人教版七年级数学上册第1章有理数拔高题及易错题精选(Word版附答案)

合集下载

七年级上册第一章有理数易错题(含答案)

七年级上册第一章有理数易错题(含答案)

有理数易错题(1)一.选择题(共5小题)1.下列说法正确的是()A.|x|<xB.若|x﹣1|+2取最小值,则x=0C.若x>1>y>﹣1,则|x|<|y|D.若|x+1|≤0,则x=﹣12.如图,一个不完整的数轴(单位长度为1)上有A,B,C三个点,若点A,B表示的数互为相反数,则图中点C表示的数是()A.﹣2B.0 C.1 D.43.如图所示,则|a﹣b|=()A.a+b B.﹣a﹣bC.a﹣b D.b﹣a4.有理数a,b在数轴上的对应点的位置如图所示.把﹣a,b,0按照从小到大的顺序排列,正确的是()A.0<﹣a<b B.﹣a<0<bC.b<0<﹣a D.b<﹣a<05.已知a、b是不为0的有理数,且|a|=﹣a,|b|=b,|a|>|b|,那么用数轴上的点来表示a、b,正确的是()A.B.C.D.二.填空题(共8小题)6.一个数的相反数等于它本身,这个数是;比其相反数大的数是.7.数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是.8.已知m与n互为相反数,且m与n之间的距离为6,且m<n,则m=,n=.9.若m,n互为相反数,m<n,且m与n在数轴上所对应的点之间的距离是5.8,则m=.10.一个数a在数轴上的对应点在原点左边,且|a|=9,则a的值为.11.相反数等于它本身的数是,倒数等于它本身的数是,绝对值等于它本身的数是,绝对值最小的有理数是,平方等于它本身的数是,立方等于它本身的数是.12.有理数a,b,c对应的点在数轴上的位置如下图:那么1a−b,1c−b,1a−c中,其中最大的是,最小的是.13.点A在数轴上距离原点3个单位长度,将A向右移动4个单位长度,再向左移动7个单位长度,此时点A表示的数是.三.解答题(共2小题)14.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.请用上面的知识解答下面的问题:(1)数轴上表示1和5的两点之间的距离是,数轴上表示﹣2和﹣4的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;(3)|x+1|+|x﹣2|取最小值是.15.化简下列各式的符号,并回答问题:①﹣(﹣2);②+(−15);③﹣[﹣(﹣4)];④﹣[﹣(+3.5)];⑤﹣{﹣[﹣(﹣5)]};⑥﹣{﹣[﹣(+5)]}.(1)当+5前面有1000个负号,化简后结果是多少?(2)当﹣5前面有999个负号,化简后结果是多少?(3)你能总结出什么规律?有理数易错题(1)参考答案与试题解析一.选择题(共5小题)1.下列说法正确的是()A.|x|<xB.若|x﹣1|+2取最小值,则x=0C.若x>1>y>﹣1,则|x|<|y|D.若|x+1|≤0,则x=﹣1【解答】解:A、当x=0时,|x|=x,故此选项错误,不符合题意;B、∵|x﹣1|≥0,∴当x=1时,|x﹣1|+2取最小值,故此选项错误,不符合题意;C、∵x>1>y>﹣1,∴|x|>1,|y|<1,∴|x|>|y|,故此选项错误,不符合题意;D、∵|x+1|≤0,|x+1|≥0,∴x+1=0,∴x=﹣1,故此选项正确,符合题意.故选:D.2.如图,一个不完整的数轴(单位长度为1)上有A,B,C三个点,若点A,B表示的数互为相反数,则图中点C表示的数是()A.﹣2B.0C.1D.4【解答】解:∵点A,B表示的数互为相反数,∴原点在图中所示位置:∴点C表示的数1.故选:C.3.如图所示,则|a﹣b|=()A.a+b B.﹣a﹣b C.a﹣b D.b﹣a【解答】解:通过数轴可判断a<0,b>0,所以﹣b<0,所以a﹣b<0,所以|a﹣b|=b﹣a,故选:D.4.有理数a,b在数轴上的对应点的位置如图所示.把﹣a,b,0按照从小到大的顺序排列,正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【解答】解:由数轴可知,a<0<b,|a|<|b|,∴0<﹣a<b,故选:A.5.已知a、b是不为0的有理数,且|a|=﹣a,|b|=b,|a|>|b|,那么用数轴上的点来表示a、b,正确的是()A.B.C.D.【解答】解:∵|a|=﹣a,|b|=b,∴a≤0,b≥0,∵|a|>|b|,∴表示数a的点到原点的距离比b到原点的距离大,故选:C.二.填空题(共8小题)6.一个数的相反数等于它本身,这个数是0;比其相反数大的数是正数.【解答】解:0的相反数是0;正数大于它的相反数.故答案为:0;正数.7.数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是1或5.【解答】解:∵点B到点A的距离是2,∴点B表示的数为﹣1或﹣5,∵B、C两点表示的数互为相反数,∴点C表示的数应该是1或5.故答案为1或5.8.已知m与n互为相反数,且m与n之间的距离为6,且m<n,则m=﹣3,n=3.【解答】解:∵m与n互为相反数,∴n=﹣m,∵m<n,且m与n之间的距离为6,∴n﹣m=6,∴﹣m﹣m=6,∴﹣2m=6,解得m=﹣3,∴n=3.故答案为:﹣3,3.9.若m,n互为相反数,m<n,且m与n在数轴上所对应的点之间的距离是5.8,则m=﹣2.9.【解答】解:∵m,n互为相反数,∴n=﹣m,∵m<n,且m与n在数轴上所对应的点之间的距离是5.8,∴n﹣m=5.8,∴﹣m﹣m=5.8,∴﹣2m=5.8,解得m=﹣2.9.故答案为:﹣2.9.10.一个数a在数轴上的对应点在原点左边,且|a|=9,则a的值为﹣9.【解答】解:∵|a|=9,∴a=±9,∵数a在数轴上的对应点在原点左边,∴a=﹣9.故答案为:﹣9.11.相反数等于它本身的数是0,倒数等于它本身的数是±1,绝对值等于它本身的数是非负数,绝对值最小的有理数是0,平方等于它本身的数是0、1,立方等于它本身的数是±1、0.【解答】解:相反数等于它本身的数是0,倒数等于它本身的数是±1,绝对值等于它本身的数是0、1,绝对值最小的有理数是0,平方等于它本身的数是非负数,立方等于它本身的数是±1、0.故:答案是:0;±1,非负数;0;0、1;±1、0.12.有理数a,b,c对应的点在数轴上的位置如下图:那么1a−b,1c−b,1a−c中,其中最大的是1c−b,最小的是1a−b.【解答】解:∵a<b<c,∴a﹣b<0,c﹣b>0,a﹣c<0,∴a﹣b<a﹣c<0,∴1a−b<1a−c<1c−b,故答案为1c−b,1a−b.13.点A在数轴上距离原点3个单位长度,将A向右移动4个单位长度,再向左移动7个单位长度,此时点A表示的数是﹣6或0.【解答】解:点A在数轴上距离原点3个单位长度,当点A在原点左边时,点A表示的数是﹣3,将A向右移动4个单位长度,再向左移动7个单位长度,此时点A表示的数是﹣3+4﹣7=﹣6;当点A在原点右边时,点A表示的数是3,将A向右移动4个单位,再向左移动7个单位长度得3+4﹣7=0.故答案为:﹣6 或0.三.解答题(共2小题)14.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.请用上面的知识解答下面的问题:(1)数轴上表示1和5的两点之间的距离是4,数轴上表示﹣2和﹣4的两点之间的距离是2,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,那么x为1或﹣3;(3)|x+1|+|x﹣2|取最小值是3.【解答】解:(1)数轴上表示1和5的两点之间的距离是=|5﹣1|=4;数轴上表示﹣2和﹣4的两点之间的距离=|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是=|﹣3﹣1|=4;故答案为:4;2;4;(2)数轴上表示x和﹣1的两点A和B之间的距离=|x﹣(﹣1)|=|x+1|;∵|AB|=2,∴x+1=±2.解得:x=1或x=﹣3.故答案为:|x+1|;1或﹣3;(3)|x+1|+|x﹣2|表示数轴上某点到﹣1和2的距离之和.∴当﹣1≤x≤2时,|x+1|+|x﹣2|有最小值,最小值为3.故答案为:3.15.化简下列各式的符号,并回答问题:①﹣(﹣2);②+(−15);③﹣[﹣(﹣4)];④﹣[﹣(+3.5)];⑤﹣{﹣[﹣(﹣5)]};⑥﹣{﹣[﹣(+5)]}.(1)当+5前面有1000个负号,化简后结果是多少?(2)当﹣5前面有999个负号,化简后结果是多少?(3)你能总结出什么规律?【解答】解:①﹣(﹣2)=2;②+(−15)=−15;③﹣[﹣(﹣4)]=﹣4;④﹣[﹣(+3.5)]=+3.5;⑤﹣{﹣[﹣(﹣5)]}=5;⑥﹣{﹣[﹣(+5)]}=﹣5.(1)当+5前面有1000个负号,化简后结果是+5;(2)当﹣5前面有999个负号,化简后结果是+5,规律:在一个数的前面有偶数个负号,化简结果是本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数.。

