作出判断.【详解】解:-3+0.5=-2.5;-3-0.5=-4.5;-3×0.5=-1.5;-3÷0.5=-6, ∵-6<-4.5<-2.5<-1.5∴使得算式-1□0.5的值最大时,则“□”中填入的运算符号是×,故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.下列运算正确的是( )A. 225a 3a 2-=B. 2242x 3x 5x +=C. 3a 2b 5ab +=D. 7ab 6ba ab -=【答案】D【解析】【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A 、合并同类项系数相加字母及指数不变,故A 错误;B 、合并同类项系数相加字母及指数不变,故B 错误;C 、不是同类项不能合并,故C 错误;D 、合并同类项系数相加字母及指数不变,故D 正确;故选D .【点睛】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键,注意不是同类项不能合并.5.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A. 相等B. 互余C. 互补D. 不确定【答案】B【解析】【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.【详解】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.【点睛】本题考查了余角和垂线的定义以及对顶角相等的性质.6.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是()A. 秦B. 淮C. 源D. 头【答案】C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“秦”字对面的字是“灯”,“淮”字对面的字是“头”,“会”字对面的字是“源”.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.小明在某月的日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是()A. B. C. D.【答案】B【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+7+x+7+1=14x=1 3故本选项错误;B、设最小的数是x.x+x+1+x+7=14,x=2.故本选项正确.C、设最小的数是x.x+x+1+x+8=14,x=53,故本选项错误.D、设最小的数是x.x+x+6+x+7=14,x=13,故本选项错误.故选:B.【点睛】本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.8.下列说法:①两点之间,直线最短;②若AC=BC,则点C是线段AB的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断.【详解】解:①两点之间,线段最短,故错误;②若AC=BC,且A,B,C三点共线时,则点C是线段AB的中点,故错误;③同一平面内经过一点有且只有一条直线与已知直线垂直,故正确;④经过直线外一点有且只有一条直线与已知直线平行,故错误.正确的共1个故选:A.【点睛】本题考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础只记题目,掌握相关概念即可解题.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.-4,0,π,1.010010001,-227,1.3•这6个数中,无理数有______个.【答案】1【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:π,是无理数,共1个故答案为:1.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.2019上半年溧水实现GDP为420.3亿元,增幅排名全市11个区第一,请用科学计数法表示2019上半年溧水GDP为_________元.【答案】4.203×1010【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:420.3亿=42030000000=4.203×1010故答案为:4.203×1010【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.若x=-1是关于x的方程2x+a=1的解,则a的值为_____.【答案】3【解析】【分析】把x= -1代入已知方程后,列出关于a的新方程,求出方程的解即可.【详解】解:∵x= -1是关于x的方程2x+a=1的解,∴2×(-1)+a=1,解得a=3.故答案为3.【点睛】本题考查一元一次方程的解.方程的解即为能使方程左右两边相等的未知数的值.12.已知a+2b=3,则7+6b+3a=________.【答案】16【解析】【分析】将原式进行变形,然后整体代入求值即可.【详解】解:7+6b+3a=7+3(a+2b)当a+2b=3时,原式=7+3×3=16故答案为:16【点睛】本题考查代数值求值,利用整体代入思想解题是本题的解题关键.13.当温度每下降100℃时,某种金属丝缩短0.2mm.把这种15℃时15mm长的金属丝冷却到零下5℃,那么这种金属丝在零下5℃时的长度是__________mm.【答案】14.96【解析】【分析】由题意得到,温度下降1℃,金属丝缩短0.002mm,然后计算15℃冷却到零下5℃,温度下降15+5=20℃,从而求出金属丝长度即可.【详解】解:由题意可得:0.2÷100=0.00215-0.002×(15+5)=15-0.002×20=15-0.04=14.96mm故答案为:14.96【点睛】本题考查有理数的混合运算,解题关键是读懂题意.14.已知∠α=25°15′,∠β=25.15°,则∠α_______∠β(填“>”,“<”或“=”).【答案】>【解析】【分析】首先把:∠β=25.15°化为25°9′,然后再比较即可.【详解】解:∠β=25.15°=25°9′,∵25°15′>25°9′,∴∠α>∠β,故答案为:>.【点睛】此题主要考查了度分秒的换算,关键是掌握1度=60分,即1°=60′,1分=60秒,即1′=60″.15.正方体切去一块,可得到如图几何体,这个几何体有______条棱.【答案】12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.16.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.【答案】两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为两点之间线段最短.17.数轴上有A、B、C三点,A、B两点所表示的数如图所示,若BC=3,则AC的中点所表示的数是_______.【答案】1.5或4.5【解析】【分析】分两种情况得到C点所表示的数,再根据中点坐标公式可求AC的中点所表示的数.【详解】解:∵B5,BC=3,∴C点为2或8,∴AC的中点所表示的数是(1+2)÷2=1.5或(1+8)÷2=4.5.故答案为:1.5或4.5.【点睛】本题考查了数轴,解题的关键是确定C点所表示的数,注意分类思想的应用.18.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.【答案】192【解析】【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共8题,共64分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)1+(―2)+|-3|;(2)2115524326⎛⎫-⨯-+ ⎪⎝⎭. 【答案】(1)2;(2)9.【解析】【分析】(1)有理数的加减混合运算,先将绝对值化简,然后计算;(2)有理数的混合运算,使用乘法分配律使得计算简便.【详解】解:(1)1+(―2)+|-3|= 1—2+3= 2(2)2115524326⎛⎫-⨯-+ ⎪⎝⎭ =1152524+2424326-⨯⨯-⨯ = 25-8+12-20= 9【点睛】本题考查有理数的混合运算及乘法分配律,掌握运算顺序及运算法则是本题的解题关键. 20.先化简,再求值:()()2222233a b abab a b ---+,其中1a =-,13b =. 【答案】109【解析】【分析】根据整式的运算法则即可求出答案.【详解】原式2222623a b ab ab a b =-+-223a b ab =-当1a =-,13b =时, 原式()22111103(1)1()13399=⨯-⨯--⨯=+=. 【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,属于基础题型.21.解方程:(1)1﹣3(x ﹣2)=4; (2)213x +﹣516x -=1. 【答案】(1)x=1,(2)x=﹣3【解析】试题分析:(1)按照去括号,移项,合并同类项,系数化为1求解;(2)按照去分母,去括号,移项,合并同类项,实数化为1的步骤解答.解:(1)1﹣3(x ﹣2)=4,1-3x +6=4,-3x =4-6-1,-3x=-3, x=1.(2)213x +﹣516x-=1,2(2x+1)-(5x-1)=6,4x+2-5x+1=6, 4x-5x=6-1-2, -x=3, x=-3 点睛:去括号时一是不要漏乘括号内的项,二是括号前是“-”,去掉括号后括号内各项的符号都要改变;两边都乘个分母的最小公倍数去分母时一是不要漏乘没有分母的项,二是去掉分母后把分子加上括号. 22.如图,所有小正方形的边长都为1,点O、P均在格点上,点P是∠AOB的边OB上一点,直线PC⊥OA,垂足为点C.(1)过点P画OB的垂线,交OA于点D;(2)线段的长度是点O到直线PD 的距离;(3)根据所画图形,判断∠OPC ∠PDC(填“>”,“<”或“=”),理由是.【答案】(1)详见解析;(2)OP;(3)=,同角的余角相等【解析】【分析】(1)过点P作PD⊥OB,交OA于点D即可;(2)根据点到直线距离的定义即可得出结论;(3)根据同角的余角相等即可得出结论.【详解】解:(1)如图即为所求:(2)∵PD⊥OB∴线段OP的长度是点O到直线PD 的距离故答案为:OP (3)∵PC⊥OA ∴∠PDC+∠CPD=90°∵PD⊥OB ∴∠OPC+∠CPD=90°∴∠OPC=∠PDC 故答案为:=,同角的余角相等【点睛】本题考查网格线内基本作图、点到直线的距离的定义及同角的余角相等,熟知相关知识点灵活应用是解答此题的关键.23.工厂生产某种零件,其示意图如下(单位:mm)(1)该零件的主视图如图所示,请分别画出它的左视图和俯视图(2)如果要给该零件的表面涂上防锈漆,请你计算需要涂漆的面积.【答案】(1)见解析,(2)1042cm【解析】【分析】(1)根据左视图是从左面看得到的图形,俯视图是从上面看得到的图形进行画图即可;(2)根据观察到的各面的面积进而求得表面积即可.【详解】(1)如图所示:左视图:俯视图:(2)S表=(3×5+3×5+5×5-1×3)×2=104mm2,答:需要涂漆的面积为104mm2.【点睛】本题考查了几何体三视图的画法以及表面积的求法,注意观察角度是解题的关键.24.如图,点O是直线AB上一点,OC⊥OE,OF平分∠AOE,∠COF=25°,求∠BOE的度数.【答案】50°【解析】【分析】由O C ⊥OE ,可得∠COE =90°,从而求得,∠EOF 的度数,然后利用角平分线的定义得到∠AOE =2∠EOF =130°,从而使问题得解.【详解】解:因为O C ⊥OE所以∠COE =90°因为∠COF =25°所以∠EOF =∠COE -∠COF =65°因为OF 平分∠AOE所以∠AOE =2∠EOF =130°因为∠AOB =180°所以∠BOE =∠AOB -∠AOE =50°【点睛】本题考查了角平分线的定义及角的和差,数形结合思想解题是本题的解题关键.25.小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x 元,请你根据题意完善表格中的信息,并列方程解答.【答案】29个.【解析】【分析】根据单价×数量=总价可以表示出今天购买的数量为12x ,由题意可得明天的购买单价为12×0.9=10.8,总价为x-24,则明天的购买数量为-2410.8x ,然后根据明天比今天多买1个列方程求解即可 【详解】表格中的填法不唯一,如:今天 12 12x x明天10.8 -2410.8x x -24由题意,得-2410.8x -12x =1. 解得 x =348.348÷12=29答:小明今天需购买29个纸杯蛋糕.【点睛】本题考查一元一次方程的应用,根据题意找准等量关系是本题的解题关键.26.如图,已知点A 、B 、C 是数轴上三点,O 为原点,点A 表示的数为-12,点B 表示的数为8,点C 为线段AB 的中点.(1)数轴上点C 表示的数是 ;(2)点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P 、Q 相遇时,两点都停止运动,设运动时间为t (t >0)秒. ①当t 为何值时,点O 恰好是PQ 的中点;②当t 为何值时,点P 、Q 、C 三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)【答案】(1)-2 ;(2)当t 为4秒时,点O 恰好是PQ 的中点;(3)104025,,374 【解析】【分析】(1)利用中点公式计算即可;(2)①用t 表示OP ,OQ ,根据OP=OQ 列方程求解;②分别以P 、Q 、C 为三等分点,分类讨论.【详解】解:(1)∵点A 表示的数为-12,点B 表示的数为8,点C 为线段AB 的中点.∴点C 表示的数为:-12+8=-22故答案为:-2(2)①设t秒后点O恰好是PQ的中点.根据题意t秒后,点由题意,得-12+2t=-(8-t)解得,t=4;即4秒时,点O恰好是PQ的中点.②当点C为PQ的三等分点时PC=2QC或QC=2PC,∵PC=10-2t,QC=10-t,所以10-2t=2(10-t)或10-t=2(10-2t)解得t=103;当点P为CQ的三等分点时(t>4)PC=2QP或QP=2PC ∵PC=-10+2t,PQ=20-3t∴-10+2t=2(20-3t)或20-3t=2(-10+2t)解得t=254或t=407;当点Q为CP的三等分点时PQ=2CQ或QC=2PQ ∵当P、Q相遇时,两点都停止运动∴此情况不成立.综上,t=104025,,374秒时,三个点中恰好有一个点是以另外两个点为端点的线段的三等分点.【点睛】本题考查一元一次方程应用,利用数形结合思想分类讨论是解答的关键.精品试卷。
2020-2021学年河南省洛阳市七年级(上)期末数学试卷(附详解)
2020-2021学年河南省洛阳市七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.−4的相反数是()A. 14B. −14C. 4D. −42.在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示为()A. 0.3369×107B. 3.369×106C. 3.369×105D. 3369×1033.下表是12月份某一天洛阳四个县区的平均气温:区县涧西栾川嵩县伊川气温℃+1−3−20这四个区中该天平均气温最低的是()A. 涧西B. 栾川C. 嵩县D. 伊川4.下列计算正确的是()A. 5a+6b=11abB. 9a−a=8C. −3(a+b)=−3a+3bD. −3(a+b)=−3a−3b5.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A. −1B. −2C. −3D. −66.下列解方程的步骤中正确的是()A. 由x−5=7,可得x=7−5B. 由8−2(3x+1)=x,可得8−6x−2=xC. 由16x=−1,可得x=−16D. 由x−12=x4−3,可得2(x−1)=x−37.下列说法正确的是()A. 在所有连接两点的线中,直线最短B. 射线OA与射线AO表示的是同一条射线C. 连接两点的线段,叫做两点间的距离D. 两点确定一条直线8.某微信平台将一件商品按进价提高40%后标价,又以八折优惠卖出,结果每件仍获利78元,这件商品的进价是多少元?若设这种商品每件的进价是x元,那么所列方程为()A. 80%(1+40%)x−x=78B. 40%(1+80%)x=78C. x−80%(1+40%)x=78D. 80%(1−40%)x−x=789.a,b,c在数轴上的位置如图所示,则a−b|a−b|−b−c|b−c|+c−a|c−a|的值是()A. −1B. 1C. −3D. 310.如图是一个运算程序:若x=−4,输出结果m的值与输入y的值相同,则y的值为()A. −2或1B. −2C. 1D. 2或−1二、填空题(本大题共5小题,共15.0分)11.若关于x的方程2x+a+4=0的解是x=−3,则a的值等于_________.12.若∠A=42°37′,则∠A的余角的大小为______.13.绝对值大于1.5并且小于3的整数之和是______.14.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”,大约成书于公元前200年~公元前50年,其中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,则多出3400钱;每人出300钱,则多出100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为______.15.观察下列一组图形中的点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…,按此规律第10个图中点的个数共有______个.三、解答题(本大题共8小题,共75.0分)16.计算:(1)3×(−4)+18÷(−6)−(−5);|×(−1).(2)−14−16÷(−2)3+|−3217.化简求值3m2−[5m−2(2m−3)+4m2],其中m=−4.18.已知线段AB如图所示,延长AB至C,使BC=AB,反向延BC,点E是线段CD的中点.长AB至D,使AD=12(1)依题意补全图形;(2)若AB的长为4,求BE的长.19. 解方程:3x+25=1+2x−13.20. 观察下列两个等式:1−23=2×1×23−1,2−35=2×2×35−1给出定义如下:我们称使等式a −b =2ab −1成立的一对有理数a ,b 为“同心有理数对”,记为(a,b),如:数对(1,23),(2,35),都是“同心有理数对”. (1)数对(−2,1),(3,47)是“同心有理数对”的是______. (2)若(a,3)是“同心有理数对”,求a 的值.(3)若(m,n)是“同心有理数对”,则(−n,−m) ______“同心有理数对”(填“是”或“不是”).21. 2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个口罩.由于种种原因,实际每天生产量与计划量相比有出入.如表是工人小王某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据,求出小王本周实际生产口罩数量;(3)若该厂实行每日计件工资制,每生产一个口罩可得0.6元,若超额完成每日计划工作量,则超过部分每个另外奖励0.15元,若完不成每天的计划量,则少生产一个扣0.2元,小王周五这一天的工资是多少?22.甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多40件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?(2)如果甲组工人实际完成的此月人均工作量比乙组的多3件,则此月人均定额是多少件?23.阅读下面材料小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD.如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)根据小聪的画法可知,如图3,点O在直线AD上,射线OC平分∠BOD.请说明∠AOC 与∠BOC互补的理由;(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余(保留画图痕迹);(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ,若∠EPQ=β(45°<β<90°),直接写出锐角∠MPN的度数是______.答案和解析1.【答案】C【解析】解:−4的相反数是4.故选:C.根据相反数的定义作答即可.本题考查了相反数的知识,注意互为相反数的特点:互为相反数的两个数的和为0.2.【答案】B【解析】解:将3369000用科学记数法表示为3.369×106,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:∵|−3|=3,|−2|=2,而3>2,∴−3<−2<0<+1,∴这四个区中该天平均气温最低的是栾川.故选:B.正数大于负数,两个负数比较大小,绝对值大的其值反而小,据此判断即可.本题考查有理数大小的比较,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.4.【答案】D【解析】解:∵5a+6b≠11ab,∴选项A不符合题意;∵9a−a=8a≠8,∴选项B不符合题意;∵−3(a+b)=−3a−3b≠−3a+3b,∴选项C不符合题意;∵−3(a+b)=−3a−3b,∴选项D符合题意;故选:D.利用去括号和合并同类项法则,对每个选项进行判断,即可得出答案.本题考查了整式的加减,掌握去括号及合并同类项法则是解题的关键.5.