小学六年级阴影部分面积计算大全(2020年整理).pdf

合集下载

六年级数学解决问题解答应用题专项专题训练(经典版)带答案解析

六年级数学解决问题解答应用题专项专题训练(经典版)带答案解析

六年级数学解决问题解答应用题专项专题训练(经典版)带答案解析一、六年级数学上册应用题解答题1.我们已经学习了“外方内圆”(如下图1)的问题,现在让你继续研究,你会有新的发现。

28846450.2413.76S S S π=-=⨯-⨯=-=正阴影圆(1)图2的阴影部分面积是多少?(列式计算)(2)通过上面两个图形的计算,你是否有所发现,按你的发现,那么如图3这样正方形中有16个小圆,阴影部分的面积是( )。

解析:(1)13.76(2)13.76。

【分析】(1)图2的阴影部分面积是用正方形的面积减去4个小圆的面积。

(2)把图2的计算结果和图1的结果进行对比,会有所发现。

用正方形的面积减16个小圆的面积进行图3的阴影部分的面积的验证。

【详解】(1)288(42)4S π=⨯-⨯÷⨯阴影26424π=-⨯⨯6416π=- 6450.24=-=13.76(2)两个图形的阴影部分的面积相等,都是13.76。

图3的阴影面积288(22)16S π=⨯-⨯÷⨯阴影6416π=- 6450.24=-=13.76 【点睛】本题是计算组合图形的面积,能知道用正方形的面积减去里面一个或多个圆的面积就是阴影部分的面积是解答本题的关键。

2.仔细观察下面的点子图,看看有什么规律.(1)根据上面图形与数的规律接着画一画,填一填.(2)探索填空:按照上面的规律,第6个点子图中的点子数是;第10个点子图中的点子数是.解析:(1)(2)27;65【详解】(2)第6个点子图中的点子数是:2+3+4+5+6+7=2+5+(3+7+4+6)=27(个)第10个点子图中的点子数是:2+3+4+5+6+7+8+9+10+11=13×5=65(个)答:第6个点子图中的点子数是27个,第10个点子图中的点子数是65个.3.数与形。

(1)仔细观察每幅图和它下面的算式之间的关系,根据发现的规律,接着画出后面的两个图形,并完成图形下面的算式。

【2020】最新小升初数学几何图形阴影部分面积题型大全(详细答案解析)

【2020】最新小升初数学几何图形阴影部分面积题型大全(详细答案解析)


S
= GFA
1 4
SDAHG

S
= GEC
1 4 SGHBC
,所以
S阴 =S
GFA+S
GEC
111来自= 4 SGHBC +
4 SDAHG
= 4
1
1
SGHBC +SDAHG
= 4
SABCD
= 4
10
4 =10cm 2 。
10、如图,阴影部分的面积是空白部分的 2 倍,求阴影部分三角形的底。 (单位: 厘米) 解:阴影部分的面积是空白部分的 2 倍, 这 2 个三角形是等高三角形,阴影三角 形的底是空白三角形的 2 倍,即 2× 4=8cm。
2
2
4 ÷2+3× 4÷ 2-3.14 × 5 ÷2=6cm2 。
2
2
9
32、下图中,长方形面积和圆面积相等。已知圆的半径是 面积和周长。
解:因为长方形 面积 和圆 面积 相等,所 以
33 S阴 = S圆 =
r2 = 3
3.14 32 =21.195 cm 2
44
4
长方形的长为 3
cm, C阴 =C长 -2r
45o
2
360o
21 BC AB BC
2
= 3.14
10 2 2
45o 360o
3.14 102
1 10 10
2
=37.5 ×3.14-50
=67.75 cm2
34、下图中正方形面积是 4 平方厘米,求涂色部分的面积。 解:设圆的半径为 r ,则 r2 =4, S阴=S正 - 1 S圆
4 =4- 1 r 2 =4-3.14=0.86 cm 2

专题17 圆中阴影部分的面积七种计算方法-2023年中考数学二轮复习核心考点拓展训练(解析版)

专题17 圆中阴影部分的面积七种计算方法-2023年中考数学二轮复习核心考点拓展训练(解析版)