人教版七年级上册数学-有理数易错题(Word版-含答案)

人教版七年级上册数学-有理数易错题(Word版-含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点力表示的数为8,方是数轴上位于点力左侧一点,且AB=20,动点/从力点出发,以每秒$个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>O)秒.B A' 0F~>(1)写出数轴上点方表示的数;点/表示的数(用含力的代数式表示)(2)动点6从点方出发,以每秒J个单位长度的速度沿数轴向右匀速运动,若点/、C同时出发,问多少秒时/、6之间的距离恰好等于2?(3)动点6从点方出发,以每秒J个单位长度的速度沿数轴向左匀速运动,若点/、6同时出发,问多少秒时/、6之间的距离恰好又等于2?(4)若/为〃的中点,八为方的中点,在点/运动的过程中,线段版的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段助的长.【答案】(1)- 12; 8 - 5t(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=2O,解得t=2.75∙答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动X秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5×-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3×=20+2解得:x=lL答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:Ill 1 1MN=MP+NP= 2AP+2 BP= 2 (AP+BP) =ZAB= 2 x20=10,②当点P运动到点B的左侧时:PNBM AIll _ 1MN=MP-NP= Z AP-2 BP= 2 (AP-BP) ^AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)点A表示的数为8, B在A点左边,AB=20,;.点B表示的数是8-20=-12,•••动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,二点P表示的数是8-5t.故答案为-12, 8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q 之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动X秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.由此可得,木棒长为cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:"我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!"美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。

人教版初中数学七年级上册第一章《有理数》易错题训练(含答案)

人教版初中数学七年级上册第一章《有理数》易错题训练(含答案)

第一章《有理数》单元测试题题号一二三总分得分第Ⅰ卷(选择题)一.选择题(共10小题)1.2017年,是鄂州市全面建设社会主义现代化国际航空大都市的开局之年,全年全市完成地区生产总值905.92亿元,将“905.92”用科学记数法表示为()A.9.0592×1010B.90.592×1010C.9.0592×1011D.9.0592×109 2.计算(﹣3)×|﹣2|的结果等于()A.6 B.5 C.﹣6 D.﹣53.下列说法正确的是()A.有最小的正数B.有最小的自然数C.有最大的有理数D.无最大的负整数4.如果m是有理数,下列命题正确的是()①|m|是正数;②|m|是非负数;③|m|≥m;④m的倒数是.A.①和②B.②和④C.②和③D.②、③和④5.若a是有理数,则下列各式一定成立的有()(1)(﹣a)2=a2;(2)(﹣a)2=﹣a2;(3)(﹣a)3=a3;(4)|﹣a3|=a3.A.1个B.2个C.3个D.4个6.如果|a+b|=|a|+|b|,那么()A.a,b同号B.a,b为一切有理数C.a,b异号D.a,b同号或a,b中至少有一个为07.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6 B. 5 C.3 D.28.的所有可能的值有()A.1个B.2个C.3个D.4个9.如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数 B.c为正数,b为负数C.c为正数,a为负数 D.c为负数,a为负数10.计算3+5+7+9+…+195+197+199的值是()A.9699 B.9999 C.9899 D.9799第Ⅱ卷(非选择题)二.填空题(共5小题)11.最小的自然数是.12.数轴上距离表示﹣2的点有5个单位的点表示的数是.13.设a,b,c为不为零的实数,那么,则x的值为.14.定义a☆b=a2﹣b2,则(﹣3)☆5☆(﹣1)= .15.若a、b、c、d为有理数,现规定一种新的运算为: =ad﹣bc,则= .三.解答题(共6小题)16.计算:(1)(2)﹣5×(﹣3)2﹣1÷(﹣0.5)(3)(4).17.把下列各数填在相应的大括号里.+9,﹣1,+3,,0,,﹣15,,1.7.正数集合:{ };负数集合:{ };整数集合:{ };自然数集合:{ };分数集合:{ };负分数集合:{ }.18.(1)已知|x|=5,y=3,求x+y的值;(2)已知|a|=2,|b|=3,求a+b的值.19.一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)如果表示数a和﹣2的两点之间的距离是3,那么a= ;(2)若数轴上表示数的点位于﹣4与2之间,那么|a+4|+|a﹣2|的值是;当a取时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是.(3)依照上述方法,|a+6|+|a﹣2|+|a﹣4|+|a+4|的最小值是.20.如图,检测10个排球,其中超过标准重量的克数记为正数,不足的克数记为负数,国际排联规定:一个排球的标准重量为260~280克,若设被检测的排球的一个排球的标准重量为265克.(1)这10个排球中最接近标准重量的这个排球重克.(2)这10个排球中,最轻的是克.(3)求这10个排球的总重量是多少克?21.1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+…n(n+1)=?观察下面三个特殊的等式1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…n(n+1)=(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=(3)请利用(2)的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=参考答案一.选择题1.A2.C3.B4.C5.A6.D7.D8.C9.C10.B二.填空题11.0.12.3或﹣7.13.±3,±1.14.25515.2三.解答题16.解:(1)原式=﹣1.5+4.25+2.75﹣5.5=(﹣1.5﹣5.5)+(4.25+2.75)=﹣7+7=0,(2)原式=﹣5×9+1×2=﹣45+2=﹣43,(3)原式=﹣1﹣9+20=﹣10+20=10,(4)原式=﹣1×(﹣4+8)﹣5=﹣4﹣5=﹣9.17.解:正数集合:{,+9,+3,,1.7…,};负数集合:{,﹣1,﹣2,﹣,﹣15…,};整数集合:{,+9,﹣1,+3,0,﹣15…,};自然数集合:{,9,3,0,…,};分数集合:{,﹣,﹣3,,1.7…,};负分数集合:{,﹣2,﹣3…,}.18.解:(1)因为|x|=5,所以x=5或﹣5,且y=3,当x=5时,x+y=5+3=8,当x=﹣5时,x+y=﹣5+3=﹣2;(2)因为|a|=2,|b|=3,所以a=2或﹣2,b=3或﹣3,当a=2,b=3时,a+b=2+3=5,当a=2,b=﹣3时,a+b=2﹣3=﹣1,当a=﹣2,b=3时,a+b=﹣2+3=1,当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5.19.解:(1)∵=3,∴a+2=3,或a+2=﹣3,∴a=﹣5或a=1,故答案为:﹣5或1;(2)①∵﹣4<a<2,∴|a+4|+|a﹣2|=a+4+2﹣a=6,②∵|a+5|+|a﹣1|+|a﹣4|的值最小,∴﹣5<a<4,|a﹣1|=0,∴a=1,|a+5|+|a﹣1|+|a﹣4|的最小值等于9,故答案为:6,1,9;(3)∵|a+6|+|a﹣2|+|a﹣4|+|a+4|的最小值,∴﹣4≤a≤2,∵|a+6|+|a﹣2|+|a﹣4|+|a+4|的最小值=16,故答案为:16.20.解:(1)265﹣0.6=264.4(可克);(2)﹣3.5<﹣2.5<﹣0.6<0.7<1.5<2.5<2.6,265﹣3.5=261.5 (g);故答案为:264.4,261.5;(3)(5﹣2.5+0.7+1.5+2﹣3.5﹣0.6+2.6+2.5+0.7)+265×10=2658.4(克),答:这10个排球的总重量是2658.4克.21.解:(1)直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=440,②1×2+2×3+3×4+…n(n+1)=n(n+1)(n+2),(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3)(3)请利用(2)的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=4290.故答案为:440, n(n+1)(n+2),n(n+1)(n+2)(n+3),4290.。