【答案】A【解析】解:易得2和−2是相对的两个面;0和1是相对两个面;−4和3是相对的2个面,∵2+(−2)=0,0+1=1,−4+3=−1,所以原正方体相对两个面上的数字和最小的是−1.故选:A.根据相对的面相隔一个面得到相对的2个数,相加后比较即可.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.【答案】B【解析】解:A、由x−5=7,可得x=7+5,不符合题意;B、由8−2(3x+1)=x,可得8−6x−2=x,符合题意;C、由16x=−1,可得x=−6,不符合题意;D、由x−12=x4−3,可得2(x−1)=x−12,不符合题意,故选:B.各项方程变形得到结果,即可作出判断.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.【答案】D【解析】【分析】本题考查了“两点之间,线段最短“,两点确定一条直线,两点间的距离.根据“两点之间,线段最短“,两点确定一条直线,两点间的距离,既可解答.【解答】解:A.错误,在所有连接两点的线中,线段最短;B.错误,射线OA与射线AO表示的不是同一条射线;C.错误,连接两点的线段长度,叫做两点间的距离;D.正确,故选D.8.【答案】A【解析】解:由题意可得,x(1+40%)×0.8−x=78,即80%(1+40%)x−x=78,故选:A.根据利润=售价−进价,可以写出相应的方程,本题得以解决.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,写出相应的方程.9.【答案】C【解析】解:∵c<a<b,∴a−b<0,b−c>0,c−a<0,∴原式=a−b−(a−b)−b−cb−c+c−a−(c−a)=−1−1+(−1)=−1+(−1)+(−1) =−3,故选:C.根据数轴比较大小得c<a<b,从而a−b<0,b−c>0,c−a<0,根据绝对值的性质去绝对值化简即可.本题考查了数轴,绝对值,有理数的加减混合运算,掌握绝对值的性质是解题的关键,正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0.10.【答案】C【解析】解:∵当x=−4,y=−2时,x<y,则m=|−4|−3×(−2)=4+6=10,当x=−4,y=2时,x<y,则m=|−4|−3×2=−2,当x=−4,y=1时,x<y,则m=|−4|−3×1,当x=−4,y=−1时,x<y,则m=|−4|−3×(−1)=7,∴当x=−4,y=1时,m=|−4|−3×1=1=y,故选:C.由题意得,此题属于x小于等于y的情况,通过试值可得此题结果.此题考查了代数式和有理数的运算能力,关键是能根据运算程序进行计算验证.11.【答案】2【解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.把x=−3代入方程计算即可求出a的值.【解答】解:把x=−3代入方程得:−6+a+4=0,解得:a=2.故答案为2.12.【答案】47°23′【解析】解:∵∠A=42°37′,∴∠A的余角=90°−42°37′=47°23′,故答案为:47°23′.如果两个角的和是90°,那么称这两个角互为余角余角.由定义即可求解.本题考查余角的计算,熟练掌握两个角互余的定义,并能准确计算是解题的关键.13.【答案】0【解析】解:∵绝对值大于1.5并且小于3的整数的绝对值等于2,∴绝对值大于1.5并且小于3的整数是−2,2,∴绝对值大于1.5并且小于3的整数之和是0.故答案为:0.首先根据有理数大小比较的方法,判断出绝对值大于3,且小于7的整数有哪些;然后把它们相加即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.【答案】400x−3400=300x−100【解析】解:设有x个人,依题意,得:400x−3400=300x−100.故答案为:400x−3400=300x−100.设有x个人,根据金的价钱不变,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.【答案】166【解析】解:第1个图中共有点数为:1+1×3=4,第2个图中共有点数为:1+1×3+2×3=10,第3个图中共有点数为:1+1×3+2×3+3×3=19,…,第n个图有点数为:1+1×3+2×3+3×3+⋯+3n.所以第10个图中共有点的个数是1+1×3+2×3+3×3+⋯+10×3=166.故答案为:166.由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3= 10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+⋯+3n个点.此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.16.【答案】解:(1)原式=−12−3+5==15+5=−10;×(−1)(2)原式=−1−16÷(−8)+32=−1+2−32=1−32=−1.2【解析】(1)根据有理数的混合运算顺序计算即可,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)根据绝对值的性质以及有理数的混合运算顺序计算即可.本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.17.【答案】解:原式=3m2−(5m−4m+6+4m2)=3m2−5m+4m−6−4m2=−m2−m−6,当m=−4时,原式=−16+4−6=−18.【解析】去括号、合并同类项即可化简,再代入计算即可.本题考查整式的加减,掌握去括号、合并同类项法则是正确解答的关键.18.【答案】解:(1)图形如图所示:(2)∵AB =BC =4,AD =12AB =2,∴CD =AD +AB +BC =10,∴DE =EC =12CD =5, ∴EB =EC −BC =5−4=1.【解析】(1)根据要求作出图形即可;(2)求出EC ,BC ,可得结论.本题考查作图−复杂作图,线段的和差定义等知识,解题的关键是理解题意,正确作出图形,属于中考常考题型.19.【答案】解:去分母得:9x +6=15+10x −5,移项合并得:−x =4,解得:x =−4.【解析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 此题考查了一元一次方程,熟练掌握运算法则是解本题的关键.20.【答案】(3,47) 是【解析】解:(1)∵−2−1=−3,2×(−2)×1−1=−5,−3≠−5,∴数对(−2,1)不是“同心有理数对”;∵3−47=177,2×3×47−1=177, ∴3−47=2×3×47−1,∴(3,47)是“同心有理数对”,∴数对(−2,1),(3,47)是“同心有理数对”的是(3,47).故答案为:(3,47);(2)∵(a,3)是“同心有理数对”.∴a−3=6a−1,∴a=−2;5(3)∵(m,n)是“同心有理数对”,∴m−n=2mn−1.∴−n−(−m)=−n+m=m−n=2mn−1,∴(−n,−m)是“同心有理数对”.故答案为:是.(1)根据:使等式a−b=2ab−1成立的一对有理数a,b为“同心有理数对”,判断出)是“同心有理数对”的是哪个即可.数对(−2,1),(3,47(2)根据(a,3)是“同心有理数对”,可得:a−3=6a−1,据此求出a的值是多少即可.(3)根据(m,n)是“同心有理数对”,可得:m−n=2mn−1,据此判断出(−n,−m)是不是同心有理数对即可.此题主要考查了等式的性质,以及同心有理数对的含义和判断,要熟练掌握.21.【答案】291【解析】解:(1)小王星期五生产口罩数量为:300−9=291(个),故答案为:291;(2)+5−2−4+13−9+16−8=10(个),则本周实际生产的数量为:2100+10=2110(个)答:小王本周实际生产口罩数量为2110个;(3)第五天:(300−9)×0.6−9×0.2=172.8(元),答:小王周五这一天的工资是172.8元.(1)根据题意和表格中的数据,可以得到小王星期五生产口罩的数量;(2)根据题意和表格中的数据,可以得到小王本周生产口罩的数量;(3)根据题意和表格中的数据,可以解答本题.本题考查了正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.22.【答案】解:(1)设此月人均定额是x件,依题意得:4x+404=6x−205,解得:x=70.答:此月人均定额是70件.(2)设此月人均定额是y件,依题意得:4y+404−6y−205=3,解得:y=55.答:此月人均定额是55件.【解析】(1)设此月人均定额是x件,根据两组工人实际完成的此月人均工作量相等,即可得出关于x的一元一次方程,解之即可得出此月的人均定额;(2)设此月人均定额是y件,根据甲组工人实际完成的此月人均工作量比乙组的多3件,即可得出关于y的一元一次方程,解之即可得出此月的人均定额.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.【答案】45°或|β−45°|【解析】解:(1)如图3中,∵OC平分∠BOD,∴∠BOC=∠COD,∵∠AOC+∠COD=180°,∴∠AOC+∠BOC=180°,即∠AOC与∠BOC互补;(2)如图4中,射线OH即为所求;(3)如图,∵PM平分∠EPQ,PN平分∠FPQ,∴∠MPQ=12∠EPQ,∠NPQ=12∠FPQ,∵∠MPN=∠MPQ+∠NPQ=12∠EPQ+12∠FPQ=12∠EPF,∵∠EPQ和∠FPQ互余,∴∠EPQ+∠FPQ=90°,即∠EPF=90°,∴∠MPN=45°;如图:∵PM平分∠EPQ,PN平分∠FPQ,∴∠MPQ=12∠EPQ,∠NPQ=12∠FPQ,∵∠MPN=|∠MPQ−∠NPQ|=|12∠EPQ−12∠FPQ|,∵∠EPQ和∠FPQ互余,∠EPQ=β,∴∠FPQ=90°−β,∴∠MPN=|12β−12∠(90°−β)|=|β−45°|,故答案为:45°或|β−45°|.(1)证明∠AOC+∠BOC=180°,即可解决问题;(2)延长AO到T,作∠BOT的角平分线OH,射线OH即为所求;(3)分两种情形分别画出图形求解即可.本题主要考查角平分线的定义,余角和补角,灵活运用角平分线的定义求解角度之间的关系是解题的关键.。
2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)
2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。
2020-2021学年七年级上学期期末考试数学试题(附答案)
2020-2021学年七年级上学期期末考试数学试题一.选择题1.2020的相反数是()A.2020B.﹣2020C.D.﹣2.下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是()A.B.C.D.3.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×105 4.单项式﹣32xy2z3的次数和系数分别为()A.6,﹣3B.6,﹣9C.5,9D.7,﹣95.若数a,b在数轴上的位置如图示,则()A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>0 6.按如图所示的运算程序,能使输出的结果为10的是()A.x=3,y=﹣2B.x=﹣3,y=2C.x=2,y=3D.x=3,y=﹣3 7.关于y的方程2m+y=m与3y﹣3=2y﹣1的解相同,则m的值为()A.0B.2C.﹣D.﹣28.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm9.已知代数式a+2b的值是5,则代数式2a+4b+1的值是()A.5B.10C.11D.不能确定10.仔细观察,探索规律:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(x﹣1)(x4+x3+x2+x+1)=x5﹣1;…则22020+22019+22018+…+2+1的个位数字是()A.1B.3C.5D.7二.填空题11.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2019=.12.已知a,b为有理数,且|a+1|+|2013﹣b|=0,则a b=.13.已知A,B,C三点在同一条直线上,AB=8,BC=6,M,N分别是AB、BC的中点,则线段MN的长是.14.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD =度.15.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=(直接写出答案).16.如果m﹣n=5,那么﹣3m+3n﹣7的值是.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2019+2020n+c2021的值为.18.某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是元.三.解答题(共19小题)19.计算:(1)12﹣(﹣8)+(﹣7)﹣15;(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|.20.先化简,再求值:5y2﹣x2+3(2x2﹣3xy)﹣5(x2+y2)的值,其中x=1,y=﹣2.21.解方程:(1)4﹣4(x﹣3)=2(9﹣x)(2).22.如图,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.23.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.24.已知代数式A=3x2﹣x+1,马小虎同学在做整式加减运算时,误将“A﹣B”看成“A+B”了,计算的结果是2x2﹣3x﹣2.(1)请你帮马小虎同学求出正确的结果;(2)x是最大的负整数,将x代入(1)问的结果求值.25.我校九年级163班所有学生参加体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级163班参加体育测试的学生共有多少人?(2)将条形统计图补充完整;(3)在扇形统计图中,求出等级C对应的圆心角的度数;(4)若规定达到A、B级为优秀,我校九年级共有学生850人,估计参加体育测试达到优秀标准的学生有多少人?26.甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.27.观察下表三行数的规律,回答下列问题:第1列第2列第3列第4列第5列第6列…第1行﹣24﹣8a﹣3264…第2行06﹣618﹣3066…第3行﹣12﹣48﹣16b…(1)第1行的第四个数a是;第3行的第六个数b是;(2)若第1行的某一列的数为c,则第2行与它同一列的数为;(3)已知第n列的三个数的和为2562,若设第1行第n列的数为x,试求x的值.28.如图在数轴上有A,B两点,点A表示的数为﹣10,点O表示的数为0,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点O 向右运动(点M,点N同时出发).(1)数轴上点B表示的数是.(2)经过几秒,点M,N到原点的距离相等?(3)点N在点B左侧运动的情况下,当点M运动到什么位置时恰好使AM=2BN?参考答案一.选择题1.【解答】解:2020的相反数是:﹣2020.故选:B.2.【解答】解:A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故选:B.3.【解答】解:47.24亿=4724 000 000=4.724×109.故选:B.4.【解答】解:该单项式的次数为6,系数为﹣9,故选:B.5.【解答】解:根据题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.6.【解答】解:由题意得:x2+|2y|=10,当x=2,y=3满足x2+|2y|=10,故选:C.7.【解答】解:由3y﹣3=2y﹣1,得y=2.由关于y的方程2m+y=m与3y﹣3=2y﹣1的解相同,得2m+2=m,解得m=﹣2.故选:D.8.【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN =BM﹣BN=5﹣2=3cm.故选:C.9.【解答】解:给a+2b=5两边同时乘以2,可得2a+4b=10,则2a+4b+1=10+1=11.故选:C.10.【解答】解:利用题中的式子得(x﹣1)(x2020+x2019+x2018+…+x+1)=x2021﹣1;当x=2时,22020+22019+22018+…+2+1=22021﹣1;∵21=2,22=4,23=8,24=16,25=32,而2021=505×4+1,∴22021的个位数字为2,∴22021﹣1的个位数字为1,即22020+22019+22018+…+2+1的个位数字是1.故选:A.二.填空题11.【解答】解:∵单项式﹣xy b+1与x a﹣2y3是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,故(a﹣b)2019=(3﹣2)2019=1.故答案为:1.12.【解答】解:|a+1|+|2013﹣b|=0,∴a+1=0,2013﹣b=0,a=﹣1,b=2013,∴a b=(﹣1)2013=﹣1,故答案为:﹣1.13.【解答】解:由AB=8,BC=6,M、N分别为AB、BC中点,得MB=AB=4,NB=BC=3.①C在线段AB的延长线上,MN=MB+NB=4+3=7;②C在线段AB上,MN=MB﹣NB=4﹣3=1;③C在线段AB的反延长线上,AB>BC,不成立,综上所述:线段MN的长7或1.故答案为7或1.14.【解答】解:∵点A、O、B在一条直线上,∠AOC=130°,∴∠COB=180°﹣130°=50°,∵OD是∠BOC的平分线,∴∠COD=∠BOC=25°.故答案为:25.15.【解答】解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故答案为:﹣816.【解答】解:当m﹣n=5时,﹣3m+3n﹣7=﹣3(m﹣n)﹣7=﹣3×5﹣7=﹣15﹣7=﹣22.故答案为:﹣22.17.【解答】解:∵m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,∴m=﹣1,n=0,c=1,∴m2019+2020n+c2021的=(﹣1)2019+2020×0+12021=﹣1+0+1=0故答案为:0.18.【解答】解:设该玩具的进价为x元.根据题意得:100×80%﹣x=25%x.解得:x=64.故答案是:64.三.解答题19.【解答】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=720.【解答】解:5y2﹣x2+3(2x2﹣3xy)﹣5(x2+y2)=5y2﹣x2+6x2﹣9xy﹣5x2﹣5y2=(5y2﹣5y2)+(﹣x2+6x2﹣5x2)﹣9xy=0+0﹣9xy=﹣9xy,∵x=1,y=﹣2,∴原式=﹣9×1×(﹣2)=18.21.【解答】解:(1)4﹣4x+12=18﹣2x,﹣4x+2x=18﹣4﹣12,﹣2x=2,x=﹣1.(2)2(2x+1)﹣(5x﹣1)=6,4x+2﹣5x+1=6,4x﹣5x=6﹣2﹣1﹣x=3,x=﹣3.22.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+BC=6cm.∵D是AC的中点,∴AD=AC=3cm.∴BD=AD﹣AB=1cm.23.【解答】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD =∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC =2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.24.【解答】解:(1)根据题意知B=2x2﹣3x﹣2﹣(3x2﹣x+1)=2x2﹣3x﹣2﹣3x2+x﹣1=﹣x2﹣2x﹣3,则A﹣B=(3x2﹣x+1)﹣(﹣x2﹣2x﹣3)=3x2﹣x+1+x2+2x+3=4x2+x+4;(2)∵x是最大的负整数,∴x=﹣1,则原式=4×(﹣1)2﹣1+4=4﹣1+4=7.25.【解答】解:(1)九年级163班参加体育测试的学生共有15÷30%=50(人);(2)D等级的人数为:50×10%=5(人),C等级人数为:50﹣15﹣20﹣5=10(人);补全统计图如下:(3)等级C对应的圆心角的度数为:×360°=72°;(4)估计达到A级和B级的学生共有:×850=595(人).26.【解答】解:设每人加工x个零件,﹣=1解得:x=100答:甲加工了100个,乙加工了100个.27.【解答】解:(1)第1行的第四个数a是﹣8×(﹣2)=16;第3行的第六个数b是64÷2=32;故答案为:16;32.(2)若第1行的某一列的数为c,则第2行与它同一列的数为c+2.故答案为:c+2.(3)解:根据题意,这三个数依次为x,x+2,x得,x+x+2+x=2562,解得:x=1024.28.【解答】解:(1)故答案为:30;(2)设经过x秒,点M,N到原点的距离相等,分两种情况:①当点M,N在原点两侧时,根据题意列方程:得:10﹣3x=2x,解得:x=2②当点M,N重合时,根据题意列方程,得:3x﹣10=2x,解得:x=10所以,经过2秒或10秒,点M,N到原点的距离相等;(3)设经过y秒,恰好使AM=2BN根据题意得:3y=2(30﹣2y)解得:.又所以当点M运动到数轴上表示的点的位置时,AM=2BN。
人教版初中数学七年级上册试卷含答案 河南省商丘市梁园区2020-2021期末
16.计算:
(1)6﹣2﹣(﹣1.5);
(2)﹣(3﹣5)×32÷(﹣1)3;
(3)2(m2n+5mn3)﹣5(2mn3﹣m2n);
(4)2x﹣2[x﹣(2x2﹣3x+2)]﹣3x2.