专题17 圆中阴影部分的面积七种计算方法(解析版)第一部分典例剖析+针对训练方法一公式法典例1 (2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为( )A.12π米2B.14π米2C.18π米2D.116π米2思路引领:连结BC,AO,90°所对的弦是直径,根据⊙O的直径为1米,得到AO=BO=12米,根据勾股定理得到AB的长,根据扇形面积公式即可得出答案.解:连结BC,AO,如图所示,∵∠BAC=90°,∴BC是⊙O的直径,∵⊙O的直径为1米,∴AO=BO=12(米),∴AB=AO2+BO2=22(米),∴扇形部件的面积=90360π×(22)2=π8(米2),故选:C.总结提升:本题考查了扇形面积的计算,掌握设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=n360πR2是解题的关键.针对训练1.(2021•卧龙区二模)如图,△ABC中,D为BC的中点,以点D为圆心,BD长为半径画弧,交边BC 于点B,交边AC于点E,若∠A=60°,∠B=100°,BC=6,则扇形BDE的面积为 .思路引领:求出扇形的圆心角以及半径即可解决问题.解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=40π×32360=π.故答案为:π.总结提升:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式.方法二和差法典例2(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是( )A.3―π4B.23―πC.(6―π)33D.3―π2思路引领:作AF⊥BC,由勾股定理求出AF,然后根据S阴影=S△ABC﹣S扇形ADE得出答案.解:由题意,以A为圆心、一定的长为半径画弧,恰好与BC边相切,设切点为F,连接AF,则AF⊥BC.在等边△ABC中,AB=AC=BC=2,∠BAC=60°,∴CF=BF=1.在Rt△ACF中,AF=AB2―AF2=3,∴S阴影=S△ABC﹣S扇形ADE=12×2×3―60π×(3)2360=3―π2,故选:D.总结提升:本题主要考查了等边三角形的性质,求扇形面积,理解切线的性质,将阴影部分的面积转化为三角形的面积﹣扇形的面积是解题的关键.针对训练1.(2022•玉树市校级一模)如图,在扇形OAB中,已知∠AOB=90°,OA=2,过AB的中点C作CD⊥OA,CE⊥OB,垂足分别为点D,E,则图中阴影部分的面积为( )A.π﹣1B.π﹣2C.π﹣4D.π2―1思路引领:连接OC,求出∠AOC=∠BOC=45°,求出∠DCO=∠AOC=∠ECO=∠COE=45°,求出CD=OD,CE=OE,根据勾股定理求出CD=OD=OE=CE=2,再求出阴影部分的面积即可.解:连接OC,∵OA=2,∴OC=0A=2,∵∠AOB=90°,C为AB的中点,∴∠AOC=∠BOC=45°,∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=90°,∴∠DCO=∠AOC=∠ECO=∠COE=45°,∴CD=OD,CE=OE,∴2CD2=22,2OE2=22,即CD=OD=OE=CE=2,∴阴影部分的面积S=S扇形AOB﹣S△CDO﹣S△CEO=90π×22360―2×12×2×2=π﹣2,故选:B.总结提升:本题考查了等腰直角三角形的性质和判定,圆心角、弧、弦之间的关系,扇形面积的计算等知识点,把求不规则图形的面积转化成求规则图形的面积是解此题的关键,注意:如果扇形的圆心角为n°,半径为r,那么该扇形的面积为nπr2360.方法三等积变形法典例3(2020•朝阳)如图,点A,B,C是⊙O上的点,连接AB,AC,BC,且∠ACB=15°,过点O作OD ∥AB交⊙O于点D,连接AD,BD,已知⊙O半径为2,则图中阴影面积为 .思路引领:由圆周角定理可得∠AOB的度数,由OD∥AB可得S△ABD=S△ABO,进而可得S阴影=S扇形AOB,然后根据扇形面积公式计算即可.解:∵∠ACB=15°,∴∠AOB=30°,∵OD∥AB,∴S△ABD=S△ABO,∴S阴影=S扇形AOB=30π×22360=π3.故答案为:π3.总结提升:本题考查了圆周角定理、扇形面积公式和同底等高的两个三角形的面积相等等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.针对训练1.(2022秋•天桥区期末)如图,菱形OABC的三个顶点A,B,C在⊙O上,对角线AC,OB交于点D,若⊙O的半径是23,则图中阴影部分的面积是( )A.2πB.6πC.33πD.3π思路引领:根据四边形OABC是菱形,得BC=OC=OB,即△COB是等边三角形,根据S△ADB=S△OCD,所以图中阴影部分的面积=S扇形COB.解:∵四边形OABC是菱形,∴BC=OC=OB,∴△COB是等边三角形,∴∠COB=60°,∵S△ADB=S△OCD,∴图中阴影部分的面积=S扇形COB=60π×(23)2360=2π.故选:A.总结提升:本题考查的是扇形面积的计算和菱形的性质,掌握扇形的面积公式是解题的关键.方法四化零为整法(整体法)典例4(2021•天桥区二模)如图,已知正六边形的边长为4,分别以正六边形的6个顶点为圆心作半径是2的圆,则图中阴影部分的面积为 .思路引领:先求出六边形的内角和,再根据扇形的面积公式即可求出.解:∵六边形的内角和=(6﹣2)×180°=720°,∴阴影面积=6×π×22―720π×22360=16π.故答案为:16π.总结提升:本题主要考查了扇形的面积公式,学会把图中不规则图形的面积由几何关系转化为规则图形的面积.针对训练1.如图,分别以五边形的各个顶点为圆心,1cm长为半径作圆,则图中阴影部分的面积为 π cm2.思路引领:根据多边形的外角和为360°可得阴影部分的面积为半径为1的圆的面积,再利用圆的面积计算公式可得答案.解:图中阴影部分的面积为π×12=π.故答案为:π.总结提升:此题主要考查了多边形的外角,关键是掌握多边形的外角和为360°.方法五割补法(拼接法)典例5(2022•铜仁市)如图,在边长为6的正方形ABCD中,以BC为直径画半圆,则阴影部分的面积是( )A.9B.6C.3D.12思路引领:设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,证明BE=CE,得到弓形BE的面积=弓形CE的面积,则S阴影=S△ABE=S△ABC―S△BCE=12×6×6―12×6×3=9.解:设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,∵四边形ABCD是正方形,∴∠OCE=45°,∵OE=OC,∴∠OEC=∠OCE=45°,∴∠EOC=90°,∴OE垂直平分BC,∴BE=CE,∴弓形BE的面积=弓形CE的面积,∴S阴影=S△ABE=S△ABC―S△BCE=12×6×6―12×6×3=9,故选:A.总结提升:本题主要考查了求不规则图形的面积,正方形的性质,等腰直角三角形的性质,圆的性质,熟知相关知识是解题的关键.针对训练1.(2021•郑州模拟)如图,在扇形CBA中,∠ACB=90°,连接AB,以BC为直径作半圆,交AB于点D.若阴影部分的面积为(π﹣1),则阴影部分的周长为 .思路引领:根据BC为直径可知∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,设AC=BC=m,则AB=2m,CD=AD=BD=22m,阴影部分的面积可以看作是扇形ACB的面积与△ADC的面积之差,据此求得直角三角形的边长,进而求得AB和CD的长,进一步求得阴影部分的周长.解:设BC的中点为O,连接OD,连接CD,∵以BC为直径作半圆,交AB于点D.∴CD⊥AB,∵AC=BC,∠ACB=90°,∴AD=BD,CD=12 AB,∴CD=BD,∴CD=BD,∵AD=BD,CO=BO,∴OD∥AC,∴∠BOD=90°,设AC=BC=m,则AB=2m,CD=AD=BD=22 m,∵阴影部分的面积为(π﹣1),∴S阴影部分=S扇形ACB﹣S△ADC=14π•m2―12×(22m)2=π﹣1.∴14πm2―14m2=π﹣1,∴14m2=1,∴m=2,∴AC=BC=2,AB=22,OC=OB=1,∴AB的长为:90⋅π×2180=π,BD的长为:90⋅π×1180=12π,∴阴影部分的周长为:π+2×12π+22+2=2π+22+2故答案为:2π+22+2.总结提升:本题考查了扇形的面积和弧长的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.方法6 图形变化法(旋转、平移、翻折)典例6(2022•武威模拟)在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC 绕点A按逆时针方向旋转90°后得到△AB'C'.则图中阴影部分的面积为 .思路引领:解直角三角形得到AB=3BC=3,AC=2BC=2,然后根据扇形的面积公式即可得到结论.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=3BC=3,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=90⋅π⋅22360―60⋅π⋅(3)2360―12×1×3=π―32,故答案为:π―32;总结提升:本题主要考查了图形的旋转,扇形的面积公式,解直角三角形,熟练掌握扇形的面积公式是解决问题的关键.针对训练1.(2022•西宁)如图,等边三角形ABC内接于⊙O,BC=23,则图中阴影部分的面积是 4π3 .思路引领:根据内接于圆O的等边三角形的性质可得S△AOB=S△AOC,∠AOC=120°,将阴影部分的面积转化为扇形AOC的面积,利用扇形面积的公式计算可求解.解:∵△ABC为等边三角形,∴S△BOC=S△AOC,∠AOC=120°,在△OBC中,OB=OC,∠BOC=120°,BC=23,∴OB=OC=2,∴S阴影=S扇形AOC=120π×22360=4π3,故答案为:4π3.总结提升:本题主要考查扇形面积的计算,等边三角形的性质,掌握扇形面积公式是解题的关键.典例7(2022•九龙坡区自主招生)如图,正方形ABCD的边长为4,O为对角线的交点,点E,F分别为BC,AD的中点,以C为圆心,4为半径作圆弧BD,再分别以E,F为圆心,2为半径作圆弧BO,OD,则图中阴影部分的面积为 .(结果保留π)思路引领:连接BD,根据在同圆或等圆中,相等的圆心角所对的弧,所对的弦分别相等,利用面积割补法可得阴影部分的面积等于弓形面积,即等于扇形CBD减去直角三角形CBD的面积之差.解:连接BD,EF,如图,∵正方形ABCD的边长为4,O为对角线的交点,由题意可得:EF,BD经过点O,且EF⊥AD,EF⊥CB.∵点E,F分别为BC,AD的中点,∴FD=FO=EO=EB=2,∴OB=OD,OB=OD.∴弓形OB=弓形OD.∴阴影部分的面积等于弓形BD的面积.∴S阴影=S扇形CBD﹣S△CBD=90π×42360―12×4×4=4π﹣8.故答案为:4π﹣8.总结提升:本题主要考查了正方形的性质,扇形面积的计算.