最新人教版七年级数学上册 有理数易错题(Word版 含答案)

最新人教版七年级数学上册 有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为 ( 大于秒.(1)点表示的数是________.(2)求当等于多少秒时,点到达点处?(3)点表示的数是________(用含字母的式子表示)(4)求当等于多少秒时,、之间的距离为个单位长度.【答案】(1)1(2)解:[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)解:当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1. 故答案是:1;( 3 )点P表示的数是2t-4.故答案是:2t-4;【分析】(1)根据x c=可求解;(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得AB的距离,再根据时间=路程÷速度可求解;(3)根据题意可得点P表示的数=点P运动的距离+X B可求解;(4)由题意可分两种情况讨论求解:① 当点P在点C的左边时,由题意可列关于t的方程求解;② 当点P在点C的右边时,同理可求解.2.(1)观察发现,,,……,.=1﹣=.=1﹣=.=________.(2)构建模型=________.(n为正整数)(3)拓展应用:① =________.② =________.③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.【答案】(1)(2)(3);;20.【解析】【解答】(1) ==1﹣=,故答案为:;(2) ==1﹣=,故答案为:;(3)①原式==1﹣=,故答案为:;②原式===1﹣=,故答案为:;③设这个数为x,根据题意得:( )x= x﹣1,整理得: x= x﹣1,去分母得:( )x=x﹣4,即(1﹣ )x=x﹣4,整理得: x=x﹣4,解得:x=20,答:这个数是20.【分析】(1)各项拆项后,计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)①原式拆项后,计算即可求出值;②原式变形后拆项,计算即可求出值;③设这个数为x,根据题意列出方程,求出方程的解即可得到结果.3.我们知道,在数轴上,表示数表示的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点A、B,分别对应数a,b,那么A、B两点间的距离为:如图,点A在数轴上对应的数为a,点B对应的数为b,且a,b满足:(1)求a,b的值;(2)求线段AB的长;(3)如图①,点C在数轴上对应的数为x,且是方程的解,在数轴上是否存在点M使?若存在,求出点M对应的数;若不存在,说明理由. (4)如图②,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,当N在B的右侧运动时,请直接判断的值是不变的还是变化的,如果不变请直接写出其值,如果是变化的请说明理由.【答案】(1)解:,,且,解得,,;(2)解:(3)解:存在.设M点对应的数为m,解方程,得,点C对应的数为,,,即,①当时,有,解得,;②当时,有,此方程无解;③当时,有,解得, .综上,M点对应的数为:或4.(4)解:设点N对应的数为n,则,,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,,,,点Q对应的数为:,点P对应的数为:,,①当时,,此时的值随N点的运动而变化;②当时,,此时的值随N点的运动而不变化.【解析】【分析】(1)根据“若非负数和等于0,则非负数均为0”列出方程进行解答便可;(2)根据数轴上两点的距离公式进行计算便可;(3)根据已知线段的关系式,列出绝对值方程进行解答便可;(4)用N点表示的数n,列出关于n的代数式进行讨论解答便可.4.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.【答案】(1)-1;1;4(2)解:BC-AB=(4-1)-(1+1)=3-2=1.故此时BC-AB的值是1(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,∴BC-AB的值不随着时间t的变化而改变时,其值为7【解析】【解答】解:(1)∵b是最小的正整数,∴b=1,∵|c-4|+(a+b)2=0,∴c-4=0,a+b=0,∴a=-1,c=4【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB,从而求解.5.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:【答案】(1)(2)解:==== .【解析】【解答】(1)根据规律,下一个式子是:【分析】(1)规律:两个自然数(0除外)的乘积的倒数等于这两个自然数倒数的差,据此写出结论即可;(2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.6.快递员小王下午骑摩托车从总部出发,在一条东西走向的街道上来回收送包裹.他行驶的情况记录如下(向东记为“ ”,向西记为“ ”,单位:千米):,,,,,,(1)小王最后是否回到了总部?(2)小王离总部最远是多少米?在总部的什么方向?(3)如果小王每走米耗油毫升,那么小王下午骑摩托车一共耗油多少毫升?【答案】(1)解:+2-3.5+3-4-2+2.5+2=0,∴小王最后回到了总部(2)解:第一次离总部2=2千米;第二次:2-3.5=-1.5千米;第三次:-1.5+3=1.5千米;第四次:1.5-4=-2.5千米;第五次:-2.5-2=-4.5千米;第六次:-4.5+2.5=-2千米;第七次:-2+2=0千米.所以离总部最远是4.5千米,在总部的西方向(3)解:|+2|+|-3.5|+|+3|+|-4|+|-2|+|+2.5|+|+2|=2+3.5+3+4+2+2.5+2=19千米又∵摩托车每行驶1千米耗油30毫升,∴19×30=570(毫升)∴这一天下午共耗油570毫升.【解析】【分析】(1)根据有理数的加减法,再根据正负数即可;(2)根据有理数的加减法,再根据正负数即可;(3)根据绝对值的性质,再根据正负数即可;7.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0.点O是数轴原点.(1)点A表示的数为________,点B表示的数为________,线段AB的长为________.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【答案】(1)40;﹣8;48(2)8或﹣40(3)解:(i)当0<t≤8时,点Q还在点B处,∴PQ=t=4;(ii)当8<t≤12时,点P在点Q的右侧,∴解得:;(iii)当12<t≤48时,点P在点Q的左侧,∴3(t﹣8)﹣t=4,解得:t=14,综上所述:当t为4秒、10秒和14秒时,P、Q两点相距4个单位长度.【解析】【解答】解:(1)∵|a﹣40|+(b+8)2=0,∴a﹣40=0,b+8=0,解得a=40,b=﹣8,AB=40﹣(﹣8)=48.故点A表示的数为40,点B表示的数为﹣8,线段AB的长为48;(2)点C在线段AB 上,∵AC=2BC,∴AC=48× =32,点C在数轴上表示的数为40﹣32=8;点C在射线AB上,∵AC=2BC,∴AC=40×2=80,点C在数轴上表示的数为40﹣80=﹣40.故点C在数轴上表示的数为8或﹣40;【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤8、8<t≤12,12<t≤48三种情况考虑,根据P,Q移动的路程结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.8.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.【答案】(1)7(2)(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;即:(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,第一种情况:2+2x=2(5-3x),解得:x=1第二种情况:2+2x=2(3x-5),解得:x=3答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.【解析】【解答】解:(1)故答案为:7(2)【分析】(1)根据两点间距离公式求解即可;(2)根据两点间距离公式求解即可;(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.9.阅读下列材料:1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),3×4=(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4= ×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+ n×( n+1)=________;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=________.【答案】(1)解:1×2+2×3+3×4+…+10×11,= ×(1×2×3-0×1×2)+ ×(2×3×4-1×2×3)+ ×(3×4×5-2×3×4)+…+ ×(10×11×12-9×10×11),= ×(1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4+…+10×11×12-9×10×11),= ×10×11×12,=440;(2) n(n+1)(n+2)(3)1260【解析】【解答】解:(2)∵1×2+2×3+3×4= ×3×4×5,∴1×2+2×3+3×4+…+n×(n+1)= n(n+1)(n+2);(3)1×2×3+2×3×4+3×4×5+…+7×8×9=×7×8×9×10=1260.故答案为:n(n+1)(n+2);1260.【分析】(1)根据题目信息列出算式,然后提取,进行计算即可得解;(2)观察不难发现,两个连续的自然数的积等于这两个数与后面的数的积减去与前面的数的积的,然后列出算式进行计算即可得解;(3)根据(2)的规律类比列式进行计算即可得解.10.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是________;②若E是线段AC的中点,求点E表示的数________.(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数________.【答案】(1)﹣4;;(2)(i)(ii)(iii); .【解析】【解答】解:(1)①点A所表示的数是﹣2,点B所表示的数是0,A是线段DB 的中点,∴点D表示的数是﹣4,故答案为﹣4;②点A所表示的数是﹣2,点C所表示的数是3,E是线段AC的中点,∴点E表示的数为.(2)①点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,∴1=,即m+n=2,∴m、n可能的值是:(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5.故答案为(i)(ii)(iii);②点P表示的数为.【分析】(1)①依据点A所表示的数是-2,点B所表示的数是0,A是线段DB的中点,即可得到点D表示的数;②依据点A所表示的数是-2,点C所表示的数是3,E是线段AC 的中点,即可得到点E表示的数;(2)①依据点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,即可得到m、n可能的值;②依据中点公式即可得到结果.11.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.【答案】(1)10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,,所以,OA= ,点A在原点O的右侧,a的值为 .当A在原点的左侧时(如图),a=-综上,a的值为± .(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=- .当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c= .当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,± .【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.12.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.【答案】(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式【解析】【解答】解:①表示2和5的两点间的距离为,表示-2和-5的两点之间的距离为,表示1和-3的两点之间的距离为;②表示和-1的两点和之间的距离为,若,则,∴,∴或③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;。