17.解方程:
(1) ;
(3)
18.先化简,再求值: ,其中x,y满足
19.如图,平面内有四个点A,B,C,D.根据下列语句画图:
5.如果x=2是关于x的方程2x﹣3m﹣12=0的解,那么有理数m的值是( )
A. ﹣ B.9C. ﹣9D.
6.下列说法:①直线AB和直线BA是同一条直线;②平角是一条直线;③两点之间,线段最短;④如果AB=BC,则点B是线段AC的中点.其中正确的有()
A.1个B.2个C.3个D.4个
7.钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为()
正确画得射线AD及交点E,
正确画得线段BD及截取DF=BD(有弧线痕迹),
正确确定点O及标出O点,
如图,直线BC,射线AD及交点E,线段BD及射线DF,点O即为所求作的图形
20.【详解】(1)∵a=±5,b=±2,
又∵a>b,
∴a=5,b=2或a=5,b=−2,
∴a+b=7或3.
(2)∵
∴a+b⩽0,
∵点C为[P,Q]的“好点”,
∴当0≤t≤3时,11-(3t-1)=2(23-4t-11)或2[11-(3t-1)]=23-4t-11,
解得:t= 或t=6(不合题意,舍去);
当3<t≤6时,|11-(3t-1)|=2(4t-1-11)或2|11-(3t-1)|=4t-1-11,
即12-3t=8t-24或3t-12=8t-24或24-6t=4t-12或6t-24=4t-12,
2020-2021学年河南省三门峡市七年级(上)期末数学试卷(含解析)
2020-2021学年河南省三门峡市七年级(上)期末数学试卷题号 一 二 三 四 总分 得分一、选择题(本大题共10小题,共30.0分) 1. 下列说法正确的是( )A. 符号相反的数互为相反数B. 一个数的绝对值越大,表示它的点在数轴上越靠右C. 一个数的绝对值越大,表示它的点在数轴上离原点越远D. a 的绝对值总是大于02.12x |n |−x +7是关于x 的二次三项式,则n 的值是( )A. 2B. −2C. 2或−2D. 33. a ,b ,c 为同一平面内的任意三条直线,那么它们的交点可能有( )个.A. 1,2或3B. 0,1,2或3C. 1或2D. 以上都不对4. 如图,A 在O 的北偏西m°方向,∠AOB =90°,∠AOC =∠BOC ;下列结论:①∠AOC =135°;②∠BOF +∠AOM =180°;③∠CON −∠AOF =45°;④∠BOF =2∠COE ;其中正确的个数有( )A. 1B. 2C. 3D. 45. 若2x 5a y b+4与−x 1−2b y 2a 是同类项,则b a 的值是( )A. 2B. −2C. 1D. −16. 已知√5−x +∣∣∣3x −y ∣∣∣=0,则√x +y 的整数部分是( )A. 3B. 4C. 5D. 67. 绝对值是5的数是( )A. −5B. 5C. ±5D. 158.两个锐角的和()A. 一定是锐角B. 一定是直角C. 一定是钝角D. 可能是锐角9.如右图所示,在数轴上点A所表示的数为a,则a的值为()A. B. C. D.10.将全体自然数按下面的方式进行排列:按照这样的排列规律,2018应位于()A. A位B. B位C. C位D. D位二、填空题(本大题共5小题,共15.0分)11.2017年国家统计局公布:芜湖2016年国内生产总值(GDP)为2571亿元,同比增长9.5%,全国排名第82名,省内第二.其中2571亿元用科学记数法表示为______ 元.12.小明准备为希望工程捐款,他现在有40元,以后每月打算存20元,若设x月后他能捐出200元,则可列出方程为______ .13.若关于x的一元一次方程ax=2的解是x=1,则a=______.14.如果一个角的余角是60°,那么这个角的度数是______°.15.学校女生人数是全体学生人数的52%,比男生人数多80人,这个学校有学生______人.三、计算题(本大题共1小题,共12.0分)−(a+b+cd)(2m−1)的16.已知a、b互为相反数,c、d互为倒数,|m|=3,求a+bm值.四、解答题(本大题共7小题,共63.0分)17. 解方程:(1)20−2x =−x −1 (2)4x+95−x−52=1+2x 3.18. (1)当a =−1时,求2(a 2−12+2a)−4(a −a 2+1)的值.(2)先化简,再求值:3x 2−[7x −(4x −3)−2x 2],其中x =2.19. 在初一数学联欢会上,教师出示了10张数学答题卡,答题卡背面的图案各不相同:当答题卡正面是正数时,背面是一面旗;当答题卡正面是负数时,背面是一朵花.这10张答题卡正面如下所示:①(−4)×(−2);②−2.8+(+1.9);③0+(−12.9);④−(−2)2;⑤−1.5÷(−2);⑥|−3|−(−2);⑦(−25)2×52;⑧(−1)×(−2)×32003;⑨4÷(19−59);⑩a 2+1请你通过观察说出,答题卡后面有几面旗?几朵花?并写出它们的题号.20.2020年年初,在我国湖北等地区爆发了新型冠状病毒引发的肺炎疫情,对此湖北武汉率先采取了“封城”的措施,为了解决武汉市民的生活物资紧缺问题,某省给武汉捐献一批水果和蔬菜共435吨,其中蔬菜比水果多97吨.(1)求蔬菜和水果各有多少吨?(2)某慈善组织租用甲、乙两种货车共16辆,已知一辆甲车同时可装蔬菜18吨,水果10吨;一辆乙车同时可装蔬菜16吨,水果11吨;若将这批货物一次性运到武汉,有哪几种租车方案?请你帮忙设计出来.(3)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(2)中的那种方案,才能使所付的燃油费最少?最少的燃油费是多少元?21.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.22.如图,E、F分别在AB、CD上,∠1=∠D,∠2与∠C互余,EC⊥AF.求证:AB//CD.23.某公园的三个植树队完成春季植树绿化任务,甲队植树x棵,乙队植树的棵数比甲队植树的棵数的2倍多3棵,丙队植树的棵数比甲队植树的棵数的一半少4棵.(1)乙队植树______棵,丙队植树______棵(用含x的代数式表示).(2)当x=20棵时,求三个队一共植树的棵数.答案和解析1.【答案】C【解析】解:A、符号相反的两个数不一定互为相反数,例如,3与−5不是相反数,不符合题意;B、一个数的绝对值越大,表示它的点在数轴上离原点越远,不一定越靠右,不符合题意;C、一个数的绝对值越大,表示它的点在数轴上离原点越远,符合题意;D、当a=0时,|a|=0,不符合题意.故选:C.A、根据相反数的定义即可作出判断;B、根据绝对值的性质即可作出判断;D、根据绝对值的性质即可作出判断;C、根据绝对值的性质即可作出判断.本题考查了相反数、绝对值、数轴,解决本题的关键是熟记相反数、绝对值的定义.2.【答案】C【解析】【分析】本题考查多项式的概念,属于基础题型.根据多项式的概念即可求出n的值.【解答】解:∵多项式是关于x的二次三项式,∴|n|=2,∴n=±2,故选C.3.【答案】B【解析】试题分析:根据三条直线两两平行,三条直线交于一点,两条直线平行与第三条直线相交,三条直线两两相交不交于同一点,可得答案.三条直线两两平行,没有交点;三条直线交于一点,有一个交点;两条直线平行与第三条直线相交,有两个交点;三条直线两两相交不交于同一点,有三个交点,故选:B.4.【答案】C【解析】试题分析:由于∠AOB=90°,∠AOC=∠BOC,则根据周角的定义可计算出AOC=135°;由于∠BOF=∠FOM−∠BOM,∠AOM=∠AOB+∠BOM,把两式相加即可得到∠BOF+∠AOM=180°;由于∠CON=∠AOC−∠AOC=135°−(∠NOF−∠AOF)=135°−90°+∠AOF,则∠CON−∠AOF=45°;把∠CON=90°−∠COE,∠AOF=∠AOB−∠BOF=90°−∠BOF代入③式中得到∠BOF−∠COE=45°.∵∠AOB=90°,∠AOC=∠BOC,=135°,所以①正确;∴∠AOC=360∘−90∘2∵∠BOF=∠FOM−∠BOM=90°−∠BOM,∠AOM=∠AOB+∠BOM=90°+∠BOM,∴∠BOF+∠AOM=180°,所以②正确;∵∠CON=∠AOC−∠AON=135°−(∠NOF−∠AOF)=135°−90°+∠AOF,∴∠CON−∠AOF=45°,所以③正确;∵∠CON=90°−∠COE,∠AOF=∠AOB−∠BOF=90°−∠BOF,∴90°−∠COE−(90°−∠BOF)=45°,∴∠BOF−∠COE=45°,所以④错误.故选C.5.【答案】B【解析】解:由同类项定义,得 {2a =b +45a =1−2b , 解得{a =1b =−2.∴b a =−2. 故选B .由同类项的定义得到关于a 、b 的方程组,可先求得a 和b 的值,从而求出b a 的值. 此题是同类项与方程组的综合题,同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.6.【答案】B【解析】解:∵√5−x +∣∣∣3x −y ∣∣∣=0且√5−x ≥0,∣∣∣3x −y ∣∣∣≥0 ∴√5−x =0,∣∣∣3x −y ∣∣∣=0 解得:x =5,y =15∴√x +y =√20 ∵4<√20<5∴√x +y 的整数部分是4 故选:B .先根据几个非负数的和为0得出这几个非负数分别为0解出x 和y 的值,再根据4<√20<5求解.本题考查了估算无理数的大小以及绝对值和算术平方根的非负性,运用“夹逼法”是解决本题的关键.7.【答案】C【解析】解:绝对值是5的数是±5. 故选:C .根据绝对值的含义和求法,判断出绝对值是5的数是多少即可.此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数−a;③当a是零时,a的绝对值是零.8.【答案】D【解析】解:设这两个锐角分别为α和β,则:0°<α+β<180°,∴两个锐角的和可能是钝角,直角或锐角.故选D.两个锐角即两个小于90°的角,所以两个锐角的和可能是小于90°或大于90°或等于90°,即可能是钝角,直角或锐角,此题主要考查了角的计算,关键注意对钝角,直角和锐角概念的正确理解.9.【答案】A【解析】本题主要考查勾股定理的运用和点在数轴上面的表示。
2020-2021学年七年级上学期期末数学试卷(附答案解析)
2020-2021学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.a(a≠0)的相反数是()D. |a|A. aB. −aC. 1a2.若|a|=a,则表示a的点在数轴上的位置是()A. 原点的左边B. 原点或原点的左边C. 原点或原点右边D. 原点3.下列两个单项式中,是同类项的一组是()A. 4x2y与4y2xB. 2m与2nC. 3xy2与(3xy)2D. 3与−154.每年的6月14日,是世界献血日,据统计,某市义务献血达421000人,421000这个数用科学记数法表示为()A. 4.21×105B. 42.1×104C. 4.21×10−5D. 0.421×1065.如图,已知三点A,B,C画直线AB,画射线AC,连接BC,按照上述语句画图正确的是()A. B. C. D.6.若关于x的方程mx m−2−m+3=0是一元一次方程,则m的值为()A. m=1B. m=2C. m=3D. m=47.下列说法正确的是()A. 如果AC=CB,能说点C是线段AB的中点B. 将一根细木条固定在墙上,至少需要两个钉子,其理论依据是:两点确定一条直线C. 连接两点的直线的长度,叫做两点间的距离D. 平面内3条直线至少有一个交点8.如图,由4个相同的小正方体组成的几何体,则该几何体的俯视图是()A.B.C.D.9.如图,EF//MN,AC,BD交于点O,且分别平分∠FAB,∠ABN,图中与∠1互余的角有()A. 1个B. 2个C. 3个D. 4个10.某美术兴趣小组有x人,计划完成y个剪纸作品,若每人做5个,则可比计划多9个;若每人做4个,则将比计划少做15个,现有下列方程:①5x+9=4x−15;②y−95=y+154;③y+95=y−154;④5x−9=4x+15.其中正确的是()A. ①②B. ②④C. ②③D. ③④二、填空题(本大题共5小题,共15.0分)11.如图是一个数值转换机的示意图,若输入x的值为2,输入y的值为−2,则输出的结果为______ .12.单项式−3πxy22的系数是______ .13.由11x−9y−6=0,用x表示y,得y=______ ,y表示x,得x=______ .14.若关于x的方程是一元一次方程,则这个方程的解是____15.已知P,Q两点都在数轴上(点P在点Q的右侧),若点P所表示的数是3,并且PQ=6,则点Q所表示的数是______ .三、解答题(本大题共6小题,共55.0分)16.化简:3x2−3+x−2x2+5.17.解方程:(1)6x−2(2x−7)=−1(2)x=1+x+1.318.已知为的三边,且满足,试判断的形状。
2020-2021学年七年级上学期期末考试数学试题(含答案) (5)
2020-2021学年七年级上学期期末考试数学试题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.-2的绝对值是( )A .2B .-2 C.12 D .-122.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27 500亿立方米,人均占有淡水量居全世界第110位,因此我们要节约用水,27 500亿用科学记数法表示为( )A .275×104B .2.75×104C .2.75×1012D .27.5×10113.以下问题,不适合用普查的是( )A .了解全班同学每周体育锻炼的时间B .旅客上飞机前的安检C .学校招聘教师,对应聘人员面试D .了解一批手机的使用寿命 4.数轴上表示-1.2的点在( )A .-2和-1之间B .-1和0之间C .0和1之间D .1和2之间 5.用五块大小相同的小正方体搭成如图所示的几何体,从左面看到该几何体的形状图是( )6.下列说法错误的是( )A .倒数等于本身的数只有±1B .-2x 3y 3的系数是-23,次数是4C .经过两点可以画无数条直线D .两点之间线段最短 7.下面是小虎同学做的整式加减的题,其中正确的是( )A .2a +3b =6abB .ab -ba =0C .5a 3-4a 3=1 D .-a -a =0 8.下列方程中解为x =0的是( )A .2x +3=2x +1B .5x =3x C.x +12+4=5x D.14x +1=09.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( ) A .240元 B .250元 C .280元 D .300元10.一支水笔正好与一把直尺平靠放在一起(如图),小明发现:水笔的笔尖端(A 点)正好对着直尺刻度约为5.6 cm 处,另一端(B 点)正好对着直尺刻度约为20.6 cm 处,则水笔的中点位置的刻度约为( )A .15 cmB .7.5 cmC .13.1 cmD .12.1 cm 二、填空题(每小题3分,共18分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款______元. 12.若-7xm +2y 与-3x 3y n是同类项,则m =______,n =______.13.已知m ,n 互为相反数,则3+5m +5n =______.14.把两块三角板按如图所示那样拼在一起,则∠ABC =______度.15.某超市统计了某个时间段顾客在收银台排队付款的等待时间,并绘制成如图所示的频数直方图(图中等待时间6 min 到7 min 表示大于或等于6 min 而小于7 min ,其他类同).这个时间段内顾客等待时间不少于4 min 的人数有______人.16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是______天.三、解答题(共72分) 17.(8分)计算:(1)(29-14+118)÷(-136); (2)-14-(-6)+2-3×(-13).18.(6分)先化简,再求值:2x 3-(7x 2-9x)-2(x 3-3x 2+4x),其中x =-1.19.(8分)小明去文具店购买2B 铅笔,店主说:“如果多买一些,给你打8折”.小明测算了一下,如果买100支,比按原价购买可以便宜10元,求每支铅笔的原价是多少?20.(8分)如图,在铅笔盒中有一支圆珠笔和一把小刀,已知圆珠笔的长为13.5 cm ,若把圆珠笔与小刀按平行于铅笔盒长的方向放置,则其重叠部分BC 的长是2 cm.经测量,铅笔盒的中点E 到点A 的距离为10 cm ,请求出小刀的长度.21.(10分)某校想了解学生每周的课外阅读时间的情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数.22.(10分)某市对居民生活用电实行“阶梯电价”收费,具体收费标准见下表:今年5月份,该市居民甲用电100度,交电费80元;居民乙用电200度,交电费170元.(1)上表中,a=0.8,b=1;(2)若该市某居民8月份交的电费的平均电价为0.9元/度,则该居民8月份用电多少度?23.(10分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)图中有多少个小于平角的角?(2)求出∠BOD的度数;(3)请通过计算说明OE平分∠BOC.24.(12分)如图是一计算程序,回答下列问题:(1)当输入某数后,第1次得到的结果为5,则输入的数值x是多少?(2)小华发现若输入的x的值为16时,第1次得到的结果为8,第2次得到的结果为4,…①请你帮小华完成下列表格:②你能求出第2 019次得到的结果是多少吗?请说明理由.参考答案一、选择题(每小题3分,共30分) 1.-2的绝对值是(A)A .2B .-2 C.12 D .-122.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27 500亿立方米,人均占有淡水量居全世界第110位,因此我们要节约用水,27 500亿用科学记数法表示为(C)A .275×104B .2.75×104C .2.75×1012D .27.5×10113.以下问题,不适合用普查的是(D)A .了解全班同学每周体育锻炼的时间B .旅客上飞机前的安检C .学校招聘教师,对应聘人员面试D .了解一批手机的使用寿命 4.数轴上表示-1.2的点在(A)A .-2和-1之间B .-1和0之间C .0和1之间D .1和2之间5.用五块大小相同的小正方体搭成如图所示的几何体,从左面看到该几何体的形状图是(D)6.下列说法错误的是(C)A .倒数等于本身的数只有±1B .