锐角三角函数全章教案设计
九年级数学锐角三角函数教案
一、教学目标:1.知识与技能目标:(1)了解什么是锐角三角函数;(2)掌握正弦、余弦和正切在锐角范围内的性质和计算方法;(3)能够运用锐角三角函数解决相关实际问题。
2.过程与方法目标:(1)运用课堂讲解、练习、小组合作和课堂展示相结合的方式,培养学生的学习兴趣;(2)通过解决实际问题的方式,培养学生的分析和解决问题的能力;(3)通过小组合作的方式,培养学生的合作和交流能力。
3.情感、态度与价值观目标:(1)通过展示数学的应用场景,培养学生对数学的兴趣和好奇心;(2)通过小组合作和课堂展示的方式,培养学生的合作和交流能力;(3)通过解决实际问题的方式,培养学生的分析和解决问题的能力。
二、教学重点和难点1.教学重点(1)正弦、余弦和正切的定义和性质;(2)正弦、余弦和正切的计算方法;(3)运用锐角三角函数解决相关实际问题。
2.教学难点(1)运用锐角三角函数解决实际问题的能力;(2)理解正弦、余弦和正切的定义和性质。
三、教学过程安排第一课时:1.导入(10分钟)让学生回顾之前学过的角度、弧度和三角比的相关知识,引出锐角三角函数的概念,并介绍本节课的学习内容和目标。
2.讲解(20分钟)(1)通过幻灯片和板书,讲解正弦、余弦和正切的定义和性质。
(2)讲解正弦、余弦和正切的计算方法,并解答学生提出的疑问。
3.练习(15分钟)(1)在黑板上出示锐角三角函数的计算练习题,让学生在纸上计算并互相讨论答案。
(2)随机抽选几位学生上台讲解解题过程,并进行讲解和点评。
4.小组合作(10分钟)(1)将学生分成小组,每个小组由3-4人组成,让他们一起解决一个实际问题。
(2)每个小组将解决过程和结果展示给全班,并进行评价和讨论。
5.总结(5分钟)(1)对本节课的内容进行总结概括。
(2)布置课后作业,让学生复习和巩固锐角三角函数的内容。
第二课时:1.复习(10分钟)让学生回顾之前学过的锐角三角函数的知识点,并进行简单的小测验。
锐角三角函数的教案
锐角三角函数的教案【篇一:锐角三角函数教案】第二十八章锐角三角函数【篇二:人教版九年级锐角三角函数全章教案】第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学相似三角形勾股定理等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina 、cosa 、 tana 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
(优质课)锐角三角函数教案
1、小试牛刀
(1)在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的( ).
A.
(2)若sin(65°-∠A)= ,则∠A=
(3)如图:在Rt△ABC中,∠C=90°,AB=10,sinB=,BC的长是.
(4)如图,P是平面直角坐标系上的一点,点P的坐标为(3,4),则sin=
BC=,由勾股定理得:A
因此CB
即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于
从上面这两个问题的结论中可知,在一个Rt△ABC中,∠C=90°
当∠A=30°时,∠A的对边与斜边的比都等于 ,是个固定值;
当∠A=45°时,∠A的对边与斜边的比都等于 ,也是一个固定值.
【这一环节的教学,教师要强调前提条件是:“在直角三角形中”,正弦函数值是边的比值,没有单位,并且让学生明确什么是“对边”和“斜边”】单独写出符号sin是没有意义的。
当∠A=30°时,
当∠A=45°时,
当∠A=60°时,
3、概念强化训练:
判断对错:
(1)如图(1)sinA=( ) B
10m
(2)sinB=( ) 6m
教学重点:
理解正弦(sinA)概念,掌握当直角三角形的锐角固定时,它的对边与斜边的比值是固定值.
教学难点:
在直角三角形中当锐角固定时,它的对边与斜边的比值是固定值的事实。
二、教学过程:
1、创设情景,提出问题:(PPT演示)
在唐僧师徒取经的路上,遇到了一座山,这座山有多高呢?这可难住了唐僧。大徒弟孙悟空目测山的顶部,视线与水平线的夹角为30度,然后从地面飞到山顶,路程是1000米。
(3)sinA=0.6m( ) A C
九年级锐角三角函数全章教案
通过具体例题,演示如何运用锐角三角函数解决实际问题。
03 教学重点与难点
教学重点
锐角三角函数的定义
01
学生需要掌握锐角三角函数的定义,包括正弦、余弦和正切的
定义。
锐角三角函数的性质
02
学生需要理解并掌握锐角三角函数的性质,如正弦、余弦和正
切的取值范围、周期性、奇偶性等。
锐角三角函数的应用
教学方法是否得当
在锐角三角函数的教学过程中,是否采用了多种教学方法,如讲解、 演示、练习等,是否能够帮助学生更好地理解和掌握知识。
学生参与度如何
在教学过程中,学生的参与度如何,是否能够积极思考和回答问题, 是否能够主动参与到课堂讨论中。
教学效果如何
通过本章节的教学,学生是否能够掌握锐角三角函数的基本概念和性 质,是否能够运用所学知识解决实际问题。
03
学生需要能够运用锐角三角函数解决实际问题,如测量问题、
几何问题等。
教学难点
01
锐角三角函数的图像
学生需要理解并掌握锐角三角函数的图像,包括正弦、余弦和正切的图
像。
02
锐角三角函数的变换
学生需要理解并掌握锐角三角函数的变换,如平移、伸缩等。
03
锐角三角函数与其他知识的综合应用
学生需要能够将锐角三角函数与其他知识进行综合应用,如与几何、代
过程与方法
通过实际操作和观察,掌握锐 角三角函数的计算方法。
通过小组合作和交流,理解锐 角三角函数的意义和应用。
通过实例分析和练习,提高解 决实际问题的能力。
情感、态度与价值观
培养对数学的兴趣和热爱。 培养自主探究和合作学习的精神。
培养解决实际问题的意识和能力。
锐角三角函数教案设计
锐角三角函数教案设计锐角三角函数教案设计锐角三角函数教案设计篇1知识目的:1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义。
2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值。
才能、情感目的:1.经历由情境引出问题,探究掌握数学知识,再运用于理论过程,培养学生学数学、用数学的意识与才能。
2.体会数形结合的数学思想方法。
3.培养学生自主探究的精神,进步合作交流才能。
重点、难点:1.直角三角形锐角三角函数的意义。
2.由直角三角形的边长求锐角三角函数值。
教学过程:一、创设情境前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。
但有些问题单靠相似与勾股定理是无法解决的。
同学们放过风筝吗?你能测出风筝离地面的高度吗?学生讨论、答复各种方法。
老师加以评论。
总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC了,但实际上要测量AC是很难的。
因此,我们换个角度,假如可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。
〔由一个学生比拟熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。
由此导入新课〕二、新课讲述在Rt△ABC中与Rt△A1B1C1中∠C=90°,C1=90°∠A=∠A1,∠A的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 〔学生探究,引导学生积极考虑,利用相似发现比值相等〕〔〕假设在Rt△A2B2C2中,∠A2=∠A,那么问题1:从以上的探究问题的过程,你发现了什么?〔学生讨论〕结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。
在一个直角三角形中,只要角的大小一定,它的对边与斜边的比值也就确定了,与这个角所在的三角形的大小无关,我们把这个比值叫做这个角的正弦,即∠A的正弦= ,记作sin A,也就是:sin A=几个注意点:①sin A是整体符号,不能所把看成sinA;②在一个直角三角形中,∠A正弦值是固定的,与∠A的两边长短无关,当∠A发生变化时,正弦值也发生变化;③sin A 表示用一个大写字母表示的一个角的正弦,对于用三个大写字母表示的角的正弦时,不能省略角的符号“∠”;例如表示“∠ABC”的正弦时,应该写成“sin∠ABC”;④ Sin A= 可看成一个等式。
九年级数学下册(人教版)28.1锐角三角函数教学设计
(3)结合实际例题,让学生运用锐角三角函数知识进行分析和求解。
3.巩固练习
设计不同难度的练习题,让学生在课堂上独立完成,巩固所学知识。同时,针对学生的错误,进行及时指导和纠正。
4.课堂小结
通过师生互动,总结本节课所学的主要内容,强化学生对锐角三角函数的认识。
2.提出问题:引导学生回顾直角三角形的性质和勾股定理,为新课的学习做好知识储备。
3.引入新课:在此基础上,引出本节课的主题——锐角三角函数,激发学生的好奇心和学习兴趣。
(二)讲授新知
1.锐角三角函数的定义:
(1)通过观察直角三角形,引导学生发现锐角三角函数的定义;
(2)结合图形,解释正弦、余弦、正切函数的概念;
三、教学重难点和教学设想
(一)教学重难点
1.重点:锐角三角函数的定义、基本关系式以及在实际问题中的应用。
2.难点:
(1)锐角三角函数的定义及其在直角三角形中的图形表示;
(2)锐角三角函数的基本关系式的推导和应用;
(3)将实际问题转化为锐角三角函数问题,并运用相关知识进行求解。
(二)教学设想
1.采用情境教学法,引入生活中的实际问题,让学生感受到数学知识的实用价值,激发他们的学习兴趣。
2.通过直观的图形演示,引导学生发现锐角三角函数的定义,培养他们的观察能力和抽象思维能力。
3.运用启发式教学法,引导学生通过自主探究、小组讨论等方式,推导出锐角三角函数的基本关系式,提高他们的逻辑思维能力和团队协作能力。
4.设计具有梯度的问题和练习,针对不同层次的学生进行差异化教学,使每个学生都能在原有基础上得到提高。
(3)利用计算器或计算工具,验证锐角三角函数的值。
浙教版数学九年级下册1.1《锐角三角函数》教学设计
浙教版数学九年级下册1.1《锐角三角函数》教学设计一. 教材分析《锐角三角函数》是浙教版数学九年级下册第一章第一节的内容。
本节课主要介绍了锐角三角函数的定义及性质,包括正弦、余弦、正切函数。
通过本节课的学习,学生能够理解锐角三角函数的概念,掌握各函数的定义及性质,并能运用其解决实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念和性质有一定的了解。
但锐角三角函数的概念和性质较为抽象,学生可能难以理解和接受。
因此,在教学过程中,教师需要注重引导学生通过实例来理解抽象的锐角三角函数概念,并通过大量的练习来巩固所学知识。
三. 教学目标1.知识与技能:理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及性质。
2.过程与方法:通过实例分析,引导学生运用锐角三角函数解决实际问题。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:锐角三角函数的概念及其性质。
2.难点:正弦、余弦、正切函数的定义及性质。
五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念,引导学生理解其应用。
2.讲授法:讲解锐角三角函数的定义及性质,引导学生进行思考。
3.实践操作法:让学生通过实际操作,巩固所学知识。
4.小组讨论法:分组讨论,培养学生的合作意识。
六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义及性质。
2.实例材料:准备相关的生活实例,用于引入锐角三角函数的概念。
3.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如建筑工人测量高度、航海员测定方向等,引导学生思考如何利用三角函数解决问题。
通过实例引入锐角三角函数的概念。
2.呈现(15分钟)讲解锐角三角函数的定义及性质,包括正弦、余弦、正切函数。
利用课件展示各函数的图像,帮助学生理解其性质。
3.操练(15分钟)让学生分组进行实践操作,运用锐角三角函数解决实际问题。
第28章-锐角三角函数-全章教案
====Word 行业资料分享--可编辑版本--双击可删====
一、在 Rt△ABC 中,∠C =90°: B
a 对边
c 斜边
视,对学习基 A 的对边与斜边的比;
础 较 弱 的 学 求 sinB 就是要确定∠B
生 及 时 给 予 的对边与斜边的比.