通过添加适当的辅助线将不规则的阴影部分的面积转化成规则图形的面积的差是解题的关键.针对训练1.(2021•重庆模拟)如图,在正方形ABCD中,扇形BAD的半径AB=4,以AB为直径的圆与正方形的对角线BD相交于O,连接AO.则图中阴影部分的面积为 .(结果保留π)思路引领:理由圆周角定理得出AO⊥BD,利用正方形的性质性质和等腰直角三角形的性质得出OD=OA =OB,结合转化思想得出阴影部分面积=S扇形ABD﹣S△ADC,进而得出答案.解:如图,∵AB是直径,∴∠AOB=90°,∴AO⊥BD,∵AB=AD=4,∠BAD=90°,∴OD=OA=OB,∴S弓形OA=S弓形OB,∴阴影部分面积=S扇形ABD﹣S△ADC=14π×42―12×4×4=4π﹣8,故答案为4π﹣8.总结提升:本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形,属于中考常考题型.典例8(2019•招远市一模)如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.点E为圆上一点,∠ECD=15°,将CE沿弦CE翻折,交CD于点F,图中阴影部分的面积= .思路引领:根据AB⊥CD,垂足为G,OG:OC=3:5,AB=8,可以求得⊙O的半径;要求阴影部分的面积只要做出合适的辅助线,然后利用锐角三角函数、扇形的面积和三角形的面积即可解答本题.解:如图,连接AO,将阴影部分沿CE翻折,点F的对应点为M,过点M作MN⊥CD于点N,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG=12AB=4,∵OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得,k=1或k=﹣1(舍去),∴5k=5,即⊙O的半径是5;∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=5×3 2,∴S阴影=S扇形OMC﹣S△OMC=120×π×25360―2534=25π3―2534,即图中阴影部分的面积是:25π3―2534.总结提升:本题考查翻折变换、扇形的面积、垂径定理,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.针对训练1.(如图,将半径为4cm的圆形纸片折叠后,圆弧恰好经过圆心O,折痕为AB,则图中阴影部分的面积为 .思路引领:作OC⊥AB于C,交AB于点D,连接AO,BO,AD,BD,根据轴对称的性质可以得出CO=CD,由三角函数值就可以求出∠AOB的度数,由扇形的面积﹣三角形AOB的面积就可以得出结论.解:作OC⊥AB于C,交AB于点D,连接AO,BO,AD,BD,∴∠ACO=90°.∵△AOB与△ADB关于AB对称,∴△AOB≌△ADB∴AO=AD,∠ACO=∠ACD=90°,∴CO=CD.∵OD=AO=4,∴OC=2.在Rt△AOC中,由勾股定理,得AC=23.∵cos∠AOC=COAO=12,∴∠AOC=60°.∵AO=BO,OC⊥AB,∴∠AOB=2∠AOC=120°.AB=2AC=43.∴S扇形AOBD=120π×16360=163π.∵S△AOB=43×22=43.阴影部分的面积为:(163π―43)cm2.故答案为:(163π―43)cm2.总结提升:本题考查了轴对称的性质的运用,勾股定理的运用,三角函数值的运用,扇形的面积公式的运用,三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.方法七重叠求余法例七(2022•鄂尔多斯二模)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是 .思路引领:根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积,即可求解.解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积,则阴影部分的面积是:60π×62360=6π,故答案为:6π.总结提升:本题主要考查了扇形的面积的计算,正确理解阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积是解题的关键.针对训练1.(2022•市南区校级一模)如图所示,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,将三角形绕着BC的中点O逆时针旋转60°,点A的对应点为E,则图中阴影部分的面积为 .思路引领:如图,连接OE,OA.根据S阴=S扇形EOA+S△EOF﹣S△BOF﹣S△AOB﹣S△PBE,求解即可.解:如图,连接OE,OA.由题意可知△BOF为等边三角形.∴OB=OF=BF=1,∴S△BOF=3 4,在Rt△ABC中,∵BC=2,∠CAB=30°,∴AB=2BC=4,AC=DE=23,∴S△EOF=12•OF•DE=3,∵OF=OD,∴S△EOF=S△DEO=3,∵∠AOE=60°,AO=AC2+OC2=(23)2+12=13,∴S扇形EOA=60⋅π⋅(13)2360=13π6,由题意,△BPE为直角三角形,BE=EF﹣BF=4﹣1=3,∴BP=12BE=32,PE=32―(32)2=332,∴S△PBE=12×32×332=938,∴S阴=S扇形EOA+S△EOF﹣S△BOF﹣S△AOB﹣S△PBE=13π6+3―34―3―938=13π6―1138.解法二:可以根据S阴=S△APE+(S扇形AOE﹣S△AOE)计算.总结提升:本题考查扇形的面积,旋转变换,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.第二部分专题提优训练一.选择题(共15小题)1.(2022•兰州)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为( )A.4.25πm2B.3.25πm2C.3πm2D.2.25πm2思路引领:根据S阴=S扇形DOA﹣S扇形BOC,计算即可.解:S阴=S扇形DOA﹣S扇形BOC=120π×9360―120π×94360=2.25πm2.故选:D.总结提升:本题考查的是扇形面积的计算,掌握扇形的面积公式S=nπR2360是解题的关键.2.(2022秋•西华县期末)如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,则图中阴影部分的面积是( )A.π﹣1B.π﹣2C.12π﹣1D.12π+1思路引领:已知BC为直径,则∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,阴影部分的面积可以看作是扇形ACB的面积与△ADC的面积之差.解:在Rt△ACB中,AB=22+22=22,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=2,∴D为半圆的中点,∴S阴影部分=S扇形ACB﹣S△ADC=12π×22―12×(2)2=π﹣1.故选:A.总结提升:本题主要考查扇形面积的计算,在解答此题时要注意不规则图形面积的求法.3.(2022•泰安)如图,四边形ABCD中,∠A=60°,AB∥CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为( )A.6π﹣93B.12π﹣93C.6π―932D.12π―932思路引领:根据平行线的性质,扇形的面积公式,三角形面积公式解答即可.解:过点E作EG⊥DF交DF于点G,∵∠A=60°,AB∥CD,DE⊥AD交AB于点E,∴∠GDE=∠DEA=30°,∵DE=EF,∴∠EDF=∠EFD=30°,∴∠DEF=120°,∵∠GDE=30°,DE=6,∴GE=3,DG=33,∴DF=63,阴影部分的面积=120π×36360―12×63×3=12π﹣93,故选:B.总结提升:本题主要考查了扇形面积和平行线的性质,熟练掌握扇形面积公式是解决本题的关键.4.(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作BC,AC,AB,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为( )A.2π﹣23B.2π―3C.2πD.π―3思路引领:此三角形是由三段弧组成,如果周长为2π,则其中的一段弧长为2π3,所以根据弧长公式可得60πr 180=2π3,解得r=2,即正三角形的边长为2.那么曲边三角形的面积就=三角形的面积+三个弓形的面积.解:设等边三角形ABC的边长为r,∴60πr180=2π3,解得r=2,即正三角形的边长为2,∴这个曲边三角形的面积=2×3×12+(60π×4360―3)×3=2π﹣23,故选:A.总结提升:本题考查了扇形面积的计算.此题的关键是明确曲边三角形的面积就=三角形的面积+三个弓形的面积,然后再根据所给的曲边三角形的周长求出三角形的边长,从而求值.5.现在很多家庭都使用折叠型餐桌来节省空间,两边翻开后成圆形桌面(如图①),餐桌两边AB和CD 平行且相等(如图②),小华用皮尺量出BD=1米,BC=0.5米,则阴影部分的面积为( )A.(π12―38)平方米B.(π6―38)平方米C.(π12―34)平方米D.(π6―34)平方米思路引领:设圆心为O,连接CO,过点O作OE⊥CD于点E,进而得出CD,EO的长以及∠COD的度数,进而由S弓形CD面积=S扇形COD﹣S△COD得出弓形CD的面积,进一步即可求得阴影部分的面积.解:设圆心为O,连接CO,过点O作OE⊥CD于点E,由题意可得出:∠BCD=90°,∴BD是⊙O的直径,∵BD=1米,BC=0.5米,∴BC=12BD,CD=BD2―CD2=32米,∴∠BDC=30°,∴OE=12OD=14米,∵OC=OD,∴∠OCD=∠BDC=30°,∴∠COD=120°,∴S弓形CD面积=S扇形COD﹣S△COD=120π×(12)2360―12×14×32,=(π12―316)平方米,∴阴影部分的面积为:2×(π12―316)=(π6―38)平方米.∴故选:B.总结提升:此题主要考查了勾股定理以及扇形面积计算以及三角形面积求法等知识,熟练掌握特殊角的三角函数关系是解题关键.6.(2022•鞍山)如图,在矩形ABCD中,AB=2,BC=3,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为( )A.π3B.3π5C.2π3D.3π4思路引领:解直角三角形求出∠CBE=30°,推出∠ABE=60°,再利用扇形的面积公式求解.解:∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∵BA=BE=2,BC=3,∴cos∠CBE=CBBE=32,∴∠CBE=30°,∴∠ABE=90°﹣30°=60°,∴S扇形BAE=60⋅π⋅22360=2π3,故选:C.总结提升:本题考查扇形的面积,矩形的性质等知识,解题的关键是求出∠CBE的度数.7.