-2x 3y 3的系数是-23,次数是4C .经过两点可以画无数条直线D .两点之间线段最短 7.下面是小虎同学做的整式加减的题,其中正确的是(B)A .2a +3b =6abB .ab -ba =0C .5a 3-4a 3=1 D .-a -a =0 8.下列方程中解为x =0的是(B)A .2x +3=2x +1B .5x =3x C.x +12+4=5x D.14x +1=09.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为(A) A .240元 B .250元 C .280元 D .300元10.一支水笔正好与一把直尺平靠放在一起(如图),小明发现:水笔的笔尖端(A 点)正好对着直尺刻度约为5.6 cm 处,另一端(B 点)正好对着直尺刻度约为20.6 cm 处,则水笔的中点位置的刻度约为(C)A .15 cmB .7.5 cmC .13.1 cmD .12.1 cm 二、填空题(每小题3分,共18分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款(3a +5b)元. 12.若-7xm +2y 与-3x 3y n是同类项,则m =1,n =1.13.已知m ,n 互为相反数,则3+5m +5n =3.14.把两块三角板按如图所示那样拼在一起,则∠ABC =120度.15.某超市统计了某个时间段顾客在收银台排队付款的等待时间,并绘制成如图所示的频数直方图(图中等待时间6 min 到7 min 表示大于或等于6 min 而小于7 min ,其他类同).这个时间段内顾客等待时间不少于4 min 的人数有32人.16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是167天.三、解答题(共72分) 17.(8分)计算:(1)(29-14+118)÷(-136); (2)-14-(-6)+2-3×(-13).解:原式=(29-14+118)×(-36)=-8+9-2=-1. 解:原式=-1+6+2+1 =8.18.(6分)先化简,再求值:2x 3-(7x 2-9x)-2(x 3-3x 2+4x),其中x =-1. 解:原式=2x 3-7x 2+9x -2x 3+6x 2-8x =-x 2+x. 当x =-1时,原式=-(-1)2+(-1)=-2.19.(8分)小明去文具店购买2B 铅笔,店主说:“如果多买一些,给你打8折”.小明测算了一下,如果买100支,比按原价购买可以便宜10元,求每支铅笔的原价是多少? 解:设每支铅笔的原价是x 元,由题意,得 100×0.8x =100x -10.解得x =0.5. 答:每支铅笔的原价是0.5元.20.(8分)如图,在铅笔盒中有一支圆珠笔和一把小刀,已知圆珠笔的长为13.5 cm ,若把圆珠笔与小刀按平行于铅笔盒长的方向放置,则其重叠部分BC的长是2 cm.经测量,铅笔盒的中点E到点A的距离为10 cm,请求出小刀的长度.解:AC=AB-BC=13.5-2=11.5(cm).因为E是AD的中点,所以AD=2AE=2×10=20(cm).所以CD=AD-AC=20-11.5=8.5(cm).答:小刀的长度为8.5 cm.21.(10分)某校想了解学生每周的课外阅读时间的情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数.解:(1)总人数为21÷21%=100(人).D组人数为100-10-21-40-4=25(人).频数直方图补充如图.(2)m=40÷100×100=40.E组对应的圆心角度数为360°×4100=14.4°.22.(10分)某市对居民生活用电实行“阶梯电价”收费,具体收费标准见下表:今年5月份,该市居民甲用电100度,交电费80元;居民乙用电200度,交电费170元.(1)上表中,a=0.8,b=1;(2)若该市某居民8月份交的电费的平均电价为0.9元/度,则该居民8月份用电多少度?解:设该居民8月份用电x度.根据题意,得150×0.8+1×(x-150)=0.9x.解得x=300.答:该居民8月份用电300度.23.(10分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)图中有多少个小于平角的角?(2)求出∠BOD的度数;(3)请通过计算说明OE平分∠BOC.解:(1)图中有9个小于平角的角.(2)因为OD平分∠AOC,∠AOC=50°,所以∠AOD =∠COD =12∠AOC =25°. 所以∠BOD =180°-25°=155°.(3)因为∠BOE =180°-∠DOE -∠AOD =180°-90°-25°=65°,∠COE =∠DOE -∠COD =90°-25°=65°,所以∠BOE =∠COE ,即OE 平分∠BOC.24.(12分)如图是一计算程序,回答下列问题:(1)当输入某数后,第1次得到的结果为5,则输入的数值x 是多少?(2)小华发现若输入的x 的值为16时,第1次得到的结果为8,第2次得到的结果为4,… ①请你帮小华完成下列表格:②你能求出第2 019次得到的结果是多少吗?请说明理由.解:(1)因为第1次得到的结果为5,而输入值可能是奇数,也可能是偶数,当输入值是奇数时,则x +3=5,解得x =2,不符合前提,舍去;当输入值是偶数时,则12x =5,解得x =10,符合前提. 故输入的数值x 是10.(2)①如表所示.②第2 019次得到的结果是2.理由:因为从第2次开始,每3次是一个循环,且(2 019-1)÷3=672……2,又因为672×3+1=2 017,所以第2 017次与第4次的结果相同,即为1. 所以第2 019次与第3次结果相同,即为2.。
2020-2021学年陕西省西安交大附中七年级(上)期末数学试卷及参考答案
2020-2021学年陕西省西安交大附中七年级(上)期末数学试卷一.选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有-项是符合题目要求的)1.(3分)的倒数是()A.B.C.D.2.(3分)如图所示,从左面观察该几何体得到的形状图是()A.B.C.D.3.(3分)新型冠状病毒,因武汉病毒性肺炎病例而被发现,2020年1月12日被世界卫生组织命名“2019﹣nCoV”.冠状病毒是一个大型病毒家族,借助电子显微镜,我们可以看到这些病毒直径约为125纳米(1纳米=1×10﹣9米),125纳米用科学记数法表示等于()米.A.1.25×10﹣10B.1.25×10﹣11C.1.25×10﹣8D.1.25×10﹣7 4.(3分)如图是我市某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温26℃出现的频率是()A.3B.0.5C.0.4D.0.35.(3分)如图,两块三角板的直角顶点O重合在一起,∠BOD=35°,则∠AOC的度数为()A.35°B.45°C.55°D.65°6.(3分)关于x的方程3a+x=18的解为x=﹣3,则a的值为()A.4B.5C.6D.77.(3分)已知线段AB长为5,点C为线段AB上一点,若BC=AC,则线段AC的长为()A.B.C.D.8.(3分)数a,b在数轴上对应点的位置如图所示,化简|a﹣2|﹣|a﹣b|的结果是()A.﹣2a+b+2B.﹣2a﹣b﹣2C.b﹣2D.﹣b+29.(3分)某车间生产圆形铁片和长方形铁片,两个圆形铁片和一个长方形铁片可以制作成一个油桶(如图),已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或长方形铁片80片,为使生产的铁片恰好配套,设安排x人生产圆形铁片,可列方程()A.80x=2×120(42﹣x)B.2×80x=120(42﹣x)C.120x=2×80(42﹣x)D.2×120x=80(42﹣x)10.(3分)如图,观察表1,寻找规律,表2、表3、表4分别是从表1中截取的一部分,其中m为整数且m>1,则a+b+c=()A.m2﹣m+44B.m2+m+46C.m2﹣m+46D.m2+m+44二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:()1+20200=.12.(3分)一个多边形从同一个顶点引出的对角线,将这个多边形分成7个三角形.则这个多边形有条边.13.(3分)若单项式﹣x m+1y2与x3y n﹣1能合并成一项,则m﹣n的值是.14.(3分)已知p2+2pq=13,则p2+pq﹣3的值为.15.(3分)如图,三边长分别为3cm,4cm,5cm的直角三角形,绕其斜边所在直线旋转一周,所得几何体的体积为cm3.(结果保留π)16.(3分)如图,点A,O,B依次在直线MN上,射线OA绕点O以每秒3°的速度顺时针旋转,同时射线OB绕点O以每秒6°的速度逆时针旋转,直线MN保持不动,设旋转时间为t秒(0<t<30),现以射线OM,OA,ON中两条为边组成一个角,使射线OB 为该角的角平分线,此时t的值为.三、解答题(本大题共7小题,共s2分)17.(8分)(1)计算:﹣22×3﹣|﹣3+1|+;(2)解方程:﹣=﹣1.18.(8分)(1)计算:(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2;(2)先化简,再求值:3(2x2y﹣xy2)﹣(5x2y+2xy2),其中x=﹣1,y=2.19.(5分)已知:线段a,b.求作:线段AB,使AB=a﹣2b.20.(5分)我校为了丰富学生课余生活,计划开设以下课外活动项目:A﹣篮球,B﹣乒乓球,C﹣羽毛球,D﹣足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目).并将调查结果绘制成了两幅统计图,请回答下列问题:(1)这次被调查的学生共有人,扇形统计图中,“D﹣足球”所占圆心角的度数是;(2)请你将条形统计图补充完整;(3)若该校学生总数为1000人,试估计该校学生中最喜欢“乒乓球”项目的人数.21.(6分)如图,已知∠AOD=156°,∠DON=48°,射线OB,OM,ON在∠AOD内部,OM平分∠AOB,ON平分∠BOD.(1)求∠MON的度数;(2)若射线OC在∠AOD内部,∠NOC=23°,求∠COM的度数.22.(8分)越来越多的人在用微信付款、转账,把微信账户里的钱转到银行卡叫做提现,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%.(1)小赵使用微信至今,用自己的微信账户共提现两次,提现金额均为1500元,则小赵这两次提现分别需支付手续费多少元?(2)小周使用微信至今,用自己的微信账户共提现三次,若小周第三次提现金额恰好等于前两次提现金额的差,提现手续费如表,求小周第一次提现的金额.第一次第二次第三次手续费/元0 1.10.223.(12分)已知有理数a,b,c在数轴上对应的点分别为A,B,C,其中b是最小的正整数,a,c满足|a+2|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)点A,B,C分别以每秒4个单位长度,1个单位长度,1个单位长度的速度在数轴上同时向右运动,设运动时间为t秒.①当AC长为4时,求t的值;②当点A在点C左侧时(不考虑点A与B,C重合),是否存在一个常数m使得2AC+m•AB的值在某段运动过程中不随t的改变而改变?若存在,求出m的值;若不存在,请说明理由.2020-2021学年陕西省西安交大附中七年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有-项是符合题目要求的)1.【分析】根据倒数的定义直接进行解答即可.【解答】解:根据倒数的定义得:﹣的倒数是﹣;故选:A.【点评】此题考查了倒数,熟记倒数的定义是解题的关键,是一道基础题.2.【分析】直接利用左视图观察角度分析得出答案.【解答】解:从左面观察该几何体得到的形状图是:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:125纳米=125×10﹣9米=1.25×10﹣7米.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【分析】用气温26℃出现的天数除以总天数10即可得.【解答】解:由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故选:D.【点评】本题主要考查频数(率)分布折线图,解题的关键是掌握频率的概念,根据折线图得出解题所需的数据.5.【分析】根据同角的余角相等即可求解.【解答】解:∵两块三角板的直角顶点O重合在一起,∴∠BOD和∠AOC是同角的余角,∵∠BOD=35°,∴∠AOC=35°.故选:A.【点评】考查了余角和补角,关键是熟悉同角的余角相等的知识点.6.【分析】把x=﹣3代入已知方程求解即可.【解答】解:把为x=﹣3代入方程3a+x=18,得3a﹣3=18,解得a=7.故选:D.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.7.【分析】利用线段的和差和等量关系用AC表示AB,根据AB=5即可得出AC.【解答】解:如图所示:∵BC=BD=AC,∴AB=AC+BC=AC+AC=AC,∵AB=5,∴AC=AB=×5=,故选:B.【点评】本题考查了线段的和差,能结合题意正确构造出线段图是解题的关键.8.【分析】根据绝对值的意义:非负数的绝对值是它本身,负数的绝对值是它的相反数.同时注意数轴上右边的数总大于左边的数,即可求解.【解答】解:由实数a,b在数轴上对应的点的位置可知:a﹣2<0,a﹣b>0,∴|a﹣2|﹣|a﹣b|=2﹣a﹣(a﹣b)=2﹣a﹣a+b=﹣2a+b+2.故选:A.【点评】此题主要考查了实数与数轴的之间的对应关系及绝对值的化简,应特别注意:根据点在数轴上的位置来正确判断出代数式的值的符号.9.【分析】设安排x人生产圆形铁片,则安排(42﹣x)人生产长方形铁片,根据生产的圆形铁片的数量是长方形铁片数量的2倍,即可得出关于x的一元一次方程,此题得解.【解答】解:设安排x人生产圆形铁片,则安排(42﹣x)人生产长方形铁片,依题意得:120x=2×80(42﹣x).故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.10.【分析】根据表中数字规律推出a和c的值,再确定b和m的关系即可.【解答】解:由题知表2是表1的第三列的一部分,即a=15+3=18,根据表3在表1中位置规律知b=m2﹣m,表4是表一第六列和第七列的一部分,即c=35﹣7=28,∴a+b+c=18+m2﹣m+28=m2﹣m+46,故选:C.【点评】本题考查数字的变化规律,归纳出数字在表中的位置关系是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】直接利用零指数幂的性质以及有理数的乘方运算法则计算得出答案.【解答】解:原式=+1=.故答案为:.【点评】此题主要考查了零指数幂的性质以及有理数的乘方,正确化简各数是解题关键.12.【分析】经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形,根据此关系式求边数,再求出对角线.【解答】解:设多边形有n条边,则n﹣2=7,解得:n=9.所以这个多边形的边数是9,故答案为:九.【点评】本题考查了多边形的对角线,解决此类问题的关键是根据多边形过一个顶点的对角线与分成的三角形的个数的关系列方程求解.13.【分析】由于单项式﹣x m+1y2与x3y n﹣1能合并成一项,则﹣x m+1y2与x3y n﹣1是同类项,据此求出m、n的值,代入所求式子进行计算.【解答】解:根据题意得m+1=3,n﹣1=2,解得m=2,n=3,∴m﹣n=2﹣3=﹣1.故答案为:﹣1【点评】本题考查了合并同类项:把多项式中同类项合成一项,叫做合并同类项;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.14.【分析】直接利用已知将原式变形,进而代入已知数据求出答案.【解答】解:∵p2+2pq=13,∴p2+pq﹣3=(p2+2pq)﹣3=×13﹣3=3.5.故答案为:3.5.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.15.【分析】根据三角形旋转是圆锥,根据圆锥的体积公式,可得答案.【解答】解:如图.∵OB⊥AC,∠ABC=90°,∴OB==,几何体的体积为×π×()2×5=9.6π(cm3).故答案为:9.6π.【点评】本题考查了点线面体,利用三角形旋转是圆锥是解题关键.16.【分析】分为两种情况:①OB平分∠AON时;②OB平分∠AOM时;③OB平分∠MON时;列出方程,求出方程的解即可.【解答】射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角(大于0°而小于180°)的平分线有以下两种情况:①OB平分∠AON时,∵∠BON=∠AON,∴6t=(180﹣3t),解得:t=12;②OB平分∠AOM时,∵∠AOM=∠BOM,∴t=180﹣6t,解得:t=24;③OB平分∠MON时,∵∠MON=∠BOM,∴6t=90,解得t=15.综上,当t的值分别为12、15、24秒时,射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角的平分线.故答案为:12或15或24.【点评】本题考查了一元一次方程的应用以及角的计算,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共7小题,共s2分)17.【分析】(1)根据有理数的混合计算解答即可;(2)去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:(1)=﹣4×3﹣2+=﹣12﹣2+=﹣13;(2),去分母得:3(3x﹣1)﹣2(2x﹣2)=﹣6,去括号得:9x﹣3﹣4x+4=﹣6,移项得:9x﹣4x=﹣6+3﹣4,合并同类项得:5x=﹣7,系数化为1得:x=﹣.【点评】此题考查解一元一次方程,关键是根据有理数的混合计算的步骤和解一元一次方程的步骤解答即可.18.【分析】(1)直接利用积的乘方运算以及整式的混合运算法则计算得出答案;(2)直接去括号合并同类项,进而将已知数据代入得出答案.【解答】解:(1)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2=﹣a6﹣a6+4a8÷a2=﹣a6﹣a6+4a6=2a6;(2)3(2x2y﹣xy2)﹣(5x2y+2xy2)=6x2y﹣3xy2﹣x2y﹣xy2=x2y﹣4xy2,当x=﹣1,y=2时,原式=×(﹣1)2×2﹣4×(﹣1)×22=7+16=23.