指点.
教师引导学
生作知识总
结,不断扩充
培养学生概括的能
学 生 的 知 识 力,使知识形成体系,
结构,学习新 并渗透数学思想方法。
的解题方法.
Cb
A
五、体验 收获
即
sin
A
A的对边 斜边
a c
.
同样 sinB= B的对边 斜边
b c
当∠A=300 时,sinA=? 当∠A=450 时,sinA=? 当∠A=600 时,sinA=?
也随之确
定”.但是怎
样证明这个
C
A C1
A!
命题呢?学
生这时的思
经过学生的实验和证明,得出:
维很活跃.对
于这个问题,
在 Rt△ABC 中,∠C=90°,我们把锐
部分学生可
角 A 的对边与斜边的比叫做∠A 的正弦
能能解决
(sine),记作:sinA,
它.因此教师
此时应让学
B
生展开讨论,
独立完成.
a 对边
长 50m,那么斜坡与水平面所成角的度数是多少
呢?
二、探究 1.请每一位同学拿出自己的三角板,分别测量并 教 师 提 出 问 在培养学生动手能力的
====Word 行业资料分享--可编辑版本--双击可删====
说理
三、感悟 深化
第二十八章锐角三角函数(教案)
-余弦函数:以直角三角形中,锐角的邻边与斜边的比值为例,强调余弦函数的概念。
-正切函数:以直角三角形中,锐角的對边与邻边的比值为例,强调正切函数的概念。
-锐角三角函数的图像与性质:通过绘制和观察图像,理解函数在0°到90°间的变化规律,为后续学习打下基础。
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义和应用这两个重点。对于难点部分,如函数图像和恒等变换,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与锐角三角函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示锐角三角函数的基本原理。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《锐角三角函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量高度或距离的情况?”(如测量建筑物的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索锐角三角函数的奥秘。
-在实际情境中运用锐角三角函数进行计算
4.锐角三角函等变换简化计算
5.锐角三角函数的综合应用
-解决复合型问题,如图形面积、角度计算等
-结合实际情境,运用锐角三角函数知识解决问题
二、核心素养目标
1.掌握锐角三角函数的定义与性质,培养数学抽象和逻辑推理能力;
第二十八章锐角三角函数(教案)
一、教学内容
第二十八章锐角三角函数
1.锐角三角函数的定义与性质
-正弦函数、余弦函数、正切函数的定义
-正弦、余弦、正切的值在0°到90°间的变化规律
人教版九年级锐角三角函数全章教案
人教版九年级锐角三角函数全章教案【人教版九年级锐角三角函数全章教案】一、教学目标:1. 理解锐角三角函数的概念和性质;2. 掌握正弦、余弦、正切函数的定义和计算方法;3. 能够应用三角函数解决实际问题;4. 培养学生的逻辑思维和解决问题的能力。
二、教学重点:1. 掌握锐角三角函数的定义和性质;2. 理解三角函数在坐标系中的几何意义;3. 能够应用三角函数解决实际问题。
三、教学难点:1. 理解三角函数的周期性和图像特点;2. 运用三角函数解决实际问题。
四、教学准备:1. 教材:人教版九年级数学教材;2. 教具:黑板、白板、书写工具、计算器等。
五、教学过程:1. 引入(10分钟)通过提问和讨论的方式引导学生回顾和复习之前学过的角的概念和性质,引出锐角的概念,并与直角、钝角进行对比。
2. 基本概念的引入(20分钟)a. 讲解锐角三角函数的定义:正弦、余弦、正切。
b. 讲解三角函数的计算方法和性质。
c. 通过例题演示如何计算三角函数的值。
3. 几何意义的理解(30分钟)a. 介绍三角函数在坐标系中的几何意义。
b. 讲解三角函数的周期性和图像特点。
c. 通过绘制图像和实例分析,让学生理解三角函数的变化规律。
4. 实际问题的应用(40分钟)a. 引导学生通过实例,学习如何应用三角函数解决实际问题,如测量高度、距离等。
b. 给学生一些练习题,让他们独立解决实际问题。
5. 总结与拓展(10分钟)a. 总结本节课所学的内容和方法。
b. 引导学生思考,如何进一步拓展和应用锐角三角函数的知识。
六、教学反思:本节课通过引导学生回顾和复习角的概念和性质,引入锐角的概念,并讲解了锐角三角函数的定义、计算方法和性质。
通过绘制图像和实例分析,让学生理解三角函数的几何意义和变化规律,并应用三角函数解决实际问题。
通过这样的教学过程,学生能够更好地掌握锐角三角函数的知识,提高他们的逻辑思维和解决问题的能力。
同时,教师需要根据学生的实际情况,灵活调整教学方法和教学内容,确保教学效果的最大化。
锐角三角函数教案
第一章直角三角形的边角关系1.1 锐角三角函数(1)教学目标知识与技能1探索并认识锐角三角函数——正弦、余弦、正切的含义,理解锐角的正弦、余弦、正切和梯子倾斜程度的关系。
2. 能够用sinA,cosA。
tanA表示直角三角形中直角边与斜边的比以及两直角边的比,能够用正弦、余弦、正切进行简单的计算。
过程与方法1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点。
2、体会解决问题的策略的多样性,发展实践能力和创新精神。
情感态度与价值观1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学。
2、形成实事的态度以及交流分享的习惯。
重点:理解正弦、余弦、正切的数学定义,感受数学与生活的联系。
难点:体会正弦、余弦、正切的数学意义,并用它来解决生活中的实际问题。
操场里有一个旗杆,老师让小明去测量旗杆高度,小明站在离旗杆底部20米远处,目测旗杆的顶部,视线与水平线的夹角为30º,并已知眼睛距地面1米.你能帮小明算出旗杆的高度吗?1米3020米?如果把30º换成40º你还能算出旗杆的高度吗?新课导入设计意图:以练代讲,让学生在练习中回顾勾股定理,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望。
二、探究新知探究活动1:如图,请观察并思考:梯子在上升变陡的过程中:1.倾斜角α 发生了怎样的变化?2.随着α逐渐变大,α的对边与斜边的比发生了怎样的变化?邻边与斜边的比呢?对边与邻边的比呢?想一想:观察下面两个直角三角形,30°角的对边与斜边的比、邻边与斜边的比、对边与邻边的比分别是多少?30°探究活动2:如图,请思考:AB1C1CB(1)直角三角形AB1C1和直角三角形ABC有什么关系?(2) 和, 和,和有什么关系?(3)如果改变B在梯子上的位置呢?议一议:由此你得出了什么结论?BCAB111B CABACAB11ACAB111B CACBCAC 议一议思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是__________________。
九年级数学上册《锐角三角函数》教案、教学设计
4.作业完成后,请学生认真检查,确保答案的正确性。
4.利用信息技术手段,如动态课件、网络资源等,丰富教学手段,提高学生的学习兴趣和积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,提高学生的自主学习能力。
2.通过解决实际问题,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
3.培养学生勇于探索、克服困难的精神,提高学生的自信心和自尊心。
九年级数学上册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握锐角三角函数的定义,理解正弦、余弦、正切函数的概念,并能够运用这些概念进行简单的计算。
2.培养学生运用三角函数解决实际问题的能力,如测量物体的高度、计算角度等。
3.使学生掌握特殊角的三角函数值,并能熟练运用到实际问题中。
(2)运用三角函数解决实际问题,尤其是将实际问题抽象为数学模型,并运用三角函数进行求解;
(3)掌握特殊角的三角函数值,并能灵活运用到实际问题中。
(二)教学设想
1.教学策略:
(1)采用情境教学法,创设实际问题情境,引导学生主动探究锐角三角函数的定义和性质;
(2)运用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的计算方法和应用;
(3)了解三角函数在其他学科领域的应用,如物理、工程等。
4.小组合作题:
(1)分组讨论:如何利用三角函数解决实际问题?举例说明;
(2)小组合作完成一份关于锐角三角函数在实际问题中应用的报告。
作业要求:
1.学生需独立完成基础题,提高题和拓展题可根据个人能力选择完成;
2.作业过程中,要求学生注重解题思路和方法的总结,养成良好的学习习惯;
24.3 锐角三角函数 华师大版数学九年级上册教案
24.3 锐角三角函数1.锐角三角函数第1课时锐角三角函数的定义※教学目标※【知识与技能】了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的作用.【情感态度】1.通过学习培养学生的合作意识.2.通过探究提高学生学习数学的兴趣.【教学重点】锐角三角函数的概念.【教学难点】锐角三角函数的概念的理解.※教学过程※一、情境导入如图(1),图(2)都可以用来测量物体的高度.这两个问题的解决,将涉及直角三角形中的边角关系.直角三角形中,它的边与角有什么关系?通过本节的学习,你就会明白其中的道理,并能应用所学知识解决相关的问题.二、探索新知1.某个角的对边、邻边的概念.在Rt△ABC中,直角∠C所对的边AB称为斜边,用c表示,另两边直角边为∠A的对边与邻边,分别用a、b表示(如图).2.做一做.(1)画一个Rt△ABC,使∠C=90°,∠A=30°,那么∠A的对边与斜边的比值是多少?量一量、算一算.(2)你画的三角形与你同伴画的三角形全等吗?不全等时,比值有什么关系?和你的同伴交流一下.(3)若∠A=45°、60°时,则∠A对边与斜边之比是多少?结论:在Rt△ABC中,只要一个锐角的大小不变(如∠A=30°),那么不管这个直角三角形大小如何,该锐角的对边与邻边的比值是一个固定的值.经过验证,在Rt△ABC中,当锐角A取其他固定值时,∠A的对边与邻边的比值还是一个固定值,与Rt△ABC的大小无关.说明:观察图中的Rt△AB 1C1、Rt△AB2C2和Rt△AB3C3,易知Rt△AB1C1Rt△AB2C2∽Rt△AB3C3.∴==可见,在Rt△ABC中,对于锐角A的每一个确定的值,其对边与邻边的比值是唯一确定的.同样,其对边与斜边,邻边与斜边的比值也是唯一确定的.3.锐角三角形函数的定义∠A的正弦:sinA=∠A的余弦:cosA=∠A的正切:tanA=∠A的正弦、余弦、正切统称为锐角∠A的三角函数.4.知识拓展(1)正弦与余弦三角函数值的取值范围.∵直角三角形中,斜边大于直角边.∴0<sinA<1,0<cosA<1.(2)同角三角函数关系sin2α+cos2α=1;tanα=.(3)互余两角的三角函数值若α、β都是锐角,且α+β=90°,那么:sinα=cosβ,cosα=sinβ.三、巩固练习【例1】如图,在Rt△ABC中,∠C=90°,AC=15,BC=8.试求出∠A的三个三角函数值.解:AB==17,sinA=,cosA=,tanA=.【练习】1.如图,在Rt△MNP中,∠N=90°,则:∠P的对边是,∠P的邻边是;∠M的对边是,∠M的邻边是.第1题图第2题图2.如图,在Rt△DEC中,∠E=90°,CD=10,DE=6.试求出∠D的三个三角函数值.3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.根据下列所给条件,分别求出∠B的三个三角函数值:(1)a=3,b=4;(2)a=5,c=13.答案:1.MN PN PN MN2.由勾股定理,得CE=8,所以sinD=,cosD=,tanD=.3.(1)sinB=,cosB=,tanB=.