七年级数学上册有理数易错题(Word版 含答案)

七年级数学上册有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.3.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。

完整版人教版七年级上册数学第一章 有理数含答案

完整版人教版七年级上册数学第一章 有理数含答案

人教版七年级上册数学第一章有理数含答案一、单选题(共15题,共计45分)1、计算其结果用幂的形式可表示为()A. B. C. D.2、如果四个不同的正整数,,,满足,则等于()A.4B.10C.12D.203、如图,数轴上点P表示的数可能是()A.﹣2.66B.﹣3.57C.﹣3.2D.﹣1.894、已知,且,则的值为()A. 或B. 或C.D.5、已知a,b,c在数轴上的位置如图所示,则()A.|a|<|b|<|c|B.|a|>|b|>|c|C.|a|>|c|>|b|D.|c|>|a|>|b|6、一潜水艇所在的海拔高度是-60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔()A.-60米B.-80米C.-40米D.40米7、若,则它们的大小关系是()A. B. C. D.8、如果m与-2018互为倒数,那么m的值是()A.2018B.-2018C.D.-9、有理数-3的绝对值是()A. B.- C.3 D.-310、数轴上离点A到原点的距离是5,则点A表示的数为()A.5B.-5C.2.5或-2.5D.5或-511、﹣3的相反数是()A.3B.C.﹣3D.﹣12、下列各组算式中,其值最大的是()A.﹣3 2+2B.(﹣3)2﹣2C.(﹣3)2×(﹣2)D.﹣3 2÷(﹣2)13、已知数轴上表示﹣2和﹣101的两个点分别为A,B,那么A,B两点间的距离等于()A.99B.100C.102D.10314、如果a和2b互为相反数,且b≠0,那么a的倒数是( )A.-B.C.-D.2b15、的相反数是()A.2016B.﹣2016C.D.二、填空题(共10题,共计30分)16、一种新运算,规定有以下两种变换:①f(m,n)=(m,﹣n).如f(3,2)=(3,﹣2);②g(m,n)=(﹣m,﹣n),如g(3,2)=(﹣3,﹣2).按照以上变换有f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(5,﹣6)]等于________ .17、6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为________.18、濮阳市1月份某天的最高气温是6℃,最低气温是﹣3℃,那么当天的日温差是________.19、若4x+2与3x﹣9的值互为相反数,则x的值为________.20、若a,b互为倒数,c,d互为相反数,则-2ab=________21、计算:x(-)x(-1)2009=________22、绝对值不大于10的所有整数的和等于________.23、在比例尺的地图上,、两地间的距离为.若还是用单位,则、两地的实际距离用科学记数法表示应为________.24、|﹣16|的算术平方根是________.25、若(a+3)2+|b﹣2|=0,则(a+b)2011=________.三、解答题(共5题,共计25分)26、若|a|=3,|b|=2,且a>b,求 a b值.27、关于x的方程与的解互为相反数,求的值.28、已知分式:A= ,B= ,其中x≠±2.学生甲说A与B相等,乙说A与B互为倒数,丙说A与B互为相反数,她们三个人谁的结论正确?为什么?29、有理数a,b,c在数轴上的位置如图所示。

人教版七年级数学上册 第1章 有理数 拔高题及易错题精选(Word版附答案)

人教版七年级数学上册 第1章 有理数 拔高题及易错题精选(Word版附答案)

人教版七年级数学上册第1章有理数拔高题及易错题精选(Word版附答案)已知a,b是有理数,且a>b,则下列数中最小的是().A。

a-b B。

b-a C。

ab D。

-a-b5.已知数轴上点A表示的数为-2,点B表示的数为3,则下列各式中正确的是().A。

AB=5 B。

AB=-1 C。

AB=1 D。

AB=-56.若a,b是相反数,则a-b的值为().A。

a+b B。

a-b C。

-a-b D。

-a+b7.已知a,b是有理数,且a>b,则下列数中最大的是().A。

a+b B。

b-a C。

ab D。

-a-b8.已知数轴上点A表示的数为-2,点B表示的数为3,则点C表示的数为().A。

-5 B。

5 C。

-1 D。

19.数轴上点A表示的数为-3,点B表示的数为2,则下列各式中正确的是().A。

AB=5 B。

AB=-1 C。

AB=1 D。

AB=-510.已知a,b是有理数,且a>b,则下列数中最小的是().A。

a+b B。

b-a C。

ab D。

-a-b1.在数轴上,点A表示的数为a,点B表示的数为b,则a,b,-a,-b的大小关系为b<-a<-b<a。

2.若a,b互为相反数,则下面结论中不一定正确的是ab=-a2.3.若│a│=│b│,则a、b的关系是a=b或a=-b。

4.已知数轴上两点A、B到原点的距离是2和7,则A,B 两点间的距离是5.5.若a<0,则下列各式不正确的是a3=-(-a3)。

6.-52表示2个-5的积。

7.-42+(-4)2的值是0.8.已知a为有理数时,a2+1/a2+1=1或-1.9.设n是自然数,则(-1)n+(-1)n+1=0.10.已知|x|=5,|y|=3,且x>y,则x+y的值为8.11.我国西部地区面积约为640万平方公里,640万用科学记数法表示为6.4×107.12.京九铁路的全长用四舍五入法得到近似数为2.5×106m,则它精确到百万位。

人教版七年级数学上册 有理数易错题(Word版 含答案)