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.19.【分析】作射线AM,在射线AM上截取AC=a,在线段CA上截取CB=2b,线段AB 即为所求.【解答】解:如图线段AB即为所求.【点评】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.20.【分析】(1)根据扇形统计图,可求出“A篮球”所占整体的百分比,再根据喜欢“篮球”的人数为20人,可求出调查人数;进而求出“D足球”所占的百分比,计算相应的圆心角度数即可;(2)求出“C羽毛球”的人数,即可补全条形统计图;(3)求出样本中喜欢“B乒乓球”所占的百分比,即可估计总体1000人喜欢“B乒乓球”的人数.【解答】解:(1)20÷=200(人),360°×=72°,故答案为:200,72°;(2)200﹣20﹣80﹣40=60(人),补全条形统计图如图所示:(3)1000×=400(人),答:该校1000名学生中最喜欢“乒乓球”项目的大约有400人.【点评】本题考查条形统计图、扇形统计图,掌握两个统计图中数量之间的关系是正确解答的关键.21.【分析】(1)欲求∠MON,需求∠BON和∠BOM.由OM平分∠AOB,ON平分∠BOD,得∠NOB=,∠BOM=,进而解决此题.(2)由题意得射线OC可能在∠DON内部或射线OC在∠NOB内部,故需分类讨论.【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠NOB=,∠BOM=.∴∠NOB+∠BOM==.∴∠MON=.又∵∠AOD=156°,∴∠MON==78°.(2)由题意得:射线OC可能在∠DON内部或射线OC在∠NOB内部.①当射线OC可能在∠DON内部时,如图1.由(1)知:∠MON=78°.∴∠COM=∠CON+∠MON=23°+78°=101°.②当射线OC在∠NOB内部时,如图2.由(1)知:∠MON=78°.∴∠COM=∠MON﹣∠NOC=78°﹣23°=55°.综上:∠COM=101°或55°.【点评】本题主要考查角平分线的定义以及角的和差关系,熟练掌握角平分线的定义以及角的和差关系是解决本题的关键.22.【分析】(1)利用手续费=(提现金额﹣1000)×0.1%,即可求出结果;(2)根据表格中的数据结合手续费为超出金额的0.1%,即可得出小周第三次提现金额为200元,再结合第二次的手续费为1.1元,可得超出金额为1100元,可设小周第一次提现的金额为x元,根据小周第三次提现金额恰好等于前两次提现金额的差,得到关于x 的方程,解方程即可得出结果.【解答】解:(1)(1500﹣1000)×0.1%=0.5(元),1500×0.1%=1.5(元),故小赵这两次提现分别需支付手续费0.5元,1.5元;(2)设小周第一次提现的金额为x元,由题意得:0.1%(x+x+0.2÷0.1%﹣1000)=1.1,解得:x=950.故小周第一次提现的金额为950元.【点评】本题考查了一元一次方程组的应用;解题的关键是:(1)根据数量之间的关系,列式计算;(2)找准等量关系,列出一元一次方程.23.【分析】(1)利用绝对值及偶次方的非负性,可求出a,c的值,由b是最小的正整数,可得出b的值;(2)当运动时间为t秒时,点A表示的数为4t﹣2,点B表示的数为t+1,点C表示的数为t+5.①由AC=4,即可得出关于t的一元一次方程,解之即可得出结论;②分别求出点A与点B或点C重合时t的值,分0<t<1及1<t<两种情况考虑,由2AC+m•AB的值不随t的变化而变化,可求出m的值.【解答】解:(1)∵|a+2|+(c﹣5)2=0,∴a+2=0,c﹣5=0,∴a=﹣2,c=5.∵b是最小的正整数,∴b=1.故答案为:﹣2;1;5.(2)当运动时间为t秒时,点A表示的数为4t﹣2,点B表示的数为t+1,点C表示的数为t+5.①∵AC=4,∴|4t﹣2﹣(t+5)|=4,即3t﹣7=﹣4或3t﹣7=4,∴t=1或t=.②当4t﹣2=t+1时,t=1;当4t﹣2=t+5时,t=.当0<t<1时,2AC+m•AB=2[t+5﹣(4t﹣2)]+m•[t+1﹣(4t﹣2)]=﹣(6+3m)t+14+3m,∵2AC+m•AB的值不随t的变化而变化,∴6+3m=0,∴m=﹣2;当1<t<时,2AC+m•AB=2[t+5﹣(4t﹣2)]+m•[4t﹣2﹣(t+1)]=(3m﹣6)t+14﹣3m,∵2AC+m•AB的值不随t的变化而变化,∴3m﹣6=0,∴m=2.∴存在一个常数m使得2AC+m•AB的值在某段运动过程中不随t的改变而改变,m的值为﹣2或2.【点评】本题考查了一元一次方程的应用、数轴、绝对值以及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,c的值;(2)①找准等量关系,正确列出一元一次方程;②用含t的代数式表示出2AC+m•AB的值.。
2020-2021学年烟台市莱州市七年级上学期期末数学试卷(含解析)
2020-2021学年烟台市莱州市七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各式正确的是()A. √(−5)2=−5B. −√22=2C. √−93=−3 D. ±√9=±32.下列语句:①±3都是27的立方根;②;③的平方根是±2;④;⑤,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个3.点(0,−2)在()A. x轴上B. y轴上C. 第三象限内D. 第四象限内4.直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,0)的点的个数是()A. 2B. 3C. 4D. 55.将一次函数y=−x−1的图象绕它与x轴的交点逆时针旋转75°后所得直线解析式为()A. y=√33x+√3 B. y=√3x+√3 C. y=√33x+√33D. y=√3x+√336.如图,在平面直角坐标系中,点A的坐标为(0,5),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=56x上,则点B与其对应点B′之间的距离为()A. 6B. 5C. 65D. 567.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A. √1010B. 100C. 0.01D. 0.18.一次函数y=kx+b和正比例函数y=kbx在同一坐标系内的图象大致是()A. B. C. D.9.已知AC平分∠PAQ,如图,点B、B′分别在边AP、AQ上,若添加一个条件,即可推出AB=AB′,则该条件不可以是()A. BB′⊥ACB. BC=B′CC. ∠ACB=∠ACB′D. ∠ABC=∠AB′C10.如图,在正方形ABCD中,E为BC上一点,过点E作EF//CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH//AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若BE EC =2,则S四边形DHECS△AHE=313.其中哪些结论是正确()A. ①②④⑤B. ②③④C. ①②③D. ②③④⑤二、填空题(本大题共10小题,共30.0分)11.如图,在△ABC中,AB=AC=10,BC=12,BD是高,则BD的长为______ .12.若√a=1,b是3的相反数,则a+b的值为______.13. 如图,直线y =−√33x +1与x 轴、y 轴分别交于A 、B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,如果在第二象限内有一点p(a,12),且△ABP 的面积与△ABC 的面积相等,则a 的值为______.14. 等腰直角△ABC 中,∠BAC =90°,AD 是中线,点P 是重心.如果PD =1,那么BC 边的长为______ .15. 已知{x =2y =1是二元一次方程组{ax +by =11ax −by =−3的解,则a +b 的平方根为______. 16. 如图,在△ABC 中,∠C =90°,AB 的垂直平分线交AB 于D 点,交BC 于E 点,连接AE ,若CE =7,AC =24,则BE 的长是______.17. 若一次函数y =3x +b 的图象经过第一、三、四象限,则b 的值可以是______(写出一个即可)18. 如图,长方体盒子的长为15cm ,宽为10cm ,高为20cm ,点B 距离C 点5cm ,一只蚂蚁如果要沿着盒子的表面从点A 到点B .(1)蚂蚁爬行的最短距离是______cm ;(2)若从C 处想盒子里面插入一根吸管,要使吸管不落入盒子中,吸管应不少于______cm .19. 设m =√5,那么m +1m 的整数部分是______.20.小明从家里骑自行车出发,去永辉超市途中碰到妹妹小红走路回家.小明在超市买完东西回家,在回去的路上又碰到了小红,便载小红一起回家,结果小明比正常速度回家的时间晚了3分钟,二人离家的距离S(千米)和小明从家出发后的时间t(分钟)之间的关系如图所示,(假设二人之间交流时间忽略不计)(1)小明家离永辉超市的距离______ .(2)小明和小红第1次相遇时离永辉超市距离是多少?(3)小明从家里出发到回家所用的时间?三、解答题(本大题共9小题,共72.0分)21.用有理数估计下列各数的立方根的范围(精确到0.1).(1)35;(2)−95.22.如图,等腰△EDF的三个的顶点都在等腰△ABC的边上,且∠A=∠B=50°,∠DEF=∠DFE=65°.求证:△EAD≌△DBF.23.已知,如图,在四边形ABCD中,∠B=90°,AB=15,BC=20,CD=7,AD=24.(1)求∠ADC的度数;(2)求四边形ABCD的面积.24.已知:如图1,AB//CD,EF与AB,CD分别交于点G,H.(1)若∠GHD=80°,则∠AGH=______.(2)如图2,在(1)的条件下,作∠BGH的平分线,交CD于点M,则∠GMH=______.(3)如图3,在(1)(2)的条件下,作∠GHD的平分线交GM于点T,则∠GTH=______.(4)如图4,在题目条件下,把一个直角三角板PQN按图示摆放,使点N与点H重合,斜边QN在EF上,PQ与AB交于点R,若∠CHP=30°,求∠ARP的度数.25.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP//AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3√3,BG=6,求AC的长.26.甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地,甲、乙两车距A地的路程y(km)与乙车行驶时间x(ℎ)之间的函数图象如图所示,请结合图象信息解答下列问题;①直接写出a的值,并求甲车的速度;②求图中线段EF所表示的函数y关于x的解析式;并直接写出自变量x的取值范围;③乙车出发后多少小时与甲车相距15千米?27.如图,按要求完成下列问题:作出这个小红旗图案关于y轴的轴对称图形,写出所得到图形相应各点的坐标.28.在平面直角坐标系xOy中,直线l1:y=kx+2(k>0)与x轴交于点A,与y轴交于点B,直线l2:kx+2与x轴交于点C.y=−12(1)求点B的坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB,AC,BC围成的区域(不含边界)为G.①当k=2时,结合函数图象,求区域G内整点的个数;②若区域G内恰有2个整点,直接写出k的取值范围.29.小明、爸爸、爷爷同时从家里出发到达同一目的地后立即返回.小明去时骑自行车,返回时步行;爷爷去时步行.返回时骑自行车;爸爸往返都是步行.三个人步行的速度不等,小明和爷爷骑自行车的速度相等,每个人的行走路程与时间的关系是下面三个图象中的一个.请问完成一次往返,小明、爸爸、爷爷各用多少分钟?参考答案及解析1.答案:D解析:解:√(−5)2=5,故选项A错误,−√22=−2,故选项B错误,√−93已经是最简的三次根式,故选项C错误,±√9=±3,故选项D正确,故选:D.根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.本题考查立方根、平方根、算术平方根,解答本题的关键是明确它们各自的计算方法.2.答案:B解析:解:①3是27的立方根,故命题错误;②√125144=1312,故命题错误;③√16=4,4的平方根是±2,故命题正确;④3(−8)3=−8,故命题正确;⑤√(−6)2=6,故命题错误.所以正确的命题有2个,故选B.3.答案:B解析:解:∵横坐标为0,纵坐标不为0,∴点(0,−2)在y轴上.故选:B.根据点的坐标,确定点的位置,横坐标为0,点在y轴上.解答此题的关键是熟记平面直角坐标系中各个轴上点的坐标情况,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4.答案:A解析:解:如图所示,“距离坐标”是(1,0)的点在直线l2上存在两个,分别在直线l1的两侧.故选:A.根据“距离坐标”的定义,“距离坐标”是(1,0)的点到直线l1和l2的距离分别是1和0,这样的点在直线l2上存在两个,分别在直线l1的两侧.本题考查了点的坐标以及点到直线的距离的概念,理解“距离坐标”的定义是解题的关键.5.答案:C解析:解:∵直线y=−x−1,x轴的交点坐标(−1,0),∴倾斜角为135°,∴它与x轴的交点逆时针旋转75°后的倾斜角为30°,∴k=√33,设所求的直线为y=√33x+b,把(−1,0)代入得b=√33,∴所求的直线为y=√33x+√33,故选:C.求出直线y=−x−1与x轴的交点坐标,逆时针旋转75°后得到直线的倾斜角为30°,即可得到k,进而求得解析式.本题考查了一次函数的图象与几何变换,求得旋转后的倾斜角是解题的关键.6.答案:A解析:解:∵点A的坐标为(0,5),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=56x 上,∴A′点纵坐标为:5,故5=56x,解得:x=6,即A到A′的距离为6,则点B与其对应点B′之间的距离为6.故选:A.根据题意得出A′点的纵坐标进而得出其横坐标,进而得出A点到A′的距离,进而得出点B与其对应点B′之间的距离.此题主要考查了坐标与图形的性质以及一次函数图象上点的坐标性质,得出A到A′的距离是解题关键.7.答案:C解析:根据题中的按键顺序确定出显示的数的规律,即可得出结论.此题考查了计算器−数的平方,弄清按键顺序是解本题的关键.=0.01,√0.01=0.1;解:根据题意得:102=100,1100=100,√100=10;…0.12=0.01,10.01∵2018=6×336+2,∴按了第2018下后荧幕显示的数是0.01.故选:C.8.答案:B解析:解:A、∵一次函数的图象经过一、三、四象限,∴k>0,b<0;∴kb<0,∴正比例函数y=kbx应该经过第二、四象限.故本选项错误;B、∵一次函数的图象经过一、二、四象限,∴k<0,b>0.∴kb<0,∴正比例函数y=kbx应该经过第二、四象限.故本选项正确;C、∵一次函数的图象经过二、三、四象限,∴k<0,b<0.∴kb>0,∴正比例函数y=kbx应该经过第一、三象限.故本选项错误;D、∵一次函数的图象经过一、二、三象限,∴k>0,b>0.∴kb>0,∴正比例函数y=kbx应该经过第一、三象限.故本选项错误;故选:B.根据一次函数及正比例函数的图象对各选项进行逐一分析即可.本题考查的是一次函数及正比例函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.9.答案:B解析:解:如图:已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,A:若BB′⊥AC,在△ABC与△AB′C中,∠BAC=∠B′AC,AC=AC,∠ACB=∠ACB′,∴△ABC≌△AB′C,AB=AB′;B:若BC=B′C,不能证明△ABC≌△AB′C,即不能证明AB=AB′;C:若∠ACB=∠ACB′,则在△ABC与△AB′C中,∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′;D:若∠ABC=∠AB′C,则∠ACB=∠ACB′∠BAC=∠B′AC,AC=AC,△ABC≌△AB′C,AB=AB′.故选:B.根据已知条件结合三角形全等的判定方法,验证各选项提交的条件是否能证△ABC≌△AB′C即可.本题考查的是三角形角平分线的性质及三角形全等的判定;解题的关键是要结合已知条件在图形上的位置对选项逐个验证.10.答案:B解析:证明:①在正方形ABCD中,∠ADC=∠C=90°∵EF//CD∴∠EFD=90°,得矩形EFDC.在Rt三角形FDG中,H是DG中点,∴FH⊥BD∵正方形对角线互相垂直,过A点只能有一条垂直于BD的直线,∴AE不垂直于BD,∴FH与AE不平行.所以①不正确.②∵四边形ABEF是矩形,∴AF=EB,∠BEF=90°,∵BD平分∠ABC,∴∠EBG=∠EGB=45°,∴BE=GE,∴AF=EG.在Rt△FGD中,H是DG的中点,∴FH=GH,FH⊥BD∴∠AFH=∠AFE+∠GFH=90°+45°=135°∠EGH=180°−∠EGB=180°−45°=135°∴∠AFH=∠EGH∴△AFH≌△EGH,∴AH=EH,∠AHF=∠EHG∴∠AHF+AHG=∠FHG+∠AHG即∠FHG=∠AHE=90°∴AH⊥EH.所以②正确.③∵△AFH≌△EGH,∴∠FAH=∠GEH,∵∠BAF=CEG=90°∴∠BAH=∠HEC.所以③正确.④∵EF=AD,FH=DH,EH=AH∴EHF≌△AHD所以④正确.⑤设EC=FD=x,则BE=AF=EG=2x,∴BC=DC=DE=AD=3x,AH2=(52x)2+(12x)2=132x2,S四边形DHEC=S梯形EGDC−S△EGH=12(2x+3x)⋅x−12×2x⋅12x=2x2S△EHF=S△AHF=12AH2=134x2∴S四边形DHECS△AHE=2x2134x2=813.所以⑤不正确.故选:B.①根据正方形对角线互相垂直、过一点有且只有一条直线与已知直线垂直即可得结论;②根据矩形的判定和性质、直角三角形的性质,证明三角形全等即可得结论;③根据全等三角形性质、矩形的性质进行角的计算即可得结论;④根据边边边证明三角形全等即可得结论;⑤根据割补法求四边形的面积,再求等腰直角三角形的面积,即可得结论.本题考查了正方形的性质、矩形的判定和性质、全等三角形的判定和性质、直角三角形的性质、三角形和梯形的面积等内容,解题关键是综合利用以上知识解决问题.11.