(2)sinB=,cosB=,tanB=.四、应用拓展【例2】已知:Rt△ABC中,∠C=90°,sinA=,BC=3,求AB、AC的值.解:∵sinA=,∴AB=,∴AC=.【例3】如图,已知α为锐角,sinα=,求cosα、tanα的值.解:方法一:用定义法求解∵sinα=,∴设BC=3x,则AB=5x.由勾股定理,得AC=4x.∴cosα=,tanα=.方法二:用公式求解∵α为锐角,∴cosα==,tanα=.五、归纳小结1.正弦、余弦、正切的定义是在直角三角形中相对其锐角而定义的,其本质是两条线段长度之比,理解好这三个概念是学好本章的关键;2.正弦、余弦、正切实际上都是比值,没有单位,它们只与锐角α的大小有关,与三角形的边长无关;3.对于每一个锐角α的确定的值,它的正弦、余弦和正切都有唯一确定的值与之对应;反之,对于每一个确定的正弦、余弦和正切值,都有唯一的锐角与之对应.※课后作业※1.教材第111页习题24.3第1、2题.2.如图,在Rt△ABC中,∠CAB=90°,AD是∠CAB的平分线,tanB=,求的值.第2课时特殊角的三角函数值※教学目标※【知识与技能】1.熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数.2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【过程与方法】培养学生观察、比较、分析、概括的思维能力.【情感态度】经历观察、操作、归纳等学习数学过程,感受数学思考过程的合理性,感受数学说理的必要性,说理过程的严谨性,养成科学的、严谨的学习态度.【教学重点】特殊角的三角函数值.【教学难点】与特殊角的三角函数值有关的计算.※教学过程※一、复习引入在Rt△ABC中,∠C=90°,AC=1,AB=2,求∠A、∠B的三个三角函数值.回顾锐角三角函数的定义;直角三角形的性质.二、探索新知在Rt△ABC中,∠A=30°,∠C=90°,如图,试求两个锐角的三个三角函数值.解:在直角三角形中,30°角所对的直角边是斜边的一半.所以,若设30°角所对的直角边为1,即BC=1,则AB=2,由勾股定理得:AC=.由三角函数定义,得sin30°=.cos30°=.tan30°=.同理可得sin60°=,cos60°=,tan60°=.2.在Rt△ABC中,∠C=90°,∠A=∠B=45°,如图,试求45°角的三角函数值.若设AC=BC=1.则AB=.易得sin45°=,cos45°=,tan45°=1.【例1】求值:sin30°·tan30°+cos60°·tan60°.解:原式=.【例2】在Rt△ABC中,若sinA=,则cos的值是多少?解:由sinA=知A=60°.∴cos=cos30°=.三、巩固练习1.在△ABC中,若cosA=,tanB=,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.用特殊角的三角函数填空:= = ;= = ;1= ;= .3.化简= .4.点M(-sin60°,cos60°)关于x轴对称的点的坐标是.5.求下列各式的值:(1)sin260°+cos260°;(2)2cos60°+2sin30°+4tan45°;(3).6.如图,在Rt△ABC中,∠C=90°,AB=,BC=.求∠A的大小.答案:1.A 2.sin60° cos30° sin45° cos45°tan45° tan60° 3. 4.5.(1)1 (2)6 (3)6.∠A=45°四、应用拓展1.你能求出tan15°的值吗?如图,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至D,使BD=AB,则∠D=15°.设AC=k,则AB=2k,BC=k,所以CD=BC+BD=BC+AB=(2+)k,所以tan15°===2-.2.仿上面的解题方法,易求tan22.5°=-1.※课后作业※1.教材第111页习题24.3的第3题.2.若∠A、∠B是△ABC的两个内角且满足关系式=0,求∠C的度数.3.若α为锐角,且tan2α-(1+)tanα+1=0.求α的度数.2.用计算器求锐角三角函数值※教学目标※【知识与技能】1.会使用计算器求锐角三角函数的值.2.会使用计算器根据锐角三角函数的值求对应的锐角.【过程与方法】在做题、计算的过程中,逐步熟练计算器的使用.【情感态度】经历计算器的使用过程,熟悉其按键顺序.【教学重点】利用计算器求锐角三角函数的值.【教学难点】计算器的按键顺序. ※教学过程※一、复习引入填表:由上表我们可以直接写出30°,45°,60°角的三角函数值及由特殊值写出相应的锐角.对一些非特殊的角,怎样求它的三个三角函数值呢?二、探索新知1.求锐角三角函数值【例1】求sin63°52′41″的值(精确到0.0001).解:如下方法将角度单位状态设定为“度”:再按下列顺序依次按键:显示结果为0.897859012.∴sin63°52′41″≈0.8979.【例2】求tan19°15′的值(精确到0.0001).解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.3492156334.∴tan19°15′≈0.3492.2.由锐角三角函数值求锐角.【例3】若tanx=0.7410,求锐角x.(精确到1′)解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.53844577.再按键,显示结果为36°32′18.4″.所以x≈36°32′.三、巩固练习1.利用计算器求下列三角函数值:(精确到0.0001)(1)sin24°;(2)cos51°42′20″;(3)tan70°21′.2.已知下列锐角α的各三角函数值,利用计算器求锐角α:(精确到1′)(1)sinα=0.2476;(2)cosα=0.4174;(3)tanα=0.1890.答案:1.(1)0.4067 (2)0.6197 (3)2.8006 2.(1)14°20′(2)65°20′(3)10°42′※课后作业※1.教材第111页习题24.3的第4、5题.2.比较大小.cos25° cos32°,tan29° tan39°.3.在Rt△ABC中,∠C=90°,AB=29,AC=25,求∠A的度数.。
锐角三角函数教案
【锐角三角函数全章教案】 锐角三角函数(第一课时)教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三.情感目标:提高学生对几何图形美的认识。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结五.作业课本p85-86 2,3,6,7,8,10解直角三角形应用(一)一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. (二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题评析例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 2 a=6,解这个三角形.例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 20 ∠=350,解这个三角形(精确到0.1).B解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例3在Rt△ABC中,a=104.0,b=20.49,解这个三角形.(三) 巩固练习∠的平分线AD=43,解此直角三角形。
锐角三角函数全章教案
锐角三角函数全章教案【篇一:人教版九年级锐角三角函数全章教案】第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学相似三角形勾股定理等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina 、cosa 、 tana 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
锐角三角函数教案
锐角三角函数教案教学目标:1. 理解锐角三角函数的定义及其在三角恒等式中的应用。
2. 学会根据给定角度的数值计算其相对应的锐角三角函数值。
3. 掌握使用锐角三角函数求解三角方程和解三角形问题的方法。
教学重点:1. 锐角三角函数的定义及其性质。
2. 使用锐角三角函数求解三角方程和解三角形问题。
教学难点:1. 理解锐角三角函数与三角恒等式之间的关系,能够在解题中正确应用锐角三角函数的性质。
2. 学会使用锐角三角函数解决实际问题。
教学过程:Step 1: 导入新知识引入锐角三角函数的概念,并与直角三角函数进行对比,引出锐角三角函数的定义。
Step 2: 锐角三角函数的定义及其性质1. 引导学生理解正弦、余弦和正切函数的定义。
2. 解释锐角三角函数的定义域和值域。
3. 介绍锐角三角函数的基本性质,例如正弦函数的周期性和对称性等。
Step 3: 锐角三角函数的计算1. 给出一个角度的数值,让学生计算其相对应的锐角三角函数值。
2. 引导学生根据定义和性质解决一些简单的计算问题。
Step 4: 三角恒等式1. 介绍三角恒等式的概念。
2. 使用锐角三角函数的定义和性质推导一些常见的三角恒等式,例如正弦函数、余弦函数和正切函数的平方和差恒等式等。
3. 引导学生通过三角恒等式简化复杂的三角表达式。
Step 5: 解三角方程1. 介绍三角方程的概念。
2. 引导学生通过应用锐角三角函数的定义和性质解决一些简单的三角方程。
3. 给出一些较复杂的三角方程,让学生尝试解决。
Step 6: 解三角形问题1. 引导学生理解解三角形问题的思路和方法。
2. 通过实例引导学生解决一些简单的解三角形问题。
Step 7: 拓展应用1. 引导学生通过锐角三角函数解决一些实际问题,例如测量不可到达的高度和距离等。
2. 让学生自主寻找和锐角三角函数相关的应用实例,并进行讨论。
Step 8: 总结归纳总结锐角三角函数的定义、性质和使用方法,并强调锐角三角函数在解决实际问题中的重要性。
人教版初中数学九年级下册第二十八章:锐角三角函数(全章教案)
第二十八章锐角三角函数教材简析本章的内容主要包括:锐角三角函数的概念;30°,45°,60°角的三角函数值;利用计算器求任意锐角的三角函数值及根据三角函数值求出相应的锐角;利用锐角三角函数解直角三角形及三角函数的应用.在学生掌握了直角三角形边、角之间的关系的基础上,引入了锐角三角函数的概念,进而学习解直角三角形,是中学几何的重点与难点.本章是中考的必考内容,主要考查特殊锐角三角函数值的计算和解直角三角形及其应用.教学指导【本章重点】锐角三角函数的概念和直角三角形的解法.【本章难点】综合运用直角三角形的边边关系、边角关系来解决实际问题.【本章思想方法】1.体会数形结合思想.如:在理解和应用锐角三角函数解决实际问题时,注意数形结合思想的应用,即需根据实际问题画出几何图形,并根据图形寻找直角三角形中边、角之间的关系.2.体会转化思想.如:(1)把实际问题转化成数学问题:把实际问题的情境转化为几何图形;把题中的已知条件转化为示意图中的边、角或它们之间的关系.(2)把数学问题转化为解直角三角形问题,如果示意图不是直角三角形,需要添加适当的辅助线构造出直角三角形.3.体会方程思想.如:在解决直角三角形的实际问题中,经常设出未知数来表示某一个量,并利用直角三角形的边、角关系建立方程,将几何问题转化为求方程的解.课时计划28.1锐角三角函数4课时28.2解直角三角形及其应用3课时28.1 锐角三角函数第1课时 正弦教学目标一、基本目标 【知识与技能】1.利用相似的直角三角形,探索直角三角形的锐角确定时,它的对边与斜边的比是固定值,从而引出正弦的概念.2.理解锐角的正弦的概念,并能根据正弦的概念进行计算. 【过程与方法】通过探究锐角的正弦的概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳、推理能力.【情感态度与价值观】让学生在通过探索、分析、论证、总结获取新知识的过程中体验成功的快乐,感悟数学的实用性,培养学生学习数学的兴趣.