(2022•赤峰)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D 落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为( )A.2πB.22C.2π﹣4D.2π﹣22思路引领:连接OE,OC,BC,推出△EOC是等腰直角三角形,根据扇形面积减三角形面积计算即可.解:连接OE,OC,BC,由旋转知AC=AD,∠CAD=30°,∴∠BOC=60°,∠ACE=(180°﹣30°)÷2=75°,∴∠BCE=90°﹣∠ACE=15°,∴∠BOE=2∠BCE=30°,∴∠EOC=90°,即△EOC为等腰直角三角形,∵CE=4,∴OE=OC=22,∴S阴影=S扇形OEC﹣S△OEC=90π×(22)2360―12×22×22=2π﹣4,故选:C.总结提升:本题主要考查旋转的性质及扇形面积的计算,熟练掌握扇形面积的计算是解题的关键.8.(2022•毕节市)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45cm,扇面BD 的长为30cm,则扇面的面积是( )A.375πcm2B.450πcm2C.600πcm2D.750πcm2思路引领:先求出AD的长,再根据扇形的面积公式求出扇形BAC和扇形DAE的面积即可.解:∵AB的长是45cm,扇面BD的长为30cm,∴AD=AB﹣BD=15cm,∵∠BAC=120°,∴扇面的面积S=S扇形BAC﹣S扇形DAE=120π×452360―120π×152360=600π(cm2),故选:C.总结提升:本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键,注意:圆心角为n°,半径为r的扇形的面积S=nπr2 360.9.(2022•山西)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在AB上的点C处,图中阴影部分的面积为( )A.3π﹣33B.3π―932C.2π﹣33D.6π―932思路引领:根据折叠的想找得到AC=AO,BC=BO,推出四边形AOBC是菱形,连接OC交AB于D,根据等边三角形的性质得到∠CAO=∠AOC=60°,求得∠AOB=120°,根据菱形和扇形的面积公式即可得到结论.解:沿AB折叠扇形纸片,点O恰好落在AB上的点C处,∴AC=AO,BC=BO,∵AO=BO,∴四边形AOBC是菱形,连接OC交AB于D,∵OC=OA,∴△AOC是等边三角形,∴∠CAO=∠AOC=60°,∴∠AOB=120°,∵AC=3,∴OC=3,AD=32AC=332,∴AB=2AD=33,∴图中阴影部分的面积=S扇形AOB﹣S菱形AOBC=120π×32360―12×3×33=3π―932,故选:B.总结提升:本题考查了扇形面积的计算,菱形的判定和性质,等边三角形的判定和性质,正确地作出辅助线是解题的关键.10.(2022•连云港)如图,有一个半径为2的圆形时钟,其中每个相邻刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A.23π―32B.23π―3C.43π﹣23D.43π―3思路引领:连接OA、OB,过点O作OC⊥AB,根据等边三角形的判定得出△AOB为等边三角形,再根据扇形面积公式求出S扇形AOB=23π,再根据三角形面积公式求出S△AOB=3,进而求出阴影部分的面积.解:连接OA、OB,过点O作OC⊥AB,由题意可知:∠AOB=60°,∵OA=OB,∴△AOB为等边三角形,∴AB=AO=BO=2∴S扇形AOB=60π×22360=23π,∵OC⊥AB,∴∠OCA=90°,AC=1,∴OC=3,∴S△AOB=12×2×3=3,∴阴影部分的面积为:23π―3;故选:B.总结提升:本题考查有关扇形面积、弧长的计算,熟练应用面积公式,其中作出辅助线是解题关键.二.填空题11.(2020•巩义市二模)如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°,则图中阴影部分的面积为 .思路引领:连接OB,交CA于E,根据圆周角定理得到∠BOA=60°,根据平行线的性质得到∠D=∠OAC =30°,即可得出∠OBD=90°,解直角三角形求出BD,分别求出△BOD的面积和扇形AOB的面积,即可得出答案.解:连接OB,交CA于E,∵∠C=30°,∠C=12∠BOA,∴∠BOA=60°,∵BD∥AC,∴∠D=∠OAC=30°,∴∠OBD=90°,∴BD=3OB=83,∴S阴影=S△BDO﹣S扇形AOB=12×8×83―60π×82360=323―32π3,故答案为323―32π3.总结提升:本题考查了平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,题目比较好,难度适中.12.(2021•宛城区一模)如图所示,在扇形OAB中,∠AOB=90°,OA=2,长为2的线段CD的两个端点分别在线段OA、OB上滑动,E为CD的中点,点F在AB上,连接EF、BE.若AF的长是π3,则线段EF的最小值是 ,此时图中阴影部分的面积是 .思路引领:如图,连接OF,OE,BF,取OF的中点T,连接BT.根据弧长求得∠AOF=30°,jk证明△OBF是等边三角形,利用直角三角形斜边中线的性质求出OE,EF≥OF﹣OE=1,推出当O,E,F共线时,EF的值最小,此时点E与点T重合,求出BT,然后根据S阴影=S扇形BOF﹣S△BOT求得阴影的面积.解:如图,连接OF,OE,BF,取OF的中点T,连接BT.∵AF的长是π3,OA=2,∴π3=nπ×2180,∴n=30,∴∠AOF=30°,∵∠AOB=90°,∴∠BOF=60°,∵CE=DE,∴OE=12CD=12×2=1,∵OF=2,∴EF≥OF﹣OE=1,∴当O,E,F共线时,EF的值最小,此时点E与点T重合,∴此时EF=1,∵OF=OB,∠BOF=60°,∴△BOF是等边三角形,∵OT=TF,∴BT⊥OF,∴BE=BT=32OB=3,∴此时S阴影=S扇形BOF﹣S△BOT=60π×22360―12×3×1=23π―32.故答案为:1,23π―32.总结提升:本题考查了扇形的面积,等边三角形的判定,直角三角形斜边中线的性质等知识,明确当O,E,F共线时,EF的值最小是解题的关键.13.(2022•贵港)如图,在▱ABCD中,AD=23AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=32,则图中阴影部分的面积是 .思路引领:过点D作DF⊥AB于点F,根据等腰直角三角形的性质求得DF,从而求得EB,最后由S阴影=S▱ABCD−S扇形ADE−S△EBC结合扇形面积公式、平行四边形面积公式、三角形面积公式解题即可.解:过点D作DF⊥AB于点F,∵AD=23AB,∠BAD=45°,AB=32,∴AD=23×32=22,∴DF=AD sin45°=22×22=2,∵AE=AD=22,∴EB=AB−AE=2,∴S阴影=S▱ABCD−S扇形ADE−S△EBC=32×2―45π×(22)2360―12×2×2=52―π,故答案为:52―π.总结提升:本题考查等腰直角三角形、平行四边形的性质、扇形的面积公式等知识,是重要考点,准确添加辅助线是解题关键.14.(2020春•亭湖区校级期中)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=6,则阴影部分的面积是 .思路引领:根据扇形的面积公式计算即可.解:∵∠BOD=2∠DCB,∠DCB=30°,∴∠BOD=60°,∴S扇形OBD=60⋅π⋅62360=6π,故答案为6π.总结提升:本题考查扇形的面积,圆周角定理等知识,解题的关键是计算扇形的面积公式,属于中考常考题型.15.(2022•黔西南州)如图,边长为4的正方形ABCD的对角线交于点O,以OC为半径的扇形的圆心角∠FOH=90°.则图中阴影部分面积是 .思路引领:证明△OBE≌△OCG(SAS),推出S△OBE=S△OCG,推出S四边形OECG=S△OBC=4,再根据S 阴=S扇形OFH﹣S四边形OECG,求解即可.解:如图,∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OB=OD,∠OBE=∠OCG=45°,S△OBC=14S四边形ABCD=4,∵∠BOC=∠EOG=90°,∴∠BOE=∠COG,在△BOE和△COG中,∠BOE=∠COGOB=OC∠OBE=∠OCG,∴△OBE≌△OCG(SAS),∴S△OBE=S△OCG,∴S四边形OECG=S△OBC=4,∵△OBC是等腰直角三角形,BC=4,∴OB=OC=22,∴S阴=S扇形OFH﹣S四边形OECG=90π⋅(22)2360―4=2π﹣4,故答案为:2π﹣4.总结提升:本题考查扇形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.16.(2020•康巴什一模)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积为 .思路引领:先根据正方形的边长,求得CB1=OB1=AC﹣AB1=2―1,进而得到S△OB1C=12(2―1)2,再根据S△AB1C1=12,以及扇形的面积公式即可得出图中阴影部分的面积.解:连接DC1,∵∠CAC1=∠DCA=∠COB1=∠DOC1=45°,∴∠AC1B1=45°,∵∠ADC=90°,∴A,D,C1在一条直线上,∵四边形ABCD是正方形,∴AC=2,∠OCB1=45°,∴CB1=OB1∵AB1=1,∴CB1=OB1=AC﹣AB1=2―1,∴S△OB1C=12•OB1•CB1=12(2―1)2,∵S△AB1C1=12AB1•B1C1=12×1×1=12,∴图中阴影部分的面积=45⋅π⋅(2)2360―12(2―1)2―12=π4―2+2.故答案为π4―2+2.总结提升:本题考查了旋转的性质,正方形性质、勾股定理以及扇形面积的计算等知识点的综合应用,主要考查学生运用性质进行计算的能力.解题时注意:旋转前、后的图形全等.17.(2021秋•招远市期末)如图,在扇形OAB中,点C在AB上,∠AOB=90°,∠ABC=30°,AD⊥BC 于点D,连接AC,若OA=4,则图中阴影部分的面积为 .思路引领:连接OC,作CM⊥OB于M,根据等腰直角三角形的性质得出∠ABO=∠OAB=45°,AB=42,进而得出∠OCB=OBC=75°,即可得到∠BOC=30°,解直角三角形求得AD、BD、CM,然后根据S阴影=S△ABD+S△AOB﹣S扇形OAB+(S扇形OBC﹣S△BOC)计算即可求得.解:连接OC,作CM⊥OB于M,∵∠AOB=90°,OA=OB=2,∴∠ABO=∠OAB=45°,AB=42,∵∠ABC=30°,AD⊥BC于点D,∴AD=12AB=22,BD=32AB=26,∵∠ABO=45°,∠ABC=30°,∴∠OBC=75°,∵OB=OC,∴∠OCB=∠OBC=75°,∴∠BOC=30°,∴∠AOC=60°,CM=12OC=12×4=2,∴S阴影=S△ABD+S△AOB﹣S扇形OAB+(S扇形OBC﹣S△BOC)=S△ABD+S△AOB﹣S扇形OAC﹣S△BOC=12×22×26+12×4×4―12×4×2―60π×42360=4+43―8π3.故答案为:4+43―8π3.总结提升:此题考查了运用切割法求图形的面积.解决本题的关键是把所求的面积转化为容易算出的面积的和或差的形式.。