人教版七年级数学上册 有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.3.若有理数在数轴上的点位置如图所示:(1)判断代数式的符号;(2)化简:【答案】(1)解:因为所以(2)解:因为所以原式.【解析】【分析】(1)根据有理数的加减法,可得答案;(2)根据绝对值的性质,可化简去掉绝对值,根据合并同类项,可得答案.4.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.5.先阅读下面的材料,再解答后面的各题:现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q,W,E,……,N,M这26个字母依次对应1,2,3,……,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D12345678910111213F G H J K L Z X C V B N M14151617181920212223242526将明文转成密文,如:,即R变为L;,即A 变为S.将密文转换成明文,如:,即X变为P;13 3×(13-8)-1=14,即D变为F.(1)按上述方法将明文NE T译为密文.(2)若按上方法将明文译成的密文为DWN,请找出它的明文.【答案】(1)解:即NET密文为MQP.(2)解:即密文DWN的明文为FYC .【解析】【分析】(1)由图表找出N、E、T对应的自然数,再根据变换公式变成密文即可;(2)由图表找出D、W、N对应的自然数,再根据变换公式变成明文即可.6.阅读下列材料:我们给出如下定义:数轴上给定两点,以及一条线段,若线段的中点在线段上(点可以与点或重合),则称点与点关于线段径向对称.下图为点与点关于线段径向对称的示意图.解答下列问题:如图1,在数轴上,点为原点,点表示的数为-1,点表示的数为2.(1)①点,,分别表示的数为-3,,3,在,,三点中,________与点关于线段径向对称;②点表示的数为,若点与点关于线段径向对称,则的取值范围是________;(2)在数轴上,点,,表示的数分别是-5,-4,-3,当点以每秒1个单位长度的速度向正半轴方向移动时,线段同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为()秒,问为何值时,线段上至少存在一点与点关于线段径向对称.【答案】(1)点C和点D;1≤x≤5(2)解:移动时间t(t>0)秒时,点H,K,L表示的数分别是-5+t,-4+3t,-3+3t,此时,线段HK的中点设为R1,表示的数为,线段HL的中点设为R2,表示的数为,当线段R1R2,在线段OM上运动时,线段KL上至少存在一点与点H关于线段OM径向对称,当R2经过点O时,2t-4=0时,t=2,当R1经过点M时,时,,所以当时,线段R1 R2在OM上运动,所以当时,线段KL上至少存在一点与点H关于线段OM径向对称.【解析】【解答】解:(1)①与点A点关于线段径向对称需要满足:这个点与A点的中点在线段OM上,点B表示的数是-3,与点A表示的-1的中点是-2,不在线段OM上,所以点B不是;点C表示的数,与点A表示的-1的中点是,在线段OM上,所以点C 是;点D表示的3与点A表示的-1的中点是1,在线段OM上,所以点D是;综上,答案为点C,点D;②结合数轴可知当点x与点A的中点落在点O与点M之间时(包括端点O与M)正确,即,解得,故答案为;【分析】(1)根据题干中给出的径向对称的定义,进行验证解答即可;(2)根据题干中给出的径向对称的定义,列出点x与点A中点的取值范围,即可求出答案;(3)用含t的代数式分别表示出点H,K,L和线段HK与线段HL的中点列式计算即可.7.如图,在数轴上,点为原点,点表示的数为,点表示的数为,且满足(1)A、B两点对应的数分别为 ________, ________;(2)若将数轴折叠,使得点与点重合,则原点与数________表示的点重合.(3)若点A、B分别以4个单位/秒和2个单位/秒的速度相向而行,则几秒后A、B两点相距2个单位长度?(4)若点A、B以(3)中的速度同时向右运动,点从原点以7个单位/秒的速度向右运动,设运动时间为秒,请问:在运动过程中,的值是否会发生变化?若变化,请用表示这个值;若不变,请求出这个定值.【答案】(1)-8;6(2)-2(3)解:①相遇前相距2个单位长度:t=[6-(-8)-2]÷(4+2)=1.5(秒)②相遇后相距2个单位长度:t=[6-(-8)+2]÷(4+2)=2(秒)综上所述:1.5秒或2秒后A、B两点相距2个单位长度.(4)解:AP+2OB-OP的值不会发生变化.∵OP=7t,OA=-8+4t,∴AP=7t-(-8+4t)=3t+8,∵OB=6+2t,∴AP+2OB-OP=3t+8+2(6+2t)-7t=3t+8+12+4t-7t=20,∴AP+2OB-OP的值不会发生变化,定值为20.【解析】【解答】(1)∵,∴a+8=0,b-6=0,解得:a=-8,b=6,故答案为:-8,6(2)∵a=-8,b=6,将数轴折叠,使得A点与B点重合,∴对折点表示的数是[6+(-8)]÷2=-1,∵-1与原点的距离是1,∴原点关于-1的对称点表示的数是-2,即原点O与数-2表示的点重合,故答案为:-2【分析】根据绝对值及平方的非负数性质即可求出a、b的值;(2)根据a、b的值可得AB对折点表示的数,根据两点间的距离即可得答案;(3)分两种情况:①相遇前相距2个单位长度;②相遇后相距2个单位长度;利用距离=时间×速度即可得答案;(4)根据两点间距离公式,利用距离=时间×速度用t分别表示出AP、OB、OP的长,计算的值即可得答案.8.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请真接与出a=________,b=________;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值: (3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得 t=,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得 t=③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得 t=(不符合题意舍去).综上或;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.【解析】【解答】解:(1)∵|a-5|+(b-6)2=0.∴a-5=0,b-6=0∴a=5,b=6故依次填:5,6;【分析】(1)中根据非负数的性质即可得解;(2)分三种情况,分别表示MP和MA,根据MP=MA列出方程,解方程即可(需注意t>0);(3)依据题意画出图形,根据图形可知MN=NO+OM=11t.M,N,O,A为端点的所有线段的长度和为3MN+OA=142,将MN=11t代入,即可求出t的值,M点表示的数可求.9.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.【答案】(1)10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,,所以,OA= ,点A在原点O的右侧,a的值为 .当A在原点的左侧时(如图),a=-综上,a的值为± .(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=- .当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c= .当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,± .【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.10.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q 停止运动.设运动时间为t秒.①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.②当点P是线段AQ的三等分点时,求t的值.【答案】(1)9;(2)解:①根据题意,得:(1+2)t=12,解得:t=4,∴P回到A需8s,当t=8时,点P与点A重合,此时点Q表示的数为1;②P与Q重合前(即t<4):当2AP=PQ时,有2t+4t+t=12,解得t=;当AP=2PQ时,有2t+t+t=12,解得t=3;P与Q重合后(即4<t<8):当AP=2PQ时,有2(8﹣t)=2(t﹣4),解得t=6;当2AP=PQ时,有4(8﹣t)=t﹣4,解得t=;综上所述,当t=秒或3秒或6秒或秒时,点P是线段AQ的三等分点.【解析】【解答】解:(1)由题意知,点B表示的数是﹣3+12=9,点P表示的数是﹣3+2t,故答案为:9,﹣3+2t;【分析】(1)根据两点间的距离求解可得;(2)①根据重合前两者的路程和等于AB的长度列方程求解可得;②分点P与点Q重合前和重合后,依据点P是线段AQ的三等分点线段间的数量关系,并据此列出方程求解可得.11.已知数轴上有A.B. C三点,分别表示有理数−26,−10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒。

人教版七年级数学上册易错题集及解析第一章有理数

人教版七年级数学上册易错题集及解析第一章有理数

人教版七年级数学上册易错题集及解析第一章有理数七年级数学(上)第一章有理数一、有理数的基本概念1.正数:大于0的数叫做正数;负数:小于0的数叫做负数。

备注:在正数前面加“-”的数是负数;“0”既不是正数,也不是负数。

2.有理数:整数和分数统称有理数。

3.数轴:规定了原点、正方向和单位长度的直线。

性质:(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于0,负数都小于0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。

4.相反数:只有符号不同的两个数,其中一个是另一个的相反数。

性质:(1)数a 的相反数是-a (a 是任意一个有理数);(2)0的相反数是0;(3)若a 、b 互为相反数,则a+b=0;若a 、b 互为相反数且a 、b 都不等于零,则1-=ba ; 5.倒数:乘积是1的两个数互为倒数。

性质:(1)a 的倒数是(a ≠0);(2)0没有倒数;(3)若a 与b 互为倒数,则ab=1;若a 与b 互为负倒数,则ab=-1。

倒数与相反数的区别和联系:(1)a 与-a 互为相反数; a 与a1(a ≠ 0)互为倒数;(2)符号上:互为相反数(除0外)的两数的符号相反;互为倒数的两数符号相同;(3)a 、b 互为相反数→→ a+b=0;a 、b 互为倒数→→ ab=1;(4)相反数是本身的数是0,倒数是本身的数是±1 。

6.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

性质:(1)数a 的绝对值记作︱a ︱;(2)若a >0,则︱a ︱= a ;若a <0,则︱a ︱= -a ;若a =0,则︱a ︱=0;(3)对任何有理数a,总有︱a ︱≥0.7.有理数大小的比较:(1)可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;(2)两个负数,绝对值大的反而小。

即:若a <0,b <0,且︱a ︱>︱b ︱,则a < b.8.科学记数法:把一个绝对值大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫做科学记数法。

人教版七年级上册数学 有理数易错题(Word版 含答案)