二、重难点目标 【教学重点】理解正弦的意义,会求锐角的正弦值. 【教学难点】理解直角三角形的锐角确定时,它的对边与斜边的比是固定值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P61~P63的内容,完成下面练习. 【3 min 反馈】1.在直角三角形中,30°角所对的边等于斜边的一半.2.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∠A 的对边与斜边的比叫做∠A 的正弦 ,即sin A =a c.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则sin B =45.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,求sin A 和sin B 的值.【互动探索】(引发学生思考)要求sin A 和sin B 的值,需要分别找出∠A 、∠B 的对边和斜边的比.【解答】详细解答过程见教材P63例1.【例2】已知等腰三角形的一腰长为25 cm ,底边长为30 cm ,求底角的正弦值. 【互动探索】(引发学生思考)转化法:将已知条件转化为几何示意图,再作出辅助线构造出直角三角形求解.【解答】如图,过点A 作AD ⊥BC ,垂足为D. ∵AB =AC =25 cm ,BC =30 cm ,AD 为底边上的高, ∴BD =12BC =15 cm ,∴在Rt △ABD 中,由勾股定理,得AD =AB 2-BD 2=20 cm , ∴sin ∠ABC =AD AB =2025=45.即底角的正弦值为45.【互动总结】(学生总结,老师点评)求三角函数值一定要在直角三角形中求,当图形中没有直角三角形时,要通过作高构造直角三角形解答.活动2 巩固练习(学生独学) 1.如图,sin A 等于( C )A .2B .55C.12D . 52.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( B )A.83 B .6 C .12D .83.如图,△ABC 的顶点是正方形网格的格点,则sin B 24.如图,在△ABC 中,AD ⊥BC 于点D ,若AD =9,DC =5,E 为AC 的中点,求sin ∠EDC 的值.解:∵AD ⊥BC , ∴∠ADC =90°. ∵AD =9,DC =5,∴AC =AD 2+DC 2=92+52=106. ∵E 为AC 的中点, ∴DE =AE =EC =12AC ,∴∠EDC =∠C ,∴sin ∠EDC =sin C =AD AC =9106=9106106.活动3 拓展延伸(学生对学)【例3】如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,求sin ∠ABD 的值.【互动探索】首先根据垂径定理得出∠ABD =∠ABC ,然后由直径所对的圆周角是直角,得出∠ACB =90°,从而由勾股定理算出斜边AB 的长,再根据正弦的定义求出sin ∠ABC 的值,进而得出sin ∠ABD 的值.【解答】∵AB 是⊙O 的直径,CD 是弦,且CD ⊥AB , ∴AC ︵ =AD ︵, ∴∠ABD =∠AB C. ∵AB 为直径, ∴∠ACB =90°.在Rt △ABC 中,∵BC =6,AC =8, ∴AB =BC 2+AC 2=10, ∴sin ∠ABD =sin ∠ABC =AC AB =45.【互动总结】(学生总结,老师点评)求三角函数值时必须在直角三角形中.在圆中,由直径所对的圆周角是直角可构造出直角三角形.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.如图,sin A =∠A 的对边斜边.2.求一个锐角的正弦值一定要放到直角三角形中,若没有直角三角形,可通过作垂线构造直角三角形.练习设计请完成本课时对应练习!第2课时锐角三角函数教学目标一、基本目标【知识与技能】1.掌握余弦、正切的定义.2.了解锐角∠A的三角函数的定义.3.能运用锐角三角函数的定义求三角函数值.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】通过观察、思考、交流、总结等数学活动,体验数学学习充满着探索与发现,培养学生积极思考,勇于探索的精神.二、重难点目标【教学重点】余弦、正切的概念,并会求指定锐角的余弦值、正切值.【教学难点】利用锐角三角函数的定义解决有关问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.如图,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)∠A 的邻边与斜边的比叫做∠A 的余弦,即cos A =bc ;(2)∠A 的对边与邻边的比叫做∠A 的正切,即tan A =ab .2.锐角A 的正弦、余弦、正切叫做∠A 的锐角三角函数.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则cos B =35,tan B =43.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,AB =10,BC =6,求sin A 、cos A 、tan A.【温馨提示】详细解答过程见教材P65例2.【例2】如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求cos C 的值.【互动探索】(引发学生思考)观察图形,cos C =DC AC ,所以需要通过tan ∠BAD =34和已知条件求出DC 、AC 的长度,再代入求值.【解答】∵在Rt △ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5, ∴AC =AD 2+CD 2=122+52=13, ∴cos C =DC AC =513.【互动总结】(学生总结,老师点评)在不同的直角三角形中,要根据三角函数的定义分清它们的边角关系,再根据勾股定理解答.活动2 巩固练习(学生独学)1.在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( C ) A.513 B .512C.1213D .1252.已知Rt △ABC 中,∠C =90°,tan A =43,BC =8,则AC 等于( A )A .6B .323C .10D .123.如图所示,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =12.4.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值; (2)若∠B =∠CAD ,求BD 的长.解:在Rt △ACD 中,∵AC =2,DC =1, ∴AD =AC 2+CD 2= 5.(1)sin α=CD AD =15=55,cos α=AC AD =25=255,tan α=CD AC =12.(2)在Rt △ABC 中,∵tan B =AC BC, 而∠B =∠CAD , ∴tan α=2BC =12,∴BC =4,∴BD =BC -CD =4-1=3. 活动3 拓展延伸(学生对学)【例3】如图,在Rt △ABC 中,∠C =90°,根据三角函数定义尝试说明: (1)sin 2A +cos 2A =1; (2)sin A =cos B ; (3)tan A =sin A cos A.【互动探索】用定义表示出sin A 、cos A 、cos B 、tan A →计算等式的左边与右边→得出结论.【证明】(1)由勾股定理,得a 2+b 2=c 2,而sin A =a c ,cos A =bc ,∴sin 2A +cos 2A =a 2c 2+b 2c 2=c 2c 2=1. (2)∵sin A =a c ,cos B =ac ,∴sin A =cos B.(3)∵tan A =a b ,sin A cos A =a c b c =ab,∴tan A =sin Acos A.【互动总结】(学生总结,老师点评)本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.题目中的三个结论应熟记.环节3 课堂小结,当堂达标 (学生总结,老师点评) 锐角三角函数⎩⎪⎨⎪⎧正弦→对比斜余弦→邻比斜正切→对比邻练习设计请完成本课时对应练习!第3课时 特殊角的三角函数值教学目标一、基本目标 【知识与技能】1.掌握30°,45°,60°角的三角函数值,能够用它们进行计算. 2.能够根据30°,45°,60°角的三角函数值说出相应锐角的大小. 【过程与方法】1.通过探索特殊角的三角函数值的过程,培养学生观察、分析、发现的能力. 2.通过推导特殊角的三角函数值,了解知识间的联系,提升综合运用数学知识解决问题的能力.【情感态度与价值观】在探索特殊角的三角函数值中,学生积极参与数学活动,培养学生独立思考问题的能力. 二、重难点目标 【教学重点】根据30°,45°,60°角的三角函数值进行有关计算. 【教学难点】正确理解与记忆30°,45°,60°角的三角函数值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P65~P67的内容,完成下面练习. 【3 min 反馈】1.sin 30°=12,cos 30°2tan 30°32.sin 60°2cos 60°=12,tan 60°3.sin 45°2cos 45°2tan 45°=1. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】求下列各式的值: (1)cos 260°+sin 260°; (2)cos 45°sin 45°-tan 45°. 【互动探索】(引发学生思考)熟记特殊角的三角函数值→代入算式求值.【解答】(1)cos 260°+sin 260°=⎝⎛⎭⎫122+⎝⎛⎭⎫322=1. (2)cos 45°sin 45°-tan 45°=22÷22-1=0. 【互动总结】(学生总结,老师点评)特殊角的三角函数值必须熟练记忆,既能由角得值,又能由值得角,记忆这个结果,可以结合直角三角形三边的大小关系,也可以结合数值的特征,30°,45°,60°的正弦值分母都是2,分子分别为1,2,3,而它们的余弦值分母都是2,分子正好相反,分别为3,2,1;其正切值分别为1÷3,1,1× 3.【例2】数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B 、C 、E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.【互动探索】(引发学生思考)根据正切的定义求出AC →根据正弦的定义求出CF →AF =AC -F C.【解答】在Rt △ABC 中,∵BC =2,∠A =30°, ∴AC =BC tan A =23,∴EF =AC =2 3. ∵∠E =45°,∴FC =EF ·sin E =6, ∴AF =AC -FC =23- 6.【互动总结】(学生总结,老师点评)本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键.活动2 巩固练习(学生独学)1.若3tan (α+10°)=1,则锐角α的度数是( A ) A .20° B .30° C .40°D .50°2.若∠A 为锐角,且tan 2A +2tan A -3=0,则∠A =45度. 3.计算.(1)2sin 30°-2cos 45°; (2)tan 30°-sin 60°·sin 30°; (3)(1-3tan 30°)2. 解:(1)0. (2)312. (3)3-1. 4.如图,在△ABC 中,∠ABC =90°,∠A =30°,D 是边AB 上一点,∠BDC =45°,AD =4,求BC 的长.解:∵∠B =90°,∠BDC =45°, ∴△BCD 为等腰直角三角形, ∴BD =B C.在Rt △ABC 中,∵tan A =tan 30°=BC AB ,∴BC BC +4=33,解得BC =2(3+1). 