2019----2020小学五年级数学求阴影部分面积习题

2019----2020小学五年级数学求阴影部分面积习题

小学五年级数学求阴影部分面积习题1、下左图中,已知阴影部分面积使30平方厘米,AB=15厘米,求图形空白部分的总面积。

2、上右图,一个长方形和一个三角形重叠在一起,已知三角形ADE的面积比长方形ABCD 的面积小4平方厘米,求CE的长。

3、如下右图,求直角梯形中阴影部分的面积。

(单位:厘米)4、阴影部分面积是40平方米,求空白部分面积。

(单位:米)5、求下左图阴影部分的面积。

(单位:厘米)6、上右图,ABCD只直角梯形,已知AE=EF=FD,AB为6厘米,BC为10厘米,阴影部分面积为6平方厘米。

求直角梯形ABCD的面积。

7、下左图是由一个三角形和一个梯形组成,已知三角形的面积是1平方分米,求这个图形的面积。

(单位:分米)8、如右上图,平行四边形面积240平方厘米,求阴影部分面积。

9、下左图ABCD是梯形,它的面积是140平方厘米,已知AB=15厘米,DC=5厘米。

求阴影部分的面积。

10、求右上面图形的面积(单位:厘米)11、如左下图,求长方形中的梯形面积。

(单位:厘米)12、求右上图阴影部分的面积(单位:厘米)13、求梯形的面积。

(单位:厘米)14、如图,已知梯形ABCD的面积为37.8平方厘米,BE长7厘米,EC长4厘米,求平行四边形ABED的面积。

15、求左下图空白部分面积。

(单位:厘米)16、如右上图,已知平行四边形ABCD中,阴影部分面积为72平方厘米,求三角形BCD的面积。

17、求左下图梯形中阴影部分的面积。

(单位:cm)18、下图,ABCD是一个等腰梯形,ADFE是边长为4厘米的正方形,CF =2厘米,求阴影部分的面积。

19、左下图ABCD是梯形,它的面积是200平方厘米,已知AB=20厘米,DC=5厘米,求阴影部分的面积。

(单位:厘米)22、如右上图:把梯形分割成一个平行四边形和一个三角形。

已知三角形的面积为8 平方厘米,EC=4厘米,BE=8厘米,求梯形的面积。

23、如左下图:在梯形ABCD中,AB=4厘米,CD=9厘米,三角形ABE 的面积是10平方厘米,求阴影部分的面积。

小升初复习专题求阴影部分面积(含答案)(2020年九月整理).doc

小升初复习专题求阴影部分面积(含答案)(2020年九月整理).doc

2017年小升初复习专题-求阴影部分面积(含答案)目标:巩固小学几何图形计算公式,并通过专题复习,加强学生对于图形面积计算的灵活运用。

1、几何图形计算公式:1)正方形:周长=边长×4 C=4a 面积=边长×边长S=a×a2)正方体:表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3)长方形:周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab4)长方体:表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高V=abh5)三角形:面积=底×高÷2 s=ah÷26)平行四边形:面积=底×高s=ah7)梯形:面积=(上底+下底)×高÷2 s=(a+b)×h÷28)圆形:周长=直径×Π=2×Π×半径C=Πd=2Πr 面积=半径×半径×Π9)圆柱体:侧面积=底面周长×高表面积=侧面积+底面积×2 体积=底面积×高10)圆锥体:体积=底面积×高÷32、面积求解大致分为以下几类:➢从整体图形中减去局部;➢割补法,将不规则图形通过割补,转化成规则图形。

重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。

能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。

例1.求阴影部分的面积。

(单位:厘米) 例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)例3.求图中阴影部分的面积。

(单位:厘米)例4.求阴影部分的面积。

(单位:厘米)例5.求阴影部分的面积。

(单位:厘米) 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。

六年级数学-不规则图形面积计算

六年级数学-不规则图形面积计算
解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影部分的面积是正方形的一半.
例2.如右图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。
解:由容斥原理S阴影=S扇形ACB+S扇形ACD-S正方形ABCD
例3如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。
3.如右图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长Hale Waihona Puke G为5厘米,求它的宽DE等于多少厘米?
4.如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.
5.如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.
不规则图形面积计算(2)
九、对称添补法:
这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
十、重叠法:
这种方法是将所求的图形看成是两个或两个以上图形的重叠部分,然后运用“容斥原理”(SA∪B=SA+SB-SA∩B)解决。例如,欲求右图中阴影部分的面积,可先求两个扇形面积的和,减去正方形面积,因为阴影部分的面积恰好是两个扇形重叠的部分.
七、 平移法:
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如右图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

(六年级)求阴影部分面积(圆和扇形)复习进程

(六年级)求阴影部分面积(圆和扇形)复习进程

竹溪县实验小学 吴怀忠
图中圆与长方形面积相等,圆的周 长是6.28米。阴影部分面积多少平 方米?
2020年6月8日星期一
竹溪县实验小学 吴怀忠
6 求阴影部分面积。(单位:dm)
2020年6月8日星期一
o 10
竹溪县实验小学 吴怀忠
7 求阴影部分面积。
2020年6月8日星期一
2cm
竹溪县实验小学 吴怀忠
10 求阴影部分面积。
2020年6月8日星期一
4cm
竹溪县实验小学 吴怀忠
11 求阴影部分面积。
2020年6月8日星期一
4m
4m
竹溪县实验小学 吴怀忠
8
2020年6月8日星期一
竹溪县实验小学 吴怀忠
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
竹溪县实验小学 吴怀忠
计算图中蓝色部分的面积 8分米
3分米
15分米
3 求阴影部分的周长与面积。(单位:cm4Βιβλιοθήκη 102020年6月8日星期一
竹溪县实验小学 吴怀忠
4 求阴影部分周长和 面积。(单位:dm)
3
2020年6月8日星期一
5
竹溪县实验小学 吴怀忠
5 求阴影部分面积。(单位:dm)
1
3
2020年6月8日星期一
=
+
求阴影面积: 直接算呢?有简便方法吗?
4cm 4cm
求阴影部分的面积。(单位:厘米)
求下列各图中阴影部分面积。
阴影部分的面积 =大半圆的面积 -小半圆的面积
阴影部分的面积 =正方形的面积 -直角扇形的面积
求阴影部分的面积。
| ← 15厘米 →|

09-图形计算100题(提高)2023年六年级下册数学高频易错题(人教版)(含答案).doc

09-图形计算100题(提高)2023年六年级下册数学高频易错题(人教版)(含答案).doc

(期末真题精选)09-图形计算100题(提高)2023年六年级下册数学高频易错题(人教版)试卷说明:本试卷试题精选自浙江省各地市2020-2022近三年的六年级期末真题试卷,难易度均衡,适合浙江省各地市和使用人教版教材的六年级学生小升初复习备考使用!一、图形计算1.求下面阴影部分的面积。

(单位:厘米)2.根据你上面的发现求出下图中正方形的面积.3.求下图阴影部分的面积。

(单位:厘米)4.周长:面积:5.求表面积。

6.计算下面图形的体积。

7.计算下面圆锥的体积。

8.图形计算:如图,四边形ABCD为梯形,半圆的半径OD长为5cm,求阴影部分的面积。

9.求如图中阴影部分的面积。

10.求下图阴影部分的周长和面积。

(单位:厘米)11.求阴影部分的面积。

(单位:cm)12.计算图中阴影部分的面积。

(单位:cm)13.求下面图形的体积(单位:厘米)。

14.图形计算,计算这块空心砖的体积。

(单位:厘米)15.计算下面阴影部分面积。

(单位:cm)16.求下面图形中涂色部分的周长。

17.计算这个零件的表面积。

(单位:厘米)18.求下图中阴影部分的面积。

(单位:厘米)19.计算下面图形的表面积(单位:厘米)。

20.求下面圆中最大正方形的面积.21.正方形边长8cm,求阴影部分面积。

22.如图,计算出该图形的表面积和体积。

(单位:cm)23.求表面积和体积(单位:cm)。

24.把如图所示的圆锥从中间切开,下半部分的体积是多少?(单位:厘米)25.求阴影部分的面积。

(单位:厘米;)26.如图,求下图中阴影部分的面积。

(单位:cm)27.求这个圆柱体的表面积和体积.(单位:厘米)28.求图中阴影部分的面积.(单位:厘米)29.计算下面各图形的表面积。

(单位:cm)30.求阴影部分面积:31.求下面圆柱的表面积.(1)(2)32.求阴影部分面积.33.求如图阴影部分的面积。

(单位:米)34.求图中阴影部分的面积和周长.35.求下面图形的表面积。

(六年级)求阴影部分面积(圆和扇形)

(六年级)求阴影部分面积(圆和扇形)
2,求圆的面积。
2020年3月5日星期四
10m2
竹溪县实验小学 吴怀忠
3 求阴影部分的周长与面积。(单位:cm
4
10
2020年3月5日星期四
竹溪县实验小学 吴怀忠
4 求阴影部分周长和 面积。(单位:dm)
3
2020年3月5日星期四
5
竹溪县实验小学 吴怀忠
5 求阴影部分面积。(单位:dm)
8 求阴影部分周长和 面积。(单位:cm)
4
2020年3月5日星期四
2
竹溪县实验小学 吴怀忠
9 跑道外圈长多少米?内圈长 多少米?(两端各是半圆) 跑道和草坪面积分别是多少?
2020年3月5日星期四
100米
竹溪县实验小学 吴怀忠
10 求阴影部分面积。
2020年3月5日星期四
4cm
竹溪县实验小学 吴怀忠
11 求阴影部分面积。
2020年3月5日星期四
4m
4m
竹溪县实验小学 吴怀忠
8
2020年3月5日星期四
竹溪县实验小学 吴怀忠
10
10
用割补法:阴影部分的面积=圆面积的一半
求阴影部分的周长和面积。
6dm
求阴影部分周长和 面积。(单位:cm)
20
右面图形的中间是一个 边长为4厘米的正方形。 计算整个图形的面积是 多少平方厘米?
=
+
求阴影面积: 直接算呢?有简便方法吗?
4cm 4cm
求下列各图中阴影部分面积。
阴影部分的面积 =大半圆的面积 -小半圆的面积
一、复习
1、求圆面积的计算公式。 S = πr2
2、求正方形面积的计算公式。 S = a2
3、求三角形面积的计算公式。 S = a×h÷2