人教版七年级上册数学 有理数易错题(Word版 含答案)
2.如图,在数轴上点 A 表示的数 a、点 B 表示数 b,a、b 满足|a-30|+(b+6)2=0.点 O 是数轴 原点。
(1)点 A 表示的数为________,点 B 表示的数为________,线段 AB 的长为________。 (2)若点 A 与点 C 之间的距离表示为 AC,点 B 与点 C 之间的距离表示为 BC,请在数轴上
一、初一数学有理数解答题压轴题精选(难)
1.如图所示,一个点从数轴上的原点开始,先向右移动 3 个单位长度,再向左移动 5 个单 位长度,可以看到终点表示的数是﹣2,已知点 A、B 是数轴上的点,请参照图并思考,完 成下列各题.
(1)如果点 A 表示数﹣3,将点 A 向右移动 7 个单位长度,那么终点 B 表示的数是 ________,A、B 两点间的距离是________; (2)如果点 A 表示数 3,将 A 点向左移动 7 个单位长度,再向右移动 5 个单位长度,那么 终点 B 表示的数是________,A、B 两点间的距离为________; (3)如果点 A 表示数﹣4,将 A 点向右移动 16 个单位长度,再向左移动 25 个单位长度, 那么终点 B 表示的数是________,A、B 两点间的距离是________; (4)一般地,如果 A 点表示的数为 m , 将 A 点向右移动 n 个单位长度,再向左移动 p 个 单位长度,那么请你猜想终点 B 表示什么数?A、B 两点间的距离为多少? 【答案】 (1)4;7 (2)1;2 (3)﹣13;9 (4)解:一般地,如果 A 点表示的数为 m,将 A 点向右移动 n 个单位长度,再向左移动 p 个单位长度,那么请你猜想终点 B 表示 m+n﹣p,A、B 两点间的距离为|n﹣p|. 【解析】【解答】解:(1)如果点 A 表示数﹣3,将点 A 向右移动 7 个单位长度,那么终 点 B 表示的数是 4,A、B 两点间的距离是 7;(2)如果点 A 表示数 3,将 A 点向左移动 7 个单位长度,再向右移动 5 个单位长度,那么终点 B 表示的数是 1,A、B 两点间的距离为 2;(3)如果点 A 表示数﹣4,将 A 点向右移动 16 个单位长度,再向左移动 25 个单位长 度,那么终点 B 表示的数是﹣13,A、B 两点间的距离是 9; 【分析】(1)根据数轴上的点向右平移加,可得 B 点表示的数,根据数轴上两点间的距 离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得 B 点 表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右 平移加,向左平移减,可得 B 点表示的数,根据数轴上两点间的距离是大数减小数,可得 答案;(4)根据数轴上的点向右平移加,向左平移减,可得 B 点表示的数,根据数轴上 两点间的距离是大数减小数,可得答案;

最新七年级上册有理数易错题(Word版 含答案)

最新七年级上册有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。

因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。

因此我们可以用绝对值的几何意义按如下方法求的最小值;即数轴上x与1对应的点之间的距离,即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.设A、B、P三点对应的数分别是1、2、x.当1≤x≤2时,即P点在线段AB上,此时;当x>2时,即P点在B点右侧,此时= PA+PB=AB+2PB>AB;当x <1时,即P点在A点左侧,此时=PA+PB=AB+2PA>AB;综上可知,当1≤x≤2时(P点在线段AB上),取得最小值为1.请你用上面的思考方法结合数轴完成以下问题:(1)满足的x的取值范围是________。

(2)求的最小值为________,最大值为________。

备用图:【答案】(1)当x<-3或x>4(2)-3;3【解析】【解答】解:(1)由,在数轴上表示-3和4两点,当x<-3时, >7;当-3≤x≤4时, .当x>4时, .故当x<-3或x>4时 .( 2 )当x<-1,当-1≤x≤2,,此时当x=2时,取得最大值3,当x=-1时,取得最小值-3;当x>2时, .故的最小值为-3,最大值为3.【分析】(1)此题实质就是求表示x的点与-3的对应点的距离及表示x的点与4的对应点的距离和大于7时,x的取值范围,从而分当x<-3时、当-3≤x≤4时、当x>4时三种情况根据绝对值的意义分别去绝对值符号后一一判断即可得出答案;(2)此题实质就是求表示x的点与-1的对应点的距离及表示x的点与2的对应点的距离差最小值与最大值,从而分当x<-1、当-1≤x≤2、当x>2时三种情况根据绝对值的意义分别去绝对值符号考虑即可得出答案.2.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值. 【答案】(1)-4(2)0(3)解:① 当点O是线段AB的中点时,OB=OA4-3t=2+tt=0.5② 当点B是线段OA的中点时, OA = 2 OB2+t=2(3t-4)t=2③ 当点A是线段OB的中点时, OB = 2 OA3t--4=2(2+t)t=8综上所述,符合条件的t的值是0.5,2或8.【解析】【解答】(1)点B表示的数是-4;(2)2秒后点B表示的数是 0 ;【分析】(1)根据数轴上所表示的数的特点即可直接得出答案;(2)用点B开始所表示的数+点B运动的路程=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据线段中点的数学语言列出方程,求解即可求出此时的t值,综上即可得出结论。

七年级上册有理数易错题(Word版 含答案)

七年级上册有理数易错题(Word版 含答案)

4.已知,如图 A、B 分别为数轴上的两点,点 A 对应的数为-20,点 B 对应的数为 120.
(1)请写出线段 AB 的中点 C 对应的数. (2)点 P 从点 B 出发,以 3 个单位/秒的速度向左运动,同时点 Q 从点 A 出发,以 2 个单 位/秒的速度向右运动,当点 P、Q 重合时对应的数是多少? (3)在(2)的条件下,P、Q 两点运动多长时间相距 50 个单位长度? 【答案】 (1)解:AB=120-(-20)=140,则 BC=70 C 点对应的数是 50.
∴ |a-3|+|a﹣6|有最小值,最小值为 3.
【解析】【解答】(1)AB=
=1,
故答案为:1
( 2 )∵ 数轴上表示数 a 的点与﹣2 的距离是 3,

=3,
∴ -2-a=3 或-2-a=-3,
解得:a=1 或 a=-5,
故答案为:1 或-5
( 3 )数 a 位于﹣4 与 2 之间,|a+4|+|a﹣2|表示 a 到-4 与 a 到 2 的距离的和,
间,故该距离等于数轴上表示数字-4 与表示数字 2 的点之间的距离,从而即可得出答案;
(4)此题其实质就是求数轴上表示数 a 的点到表示数字 3 的点的距离与数轴上表示数 a
的点到表示数字 6 的点的距离的和,从而分 当 3≤a≤6 时 , 当 a>6 或 a<3 时三种情况考虑
即可得出答案.
3.列方程解应用题 如图,在数轴上的点 A 表示 ,点 B 表示 5,若有两只电子蜗牛甲、乙分别从 A、B 两 点同时出发,保持匀速运动,甲的平均速度为 2 单位长度 秒,乙的平均速度为 1 单位长 度 秒 请问:

解得

人教版七年级上册数学 有理数易错题(Word版 含答案)

人教版七年级上册数学 有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。

(完整word版)人教版七年级上期末复习《第一章有理数》知识点+易错题(含答案)

(完整word版)人教版七年级上期末复习《第一章有理数》知识点+易错题(含答案)

2019年七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。

2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。

3、数轴的定义:规定了________、________和________的________叫数轴。

4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。

5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。

6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。

7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。

8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。

9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。

10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。

③一个数与0相加,________。

11、有理数减法法则:减去一个数,等于____________。

12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。

13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。

【精选】人教版七年级上册数学 有理数易错题(Word版 含答案)

【精选】人教版七年级上册数学 有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)解:AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.2.已知数轴上顺次有A、B、C三点分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数。

一只电子小蜗牛从A点向正方向移动,速度为2个单位/秒。

(1)请求出A、B、C三点分别表示的数;(2)运动多少秒时,小蜗牛到点B的距离为1个单位长度;(3)设点P在数轴上点A的右边,且点P分别到点A、点B、点C的距离之和是20,那么点P所表示的数是________。

【精选】人教版七年级数学上册 有理数易错题(Word版 含答案)