活动3 拓展延伸(学生对学)【例3】已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪sin B -32=0,试判断△ABC 的形状.【互动探索】根据非负性的性质求出tan A 及sin B 的值→根据特殊角的三角函数值求出∠A 及∠B 的度数→判断△ABC 的形状.【解答】∵(1-tan A )2+⎪⎪⎪⎪sin B -32=0, ∴1-tan A =0,sin B -32=0, ∴tan A =1,sin B =32, ∴∠A =45°,∠B =60°, ∴∠C =180°-45°-60°=75°, ∴△ABC 是锐角三角形.【互动总结】(学生总结,老师点评)一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.环节3 课堂小结,当堂达标 (学生总结,老师点评) 特殊角的三角函数值:练习设计请完成本课时对应练习!第4课时用计算器求锐角三角函数值及锐角教学目标一、基本目标【知识与技能】1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.3.能用计算器辅助解决含三角函数的实际问题.【过程与方法】使用计算器可以解决部分复杂问题,通过求值探讨三角函数问题的某些规律,提高学生分析问题的能力.【情感态度与价值观】通过计算器的使用,了解科学在人们日常生活中的重要作用,激励学生热爱科学、学好文化知识.二、重难点目标【教学重点】运用计算器处理三角函数中的值或角的问题.【教学难点】用计算器求锐角三角函数值时的按键顺序.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P67~P68的内容,完成下面练习.【3 min反馈】1.用计算器求sin 24°37′18″的值,以下按键顺序正确的是(A)A.sin24°′″37°′″18°′″=B.24°′″37°′″18°′″sin=C.2ndF sin24°′″37°′″18°′″=D.sin24°′″37°′″18°′″2ndF=2.使用计算器求下列三角函数值.(精确到0.0001)(1) sin 24°≈0.4067;(2)cos 35°≈0.8192;(3)tan 46°≈1.0355.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按要求解决问题:(1)求sin 63°52′41″的值;(精确到0.0001)(2)求tan 19°15′的值;(精确到0.0001)(3)已知tan x=0.7410,求锐角的值.(精确到1′)【互动探索】(引发学生思考)熟悉用科学计算器求锐角三角函数值的操作流程.【解答】(1)在角度单位状态设定为“度”,再按下列顺序依次按键:sin 63°′′′52°′′′41°′′′=显示结果为0.897 859 012.所以sin 63°52′41″≈0.8979.(2)在角度单位状态设定为“度”,再按下列顺序依次按键:tan 19°′′′15°′′′=显示结果为0.349 215 633 4.所以tan 19°15′≈0.3492.(3)在角度单位状态设定为“度”,再按下列顺序依次按键:SHIFT tan 0.7410=显示结果为36.538 445 77.再按°′′′,显示结果为36°32′18.4″.所以x≈36°32′.【互动总结】(学生总结,老师点评)不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.【例2】如图,在△ABC中,AB=8,AC=9,∠A=48°.求:(1)AB边上的高(精确到0.01);(2)∠B的度数(精确到1′).【互动探索】(引发学生思考)观察图形→作辅助线→利用相似锐角三角函数解直角三角形.【解答】(1)作AB 边上的高CH ,垂足为H . ∵在Rt △ACH 中,sin A =CHAC ,∴CH =AC ·sin A =9sin 48°≈6.69. (2)∵在Rt △ACH 中,cos A =AH AC ,∴AH =AC ·cos A =9cos 48°,∴在Rt △BCH 中,tan B =CH BH =CH AB -AH =9sin 48°8-9cos 48°,∴∠B ≈73°32′.【互动总结】(学生总结,老师点评)利用三角函数求非直角三角形的边或角,一般情况下要构造直角三角形.活动2 巩固练习(学生独学)1.如图,在△ABC 中,∠ACB =90°,BC =2,AC =3,若用科学计算器求∠A 的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是( )A.tan 2÷3=B.tan 2÷3DMS =C.2ndF tan (2÷3)=D.2ndF tan (2÷3)DMS =2.用计算器求下列锐角的三角函数值.(精确到0.0001) (1)tan 63°27′; (2)cos 18°59′27″; (3)sin 67°38′24″; (4)tan 24°19′48″. 解:(1)2.0013. (2)0.9456. (3)0.9248. (4)0.4521. 3.根据下列条件求锐角A 的度数.(精确到1″) (1)cos A =0.6753; (2)tan A =87.54; (3)sin A =0.4553; (4)sin A =0.6725.解:(1)47°31′21″. (2)89°20′44″. (3)27°5′3″. (4)42°15′37″. 环节3 课堂小结,当堂达标 (学生总结,老师点评)用计算器求锐角三角函数值⎩⎪⎨⎪⎧求已知角的三角函数值由锐角三角函数值求锐角练习设计请完成本课时对应练习!28.2 解直角三角形及其应用 28.2.1 解直角三角形(第1课时)教学目标一、基本目标 【知识与技能】1.了解什么叫解直角三角形. 2.掌握解直角三角形的根据. 3.能由已知条件解直角三角形. 【过程与方法】在探索解直角三角形的过程中,渗透数形结合思想. 【情感态度与价值观】在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.二、重难点目标 【教学重点】 解直角三角形的方法. 【教学难点】会将求非直角三角形中的边角问题转化为解直角三角形问题.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P73的内容,完成下面练习. 【3 min 反馈】1.任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出未知元素的过程,叫做解直角三角形.2.在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c . (1)两锐角互余,即∠A +∠B =90°; (2)三边满足勾股定理,即a 2+b 2=c 2;(3)边与角关系sin A =cos B =a c ,cos A =sin B =b c ,tan A =a b ,tan B =b a .3.Rt △ABC 中,若∠C =90°,sin A =45,AB =10,那么BC =8,tan B =34.环节2 合作探究,解决问题活动1小组讨论(师生互学)【例1】见教材P73例1.【例2】见教材P73例2.活动2巩固练习(学生独学)1.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是(A)A.c sin A=a B.b cos B=cC.a tan A=b D.c tan B=b2.在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为3.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,b=4,c=8;(2)在Rt△ABC中,∠C=90°,∠A=60°,a=12.解:(1)a=43,∠B=30°,∠A=60°.(2)∠B=30°,b=43,c=8 3.活动3拓展延伸(学生对学)【例3】一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.【互动探索】过点B作BM⊥FD于点M,求出BM与CM的长度,在△EFD中求出∠EDF=60°,再解直角三角形即可.【解答】如题图,过点B作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴∠BCM=∠CBA=45°,∴BM=BC sin 45°=122×22=12,CM=BM=12.在△EFD中,∵∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BMtan 60°=43,∴CD=CM-MD=12-4 3.【互动总结】(学生总结,老师点评)解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!28.2.2应用举例第2课时利用仰角、俯角解直角三角形教学目标一、基本目标【知识与技能】1.能将直角三角形的知识与圆的知识结合起来解决问题.2.了解仰角、俯角等有关概念,会利用解直角三角形的知识解决有关仰角和俯角的实际问题.【过程与方法】通过探索用解直角三角形知识解决仰角、俯角等有关问题,经历将实际问题转化为数学问题的探究过程,提高应用数学知识解决实际问题的能力.【情感态度与价值观】通过探索三角函数在实际问题中的应用,感受数学来源于生活又应用于生活以及勇于探索的创新精神.二、重难点目标【教学重点】利用解直角三角形解决有关仰角、俯角的实际问题.【教学难点】建立合适的三角形模型,解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P74~P75的内容,完成下面练习.【3 min反馈】1.在进行测量时,从下往上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.2.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端点A的仰角为α,则建筑物AB的高可表示为a tan α米.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343 km的圆形轨道上运行,如图所示,当组合体运行到地球表面点P的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与点P的距离是多少?(地球半径约为6400 km,π取3.142,结果取整数)【温馨提示】详细分析与解答见教材P74例3.【例2】如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?【温馨提示】详细分析与解答见教材P75例4.活动2巩固练习(学生独学)如图,为了测量河的宽度AB,测量人员在高21 m的建筑物CD的顶端D处测得河岸B 处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB 约是多少?(精确到0.1 m,参考数据:2≈1.41,3≈1.73)解:由题易知,∠DAC=∠EDA=30°. ∵在Rt△ACD中,CD=21 m,∴AC=CDtan 30°=2133=213(m).∵在Rt△BCD中,∠DBC=45°,∴BC=CD=21 m,∴AB=AC-BC=213-21≈15.3(m).即河的宽度AB约是15.3 m.活动3拓展延伸(学生对学)【例3】如图,某大楼顶部有一旗杆AB,甲、乙两人分别在相距6米的C、D两处测得点B和点A的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数,参考数据:sin 42°≈0.67,tan 42°≈0.9,sin 65°≈0.91,tan 65°≈2.1)【互动探索】要求AB ,先求出AE 与BE →解直角三角形:Rt △ADE 、Rt △BCE . 【解答】在Rt △ADE 中,∵∠ADE =65°,DE =15米, ∴tan ∠ADE =AE DE,即tan 65°=AE15≈2.1,解得 AE ≈31.5米.