答案:9.6解析:根据勾股定理列出方程求出AD ,根据勾股定理计算即可.本题考查的是勾股定理的应用,掌握直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2是解题的关键.解:设AD =x ,由勾股定理得,AB 2−AD 2=BC 2−CD 2,即102−x 2=122−(10−x)2,解得,x =2.8,BD =√AB 2−AD 2=9.6,故答案为9.6.12.答案:−2解析:此题主要考查了算术平方根以及相反数,正确得出a ,b 的值是解题关键.直接利用相反数的定义结合算术平方根得出a ,b 的值进而得出答案.解:∵√a =1,b 是3的相反数,∴a =1,b =−3,∴a +b =−2.故答案为:−2.13.答案:√3−82解析:解:连接PO ,由已知易得A(√3,0),B(0,1),OA =√3,OB =1,AB =2,∵等腰Rt △ABC 中,∠BAC =90°,∴S △ABP =S △ABC =2,S △AOP =√34,S △BOP =−a2,S △ABP =S △BOP +S △AOB −S △AOP =2,即−a 2+12×√3×1−√34=2, 解得a =√3−82. 故答案为:√3−82.由已知求出A 、B 的坐标,求出三角形ABC 的面积,再利用S △ABP =S △ABC 建立含a 的方程,把S △ABP 表示成有边落在坐标轴上的三角形面积和、差,通过解方程求得答案.本题考查了一次函数的综合应用;解函数图象与面积结合的问题,要把相关三角形用边落在坐标轴的其他三角形面积来表示,这样面积与坐标就建立了联系;把S △ABP 表示成有边落在坐标轴上的三角形面积和、差是正确解答本题的关键.14.答案:6解析:解:如图,∵点P 是△ABC 的重心,∴AP =2PD =2,∴AD =AP +PD =3.∵等腰直角△ABC 中,∠BAC =90°,AD 是中线,∴BC =2BD ,AD =BD ,∴BC =2AD =6.故答案为6.先根据三角形重心的性质得出AD =3,再根据等腰直角三角形的性质得出BC =2AD ,即可求解. 此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍,同时考查了等腰直角三角形的性质.15.答案:±3解析:解:把{x =2y =1代入二元一次方程组{ax +by =11ax −by =−3得{2a +b =11 ①2a −b =−3 ②, ①+②得:4a =8,解得a =2,把a =2代入②得:b =7,则a +b =9,9的平方根为±3,故答案为:±3把{x =2y =1代入二元一次方程组{ax +by =11ax −by =−3得{2a +b =11 ①2a −b =−3 ②,解方程组可得a 、b 的值,然后可得a +b 的平方根.此题主要考查了二元一次方程组的解,以及算术平方根,关键是掌握方程组的解满足方程. 16.答案:25解析:解:∵AB 的垂直平分线交AB 于D 点,交BC 于E 点∴AE =BE ,∵CE =7,AC =24,∴由勾股定理得:AE =√AC 2+CE 2=√72+242=25,∴BE =AE =25,故答案为:25.根据线段垂直平分线的性质得出AE =BE ,根据勾股定理求出AE 即可.本题考查了线段的垂直平分线的性质和勾股定理,能根据性质得出AE =BE 是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.17.答案:−1解析:解:一次函数y =3x +b ,其中k =3,∴图象经过一、三象限;又∵图象经过第一、三、四象限,∴b <0,故答案−1(答案不唯一).根据题中k >0,可知图形经过一、三象限,又由图象还要经过四象限,判断b <0.本题考查一次函数的图象.掌握一次函数解析式中k ,b 对图象的影响是解题的关键.18.答案:25 5√29解析:解:(1)只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10cm ,高为20cm ,点B 离点C 的距离是5cm ,∴BD =CD +BC =10+5=15(cm),AD =20(cm),在直角三角形ABD 中,根据勾股定理得:∴AB =√BD 2+AD 2=√152+202=25(cm);只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴BD=CD+BC=20+5=25(cm),AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=√BD2+AD2=√102+252=5√29(cm);只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30(cm),在直角三角形ABC中,根据勾股定理得:∴AB=√AC2+BC2=√302+52=5√37(cm);∵25<5√29<5√37,∴蚂蚁爬行的最短距离是25(cm).故答案为:25;(2)盒子底面对角长为√152+102=√325,当吸管、长方体的高及底面对角线的长正好构成直角三角形时,插入盒子内的吸管长度最长,则吸管长度为:√(√325)2+202=5√29(cm),∴吸管应不少于5√29cm.故答案为:5√29.(1)要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答;(2)当吸管、长方体的高及底面对角线的长正好构成直角三角形时,插入盒子内的吸管长度最大,用勾股定理即可解答.本题考查的是平面展开−最短路径问题,根据题意画出长方体的侧面展开图,根据勾股定理求解是解答此题的关键.19.答案:2解析:解:m+1m =√5+√55.∵2<√5<3,∴2<m+1m =√5+√55<3,故答案为:2.根据2<√5<3,可得答案.本题考查了估算无理数的大小,利用算术平方根越大被开方数越大得出2<√5<3是解题关键.20.答案:7km解析:解:(1)根据图象知,小明家离永辉超市的距离为7km.故答案为:7km;(2)小明去超市的速度:7÷35=0.2(千米/分钟),小明去超市前15分钟的路程:0.2×15=3(千米),小明和小红第1次相遇时离永辉超市距离:7−3=4(千米),答:小明和小红第1次相遇时离永辉超市距离为4千米;(3)小明回家的速度:(7−2)÷(75−65)=0.5(千米/分钟),按照小明回家原有的速度需要的时间:7÷0.5=14(分钟),小明从家里出发到回家所用的时间:65+14+3=82(分钟),答:小明从家里出发到回家所用的时间82分钟.(1)根据图象即可得到结论;(2)速度、时间、路程之间关系即可得到结论;(3)根据题意列式计算即可.此题考查了函数的图象,一次函数问题,解题的关键是根据速度、时间、路程之间关系分析解答.21.答案:解:(1)∵33=27<35<43=64,3<4,∴3<√35∵3.23≈32.8<35<3.33≈35.9,3<3.3;∴3.2<√35(2)∵(−4.5)3≈−91.1>−95>(−4.6)3≈97.3,3>−4.6.∴−4.5>√−95解析:根据无理数的估计解答即可.本题考查了立方根的定义和立方根的性质,能熟记立方根的定义的内容是解此题的关键,注意:一个正数有一个正的立方根,0的立方根是0,一个负数有一个负的立方根.根据立方根的定义求出即可.22.答案:证明:∵∠DEF=∠DFE=65°,∴∠EDF=50°,又∵∠A=∠B=50°,∴∠BDF=130°−∠ADE,∠AED=130°−∠ADE,∴∠BDF=∠AED,在△BDF和△AED中,{∠B=∠A∠BDF=∠AED DF=ED,∴△BDF≌△AED(AAS).解析:先根据已知条件,得出∠BDF=130°−∠ADE,∠AED=130°−∠ADE,进而得到∠BDF=∠AED,再运用AAS判定△EAD≌△DBF即可.本题主要考查了全等三角形的判定以及等腰三角形的性质的运用,解题时注意:两角及其中一个角的对边对应相等的两个三角形全等.23.答案:解:(1)连接AC,∵在Rt△ABC中,∠B=90°,AB=15,BC=20,由勾股定理得:AC=√AB2+BC2=25,∵CD=7,AD=24,∴AD2+CD2=AC2,∴∠ADC=90°;(2)四边形ABCD的面积S=S△ABC+S△ADC=12×AB×BC+12×AD×DC=12×15×20+12×24×7=234.解析:连接AC,根据勾股定理求出线段AC长度,根据勾股定理的逆定理求出∠D=90°即可;(2)分别求出Rt△ADC和Rt△ABC的面积即可.本题考查了勾股定理,勾股定理的逆定理和三角形的面积,能熟记勾股定理的逆定理和勾股定理的内容是解此题的关键.24.答案:80°50°90°解析:解:(1)∵AB//CD,∴∠AGH=∠GHD=80°.故答案为:80°.(2)由(1)知:∠AGH=∠GHD=80°.∴∠BGH=180°−∠AGH=100°.又∵GM平分∠BGH,∴∠BGM=12∠BGH=12×100°=50°.又∵AB//CD,∴∠GMH=∠BGM=50°.故答案为:50°.(3)∵AB//CD,∴∠BGH+∠GHD=180°.∵GM平分∠BGH,HT平分∠GHD,∴∠MGH=12∠BGH,∠GHT=12∠GHD.∴∠TGH+∠GHT=12∠BGH+12∠GHD=12(∠BGH+∠GHD)=12×180°=90°.∴∠GTH=180°−(∠TGH+∠GHT)=90°.故答案为:90°.(4)如图4,延长QP交CD于O.由题意知:∠QPH=90°.∴∠OPH=180°−∠QPH=90°.∴∠POH=180°−(∠OPH+∠CHP)=180°−(90°+30°)=60°.又∵AB//CD,∴∠ARP=∠POH=60°.(1)根据平行线的性质解决.(2)根据角平分线的定义解决.(3)欲求∠GTH,需求∠TGH+∠GHT.由GM平分∠BGH,HT平分∠GHD,得∠MGH=12∠BGH,∠GHT=1 2∠GHD,得∠TGH+∠GHT=12∠BGH+12∠GHD=90°.(4)如图,延长QP交CD于O.欲求∠ARP,需求∠POH.由∠QPH=90°,得∠OPH=180°−∠QPH=90°,进而解决此题.本题主要考查平行线的性质、角平分线的定义以及三角形内角和定理,熟练掌握平行线的性质、角平分线的定义以及三角形内角和定理是解决本题的关键.25.答案:证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵{∠A=∠BCGAC=BC∠ACF=∠CBE,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC//AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)如图3,过E作EM⊥AG,交AG于M,∵S△AEG=1AG⋅EM=3√3,2由(2)得:△ACG≌△BCG,∴BG=AG=6,×6×EM=3√3,∴12EM=√3,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2√3,AM=√(2√3)2−(√3)2=3,∴M是AG的中点,∴AE=EG=2√3,∴BE=BG+EG=6+2√3,在Rt△ECB中,∠EBC=30°,BE=3+√3,∴CE=12∴AC=AE+EC=2√3+3+√3=3√3+3.解析:本题考查了全等三角形的性质和判定及等腰直角三角形的性质,证明两线段相等时,一般都是证明两线段所在的三角形全等,因此第一问只需要证明△BCG≌△CAF即可;第3问,如何得出30°角和作辅助线,利用到S△AEG=3√3列式是突破口.(1)根据ASA证明△BCG≌△CAF,则CF=BG;(2)先证明△ACG≌△BCG,得∠CAG=∠CBE,再证明∠PCG=∠PGC,即可得出结论;(3)作△AEG 的高线EM ,根据角的大小关系得出∠CAG =30°,根据面积求出EM 的长,利用30°角的三角函数值依次求AE 、EG 、BE 的长,所以CE =3+√3,根据线段的和得出AC 的长.26.答案:解:①a =4+0.4=4.5,甲车的速度=4604060+7=60(千米/小时);②设乙开始的速度为v 千米/小时,则4v +(7−4.5)(v −50)=460,解得v =90(千米/小时),4v =360,则D(4,360),E(4.5,360),设直线EF 的解析式为y =kx +b ,把E(4.5,360),F(7,460)代入得{4.5k +b =3607k +b =460, 解得{k =40b =180, 所以线段EF 所表示的y 与x 的函数关系式为y =40x +180(4.5≤x ≤7);③甲车前40分钟的路程为60×23=40(千米),则C(0,40),设直线CF 的解析式为y =mx +n ,把C(0,40),F(7,460)代入得{n =407m +n =460, 解得{m =60n =40, 所以直线CF 的解析式为y =60x +40,易得直线OD 的解析式为y =90x(0≤x ≤4),设甲乙两车中途相遇点为G ,由60x +40=90x ,解得x =43小时,即乙车出发43小时后,甲乙两车相遇,当乙车在OG 段时,由60x +40−90x =15,解得x =56介于0~43小时之间,符合题意;当乙车在GD 段时,由90x −(60x +40)=15,解得x =116,介于43~4小时之间,符合题意; 当乙车在DE 段时,由360−(60x +40)=15,解得x =6112,不介于4~4.5之间,不符合题意; 当乙车在EF 段时,由40x +180−(60x +40)=15,解得x =254,介于4.5~7之间,符合题意. 所以乙车出发56小时或116小时或254小时,乙与甲车相距15千米.+7)小时,然后利用解析:①由乙在途中的货站装货耗时半小时易得a=4.5;甲从A到B共用了(23速度公式计算甲的速度;②设乙开始的速度为v千米/小时,利用乙两段时间内的路程和为460列方程4v+(7−4.5)(v−50)=460,解得v=90(千米/小时),计算出4v=360,则可得到D(4,360),E(4.5,360),然后利用待定系数法求出线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);=40,则可得到C(0,40),再利用待定系数法求出直线CF的解析式为y=60x+40,③先计算60×23和直线OD的解析式为y=90x(0≤x≤4),然后利用函数值相差15列方程求解即可.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.27.答案:解:小红旗关于y轴的轴对称图形如图所示:A′(8,3),B′(8,5),C′(2,5).解析:根据关于y轴对称的两点,它们的纵坐标相同,横坐标互为相反数,可得出各点的坐标.本题考查了利用轴对称设计图案的知识,P(x,y)关于x轴的对称点坐标是(x,−y),点P(x,y)关于y轴的对称点坐标是(−x,y),点P(x,y)关于原点的对称点的坐标是(−x,−y).28.答案:解:(1)∵直线l1:y=kx+2(k>0)与y轴交于点B,∴当x=0时,y=2,∴点B的坐标为(0,2);kx+(2)①当k=2时,直线l1:y=2x+2,直线l2:y=−122,∴A(−1,0),C(2,0),结合函数图象,区域G内整点的个数为1;②若区域G内恰有2个整点,k的取值范围为1≤k<2.解析:(1)根据函数解析式即可得到结论;(2)①当k=2时,根据函数解析式得到A(−1,0),C(2,0),结合函数图象即可得到结论;②结合函数图象,即可得到结论.本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,正确的理解题意是解题的关键.29.答案:解:由图象可以看出,A对应爷爷,去时耗时长;B对应爸爸,去时返回耗时一样;C对应小明,去时用时短返回用时长,完成一次往返,小明、爸爸、爷爷各用21分钟、24分钟、26分钟.解析:由A、B、C图象可以看出,A去时用时长返回用时短,对应爷爷;B去时和返回用时一样长,对应爸爸;C去时用时短返回用时长,对应小明.此题考查函数图象,此题为一次函数图象与实际结合的题型,同学们要培养从图形中找信息的能力.。
北京市西城区2020—2021学年七年级上期末数学试题含答案
北京市西城区2020—2021学年七年级上期末数学试题含答案七年级数学 2021.1试卷满分:100分,考试时刻:100分钟一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题2分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列算式中,运算结果为负数的是( ).A. (2)--B. 2-C. 3(2)-D. 2(2)-【考点】幂的运算【试题解析】,因此选C 【答案】C2.科学家发觉,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000 用科学记数法表示为( ).A .70.2510⨯B .62.510⨯C .72.510⨯D .52510⨯【考点】科学记数法和近似数、有效数字【试题解析】2 500 000=,选B 【答案】B3.下列各式中,正确的是( ). A. (25)25x x -+=-+ B. 1(42)222x x --=-+ C. ()a b a b -+=-- D. 23(32)x x -=-+【考点】整式加减【试题解析】A,-(2x+5)=-2x-5B,C-a+b=-(a-b)D,2-3x=-(-2+3x)【答案】C4.下列运算正确的是( ).A. 277a a a +=B. 22232x y x y x y -=C. 532y y -=D. 325a b ab += 【考点】幂的运算 【试题解析】【答案】B5.已知1a b -=,则代数式223a b --的值是( ).A. 1B. 1-C. 5D. 5- 【考点】代数式及其求值【试题解析】2a-2b-3=2(a-b)-3=2-3=-1【答案】B6.空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列 的顺序是( ).制冷剂编号R22 R12 R410A 制冷剂二氟一氯甲烷 二氟二氯甲烷 二氟甲烷50%,五氟乙烷50% 沸点近似值(精确到1℃)41- 30- 52-A. R12,R22,R410AB. R22,R12,R410AC. R410A ,R12,R22D. R410A ,R22,R12【考点】实数大小比较【试题解析】-30>-41>-52【答案】D7.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项 式的值用()f a 来表示,例如1x =-时,多项式2()35f x x x =+-的值记为(1)f -,那么(1)f -等于( ).A. 7-B. 9-C. 3-D. 1- 【考点】数式及其求值【试题解析】f(-1)=【答案】A8.下列说法中,正确的是( ).①射线AB 和射线BA 是同一条射线;②若AB =BC ,则点B 为线段AC 的中点;③同角的补角相等;④点C 在线段AB 上,M ,N 分别是线段AC ,CB 的中点. 若MN =5,则线段AB =10.A. ①②B. ②③C. ②④D. ③④【考点】线段、射线与直线【试题解析】①射线AB 和BA 的起点不同,方向不同,不是一条射线②B 应该在线段AC 上,才符合条件,错误【答案】D9.点M ,N ,P 和原点O 在数轴上的位置如图所示,点M ,N ,P 对应的有理数为a ,b ,c (对 应顺序暂不确定).假如0ab <,0a b +>,ac bc >,那么表示数b 的点为( ).A. 点MB. 点NC. 点PD. 点O 【考点】数与形结合的规律【试题解析】ab <0,那么a 和b 符合不同a+b >0,说明一个是正,一个是负∴M 确信是a 和b 中一个∴c >0∵ac >bc∴a >b∴a >0∴b 对应M【答案】A10.用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如右图所示,那么从左面看它得到的平面图形一定不是..( ).【考点】几何体的三视图 【试题解析】∵从上面看,两边都有方格,因此从左面看应该也是两边都有方格,因此C 选项不正确。