【精选】人教版七年级数学上册 有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.点在数轴上分别表示有理数,两点间的距离表示为 .且 .(1)数轴上表示2和5的两点之间的距离是________,数轴上表示−2和−5的两点之间的距离是________,数轴上表示1和−3的两点之间的距离是________;(2)数轴上表示x和−1的两点A和B之间的距离是________,如果|AB|=2,那么x=________;(3)当代数式|x+1|+|x−2|取最小值时,相应x的取值范围是________.【答案】(1)3;3;4(2)1;-3(3)−1⩽x⩽2【解析】【解答】解:(1)、|2−5|=|−3|=3;|−2−(−5)|=|−2+5|=3;|1−(−3)|=|4|=4;( 2 )、|x−(−1)|=|x+1|,由|x+1|=2,得x+1=2或x+1=−2,所以x=1或x=−3;( 3 )、数形结合,若|x+1|+|x−2|取最小值,那么表示x的点在−1和2之间的线段上,所以−1⩽x⩽2.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可算出答案;(2)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值得出AB=,又 |AB|=2 ,从而列出方程,求解即可;(3)|x+1|+|x−2| 表示数x的点到-1的点距离与表示x的点到2的点距离和,根据两点之间线段最短得出当表示x的点在-1与2之间的时候,代数式|x+1|+|x−2|有最小值,从而得出x的取值范围.2.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-5+t=10-2t,解得:t=5,-5+t=-5+5=0,即相遇点所对应的数为0,故答案为5;相遇点所对应的数为0;【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.3.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学 第1章 有理数 拔咼及易错题精选(全卷总分150分)姓名 得分 A.万位 B.十万位 C.百万位 D.千位二、填空题(每小题3分,共48分)1.已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= 一、选择题(每小题3分,共30分)1.如图,数轴上 的两个点A 、B 所表示的数分别是a 、b ,那么a , b , — a, — b 的大2.数轴上点A 表示的数为一2,若点B 到点A 的距离为3个单位,则点B 表示的数为 小关系是( A. b<—a<— b<a B. b<—b<— a<a C. b<— a<a<— b D. — a<—b<b<a 2.如果a , b 互为相反数,那么下面结论中不一定正确的是(B. a = -1 | bb 则a 、b 的关系是( A. a b =0 C. ab - -a 2 3.如图所示,数轴上标出了 7个点,相邻两点之间的距 离都相等,已知点 A 表示一4,点G 表示8.(1)点B 表示的有 理数是 ________ ;表示原点的是点_(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理 3.若丨a | = | 数是 _________________B. a=— bC. a+b=0 或 a — b=0 4. 已知数轴上两点A 、B 到原点的距离是 A. 5B. 9C. 5 或 9 5. 若a<0,贝U 下列各式不正确的是( A. a=b 2和7,D. 7 D. a=0 且 b=0 则A , B 两点间的距离是 A. a 2 =(-a)2 B. a 2 =a 2 C. a 3 十a)3 D. a 3 =-(-a 3)24. — | —刍的相反数是 ______ .5. 女口果 x 2=9,那么 x 3= _____ .6. 女口果一 x = - 2,贝U x = ____ .7. 化简:| 一 4|+ |3— n 丰 ______ .8. 绝对值小于2.5的所有非负整数的和为 ________ ,积为 ________6. — 5表示( A. 2个一5的积7. — 42+ (— 4) 2 的值是 A. -6 B. — 5与2的积 ) B. 0 C. 2个一5的和 D. 52的相反数 C. —2D. 329. 使x-5+|x + 2值最小的所有符合条件的整数 x 有 _________________________________ .10. 若a 、b 互为相反数,c 、d 互为倒数,则(a + b )10 — (cd ) 10 = ____________ . 11. 若a 、b 互为相反数,c 、d 互为倒数,x=3,则式子2(a + b ) — (— cd )2016 + x 的值为8.已知a 为有理数时,A. 1B. — 1 a 2 1 a 2 1C. -1D.不能确定 9.设n 是自然数,则凹匕匚的值为 B. 1 C. — 1 D. 1 或一1 A. 0 10. 已知凶=5, |y| = 3,且x>y ,则x + y 的值为 A. 8 11. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为( )B. 2C. — 8 或一2 )D. 8 或 2 A. 640 1045B. 64 10C. 6.4 106D. 6.4 10712.京九铁路的全长用四舍五入法得到近似数为2.5 X 106m ,贝尼精确到(12. 已知 x+2+(y —4)2 = 0 ,求 x y 的值为 ____________ .13. 近似数2.40X 04精确到 ________ 位,它的有效数字是 _____________ .14. 观察下列算式发现规律:71=7, 72=49, 73=343,74=2401,75=16807,76=117649,……, 用你所发现的规律写出:72017的个位数字是 —15. 观察等式:1 + 3 = 4 = 2 , 1 + 3+ 5= 9= 3 , 1 + 3+ 5+ 7= 16 = 4 , 1 + 3+ 5+ 72+ 9= 25= 5 , ...........猜想:(1) 1 + 3+ 5+ 7…+ 99 = _________ ;(2) 1 + 3+ 5+ 7+…+(2n — 1 )= ____________ .(结果用含n 的式子表示,其中n二1, 2, 3, ........ )•16. 一跳蚤在一直线上从 O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离0点的距离是______________ 个单位.三、解答题(共82分)1. (12分)计算:/ 八10 15 5 1 9、(1)(-12 ) 3 (-4.25)-()_(_15亍-(;)37 37 37 2 41(2)-0.125 12 (-16)(-2 —)21 1 1 1 1 1(3)(-11 )(-137-)“5 ( 112-)“5 ( 6 )-7 5 3 3 7 51 11000 一999 10. (6分)已知有理数a,b,c在数轴上的对应点如图所示,化简:a-b b-c - c-a .12. (6分)如果有理数a、b满足ab-2 • (1-b)1 2= 0 ,13. (3分)已知~ X求詈+詈+詈的值.14. (6分)已知a、b、c均为非零的有理数,a b c abc人教版七年级数学第1章有理数拔高及易错题精选2. (5 分)计算1-3+ 5-7+ 9- 11+…+ 97 - 99.3. (5分)已知数轴上有A和B两点,它们之间的距离为1,点A和原点的距离为2, 那么所有满足条件的点B对应的数有哪些?勺+ b4. (6分)“””代表一种新运算,已知a“b= -------- ,求x” y的值.ab其中X和y 满足(X -)2 |1 -3y |= 0 .25. (6分)已知a+1 +(b —2 2 =0 ,求(a+ b)2016+ a2017.6. (6分)已知a,b互为相反数,c、d互为倒数,x的绝对值为5.试求下式的值:x2_(a b cd)(a b)2016(~cd)2°仃.1十字框中的五个数的和与中间的数16有什么关系?2设中间的数为x,用代数式表示十字框中的五个数的和;6. 女口果一x = —2,贝U x= i2 . 32343638401 , 1 1 1 1—1++2 3 2 4 31试求■ab1(a 1)(b 1)1(a 2)(b 2)- 的值.D. —a<—b<b<a吗?如能,写出这五位数,如不能,说明理由参考答案一、选择题(每小题3分,共30分)1. 如图,数轴上的两个点A、B所表示的数分别是a、b,那么a,b,—a,—b的大小关系是( C )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—b2. 如果a, b互为相反数,那么下面结论中不一定正确的是(B )A. a b=0B. — = -1C. ab=-a2D. a二b b3. 若丨a | = | b, |则a、b的关系是(C )A. a=bB. a=- bC. a+b=0 或a—b=0D. a=0 且b=04. 已知数轴上两点A、B到原点的距离是2和7,则A , B两点间的距离是A. 5B. 9C. 5 或9D. 75. 若a<0,则下列各式不正确的是( D )A. a2 = (-a)2B2a = 2a C. a4 = (-a)3 D. a3 = -(-a3)6. —52表示(D )A. 2个一5的积B.—5与2的积C. 2个一5的和D. 52的相反数7. —42+ (—4) 2的值是( B )A. -6B.0C. £2D. 324若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于20101 或—5 .3. 