09-图形计算100题(提高)2023年六年级下册数学高频易错题(人教版)(含答案).doc

09-图形计算100题(提高)2023年六年级下册数学高频易错题(人教版)(含答案).doc

(期末真题精选)09-图形计算100题(提高)2023年六年级下册数学高频易错题(人教版)试卷说明:本试卷试题精选自广东省各地市2020-2022近三年的六年级期末真题试卷,难易度均衡,适合广东省各地市和使用人教版教材的六年级学生小升初复习备考使用!一、图形计算1.计算下列图形中阴影部分的面积。

(1)(2)2.求涂色部分的面积。

3.已知等腰直角三角形的面积是50平方厘米,求半圆的面积(π取3.14)。

4.阴影部分的周长和面积各是多少?5.图形计算。

求下面阴影部分图形的周长。

6.计算下面图形的表面积和体积。

(单位:厘米)7.求出下面圆柱的体积。

(单位:cm)8.求图中阴影部分的周长和面积。

9.图中是两个正方形,大正方形边长为8,小正方形边长为4,求图中阴影部分面积.(单位:厘米),(π取3.14)10.下图中,底边和高都是6厘米的等腰三角形,分别以高的长为直径画圆,以底的一半长为直径画两个半圆,求阴影部分的面积。

(π取3.14)11.求阴影部分的周长。

(单位:分米)12.计算下面图形中阴影部分的面积(1)(2)外圆半径4cm,内圆半径3厘米13.计算正方体的表面积。

14.求下图中阴影部分的面积。

(单位:厘米)15.下图中三个圆的周长都是25.12厘米,不用测量。

计算图中阴影部分的总面积。

16.计算图形的体积。

17.计算下图阴影部分的面积(单位:厘米)。

18.如图中,三个圆的直径都是4dm,求阴影部分的面积和周长.19.计算下面圆柱的表面积.20.求下面图形阴影部分的面积。

(单位:厘米)21.求出阴影部分的周长和面积.(单位:厘米)22.求阴影部分的面积:大圆的半径与小圆的直径都是3厘米.23.下面各涂色部分的面积.(单位:dm)24.求出这个组合体的体积。

(单位:厘米)25.下图中涂色部分正方形的面积是240m,求图中未涂色部分的面积。

26.求阴影部分的面积。

(单位:cm)27.如图,计算它的周长和面积.(单位:厘米)28.求阴影部分的面积。

六年级求阴影部分面积圆和扇形

六年级求阴影部分面积圆和扇形
一、复习
1、求圆面积的计算公式。 S = πr2
2、求正方形面积的计算公式。 S = a2
3、求三角形面积的计算公式。 S = a×h÷2
ห้องสมุดไป่ตู้
1.求下图中涂色部分的周长和面积。(单位:米)
周长=大圆周长一半 + 一个小圆周长
10
10
用割补法:阴影部分的面积=圆面积的一半
求阴影部分的周长和面积。
6dm
11 求阴影部分面积。
2020年5月2日星期六
4m
4m
竹溪县实验小学 吴怀忠
8
2020年5月2日星期六
竹溪县实验小学 吴怀忠
8 求阴影部分周长和 面积。(单位:cm)
4
2020年5月2日星期六
2
竹溪县实验小学 吴怀忠
9 跑道外圈长多少米?内圈长 多少米?(两端各是半圆) 跑道和草坪面积分别是多少?
2020年5月2日星期六
100米
竹溪县实验小学 吴怀忠
10 求阴影部分面积。
2020年5月2日星期六
4cm
竹溪县实验小学 吴怀忠
求阴影部分的面积。(单位:厘米)
这个阴影部分 是一个( 半圆 )
这个阴影部分的面积 = 正方形的面积 - 直角扇形的面积
求阴影部分面积。
10cm
求阴影部分的面积。
1 求阴影部分面积。(单位:cm)
8 8
求圆的面积:

正方形的面积是12平方厘米
求圆的面积:
O
三角形的面积是4平方厘米
2 下图中,正方形面积 为10m2,求圆的面积。
2020年5月2日星期六
10m2
竹溪县实验小学 吴怀忠
计算图中蓝色部分的面积 8分米

2020年中考复习之圆的阴影部分面积相关计算(含答案解析)

2020年中考复习之圆的阴影部分面积相关计算(含答案解析)