重庆市石柱县2020—2021学年七年级上期末数学试卷含答案解析
重庆市石柱县2020—2021学年七年级上期末数学试卷含答案解析一、选择题(本大题共12个小题,每小题2分,共24分.)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷的相应表格内.1.﹣的相反数是()A.5 B.﹣5 C.D.﹣2.我县某地2021年元旦的最高气温为7℃,最低气温为﹣2℃,那么该地这天的最高气温比最低气温高()A.﹣9℃B.﹣5℃C.5℃D.9℃3.从正面观看如图的两个物体,看到的是()A.B.C.D.4.下列等式正确的是()A.﹣|﹣5|=5 B.﹣2(a+3b)=﹣2a+6bC.3m+2n=5mn D.x2y﹣2x2y=﹣x2y5.假如x=﹣2是关于x的方程3a﹣2x=7的解,那么a的值是()A.B.a=1 C.D.6.如图,从A到B最短的路线是()A.A﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B7.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.|a|﹣|b|>08.下列说法不正确的是()A.有理数包括正有理数、0和负有理数B.次数相同的单项式是同类项C.单项式﹣2πa2b的系数是﹣2πD.线段AB和线段BA是同一条线段9.甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨.若设甲仓库原先存粮x吨,则有()A.(1﹣60%)x﹣(1﹣40%)=30 B.60%x﹣40%•=30C.(1﹣40%)﹣(1﹣60%)x=30 D.40%•﹣60%•x=3010.某个商贩同时卖出两件上衣,售价差不多上135元.按成本运算,其中一件盈利25%,另一件亏损25%,在这次交易中,该商贩()A.不赔不赚 B.赚9元C.赔18元D.赚18元11.土家传统建筑的窗户上常有一些精巧花纹,小辰对土家传统建筑专门感爱好,他观看发觉窗格的花纹排列出现有一定规律,如图.其中“O”代表的确实是精巧的花纹,请问有35个精巧花纹的是第()个图.A.13 B.11 C.9 D.712.小张在某月的日历上圈出了相邻的三个数a、b、c,并求出了它们的和为33,这三个数在日历中的排布不可能是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)请将每小题的答案直截了当填在答题卷中对应的横线上.13.为了缓解群众“看病难,看病贵”的问题.国家从2020年到2020年三年中,共投入850000000000元,数据850000000000用科学记数法表示为.14.一个角是70°,则那个角的余角为度.15.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“我”的对面上所写的字是.16.如图,∠AOC和∠DOB差不多上直角,假如∠DOC=28°,那么∠AOB=.17.若x+5y=﹣1时,则代数式2020﹣x﹣5y的值为.18.数学家莫伦在1925年发觉了世界上第一个完美长方形.如图是一个完美长方形,它恰能被分割成10个大小不同的正方形,其中标注番号1的正方形边长为5,则那个完美长方形的面积为.三、解答题(本大题共2小题,每小题6分,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.19.运算:﹣14﹣×[(﹣4)2﹣(7﹣3)×].20.解方程:.四、解答题(本大题共4小题,每小题7分,共28分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.21.(1)化简:(2y2﹣ay+1)﹣2(y2﹣2ay+3)(2)已知:A﹣2B=7a2﹣7ab,B=﹣4a2+6ab+7,求整式A.22.某学校组织学生参加全市七年级数学竞赛,22名同学获市一等奖和市二等奖,为鼓舞这些同学,学校预备拿出2000元资金给这些获奖学生买奖品,一等奖每人200元,二奖等奖每人50元,求得到一等奖和二等奖的学生分别是多少人?23.如图所示,已知C、D是线段AB上的两个点,M、N分别为AC、BD的中点.(1)若AB=10cm,CD=4cm,求AC+BD的长及M、N的距离.(2)假如AB=a,CD=b,用含a、b的式子表示MN的长.24.已知:数轴上A、B两点表示的有理数分别为a、b,且(a﹣1)2+|b+2|=0,(1)求(a+b)2020的值.(2)数轴上的点C与A、B两点的距离的和为7,求点C在数轴上表示的数c的值.五、解答题(本大题2个小题,每小题9分,共18分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.25.某农户承包荒山若干亩种果树2000棵,每年需对果园投资7800元,水果年总产量为18000千克,此水果在市场上每千克售a元,在果园自助销售每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需3人帮忙,每人每天付工资80元,农用车运费及其他各项税费平均每天60元,假定两种方式都能将水果全部销售出去.(1)直截了当写出一年中两种方式出售水果的总销售金额是多少元.(用含a,b的最简式子表示)(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时刻内售完全部水果,请你通过运算说明选择哪种出售方式较好?(3)为了提高收益,该农户明年预备增加投入资金加强果园治理,估量每增加投入1元,水果产量增加5千克,力争到明年纯收入达到16500元,而且该农户采纳了(2)中较好的出售方式出售,销售单价与(2)一样,那么该农户要增加投资多少元?26.如图,两个形状、大小完全相同的含有30゜、60゜的三角板如图①放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均能够绕点P逆时针旋转.(1)直截了当写出∠DPC的度数.(2)若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度(如图②),若PF平分∠APD,PE平分∠CPD,求∠EPF的度数;(3)如图③,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当2∠CPD=3∠BPM,求旋转的时刻是多少.2020-2021学年重庆市石柱县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题2分,共24分.)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷的相应表格内.1.﹣的相反数是()A.5 B.﹣5 C.D.﹣【考点】相反数.【分析】依照相反数的定义,即可解答.【解答】解:﹣的相反数是,故选:C.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.我县某地2021年元旦的最高气温为7℃,最低气温为﹣2℃,那么该地这天的最高气温比最低气温高()A.﹣9℃B.﹣5℃C.5℃D.9℃【考点】有理数的减法.【专题】应用题.【分析】先依照题意列出算式,然后利用减法法则运算即可.【解答】解:7﹣(﹣2)=7+2=9℃.故选:D.【点评】本题要紧考查的是有理数的减法,把握有理数的减法法则是解题的关键.3.从正面观看如图的两个物体,看到的是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看第一个图为矩形,第二个图形为正方形.故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.下列等式正确的是()A.﹣|﹣5|=5 B.﹣2(a+3b)=﹣2a+6bC.3m+2n=5mn D.x2y﹣2x2y=﹣x2y【考点】合并同类项;绝对值;去括号与添括号.【分析】依照绝对值的性质,去括号,合并同类项的法则,对各选项分析判定后利用排除法求解.【解答】解:A、应为﹣|﹣5|=﹣5,故本选项错误;B、应为﹣2(a+3b)=﹣2a﹣6b,故本选项错误;C、3m+2n不能合并,故本选项错误;D、x2y﹣2x2y=﹣x2y,故本选项正确;故选D.【点评】本题考查了合并同类项,绝对值,去括号,理清指数的变化是解题的关键.5.假如x=﹣2是关于x的方程3a﹣2x=7的解,那么a的值是()A.B.a=1 C.D.【考点】一元一次方程的解.【分析】把x=﹣2代入方程3a﹣2x=7,求出方程的解即可.【解答】解:把x=﹣2代入方程3a﹣2x=7,得:3a+4=7,解得:a=1,故选B.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,解此题的关键是能得出关于a的方程,难度不是专门大.6.如图,从A到B最短的路线是()A.A﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B【考点】两点间的距离.【分析】依照题图,要从A地到B地,一定要通过E点且必须通过线段EB,因此只要考虑A到E的路线最短即可,依照“两点之间线段最短“的结论即可解答.【解答】解:依照图形,从A地到B地,一定要通过E点且必须通过线段EB,因此只要找出从A到E的最短路线,依照“两点之间线段最短“的结论,从A到E的最短路线是线段AE,即A﹣F﹣E,因此从A地到B地最短路线是A﹣F﹣E﹣B.故选:D.【点评】此题要紧考查了两点间的距离,关键时尽量缩短两地之间的里程.7.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.|a|﹣|b|>0【考点】实数与数轴.【分析】先依照数轴得到a,b,0之间的大小关系,再依次判定下列选项是否正确.【解答】解:∵a<﹣1<0<b<1,A、∵a<﹣1<0<b<1,∴ab<0,故选项错误;B、∵a<﹣1<0<b<1,∴a﹣b<0,故选项错误;C、∵a<﹣1<0<b<1,∴a+b<0,故选项错误;D、∵a<﹣1<0<b<1,∴|a|﹣|b|>0,故选项正确.故选D.【点评】本题考查了实数与数轴的对应关系,数轴上的数右边的数总是大于左边的数.本题还要求熟悉加法,减法,乘法法则.8.下列说法不正确的是()A.有理数包括正有理数、0和负有理数B.次数相同的单项式是同类项C.单项式﹣2πa2b的系数是﹣2πD.线段AB和线段BA是同一条线段【考点】直线、射线、线段;有理数;同类项;单项式.【分析】依照有理数的分类可得A说法正确;依照同类项定义:所含字母相同,同时相同字母的指数也相同,如此的项叫做同类项可得B说法错误;依照单项式中的数字因数叫做单项式的系数可得C说法正确;依照线段的表示方法:用两个表示端点的字母可得D说法正确.【解答】解:A、有理数包括正有理数、0和负有理数,说法正确;B、次数相同的单项式是同类项,说法错误;C、单项式﹣2πa2b的系数是﹣2π,说法正确;D、线段AB和线段BA是同一条线段,说法正确;故选:B.【点评】此题要紧考查了有理数、同类项、单项式、以及线段的表示方法,关键是要把握同类项的定义.9.甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨.若设甲仓库原先存粮x吨,则有()A.(1﹣60%)x﹣(1﹣40%)=30 B.60%x﹣40%•=30C.(1﹣40%)﹣(1﹣60%)x=30 D.40%•﹣60%•x=30【考点】由实际问题抽象出一元一次方程.【分析】要求甲,乙仓库原先存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食30吨.【解答】解:设甲仓库原先存粮x吨,依照题意得出:(1﹣40%)﹣(1﹣60%)x=30;故选:C.【点评】此题考查了一元一次方程组的应用,解题关键是要读明白题目的意思,依照题干找出合适的等量关系.本题的等量关系是:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食30吨.10.某个商贩同时卖出两件上衣,售价差不多上135元.按成本运算,其中一件盈利25%,另一件亏损25%,在这次交易中,该商贩()A.不赔不赚 B.赚9元C.赔18元D.赚18元【考点】一元一次方程的应用.【专题】应用题.【分析】要明白赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后依照题中的等量关系列方程求解.【解答】解:设在这次买卖中原价差不多上x,则可列方程:(1+25%)x=135解得:x=108比较可知,第一件赚了27元第二件可列方程:(1﹣25%)x=135解得:x=180,比较可知亏了45元,两件相比则一共亏了18元.故选C.【点评】此题考查了一元一次方程的应用,解题的关键是明白盈利与亏本的含义,准确列出运算式,运算结果,难度一样.11.土家传统建筑的窗户上常有一些精巧花纹,小辰对土家传统建筑专门感爱好,他观看发觉窗格的花纹排列出现有一定规律,如图.其中“O”代表的确实是精巧的花纹,请问有35个精巧花纹的是第()个图.A.13 B.11 C.9 D.7【考点】规律型:图形的变化类.【分析】结合图形找出规律,找对规律即可解决该题.【解答】解:第一幅图有精巧的花纹5个,第二幅有8个,第三幅11个,结合图形可知没往后一幅加3个,∵(35﹣5)÷3=10,10+1=11,∴有35个精巧花纹的是第(11)个图.故选B.【点评】本题考查的是图形变化的规律,解题的关键是明白没往后一幅图+3个花纹.12.小张在某月的日历上圈出了相邻的三个数a、b、c,并求出了它们的和为33,这三个数在日历中的排布不可能是()A.B.C.D.【考点】列代数式.【专题】分类讨论.【分析】日历中的每个数差不多上整数且上下相邻是7,左右相邻相差是1.依照题意可列方程求解.【解答】解:A、设最小的数是x.x+x+1+x+2=33,x=10.故本选项正确.B、设最小的数是x.x+x+6+x+7=33,x=,故本选项错误.C、设最小的数是x.x+x+7+x+8=33,x=6,故本选项正确.D、设最小的数是x.x+x+7+x+14=33,x=4,本选项正确.故选B.【点评】此题考查的是一元一次方程的应用,关键是依照题意对每个选项列出方程求解论证.锤炼了学生明白得题意能力,关键明白日历中的每个数差不多上整数且上下相邻是7,左右相邻相差是1.二、填空题(本大题共6个小题,每小题3分,共18分)请将每小题的答案直截了当填在答题卷中对应的横线上.13.为了缓解群众“看病难,看病贵”的问题.国家从2020年到2020年三年中,共投入850000000000元,数据850000000000用科学记数法表示为8.5×1011.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:850 000 000 000=8.5×1011,故答案为:8.5×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.一个角是70°,则那个角的余角为20度.【考点】余角和补角.【分析】依照余角的定义即可得出结论.【解答】解:∵一个角是70°,∴那个角的余角=90°﹣70°=20°.故答案为:20.【点评】本题考查的是余角和补角,熟知假如两个角的和等于90°(直角),就说这两个角互为余角是解答此题的关键.15.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“我”的对面上所写的字是丽.【考点】专题:正方体相对两个面上的文字.【分析】依照正方体展开中相对的两个面不存在公共点回答即可.【解答】解:∵由展开图可知“丽”所在的面与“我”所在的面不存在公共点,∴“丽”所在的面是“我”字所在面是对面.故答案为:丽.【点评】本题要紧考查的是正方体相对两个面上的文字,明确正方体展开中相对的两个面不存在公共点是解题的关键.16.如图,∠AOC和∠DOB差不多上直角,假如∠DOC=28°,那么∠AOB=152°.【考点】角的运算.【专题】运算题.【分析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.【解答】解:∵∠AOC=∠DOB=90°,∠DOC=28°,∴∠AOB=∠AOC+∠DOB﹣∠DOC,=90°+90°﹣28°,=152°.故答案为:152°【点评】此题要紧考查学生对角的运算的明白得和把握,此题的解法不唯独,只要合理即可.17.若x+5y=﹣1时,则代数式2020﹣x﹣5y的值为2021.【考点】代数式求值.【专题】运算题;实数.【分析】原式后两项提取﹣1变形后,将已知等式代入运算即可求出值.【解答】解:∵x+5y=﹣1,∴原式=2020﹣(x+5y)=2020+1=2021,故答案为:2021【点评】此题考查了代数式求值,熟练把握运算法则是解本题的关键.18.数学家莫伦在1925年发觉了世界上第一个完美长方形.如图是一个完美长方形,它恰能被分割成10个大小不同的正方形,其中标注番号1的正方形边长为5,则那个完美长方形的面积为3055.【考点】一元一次方程的应用.【专题】几何图形问题.【分析】设标注番号2的正方形边长是x,依照各个正方形的边的和差关系分别表示出其余各正方形的边长,再依照完美长方形的宽相等列出方程,求解即可.