如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示一4,点G表示8.(1)点B表示的有理数是 -2 ;表示原点的是点C(2)图中的数轴上另有点M到点A,点G距离之和为13,则这样的点M表示的有理数是—4.5或8.5 .a +18. 已知a为有理数时,一=(A )a' +1A. 1B. - 1C. _1D.不能确定9. 设n是自然数,则凹匕亡的值为(A )2A. 0B. 1C. —1D. 1 或一110. 已知|x|= 5, |y| = 3,且x>y,则x + y 的值为( D )A. 8B. 2C. —8 或—2D. 8 或211. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为(C )4 5 6 7A. 640 10B. 64 10C. 6.4 10D. 6.4 105 6 * 712. 京九铁路的全长用四舍五入法得到近似数为 2.5 X 108 9m,贝尼精确到(B )A.万位B.十万位C.百万位D.千位二、填空题(每小题3分,共48分)1. 已知a是绝对值最小的负整数,b是最小正整数,c是绝对值最小的有理数,则c+a+b=0 .2. 数轴上点A表示的数为一2,若点B到点A的距离为3个单位,则点B表示的数为11. 若a、b互为相反数,c、d互为倒数,x=3,则式子2(a+ b) —(—cd)2016+ x的值为2或一412. 已知x+2 +(y—4)2 = 0 ,求x y的值为16 .13. 近似数2.40X104精确到百位,它的有效数字是2, 4, 0 .14. 观察下列算式发现规律:71=7, 72=49, 73=343,74=2401,75=16807,76=117649,……, 用你所发现的规律写出:72017的个位数字是.15. 观察等式:1 + 3 = 4 = 22, 1 + 3 + 5 = 9 = 32, 1 + 3 + 5 + 7= 16 = 42, 1 + 3 + 5 + 72+ 9= 25= 5 , ...........猜想:(1) 1 + 3+ 5+ 7…+ 99 = 502;5——2的相反数是—3_.6 如果x2=9,那么x3= ±.7 化简:| - 4|+ |3—n 丰_.8 绝对值小于2.5的所有非负整数的和为0 ,积为0 .9 使x -5 +|x +2值最小的所有符合条件的整数x有—2, —1, 0, 1, 2, 3, 4, 5,(2) 1 + 3+ 5+ 7+-+ (2n—1) = n2 .(结果用含n的式子表示,其中n =1, 2, 3,……).16. 一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2 个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是50个单位.三、解答题(共82分)1. (12分)计算:/ 八10 15 5 1 9、(1) (一12 ) 3 (-4.25)-()-(-15;)-()37 37 37 2 4解:原式=(—仁弓)+ (3茫)+ (-4三)+ (-舟)+ (15£) + (--)37 37 4 37 2 4“10 5 o15 ,1 9 』=[(- 12)+ ()+ (3)】 + [ (- 4)+ ()+ (15)】37 37 37 4 4 2=—9 + 91(2)-0.125 12 (-16) (-2?)5解:原式=[—0.125X (—16) ]X[ 12X ( )]2=2 X (—30)=—60(3)(弋)1(一137新5(112『5(6* ?1 1 1 1解:原式=[(- 11一)X - + 6- X -7 5 7 5+ [ (- 137」)-5+ (112- ) -5:3 3=11 1 11 1=:(-11 一 + 6-)x - ] + [ ( 一137- + 112- ) S : 7 7 5 3 31=:(-5) X ] + [ (- 25)罚5=-1+ (-5) =-6=999 =10002. (5 分)计算 1-3+ 5-7+ 9- 11+…+ 97 - 99. 解:原式=(1-3) + ( 5- 7) + ( 9- 11)+…+( 97— 99)50=-2 X —(提示:1〜100其中奇数和偶数各50个,50个奇数分成25组) 2 =-2X 25 =-50.3. (5分)已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2, 那么所有满足条件的点B 对应的数有哪些?解:•••点A 和原点的距离为2,•••点A 对应的数是±当点A 对应的数是2时,则点B 对应的数是2+1=3或2-仁1;当点A 对应的数是一2时,则点B 对应的数是一2+仁一1或一2-仁一3. 4. (6分)“””代表一种新运算,已知a “b = ―b ,求x“ y 的值.ab其中x 和y 满足(x 丄)2 • |1 -3y |= 0 .21解:•••(x • —)2 • |1 -3y| = 02 1--x + 3 =0, 1 — 3y=01 1•-X ,y = 3解:t a , b 互为相反数,c 、d 互为倒数,x 的绝对值为5• a + b=0, cd=1, x=±5• x 2- (a + b + cd ) + (a + b ) 2016+ (-cd ) 2017「 2 ,2016 , 2017 =(d5) —(0+ 1) + 0 +(— 1) =25 - 1+ 0+ (- 1)=237. (6 分)已知 | a | =4 | b | =3 且 a>b ,求 a 、b 的值. 解:••• |a|=4, |b|=3• a=±4, b=±3 I a > b• a=4, b=±3. 8. (6 分)已知 | a | =| b | 5,且 ab<0,求 a + b 的值.解: t |a|=2, |b|=5• a=±2, b=±5 t ab<0• a=2, b= — 5 或 a=— 2, b=5.• a + b =2 + (— 5) =— 3 或 a + b =( — 2)+ 5=3. 9. (6分):2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 ■ 36 38 40(1) 十字框中的五个数的和与中间的数 16有什么关系?(2) 设中间的数为x ,用代数式表示十字框中的五个数的和;-11 1 1000 一 999解:••• |a + 1 +(b -2)2 = 0解: 1 + ••• + 19991 1000=1— --a+仁0,b — 2=0•- a = — 1, b=2201620172016“ 2017--(a+b )+ a =( - 1+2) +(-1) =1+( —1)=0 .6. (6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:1000 x 2 - (a b cd) (a b)2016 ( — cd)2017. xy5. (6 分)已知 a+1+(b_2)2 = 0,求(a + b)2016 + 孑017.(3) 若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010=1吗?如能,写出这五位数,如不能,说明理由 解:(1)十字框中的五个数的和为 6+14+16+18+26=80=1涿5,即是16的5倍;(2)设中间的数为x ,则十字框中的五个数的和为:(x-10)+(x+10)+(x-2)+(x+2)+x=5x ,所以五个数的和为 5 x ; (3)假设能够框出满足条件的五个数,设中间的数为 x ,由(2)得5x =2010,所 以x=402,但402位于第41行的第一个数,在这个数的左边没有数,所以不能框 住五个数,使它们的和等于 2010. 10. (6分)已知有理数a, b ,c 在数轴上的对应点如图所示,化简: a-b+|b-c — c-a ②当a , b , c 中只有一个为正数,则有:詈I 耆,中有一个为1,其余两个都为一1, 可得回+甲+©=—1.综上可得,回+兰+©的值为3或一1.a b c a b c 14. (6分)已知a 、b 、c 均为非零的有理数,a b c abc解:由回+学1+此-1,可得a , b , c 中有一个为正数两个为负数,则 凹=-1. ab c abc解:由图示知:c v 0v b v a ,--a —b >0, b —c >0, c —a v 0,••• |a — b|=a — b , |b — c|=b — c ,|c — a|=— (c — a )=,••• |a — b|+|b — c|— |c — a|=a — b+b — c — (a — c ) =a — b+b — c — a+c= 0. 12. (6分)如果有理数a 、b 满足ab-2 • (1-b)10 =0,11 1试求— - -... ....... 1 ----------- 的值.ab (a+1)(b+1) (a+2)(b+2)(a +2017]b+2017)解:••• ab_2 (1_b)2 =0--ab — 2=0, 1 — b=0• a=2, b=11 1 1- + -------------- + -------------ab (a 1)(b 1) (a 2)(b 2) 1 2018 2019“ 11111 1 1=1 — + — 一 一 + — ------ + …+ -------- ----- 13・(6分)已知儀「1,求a +懊早的值.解:由|0bc r 1,可得a , b , c 三个都为正数或a , b , c 中只有一个为正数. ①当a , b , c 三个都为正数,则有:囿,慎人三个都为1 ,可得:回+巴+山匚3;a b c a b c10. 若a 、b 互为相反数,c 、d 互为倒数,则(a + b )10 — (cd ) 10 = — 1.10 2 3 3 4 2018 20191a 2017b 2017=1 —12019 =2018 =2019。

相关文档
最新文档