2020中考复习——之圆的阴影部分面积相关计算(含答案解析)一.选择题(共5小题)1.(2018•抚顺)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B.C.πD.2π2.(2016•朝阳)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π3.(2017•朝阳)如图,在正方形ABCD中,O为对角线交点,将扇形AOD绕点O顺时针旋转一定角度得到扇形EOF,则在旋转过程中图中阴影部分的面积()A.不变B.由大变小C.由小变大D.先由小变大,后由大变小4.(2017•重庆)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.5.(2017•兰州)如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为()A.π+1B.π+2C.π﹣1D.π﹣2二.填空题(共1小题)6.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为.三.解答题(共8小题)7.(2015•沈阳)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)8.(2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若CE=AE=2,求阴影部分的面积.9.(2019•衡阳)如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.10.(2015•本溪)如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB 为直径作⊙O,分别交边AC、BC于点E、点F(1)求证:AD是⊙O的切线;(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.11.(2017•新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.12.(2013•本溪)如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).13.(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.14.(2015•福州模拟)如图,AB为⊙O的直径,弦AC=2,∠ABC=30°,∠ACB的平分线交⊙O于点D,求:(1)BC、AD的长;(2)图中两阴影部分面积的和.2020中考复习——之圆的阴影部分面积相关计算(含答案解析)参考答案与试题解析一.选择题(共5小题)1.(2018•抚顺)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B.C.πD.2π【考点】M5:圆周角定理;MO:扇形面积的计算.【分析】根据圆周角定理可以求得∠BOD的度数,然后根据扇形面积公式即可解答本题.【解答】解:∵∠BCD=30°,∴∠BOD=60°,∵AB是⊙O的直径,CD是弦,OA=2,∴阴影部分的面积是:=,故选:B.【点评】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.(2016•朝阳)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π【考点】L3:多边形内角与外角;MO:扇形面积的计算.【分析】圆心角之和等于n边形的内角和(n﹣2)×180°,由于半径相同,根据扇形的面积公式S=计算即可求出圆形中的空白面积,再用5个圆形的面积减去圆形中的空白面积可得阴影部分的面积.【解答】解:n边形的内角和(n﹣2)×180°,圆形的空白部分的面积之和S==π=π=π.所以图中阴影部分的面积之和为:5πr2﹣π=5π﹣π=π.故选:C.【点评】此题考查扇形的面积计算,正确记忆多边形的内角和公式,以及扇形的面积公式是解决本题的关键.3.(2017•朝阳)如图,在正方形ABCD中,O为对角线交点,将扇形AOD绕点O顺时针旋转一定角度得到扇形EOF,则在旋转过程中图中阴影部分的面积()A.不变B.由大变小C.由小变大D.先由小变大,后由大变小【考点】LE:正方形的性质;MO:扇形面积的计算;R2:旋转的性质.【分析】根据正方形的性质得出OA=OD=OC,∠AOD=90°,再根据图形判断即可.【解答】解:过O点作CD的垂线交CD于G,过O点作BC的垂线交BC于H,记扇形EOF于正方形交点分别为M、N,如图,∴OH=OG=CD,∵∠HOG=∠HOM+∠GOM=90°,∠NOM=∠NOG+∠GOM=90°,∴∠HOM=∠NOG,∴Rt△OHM≌Rt△OGN,∴S四边形CMON=S四边形CMOG+S△OGN=S四边形CMOG+S△OHM=S四边形OHCG=OH2=S正方形ABCD,∵S△AOD=×CD•AD=S正方形ABCD∴S△AOD=S四边形CMON,∵S扇形=S阴影+S△AOD=S′阴影+S四边形CMON∴S阴影=S′阴影=S扇形﹣S△AOD=﹣S正方形ABCD=AD2﹣S正方形ABCD=S正方形ABCD,∴在旋转过程中图中阴影部分的面积不变,故选:A.【点评】本题考查了扇形的面积、旋转的性质、正方形的性质等知识点,能根据正方形的性质和旋转的性质进行判断是解此题的关键.4.(2017•重庆)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.【考点】LB:矩形的性质;MO:扇形面积的计算.【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EBF,求出答案.【解答】解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EBF=1×2﹣×1×1﹣=﹣.故选:B.【点评】此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE的长以及∠EBC的度数是解题关键.5.(2017•兰州)如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为()A.π+1B.π+2C.π﹣1D.π﹣2【考点】MM:正多边形和圆;MO:扇形面积的计算.【分析】根据对称性可知阴影部分的面积等于圆的面积减去正方形的,求出圆内接正方形的边长,即可求解.【解答】解:连接AO,DO,∵ABCD是正方形,∴∠AOD=90°,AD==2,圆内接正方形的边长为2,所以阴影部分的面积=[4π﹣(2)2]=(π﹣2)cm2.故选:D.【点评】本题考查正多边形与圆、正方形的性质、圆的面积公式、扇形的面积公式等知识,解题的关键是利用对称性可知阴影部分的面积等于圆的面积减去正方形的,也可以用扇形的面积减去三角形的面积计算,属于中考常考题型.二.填空题(共1小题)6.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为.【考点】L5:平行四边形的性质;MO:扇形面积的计算.【分析】连接OE,作OF⊥DE,先求出∠COE=2∠D=60°、OF=OD=1,DF=OD cos ∠ODF=,DE=2DF=2,再根据阴影部分面积是扇形与三角形的面积和求解可得.【解答】解:如图,连接OE,作OF⊥DE于点F,∵四边形ABCD是平行四边形,且∠A=150°,∴∠D=30°,则∠COE=2∠D=60°,∵CD=4,∴CO=DO=2,∴OF=OD=1,DF=OD cos∠ODF=2×=,∴DE=2DF=2,∴图中阴影部分的面积为+×2×1=+,故答案为:+.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.三.解答题(共8小题)7.(2015•沈阳)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)【考点】M6:圆内接四边形的性质;MO:扇形面积的计算;T7:解直角三角形.【分析】(1)根据四边形ABCD是⊙O的内接四边形得到∠ABC+∠D=180°,根据∠ABC=2∠D得到∠D+2∠D=180°,从而求得∠D=60°,最后根据OA=OC得到∠OAC=∠OCA=30°;(2)首先根据∠COB=3∠AOB得到∠AOB=30°,从而得到∠COB为直角,然后利用S阴影=S扇形OBC﹣S△OEC求解.【解答】解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠ABC=2∠D,∴∠D+2∠D=180°,∴∠D=60°,∴∠AOC=2∠D=120°,∵OA=OC,∴∠OAC=∠OCA=30°;(2)∵∠COB=3∠AOB,∴∠AOC=∠AOB+3∠AOB=120°,∴∠AOB=30°,∴∠COB=∠AOC﹣∠AOB=90°,在Rt△OCE中,OC=2,∴OE=OC•tan∠OCE=2•tan30°=2×=2,∴S△OEC=OE•OC=×2×2=2,∴S扇形OBC==3π,∴S阴影=S扇形OBC﹣S△OEC=3π﹣2.【点评】本题考查了扇形面积的计算,圆内接四边形的性质,解直角三角形的知识,在求不规则的阴影部分的面积时常常转化为几个规则几何图形的面积的和或差.8.(2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若CE=AE=2,求阴影部分的面积.【考点】M5:圆周角定理;ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接OA,过O作OF⊥AE于f,得到∠EAO+∠AOF=90°,根据等腰三角形的性质和圆周角定理得到∠EDA=∠AOF,推出OA⊥AC,得到AC是⊙O的切线;(2)根据等腰三角形的性质得到∠C=∠EAC,得到∠AEO=2∠EAC,推出△OAE是等边三角形,根据扇形的面积公式得到S扇形AOE==2π,求得S△AOE=AE•OF=3=3,于是得到结论.【解答】(1)证明:连接OA,过O作OF⊥AE于F,∴∠AFO=90°,∴∠EAO+∠AOF=90°,∵OA=OE,∴∠EOF=∠AOF=AOE,∵∠EDA=AOE,∴∠EDA=∠AOF,∵∠EAC=∠EDA,∴∠EAC=∠AOF,∴∠EAO+∠EAC=90°,∵∠EAC+∠EAO=∠CAO,∴∠CAO=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵CE=AE=2,∴∠C=∠EAC,∵∠EAC+∠C=∠AEO,∴∠AEO=2∠EAC,∵OA=OE,∴∠AEO=∠EAO,∴∠EAO=2∠EAC,∵∠EAO+∠EAC=90°,∴∠EAC=30°,∠EAO=60°,∴△OAE是等边三角形,∴OA=AE,∠EOA=60°,∴OA=2,∴S扇形AOE==2π,在Rt△OAF中,OF=OA•sin∠EAO=2=3,∴S△AOE=AE•OF=3=3,∴阴影部分的面积=2π﹣3.【点评】本题考查了切线的判定和性质,扇形的面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.9.(2019•衡阳)如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.【考点】M5:圆周角定理;ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;(2)根据平行线的性质得到∠=30°,解直角三角形求出BD,分别求出△BOD的面积和扇形AOB的面积,即可得出答案.【解答】(1)证明:连接OB,交CA于E,∵∠C=30°,∠C=∠BOA,∴∠BOA=60°,∵∠BCA=∠OAC=30°,∴∠AEO=90°,即OB⊥AC,∵BD∥AC,∴∠DBE=∠AEO=90°,∴BD是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠D=∠CAO=30°,∵∠OBD=90°,OB=8,∴BD=OB=8,∴S阴影=S△BDO﹣S扇形AOB=×8×8﹣=32﹣.【点评】本题考查了平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,题目比较好,难度适中.10.(2015•本溪)如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB 为直径作⊙O,分别交边AC、BC于点E、点F(1)求证:AD是⊙O的切线;(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.【考点】KM:等边三角形的判定与性质;MD:切线的判定;MO:扇形面积的计算.【分析】(1)求出∠DAC=30°,即可求出∠DAB=90°,根据切线的判定推出即可;(2)连接OE,分别求出△AOE、△AOC,扇形OEG的面积,即可求出答案.【解答】(1)证明:∵△ABC为等边三角形,∴AC=BC,又∵AC=CD,∴AC=BC=CD,∴△ABD为直角三角形,∴AB⊥AD,∵AB为直径,∴AD是⊙O的切线;(2)解:连接OE,∵OA=OE,∠BAC=60°,∴△OAE是等边三角形,∴∠AOE=60°,∵CB=BA,OA=OB,∴CO⊥AB,∴∠AOC=90°,∴∠EOC=30°,∵△ABC是边长为4的等边三角形,∴AO=2,由勾股定理得:OC==2,同理等边三角形AOE边AO上高是=,S阴影=S△AOC﹣S等边△AOE﹣S扇形EOG==.【点评】本题考查了等边三角形的性质和判定,勾股定理,三角形面积,扇形的面积,切线的判定的应用,能综合运用定理进行推理和计算是解此题的关键.11.(2017•新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.【考点】ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接BO,根据△OBC和△BCE都是等腰三角形,即可得到∠BEC=∠OBC =∠OCB=30°,再根据三角形内角和即可得到∠EBO=90°,进而得出BE是⊙O的切线;(2)在Rt△ABC中,根据∠ACB=30°,BC=3,即可得到半圆的面积以及Rt△ABC的面积,进而得到阴影部分的面积.【解答】解:(1)如图所示,连接BO,∵∠ACB=30°,∴∠OBC=∠OCB=30°,∵DE⊥AC,CB=BD,∴Rt△DCE中,BE=CD=BC,∴∠BEC=∠BCE=30°,∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,∴BE是⊙O的切线;(2)当BE=3时,BC=3,∵AC为⊙O的直径,∴∠ABC=90°,又∵∠ACB=30°,∴AB=tan30°×BC=,∴AC=2AB=2,AO=,∴阴影部分的面积=半圆的面积﹣Rt△ABC的面积=π×AO2﹣AB×BC=π×3﹣××3=﹣.【点评】本题主要考查了切线的判定以及扇形面积的计算,解题时注意:经过半径的外端且垂直于这条半径的直线是圆的切线.12.(2013•本溪)如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).【考点】MD:切线的判定;MO:扇形面积的计算.【分析】(1)连结OD,根据圆周角定理得∠ABD=∠ACD=45°,∠ADB=90°,可判断△ADB为等腰直角三角形,所以OD⊥AB,而DE∥AB,则有OD⊥DE,然后根据切线的判定定理得到DE为⊙O的切线;(2)先由BE∥AD,DE∥AB得到四边形ABED为平行四边形,则DE=AB=8cm,然后根据梯形的面积公式和扇形的面积公式利用S阴影部分=S梯形BODE﹣S扇形OBD进行计算即可.【解答】解:(1)DE与⊙O相切.理由如下:连结OD,BD,则∠ABD=∠ACD=45°,∵AB是直径,∴∠ADB=90°,∴△ADB为等腰直角三角形,∵点O为AB的中点,∴OD⊥AB,∵DE∥AB,∴OD⊥DE,∵OD是半径,∴DE为⊙O的切线;(2)∵BE∥AD,DE∥AB,∴四边形ABED为平行四边形,∴DE=AB=8cm,∴S阴影部分=S梯形BODE﹣S扇形OBD=(4+8)×4﹣=(24﹣4π)cm2.【点评】本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和扇形的面积公式.13.(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【考点】MC:切线的性质;MO:扇形面积的计算.【分析】(1)连接OD,根据已知和切线的性质证明△OCD为等腰直角三角形,得到∠DOC=45°,根据S阴影=S△OCD﹣S扇OBD计算即可;(2)连接AD,根据弦、弧之间的关系证明DB=DE,证明△AMD≌△ABD,得到DM=BD,得到答案.【解答】(1)解:如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.14.(2015•福州模拟)如图,AB为⊙O的直径,弦AC=2,∠ABC=30°,∠ACB的平分线交⊙O于点D,求:(1)BC、AD的长;(2)图中两阴影部分面积的和.【考点】KQ:勾股定理;M5:圆周角定理;MO:扇形面积的计算.【分析】(1)根据直径得出∠ACB=∠ADB=90°,根据勾股定理求出BC,根据圆周角定理求出AD=BD,求出AD即可;(2)根据三角形的面积公式,求出△AOC和△AOD的面积,再求出S扇形COD,即可求出答案.【解答】解:(1)∵AB是直径,∴∠ACB=∠ADB=90°(直径所对的圆周角是直角),在Rt△ABC中,∠ABC=30°,AC=2,∴AB=4,∴BC==2,∵∠ACB的平分线交⊙O于点D,∴∠DCA=∠BCD∴=,∴在Rt△ABD中,AD=BD=AB=2;(2)连接OC,OD,∵∠ABC=30°,∴∠AOC=∠2∠ABC=60°,∵OA=OB,∴S△AOC=S△ABC=××AC×BC=××2×2=,由(1)得∠AOD=90°,∴∠COD=150°,S△AOD=×AO×OD=×22=2,∴S阴影=S扇形COD﹣S△AOC﹣S△AOD=﹣﹣2=π﹣﹣2.【点评】本题考查了勾股定理、圆周角定理、三角形的面积等知识点的应用,关键是求出∠ACB=∠ADB=90°,题型较好,通过做此题,培养了学生运用定理进行推理的能力.。