在Rt △BCE 中,∵∠BCE =42°,CE =CD +DE =6+15=21(米), ∴tan ∠BCE =BE CE,即tan 42°=BE21≈0.9,解得 BE ≈18.9米.∴AB =AE -BE =31.5-18.9≈13(米). 即旗杆AB 的长大约是13米.【互动总结】(学生总结,老师点评)先分析图形,根据题意构造直角三角形,再解Rt △ADE 、Rt △BCE ,利用AB =AE -BE 即可求出答案.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应练习!第3课时 利用坡度、方向角解直角三角形教学目标一、基本目标【知识与技能】1.能运用解直角三角形解决航行问题.2.能运用解直角三角形解决斜坡问题.3.理解坡度i =坡面的铅直高度坡面的水平宽度=坡角的正切值. 【过程与方法】1.通过探究从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.通过将实际问题中的数量关系转化为直角三角形中元素之间的关系,增强应用意识,体会数形结合思想的应用.【情感态度与价值观】在运用三角函数知识解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的应用价值.二、重难点目标【教学重点】用三角函数有关知识解决方向角、坡度、坡角等有关问题.【教学难点】准确分析问题并将实际问题转化成数学模型.教学过程环节1 自学提纲,生成问题【5 min 阅读】阅读教材P76~P77的内容,完成下面练习.【3 min 反馈】(一)方向角1.方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标的方向线所成的锐角,方向角也称象限角.2.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.(二)坡度、坡角1.坡度通常写成1∶m的形式.坡面与水平面的夹角叫做坡角,记作α,有i=hl=tan α.2.一斜坡的坡角为30°,则它的坡度为(三)利用解直角三角形的知识解决实际问题的一般过程1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题,也就是建立适当的函数模型);2.根据条件的特点,适当选用锐角三角函数,运用解直角三角形的有关性质解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.环节2合作探究,解决问题活动1小组讨论(师生互学)(一)解直角三角形,解决航海问题【例1】如图,海中一小岛A,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?【互动探索】(引发学生思考)构造直角三角形→解直角三角形求出AD 的长并与10海里比较→得出结论.【解答】如题图,过点A 作AD ⊥BC 交BC 的延长线于点D.在Rt △ABD 中,∵tan ∠BAD =BD AD, ∴BD =AD ·tan 55°.在Rt △ACD 中,∵tan ∠CAD =CD AD, ∴CD =AD ·tan 25°.∵BD =BC +CD ,∴AD ·tan 55°=20+AD ·tan 25°,∴AD =20tan 55°-tan 25°≈20.79(海里). 而20.79海里>10海里,∴轮船继续向东行驶,不会遇到触礁危险.【互动总结】(学生总结,老师点评)解决本题的关键是将实际问题转化为直角三角形的问题,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.应先求出点A 距BC 的最近距离,若大于10海里则无危险,若小于或等于10海里则有危险.(二)解直角三角形,解决坡度、坡角问题【例2】如图,铁路路基的横断面是四边形ABCD ,AD ∥BC ,路基顶宽BC =9.8 m ,路基高BE =5.8 m ,斜坡AB 的坡度i =1∶1.6,斜坡CD 的坡度i ′=1∶2.5,求铁路路基下底宽AD 的值(精确到0.1 m)与斜坡的坡角α和β的值(精确到1°).【互动探索】(引发学生思考)将坡度i=1∶1.6和i′=1∶2.5分别转化为正切三角函数→求出AE、DF的长→由AD=AE+EF+DF求出AD的长→利用计算器求得坡角α和β的值.【解答】如题图,过点C作CF⊥AD于点F,则CF=BE,EF=BC,∠A=α,∠D=β.∵BE=5.8 m, i=1∶1.6, i′=1∶2.5,∴AE=1.6×5.8=9.28(m),DF=2.5×5.8=14.5(m),∴AD=AE+EF+DF=9.28+9.8+14.5≈33.6(m).由tan α=i=1∶1.6,tan β=i′=1∶2.5,得α≈32°,β≈22°.即铁路路基下底宽AB为33.6 m,斜坡的坡角α和β分别为32°和22°.【互动总结】(学生总结,老师点评)利用坡度与坡角解决实际问题的关键是将坡度与坡角放入可解的直角三角形中,没有直角三角形一般要添加辅助线(垂线)构造直角三角形.活动2巩固练习(学生独学)1.如图,防洪大坝的横断面是梯形,坝高AC为6米,背水坡AB的坡度i=1∶2,则斜坡AB的长为2.“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C 村村民欲修建一条水泥公路,将C 村与区级公路相连.在公路A 处测得C 村在北偏东60°方向,沿区级公路前进500 m ,在B 处测得C 村在北偏东30°方向.为节约资源,要求所修公路长度最短,画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解:如图,过点C 作CD ⊥AB ,垂足落在AB 的延长线上,CD 即为所修公路,CD 的长度即为公路长度.在Rt △ACD 中,根据题意,有∠CAD =30°.∵tan ∠CAD =CD AD, ∴AD =CD tan 30°=3C D. 在Rt △CBD 中,根据题意,有∠CBD =60°.∵tan ∠CBD =CD BD,∴BD=CDtan 60°=33C D.又∵AD-BD=500 m,∴3CD-33CD=500,解得CD≈433 m.活动3拓展延伸(学生对学)【例3】如图,小明于堤边A处垂钓,河堤AB的坡比为1∶ 3 ,坡长为3米,钓竿AC的倾斜角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角为60°,求浮漂D与河堤下端B之间的距离.【互动探索】将实际问题转化为几何问题→作辅助线,构造直角三角形→延长CA交DB延长线于点E,过点A作AF⊥EB→解直角三角形得AE长→得△CDE是等边三角形,DE=CE=AC+AE→求得BD长.【解答】如图,延长CA交DB延长线于点E,过点A作AF⊥EB,交EB于点F,则∠。
人教版九年级数学下册:28锐角三角函数《锐角三角函数优秀教学案例》教案
2.能够运用锐角三角函数解决实际问题,提高学生的应用能力。
3.学会使用三角板和直尺等工具进行角度测量,培养学生的动手操作能力。
4.能够运用信息技术辅助学习,提高学生的信息素养。
(二)过程与方法
1.通过观察、实验、探究等方法,引导学生主动发现锐角三角函数的规律。
四、教学内容与过程
(一)导入新课
1.生活实例引入:教师通过展示一些实际生活中的图片,如建筑物的设计图、物理实验场景等,让学生观察并思考其中涉及到的角度问题。
2.提问引导:教师向学生提出问题,如“这些图片中的角度是如何计算的?”“你能想到一些与角度相关的实际问题吗?”等,激发学生的思考兴趣。
3.学生回答:鼓励学生积极回答问题,分享自己的观点和思考。
三、教学策略
(一)情景创设
1.生活情境:通过设置一些与生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,激发学生的学习兴趣。
2.问题情境:设计一些具有挑战性的问题,让学生在解决问题的过程中自然地引入锐角三角函数的知识,引导学生主动探究。
3.互动情境:创设轻松、愉快的课堂氛围,鼓励学生积极参与课堂讨论,培养学生主动表达自己观点的能力。
2.作业反馈:教师及时批改学生的作业,给予反馈和评价,指出学生的错误和不足,帮助学生提高。
3.学生自我检查:学生对自己的作业进行自我检查,总结自己在作业中的优点和不足,不断提高自己的学习效果。
五、案例亮点
1.生活情境的引入:通过展示与学生生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,使学生感受到数学的实用性,激发学生的学习兴趣。这种生活情境的引入,不仅能够引起学生的兴趣,还能够增强学生对知识的理解和记忆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数全章教案单元要点分析内容简介本章内容分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容.第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用.相似三角形和勾股定理等是学习本章的直接基础.本章属于三角学中的最基础的部分内容,而高中阶段的三角内容是三角学的主体部分,无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础.教学目标1.知识与技能(1)通过实例认识直角三角形的边角关系,即锐角三角函数(sinA,cosA,tanA),知道30°,45°,60°角的三角函数值.(2)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值会求它的对应的锐角.(3)运用三角函数解决与直角三角形有关的简单的实际问题.(4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题.2.过程与方法贯彻在实践活动中发现问题,提出问题,在探究问题的过程中找出规律,再运用这些规律于实际生活中.3.情感、态度与价值观通过解直角三角形培养学生数形结合的思想.重点与难点1.重点(1)锐角三角函数的概念和直角三角形的解法,特殊角的三角函数值也很重要,•应该牢牢记住.(2)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题.2.难点(1)锐角三角函数的概念.(2)经历探索30°,45°,60°角的三角函数值的过程,发展学生观察、分析,•解决问题的能力.教学方法在本章,学生首次接触到以角度为自变量的三角函数,初学者不易理解.•讲课时应注意,只有让学生正确理解锐角三角函数的概念,才能掌握直角三角形边与角之间的关系,才能运用这些关系解直角三角形.故教学中应注意以下几点:1.突出学数学、用数学的意识与过程.三角函数的应用尽量和实际问题联系起来,减少单纯解直角三角形的问题.2.在呈现方式上,突出实践性与研究性,三角函数的意义要通过问题经出,•再加以探索认识.3.对实际问题,注意联系生活实际.4.适度增加训练学生逻辑思维的习题,减少机械操作性习题,•增加探索性问题的比重.课时安排本章共分9课时.28.1 锐角三角函数4课时28.2 解直角三角形4课时小结1课时28.1 锐角三角函数内容简介本节先研究正弦函数,在此基础上给出余弦函数和正切函数的概念.通过两个特殊的直角三角形,让学生感受到不管直角三角形大小,只要角度不变,那么它们所对的边与斜边的比分别都是常数,这为引出正弦函数的概念作好铺垫.这样引出正弦函数的概念,能够使学生充分感受到函数的思想,由于教科书比较详细地讨论了正弦函数的概念,因此对余弦函数和正切函数概念的讨论采用了直接给出的方式,具体的讨论由学生类比着正弦函数自己完成.教科书将求特殊角的三角函数值和已知特殊角的三角函数值求角这两个相反方向的问题安排在一起,目的是体现锐角三角函数中角与函数值之间的对应关系.本节最后介绍了如何使用计算器求非特殊角的三角函数值以及如何根据三角函数值求对应的角等内容.由于不同的计算器操作步骤有所不同,教科书只就常见的情况进行介绍.教学目标1.