【解答】解:设标注番号2的正方形边长是x,标注番号1的正方形边长为5,则第3个正方形的边长是x+5;第4个正方形的边长是x+x+5=2x+5;第5个正方形的边长是x+2x+5=3x+5;第6个正方形的边长是3x+5+x﹣5=4x;第7个正方形的边长是4x﹣5;第10个正方形的边长是4x﹣5﹣5﹣(x+5)=3x﹣15;第8个正方形的边长是4x﹣5+3x﹣15=7x﹣20;第9个正方形的边长是3x﹣15+7x﹣20=10x﹣35;依照题意得3x+5+4x=7x﹣20+10x﹣35,解得x=6,则完美长方形的宽为3x+5+4x=7x+5=47,完美长方形的长为4x+4x﹣5+7x﹣20=15x﹣25=65,因此完美长方形的面积为65×47=3055.故答案为3055.【点评】本题考查了一元一次方程的应用,解题关键是要读明白题目的意思,依照题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本大题共2小题,每小题6分,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.19.运算:﹣14﹣×[(﹣4)2﹣(7﹣3)×].【考点】有理数的混合运算.【专题】运算题;实数.【分析】原式先运算乘方运算,再运算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1﹣×(16﹣4×)=﹣1﹣×(16﹣6)=﹣1﹣×10=﹣1﹣2=﹣3.【点评】此题考查了有理数的混合运算,熟练把握运算法则是解本题的关键.20.解方程:.【考点】解一元一次方程.【专题】运算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2(2x+1)﹣(x﹣3)=12,去括号得:4x+2﹣x+3=12,移项合并得:3x=7,解得:x=.【点评】此题考查了解一元一次方程,熟练把握运算法则是解本题的关键.四、解答题(本大题共4小题,每小题7分,共28分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.21.(1)化简:(2y2﹣ay+1)﹣2(y2﹣2ay+3)(2)已知:A﹣2B=7a2﹣7ab,B=﹣4a2+6ab+7,求整式A.【考点】整式的加减.【分析】(1)先去括号,再合并同类项即可;(2)依照题意列出整式相加减的式子,再去括号,合并同类项即可.【解答】解:(1)原式=2y2﹣ay+1﹣2y2+4ay﹣6=3ay﹣5;(2)∵A﹣2B=7a2﹣7ab,B=﹣4a2+6ab+7,∴A=(7a2﹣7ab)+2B=(7a2﹣7ab)+2(﹣4a2+6ab+7)=7a2﹣7ab﹣8a2+12ab+14=﹣a2+5ab+14.【点评】本题考查的是整式的加减,熟知整式的加减实质上确实是合并同类项是解答此题的关键.22.某学校组织学生参加全市七年级数学竞赛,22名同学获市一等奖和市二等奖,为鼓舞这些同学,学校预备拿出2000元资金给这些获奖学生买奖品,一等奖每人200元,二奖等奖每人50元,求得到一等奖和二等奖的学生分别是多少人?【考点】一元一次方程的应用.【专题】应用题.【分析】等量关系为:200×一等奖的人数+50×二等奖的人数=2000,把相关数值代入运算即可.【解答】解:设得到一等奖的人数为x人,则得到二等奖的人数为(22﹣x)人.200x+50×(22﹣x)=2000,解得x=6,22﹣x=16.答:得到一等奖和二等奖的学生分别为6人,16人.【点评】考查一元一次方程的应用;依照总奖金得到等量关系是解决本题的关键.23.如图所示,已知C、D是线段AB上的两个点,M、N分别为AC、BD的中点.(1)若AB=10cm,CD=4cm,求AC+BD的长及M、N的距离.(2)假如AB=a,CD=b,用含a、b的式子表示MN的长.【考点】两点间的距离.【专题】运算题.【分析】(1)依照AC+BD=AB﹣CD列式进行运算即可求解,依照中点定义求出AM+BN 的长度,再依照MN=AB﹣(AM+BN)代入数据进行运算即可求解;(2)依照(1)的求解,把AB、CD的长度换成a、b即可.【解答】解:(1)∵AB=10cm,CD=4cm,∴AC+BD=AB﹣CD=10﹣4=6cm,∵M、N分别为AC、BD的中点,∴AM+BN=AC+BD=(AC+BD)=3cm,∴MN=AB﹣(AM+BN)=10﹣3=7cm;(2)依照(1)的结论,AM+BN=AC+BD=(AC+BD)=(a﹣b),∴MN=AB﹣(AM+BN)=a﹣(a﹣b)=(a+b).【点评】本题考查了两点间的距离,中点的定义,结合图形找准线段之间的关系是解题的关键.24.已知:数轴上A、B两点表示的有理数分别为a、b,且(a﹣1)2+|b+2|=0,(1)求(a+b)2020的值.(2)数轴上的点C与A、B两点的距离的和为7,求点C在数轴上表示的数c的值.【考点】数轴;非负数的性质:绝对值;非负数的性质:偶次方.【专题】探究型.【分析】(1)依照(a﹣1)2+|b+2|=0,能够求得a、b的值,从而能够得到(a+b)2020的值;(2)由第(1)问中求得的a的值和数轴上的点C与A、B两点的距离的和为7,可知点C 可能在点B的左侧或点C可能在点A的右侧两种情形,然后进行运算即可解答本题.【解答】解:(1)∵(a﹣1)2+|b+2|=0,∴a﹣1=0,b+2=0,解得a=1,b=﹣2,∴(a+b)2020=(1﹣2)2020=(﹣1)2020=﹣1;(2)∵a=1,b=﹣2,数轴上A、B两点表示的有理数分别为a、b,数轴上的点C与A、B 两点的距离的和为7,∴点C可能在点B的左侧或点C可能在点A的右侧,当点C在点B的左侧时,1﹣c+﹣2﹣c=7,得c=﹣4,当点C在点A的右侧时,c﹣1+c﹣(﹣2)=7,得c=3,即点C在数轴上表示的数c的值是﹣4或3.【点评】本题考查数轴、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.五、解答题(本大题2个小题,每小题9分,共18分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.25.某农户承包荒山若干亩种果树2000棵,每年需对果园投资7800元,水果年总产量为18000千克,此水果在市场上每千克售a元,在果园自助销售每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需3人帮忙,每人每天付工资80元,农用车运费及其他各项税费平均每天60元,假定两种方式都能将水果全部销售出去.(1)直截了当写出一年中两种方式出售水果的总销售金额是多少元.(用含a,b的最简式子表示)(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时刻内售完全部水果,请你通过运算说明选择哪种出售方式较好?(3)为了提高收益,该农户明年预备增加投入资金加强果园治理,估量每增加投入1元,水果产量增加5千克,力争到明年纯收入达到16500元,而且该农户采纳了(2)中较好的出售方式出售,销售单价与(2)一样,那么该农户要增加投资多少元?【考点】一元一次方程的应用;列代数式;代数式求值.【分析】(1)市场出售收入=水果的总收入﹣额外支出,水果直截了当在果园的出售收入为:18000b.(2)依照(1)中得到的代数式,将a=1.3,b=1.1代入代数式运算即可.(3)设该农户要增加投资x元,依照明年纯收入为16500元建立方程,求解即可.【解答】解:(1)将这批水果拉到市场上出售收入为18000a﹣×3×80﹣×60=18000a﹣4320﹣1080=18000a﹣5400(元),在果园直截了当出售收入为18000b元.(2)当a=1.3时,市场收入为18000a﹣5400=18000×1.3﹣5400=18000(元).当b=1.1时,果园收入为18000b=18000×1.1=19800(元).因18000<19800,因此应选择在果园直截了当出售.(3)设该农户要增加投资x元,则水果产量增加5x千克,由题意,得×1.1﹣=16500,解得x=1000.答:该农户要增加投资1000元.【点评】本题考查了一元一次方程的应用,依照实际问题列代数式,解题关键是要读明白题目的意思,依照题目给出的条件,找出合适的等量关系列出式子.26.如图,两个形状、大小完全相同的含有30゜、60゜的三角板如图①放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均能够绕点P逆时针旋转.(1)直截了当写出∠DPC的度数.(2)若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度(如图②),若PF平分∠APD,PE平分∠CPD,求∠EPF的度数;(3)如图③,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当2∠CPD=3∠BPM,求旋转的时刻是多少.【考点】角的运算.【分析】(1)利用含有30゜、60゜的三角板得出∠DPC=180°﹣∠CPA﹣∠DPB,进而求出即可;(2)设∠CPE=∠DPE=x,∠CPF=y,则∠APF=∠DPF=2x+y,进而利用∠CPA=60゜求出即可;(3)设旋转时刻为t秒,则∠BPM=2t°,∠CPD=90°﹣t°,得到2(90﹣t)=3×2t,即可解答.【解答】解:(1)∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180゜﹣30゜﹣60゜=90゜;(2)设∠CPE=∠DPE=x,∠CPF=y,则∠APF=∠DPF=2x+y,∵∠CPA=60゜,∴y+2x+y=60゜,∴x+y=30゜∴∠EPF=x+y=30゜(3)设旋转时刻为t秒,则有:∠BPM=2t°,∠CPD=180°﹣30°﹣60°﹣3t°+2t°=90°﹣t°∴2(90﹣t)=3×2t∴t=22.5 即当2∠CPD=3∠BPM,旋转的时刻为22.5秒.【点评】此题要紧考查了角的运算,利用数形结合得出等式是解题关键,还要理清角之间的关系.2021年3月8日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.一个角的余角比这个角的 多 ,则这个角的补角度数是__________.
16.一个角的补角是这个角余角的3倍,则这个角是_____度.
∴BD=10-3-3=4cm.
故答案选:A.
【点睛】
本题考查了两点间的距离以及线段中点的性质,利用线段之间的关系求出CD的长度是解题的关键.
11.D
解析:D
【解析】
【分析】
根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.
【详解】
∵|b|=5,
∴b=±5,
∴a+b=2+5=7或a+b=2-5=-3;
(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?
(2)若汽车每千米耗油0.4升,则8:00~9:15汽车共耗油多少升?
(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?
25.已知点O为直线AB上的一点,∠BOC=∠DOE=90°
故选D.
【点睛】
此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.
12.B
解析:B
【解析】
【分析】
根据数轴上的两数位置得到a>0、b<0,b距离远点距离比a远,所以|b|>|a|,再挨个选项判断即可求出答案.
【详解】
A. a+b<0故此项错误;
B. ab<0故此项正确;
【详解】
根据题意知,弹簧的长度是(80+2x)cm.
故答案为:(80+2x).
【点睛】
此题考查列代数式,理解题意,找出数量关系是解决问题的关键.
15.【解析】【分析】设这个角为x°根据题意列出方程求出这个角的度数再根据补角的性质即可求出这个角的补角度数【详解】设这个角为x°由题意得解得故这个角为这个角的补角度数故答案为:【点睛】本题考查了角的问题
17.如图所示,O是直线AB与CD的交点,∠BOM:∠DOM=1:2,∠CON=90°,∠NOM=68°,则∠BOD=_____°.
18.6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,甲现在_________岁,乙现在________岁.
19.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣ ,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是_______.
一、选择题
1.A
解析:A
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2180000的小数点向左移动6位得到2.18,
B. ,故该选项错误;
C. ,故该选项正确
D. ,不能计算,故该选项错误
故选:C
【点睛】
本题考查了合并同类项,掌握合并同类项法则是解题的关键.
8.B
解析:B
【解析】
【分析】
设小长方形的宽为a厘米,则其长为(m-2a)厘米,根据长方形的周长公式列式计算即可.
【详解】
设小长方形的宽为a厘米,则其长为(m-2a)厘米,
20.正方体切去一块,可得到如图几何体,这个几何体有______条棱.
三、解答题
21.已知:点C在直线AB上,AC=8cm,BC=6cm,点M、N分别是AC、BC的中点,求线段MN的长.
22.先化简,再求值: ,其中 , .
23.如图,C为线段AB上一点,点D为BC的中点,且AB=18cm,AC=4CD.
(1)如图1,当射线OC、射线OD在直线AB的两侧时,请回答结论并说明理由;
①∠COD和∠BOE相等吗?
②∠BOD和∠COE有什么关系?
(2)如图2,当射线OC、射线OD在直线AB的同侧时,请直接回答;
①∠COD和∠BOE相等吗?
②第(1)题中的∠BOD和∠COE的关系还成立吗?
【参考答案】***试卷处理标记,请不要删除
14.(80+2x)【解析】【分析】一根长80cm的弹簧每增加1kg可使弹簧增长2cm当增加xkg的物体时弹簧的长度增加2xcm由此可得答案【详解】根据题意知弹簧的长度是(80+2x)cm故答案为:(80
解析:(80+2x).
【解析】
【分析】
一根长80cm的弹簧,每增加1kg可使弹簧增长2cm,当增加xkg的物体时,弹簧的长度增加2xcm,由此可得答案.
A.不赚不亏B.赚8元C.亏8元D.赚15元
7.下列计算结果正确的是()
A. B. C. D.
8.把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为 厘米,宽为 厘米)的盒子底部(如图2所示),盒子里面未被卡片覆盖的部分用阴影部分表示,则图2中两块阴影部分周长和是()
A. 厘米B. 厘米C. 厘米D. 厘米
A.有理数的绝对值一定大于等于0,故此选项错误;
B.正有理数的相反数一定比0小,故原说法错误;
C.如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;
D.互为相反数的两个数的绝对值相等,正确.
故选:D.
【点睛】
此题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.
3.C
解析:C
【解析】
9.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()
A.7cmB.3cmC.7cm或3cmD.5cm
10.如图所示,C、D是线段AB上两点,若AC=3cm,C为AD中点且AB=10cm,则DB=( )
A.4cmB.5cmC.6cmD.7cm
解析:45
【解析】
【分析】
设这个角为x,根据余角和补角的概念、结合题意列出方程,解方程即可.
【详解】
设这个角为x,
由题意得,180°﹣x=3(90°﹣x),
解得x=45°,
则这个角是45°,
故答案为:45.
【点睛】
本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.
C. |a|<|b|故此项错误;
D. a+b<0, a﹣b>0,所以a+b<a﹣b,故此项错误.
故选B.
【点睛】
本题考查数轴,解题的关键是根据数轴找出两数的大小关系,本题属于基础题型.
二、填空题
13.0【解析】根据题意得:a<0<b<c∴a<0c−b>0a+b−c<0∴|a|+|c−b|−|a+b−c|=−a+(c−b)+(a+b−c)=−a+c−b+a+b−c=0故答案为0点睛:本题考查了整式
2020-2021七年级数学上期末试题带答案
一、选择题
1.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )
A.2.18×106B.2.18×105C.21.8×106D.21.8×105
2.下面的说法正确的是()
A.有理数的绝对值一定比0大
B.有理数的相反数一定比0小
试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,
∴乙有 只,
∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,
∴ 即x+1=2(x−3)
故选C.
4.B
解析:B
【解析】
解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选B.
(1)图中共有条线段;
(2)求AC的长;
(3)若点E在直线AB上,且EA=2cm,求BE的长.
24.“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)+8,-6,+3,-6,+8,+4,-8,-4,+3,+3.
C.如果两个数的绝对值相等,那么这两个数相等
D.互为相反数的两个数的绝对值相等
3.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是( )
A.x+1=2(x﹣2)B.x+3=2(x﹣1)
解析:0
【解析】
根据题意得:a<0<b<c,
∴a<0,c−b>0,a+b−c<0,
∴|a|+|c−b|−|a+b−c|=−a+(c−b)+(a+b−c)=−a+c−b+a+b−c=0.
故答为0.
点睛:本题考查了整式的加减,数轴,绝对值的知识,根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.
解析:
【解析】
【分析】
设这个角为x°,根据题意列出方程求出这个角的度数,再根据补角的性质即可求出这个角的补角度数.
【详解】