知识与技能(1)了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA•表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角;(2)能够正确地使用计算器,由已知锐角求出它的三角函数值,•由已知三角函数值求出相应的锐角.2.过程与方法通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.3.情感、态度与价值观引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重点与难点1.重点:正弦、余弦;正切三个三角函数概念及其应用.2.难点:使学生知道当锐角固定时,它的对边、•邻边与斜边的比值也是固定的这一事实.用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.教学方法学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,教学中应十分重视.同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,在教学中应作为难点处理.第1课时正弦函数复习引入教师讲解:杂志上有过这样的一篇报道:始建于1350年的意大利比萨斜塔落成时就已经倾斜.1972年比萨发生地震,这座高54.5m的斜塔大幅度摇摆22分之分,仍巍然屹立.可是,塔顶中心点偏离垂直中心线的距离已由落成时的2.1m 增加至5.2m ,•而且还以每年倾斜1cm•的速度继续增加,•随时都有倒塌的危险.•为此,•意大利当局从1990年起对斜塔进行维修纠偏,2001年竣工,使顶中心点偏离垂直中心线的距离比纠偏前减少了43.8cm . 根据上面的这段报道中,•“塔顶中心点偏离垂直中心线的距离已由落成时的2.1m 增加至5.2m ,”这句话你是怎样理解的,它能用来描述比萨斜塔的倾斜程度吗?这个问题涉及到锐角三角函数的知识.学过本章之后,你就可以轻松地解答这个问题了! 探究新知(1)问题的引入教师讲解:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管?教师提出问题:怎样将上述实际问题用数学语言表达,要求学生写在纸上,•互相讨论,看谁写得最合理,然后由教师总结.教师总结:这个问题可以归纳为,在Rt △ABC 中,∠C=90°,∠A=30°,BC=35m ,•求AB (课本图28.1-1).C B根据“在直角三角形中,30°角所对的边等于斜边的一半”,即A BC AB ∠=的对边斜边=12可得AB=2BC=70m ,也就是说,需要准备70m 长的水管.教师更换问题的条件后提出新问题:•在上面的问题中,•如果使出水口的高度为50m ,那么需要准备多长的水管?•要求学生在解决新问题时寻找解决这两个问题的共同点.教师引导学生得出这样的结论:在上面求AB (所需水管的长度)的过程中,虽然问题条件改变了,但我们所用的定理是一样的:在一个直角三角形中,•如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于12.也是说,只要山坡的坡度是30°这个条件不变,那么斜边与对边的比值不变.教师提出第2个问题:既然直角三角形中,30°角的斜边与对边的比值不变,那么其他角度的对边与斜边的比值是否也不会变呢?•我们再换一个解试一试.•如课本图28.1-2,在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?•如果是,是多少?C B A教师要求学生自己计算,得出结论,然后再由教师总结:在Rt △ABC 中,∠C=90°由于∠A=45°,所以Rt △ABC 是等腰直角三角形,由勾股定理得AB 2=AC 2+BC 2=2BC 2,BC .因此BC AB ==即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,•这个角的对边与斜边的比都等于2. 教师再将问题提升到更高一个层次:从上面这两个问题的结论中可知,•在一个Rt △ABC 中,∠C=90°,当∠A=30°时,∠A 的对边与斜边的比都等于12,是一个固定值;•当∠A=45°时,∠A的对边与斜边的比都等于2,也是一个固定值.这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,•它的对边与斜边的比是否也是一个固定值?教师直接告诉学生,这个问题的回答是肯定的,并边板书,•边与学生共同探究证明方法.这为问题可以转化为以下数学语言:任意画Rt △ABC 和Rt △A ′B ′C ′(课本图28.1-3),使得∠C=∠C ′=90°,∠A=∠A ′=a ,那么''''BC B C AB A B 与有什么关系. B 'A 'C ' CBA在课本图28.1-3中,由于∠C=∠C ′=90°,∠A=∠A ′=a ,所以Rt △ABC ∽Rt △A ′B ′C ′,''''BC AB B C A B =,即''''BC B C AB A B =. 这就是说,在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A 的对边与斜边的比都是一个固定值.(二)正弦函数概念的提出教师讲解:在日常生活中和数学活动中上面所得出的结论是非常有用的.为了引用这个结论时叙述方便,数学家作出了如下规定:如课本图28.1-4,在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA= =a c. 斜边c对边a b C B在课本图28.1-4中,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c . 例如,当∠A=30°时,我们有sinA=sin30°=12; 当∠A=45°时,我们有sinA=sin45°=2. (三)正弦函数的简单应用教师讲解课本第79页例题1. 例1 如课本图28.1-5,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.(1)34C BA (2)1353CB A教师对题目进行分析:求sinA 就是要确定∠A 的对边与斜边的比;求sinB•就是要确定∠B 的对边与斜边的比.我们已经知道了∠A 对边的值,所以解题时应先求斜边的高. 解:如课本图28.5-1(1),在Rt △ABC 中,=.因此 sinA=BC AB =35,sinB=AC AB =45. 如课本图28.5-1(2),在Rt △ABC 中,sinA=BC AB =513,=. 因此,sinB=AC AB =1213. 随堂练习做课本第77页练习.课时总结在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比都是一个固定值.在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 教后反思__________________________________________________________________________________________________________________________________________________第1课时作业设计课本练习做课本第82页习题28.1复习巩固第1题、第2题.(只做与正弦函数有关的部分) 双基与中考1.如图1,已知点P 的坐标是(a ,b ),则sin α等于( )A .a bB .b a CD P(a,b)αyx O C B A C B A(1) (2) (3)2.(2005,南京)如图2,在△ABC 中,AC=3,BC=4,AB=5,则tanB 的值是( )A .34 B .43 C .35 D .453.在Rt △ABC 中,∠C=90°,sinA=513,则sinB 等于( ) A .1213 B .1312 C .512 D .513 4.(2004.辽宁大连)在Rt △ABC 中,∠C=90°,a=1,c=4,则sinA 的值是( ).A11..43B C D5.如图3,在Rt △ABC 中,∠C=90°,AB=10,sinB=25,BC 的长是( ). A ..4B C D 第1课时作业设计(答案)1.D 2.A 3.A 4.B 5.B28.1.2 余弦、正切函数(第2课时)复习引入教师提问:我们是怎样定义直角三角形中一个锐角的正弦的?为什么可以这样定义它.学生回答后教师提出新问题:在上一节课中我们知道,如课本图28.1-6所示,在Rt △ABC 中,∠C=90°,当锐角A 确定时,∠A 的对边与斜边的比就随之确定了.现在我们要问:其他边之间的比是否也确定了呢?为什么?∠A的邻边b ∠A的对边a 斜边cCBA探究新知(一)余弦、正切概念的引入教师引导学生自己作出结论,•其证明方法与上一节课证明对边比斜边为定值的方法相同,都是通过两个三角形相似来证明.学生证明过后教师进行总结:类似于正弦的情况,在课本图28.1-6中,当锐角A 的大小确定时,∠A 的邻边与斜边的比、∠A 的对边与邻边的比也分别是确定的.我们把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=A 的邻边斜边=cb ;把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA=A A ∠∠的对边的邻边=ab.教师讲解并板书:锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是A 的函数.同样地,cosA ,tanA 也是A 的函数. (二)余弦正切概念的应用教师解释课本第78页例2题意:如课本图28.1-7,在Rt △ABC 中,∠C=90°,BC=6,sinA=35,求cosA 、tanB 的值. 6CB A教师对解题方法进行分析:我们已经知道了直角三角形中一条边的值,要求余弦,正切值,就要求斜边与另一个直角边的值.我们可以通过已知角的正弦值与对边值及勾股定理来求.教师分析完后要求学生自己解题.学生解后教师总结并板书.解:sinA=BCAB , ∴AB=sin BC A =6×53=10,又∵=, ∴cosA=AC AB =45,tanB=AC BC =43. 随堂练习学生做课本第78页练习1、2、3题. 课时总结在直角三角形中,当锐角A 的大小确定时,∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA,把∠A的对边与斜边的比叫做∠A的正切,记作tanA.教后反思______________________________________________________________________________________________________________________________________________第2课时作业设计课本练习做课本第82页习题28.1复习巩固第1题、第2题.(只做与余弦、正切函数有关的部分)28.1.3 特殊角的三角函数值(第3课时)复习引入教师提问:一个直角三角形中,一个锐角正弦、余弦、正切值是怎么定义的?在学生回答了这个问题后,教师再复述一遍,提出新问题:两块三角尺中有几个不同的锐角?是多少度?分别求出这几个锐角的正弦值、余弦值和正切值.提醒学生:求时可以设每个三角尺较短的边长为1,•利用勾股定理和三角函数的定义可以求出这些三角函数值.探究新知(一)特殊值的三角函数学生在求完这些角的正弦值、余弦值和正切值后教师加以总结. 30°、45°、60°的正弦值、余弦值和正切值如下表:教师讲解上表中数学变化的规律:对于正弦值,分母都是2,,.对于余弦值,分母都是2.对于正切,60,即是下一个角的正切值.要求学生记住上述特殊角的三角函数值.教师强调:(sin60°)2用sin 260°表示,即为(sin60°)·(sin60°). (二)特殊角三角函数的应用1.师生共同完成课本第79页例3:求下列各式的值. (1)cos 260°+sin 260°. (2)cos 45sin 45︒︒-tan45°.教师以提问方式一步一步解上面两题.学生回答,教师板书.解:(1)cos 260°+sin 260°=(12)2+(32)2=1(2)cos 45sin 45︒︒-tan45°=22÷22-1=02.师生共同完成课本第80页例4:教师解答题意:(1)如课本图28.1-9(1),在Rt △ABC 中,∠C=90,AB=6,BC=3,求∠A 的度数.(2)如课本图28.1-9(2),已知圆锥的高AO 等于圆锥的底面半径OB 的3倍,求a .教师分析解题方法:要求一个直角三角形中一个锐角的度数,可以先求它的某一个三角函数的值,如果这个值是一个特殊解,那么我们就可以求出这个角的度数.解:(1)在课本图28.1-9(1)中, ∵sinA=36BC AB ==22, ∴∠A=45°.(2)在课本图28.1-9(2)中, ∵tana=3AO OBOB =3, ∴a=60°.教师提醒学生:当A 、B 为锐角时,若A ≠B ,则 sinA ≠sinB ,cosA ≠cosB ,tanA ≠tanB . 随堂练习学生做课本第80页练习第1、2题.课时总结学生要牢记下表:对于sina与tana,角度越大函数值也越大;对于cosa,角度越大函数值越小.教后反思_____________________________________________________________________________________________________________________________________________第3课时作业设计课本练习做课本第82页习题28.1复习巩固第3题.双基与中考(本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业.学生可以自己根据具体情况划分课内、课外作业的份量).一、选择题.1.已知:Rt△ABC中,∠C=90°,cosA=35,AB=15,则AC的长是().A.3 B.6 C.9 D.122.下列各式中不正确的是().A.sin260°+cos260°=1 B.sin30°+cos30°=1C.sin35°=cos55°D.tan45°>sin45°3.计算2sin30°-2cos60°+tan45°的结果是().A.2 BCD.14.已知∠A为锐角,且cosA≤12,那么()A.0°<∠A≤60°B.60°≤∠A<90°C.0°<∠A≤30°D.30°≤∠A<90°5.在△ABC中,∠A、∠B都是锐角,且sinA=12,cosB=2,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定6.如图Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=3,AC=4,设∠BCD=a,则tana•的值为().A.34B.43C.35D.457.当锐角a>60°时,cosa的值().A.小于12B.大于12C.大于2D.大于18.在△ABC中,三边之比为a:b:c=12,则sinA+tanA等于().A.311..6222B C D+9.已知梯形ABCD 中,腰BC 长为2,梯形对角线BD 垂直平分AC•则∠CAB 等于( )A .30°B .60°C .45°D .以上都不对 10.sin 272°+sin 218°的值是( ). A .1 B .0 C .12D.211)2+││=0,则△ABC ( ). A .是直角三角形 B .是等边三角形C .是含有60°的任意三角形D .是顶角为钝角的等腰三角形 二、填空题.12.设α、β均为锐角,且sin α-cos β=0,则α+β=_______. 13.cos 45sin 301cos 60tan 452︒-︒︒+︒的值是_______.14.已知,等腰△ABC•的腰长为•底为30•°,•则底边上的高为______,•周长为______. 15.在Rt △ABC 中,∠C=90°,已知tanB=2,则cosA=________. 16.正方形ABCD 边长为1,如果将线段BD 绕点B 旋转后,点D 落在BC 的延长线上的点D ′处,那么tan ∠BAD ′=________.17.在Rt △ABC 中,∠C=90°,∠CAB=60°,AD 平分∠CAB ,得AB ACCD CD-的值为_______. 三、解答题.18.求下列各式的值.(1)sin30°·cos45°+cos60°;(2)2sin60°-2cos30°·sin45°(3)2cos602sin 302︒︒-; (4)sin 45cos3032cos 60︒+︒-︒-sin60°(1-sin30°).(5)tan45°·sin60°-4sin30°·cos45°·tan30°(6)sin 45tan 30tan 60︒︒-︒+cos45°·cos30°19.在△ABC 中,AD 是BC 边上的高,∠B=30°,∠C=45°,BD=10,求AC .20.如图,∠POQ=90°,边长为2cm 的正方形ABCD 的顶点B 在OP 上,C 为CQ•上,•且∠OBC=30°,分别求点A ,D 到OP 的距离.30︒QPO DCBA21.已知sinA ,sinB 是方程4x 2-2mx+m-1=0的两个实根,且∠A ,∠B 是直角三角形的两个锐角,求:(1)m 的值;(2)∠A 与∠B 的度数.22.如图,自卸车车厢的一个侧面是矩形ABCD ,AB=3米,BC=0.5米,•车厢底部距离地面1.2米,卸货时,车厢倾斜的角度=60°,问此时车厢的最高点A 距离地面是多少米?(精确到0.1m )23.如图,由于水资源缺乏,B 、C 两地不得不从黄河上的扬水站A 处引水,•这就需要在A 、B 、C 之间铺设地下输水管道.有人设计了三种铺设方案:如图(1)、(2)、(3),图中实线表示管道铺设线路,在图(2)中,AD ⊥BC 于D ;在图(3)中,OA=OB=OC .为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短.已知△ABC•恰好是一个边长是a 的等边三角形,请你通过计算,判断哪个铺设方案最好.第3课时作业设计(答案)一、1.C 2.B 3.D 4.B 5.B 6.A 7.A 8.A 9.B 10.A 11.A 二、12.90° 13.212 14.33 155162 173 三、 18.(1)222362(3)1;(4)44+-- (53 (6)0 19.∵AD 是BC 边上的高,∴△ABD 和△ACD 都是直角三角形.∵ADBD=tan30°,BD=10, ∴AD=1033. ∴AD AC=sinC ,∴AC=1031063sin 322AD C ==. 20.过点A 、D 分别作AE ⊥OP ,DF ⊥OP ,DG ⊥OQ ,垂足分别为E 、F 、G . 在正方形ABCD 中,∠ABC=∠BCD=90°. ∵∠OBC=30°,∴∠ABE=60°. 在Rt △AEB 中,AE=AB ·sin60°=2×32=3(cm ). ∵四边形DFOG 是矩形,∴DF=GO .∵∠OBC=30°,∴∠BCO=60°,∴∠DCG=30°. 在Rt △DCG 中,CG=CD ·cos30°=2×32=3(cm ). 在Rt △BOC 中,OC=12BC=1. 21.m=22+1 A=45° B=45° 22.A 距地面4.8m23.(1)所示方案的线路总长为AB+BC=2a . (2)在Rt △ABD 中,AD=ABsin60°=32a , ∴(2)所示方案的线路总长为AD+BC=(32+1)a .(3)延长AO 交BC 于E ,∵AB=AC ,OB=OC ,∴OE ⊥BC ,BE=EC=2a .在Rt △OBE 中,∠OBE=•30°,OB=cos30BE =3a .∴(3)所示方案的线路总长为.(2+1)a<2a ,∴图(3)•所示方案最好.28.1.4 利用计算器求三角函数值第4课时复习引入教师讲解:通过上面几节的学习我们知道,当锐角A是30°、45°或60•°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角A•不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值.探究新知(一)已知角度求函数值教师讲解:例如求sin18°,利用计算器的18,得到结果sin18°=0.309016994.又如求tan30°36′,利用键,并输入角的度、分值,就可以得到答案0.591398351.利用计算器求锐角的三角函数值,或已知锐角三角函数值求相应的锐角时,不同的计算器操作步骤有所不同.因为30°36′=30.6°,所以也可以利用30.6,•同样得到答案0.591398351.(二)已知函数值,求锐角教师讲解:如果已知锐角三角函数值,也可以使用计算器求出相应的锐角.例如,已知sinA=0.5018;用计算器求锐角A可以按照下面方法操作:依次按键然后输入函数值0.5018,得到∠A=30.11915867°(如果锐角A 精确到1°,则结果为30°).还可以利用A=30°07′08.97″(如果锐角A•精确到1′,则结果为30°8′,精确到1″的结果为30°7′9″).使用锐角三角函数表,也可以查得锐角的三角函数值,或根据锐角三角函数值求相应的锐角.教师提出:怎样验算求出的∠A=30°7′9″是否正确?让学生思考后回答,•然后教师总结:可以再用计算器求30°7′9″的正弦值,如果它等于0.5018,•则我们原先的计算结果就是正确的.随堂练习课本第81页练习第1、2题.课时总结已知角度求正弦值用90°的锐角用•对于余弦与正切也有相类似的求法.教后反思______________________________________________________________________________________________________________________________________________________第4课时作业设计课本练习做课本第82页习题28.1复习巩固第4题,第5题.双基与中考(本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业,学生可以自己根据具体情况划分课内、课外作业的份量)一、选择题.1.如图1,Rt △ABC 中,∠C=90°,D 为BC 上一点,∠DAC=30°,BD=2,AC•的长是( ).AB .C .3D .32C AD C B A(1) (2) (3)2.如图2,从地面上C 、D 两处望山顶A ,仰角分别为35°、45°,若C 、•D•两处相距200米,那么山高AB 为( ).A .100)米 B .米 C .米 D .200米3.如图3,两建筑物的水平距离为s 米,从A 点测得D 点的俯角为α,测得C 点的俯角为β,则较低的建筑物的高为( ).A .s ·tan α米B .s ·tan (β-α)米C .s (tan β-tan α)米D .tan tan s βα-米 4.已知:A 、B 两点,若由A 看B 的仰角为α,则由B 看A 的俯角为( ).A.αB.90°-αC.90°+αD.180°-α5.如图4,从山顶A望地面C、D两点,测得它们的俯角分别是45°和30°,•已知CD=100m,点C在BD上,则山高AB等于().A.100m B.503m C.502m D.50(3+1)m(4) (5) (6)6.已知楼房AB高50m,如图5,铁塔塔基与楼房房基间水平距离BD为50m,塔高DC•150503,下列结论中正确的是().A.由楼顶望塔顶仰角为60°B.由楼顶望塔基俯角为60°C.由楼顶望塔顶仰角为30°D.由楼顶望塔基俯角为30°7.如图6,一台起重机的机身高AB为20m,吊杆AC的长为36m,•吊杆对水平线的倾角可以从30°转到80°,则这台起重机工作时吊杆端点C离地面的最大高度和离机身的最远水平距离分别是().A.(36+20)m和36·tan30°m B.36·sin80°m和36·cos30°mC.(36sin30°+20)m和36·cos30°m D.(36sin80°+20)m和36·cos30°m 8.观察下列各式:(1)sin59°>sin28°;(2)0<cosα<1(α是锐角);(3)•tan30•°+tan60°=tan90°;(4)tan44°·cot44°=1,其中成立的有().A.1个B.2个C.3个D.4个9.角a为锐角,且cosα=1,那么α在()。