2020九年级数学小专题系列之求阴影部分面积题型汇总(适合各版本)

2020九年级数学小专题系列之求阴影部分面积题型汇总(适合各版本)

下面列举初中阶段常用到的技巧方法一、公式法这属于最简单的方法,阴影面积是一个常规的几何图形,例如三角形、正方形等等。

简单举出2个例子:二、和差法攻略一:直接和差法这类题目也比较简单,属于一目了然的题目。

只需学生用两个或多个常见的几何图形面积进行加减。

攻略二:构造和差法学生就要构建自己的数学图形转化思维了,学会通过添加辅助线进行求解三、割补法割补法,是学生拥有比较强的转化能力后才能轻松运用的,否则学生看到这样的题目还是会无从下手。

尤其适用于直接求面积较复杂或无法计算时,通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件攻略一:全等法攻略二:对称法攻略三:平移法攻略四:旋转法九年级(上)阴影部分面积练习1 .如图,在 Rt △ ABC 中,∠ C=90 °,∠ BAC=60 °,将△ ABC 绕点 A 逆时针旋转60 °后得到△ ADE ,若 AC=1 ,则线段 BC 在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).2 .如图, AC 是汽车挡风玻璃前的雨刷器,如果 AO=45cm , CO=5cm ,当 AC 绕点 O 顺时针旋转 90 °时,则雨刷器 AC 扫过的面积为 cm 2 (结果保留π).3 .如图,在半径 AC 为 2 ,圆心角为 90 °的扇形内,以 BC 为直径作半圆,交弦AB 于点 D ,连接 CD ,则图中阴影部分的面积是.4 .如图,在▱ ABCD 中, AD=4 , AB=8 ,∠ A=30 °,以点 A 为圆心, AD 的长为半径画弧交 AB 于点 E ,连接 CE ,则阴影部分的面积是.(结果保留π)5 .如图,以 AD 为直径的半圆 O 经过 Rt △ ABC 的斜边 AB 的两个端点,交直角边 AC 于点 E . B 、 E 是半圆弧的三等分点,弧 BE 的长为,则图中阴影部分的面积为.6 .如图, AB 是⊙ O 的直径,点 E 为 BC 的中点, AB=4 ,∠ BED=120 °,则图中阴影部分的面积之和是.7 .如图, AB 是半圆 O 的直径,且 AB=8 ,点 C 为半圆上的一点.将此半圆沿 BC 所在的直线折叠,若圆弧 BC 恰好过圆心 O ,则图中阴影部分的面积是.(结果保留π)8 .如图,⊙ O 的半径为 4 , OA=8 , AB 切⊙ O 于 B ,弦BC ∥ OA ,连接 AC ,则图中阴影部分的面积为.9 .如图,在圆心角为 90 °的扇形 OAB 中,半径 OA=4 , C 为的中点, D 、 E 分别为 OA , OB 的中点,则图中阴影部分的面积为 ______________ .10 .如图,半圆 O 中, AB 为直径, AB=4 , C 、 D 为半圆上两点,四边形 OACD 为菱形,连接 BC 交 OD 于点 E ,则阴影部分面积为 ______________ .11 .如图,边长为 2 的正方形 MNEF 的四个顶点在大圆 O 上,小圆 O 与正方形各边都相切, AB 与 CD 是大圆 O 的直径, AB ⊥ CD , CD ⊥ MN ,则图中阴影部分的面积是 __________ .12 .如图,在△ ABC 中,∠ C=90 °, AC=BC ,斜边 AB=2 , O 是 AB 的中点,以O 为圆心,线段 OC 的长为半径画圆心角为 90 °的扇形 OEF ,弧 EF 经过点 C ,则图中阴影部分的面积为 _____________ .13 .如图,在扇形 AOB 中,半径 OA=2 ,∠ AOB=120 °, C 为弧 AB 的中点,连接AC 、 BC ,则图中阴影部分的面积是(结果保留π).14 .如图,在△ ABC 中, BC=4 ,以点 A 为圆心, 2 为半径的⊙ A 与 BC 相切于点 D ,交 AB 于点 E ,交 AC 于点 F ,点 P 是⊙ A 上的一点,且∠ EPF=45 °,则图中阴影部分的面积为.15 .如图,△ ABC 是边长为 4 个等边三角形, D 为 AB 边的中点,以 CD 为直径画圆,则图中阴影部分的面积为(结果保留π).16 .如图,在△ ACB 中,∠ BAC=50 °, AC=2 , AB=3 ,现将△ ACB 绕点 A 逆时针旋转 50 °得到△ AC 1 B 1 ,则阴影部分的面积为.17 .如图,在边长为 4 的正方形 ABCD 中,先以点 A 为圆心, AD 的长为半径画弧,再以 AB 边的中点为圆心, AB 长的一半为半径画弧,则阴影部分面积是(结果保留π).18 .如图矩形 ABCD 中, AB=1 , AD= ,以 AD 的长为半径的⊙ A 交 BC 于点E ,则图中阴影部分的面积为.19 .如图,直径 AB 为 4 的半圆,绕 A 点逆时针旋转 60 °,此时点 B 到了点B ′,则图中阴影部分的面积是.20 .如图,已知 AB 是⊙ O 的直径, P 为 BA 延长线上一点, PC 切⊙ O 于 C ,若⊙ O 的半径是 4cm ,∠ P=30 °,图中阴影部分的面积是.21 .如图,已知 C , D 是以 AB 为直径的半圆周上的两点, O 是圆心,半径OA=2 ,∠ COD=120 °,则图中阴影部分的面积等于.22 .如图,在 Rt △ ABC 中,∠ C=90 °,∠ A=30 °, AB=2 .将△ ABC 绕顶点 A 顺时针方向旋转至△ AB ′ C ′的位置, B , A ,C ′三点共线,则线段 BC 扫过的区域面积为.23 .如图,半径为 1cm ,圆心角为 90 °的扇形 OAB 中,分别以 OA 、 OB 为直径作半圆,则图中阴影部分的面积为.24 .如图,在⊙ O 中,直径 AB=2 , CA 切⊙ O 于 A , BC 交⊙ O 于 D ,若∠C=45 °,则阴影部分的面积为.25 .如右图, Rt △ ABC 的面积为 20cm 2 ,在 AB 的同侧,分别以 AB , BC , AC 为直径作三个半圆,则阴影部分的面积为.26 .如图,△ ABC 是⊙ O 的内接正三角形,⊙ O 的半径为 3 ,则图中阴影部分的面积是.27 .如图, AB 是半圆 O 的直径,且 AB=8 ,点 C 为半圆上的一点.将此半圆沿BC 所在的直线折叠,若圆弧 BC 恰好过圆心 O ,则图中阴影部分的面积是.(结果保留π)28 .如图, AB 是半圆 O 的直径,点 C 、 D 是半圆 O 的三等分点,若弦 CD=2 ,则图中阴影部分的面积为.29 .如图,分别以边长等于 1 的正方形的四边为直径作半圆,则图中阴影部分的面积为。

常考压轴04 阴影面积问题-2020年中考数学特训营

常考压轴04 阴影面积问题-2020年中考数学特训营

【十大常考压轴题特训】解题策略指导04——阴影面积问题求阴影面积问题是一种非常常见的题型,所以也是常考题型,频频出现在很多城市的中考数学试卷中,它的难度不算太大,但也不小,应该属于中等偏上的难度,一般这种题多位于填空题的最后一两题的位置,所以得分率非常低,我们也把它划到压轴题的范畴内.初中数学中的求阴影面积问题多与圆有关,当然也有少部分与圆没有关系,有的与三角函数和勾股定理相关.所以我们把它基本上可以分成两大类,第一类是与圆相关的,它主要考查的是扇形的面积公式;第二类与圆无关的,它主要考查的是勾股定理、三角函数、解直角三角形、相似等知识。

解决这类问题常用策略有以下几个.★策略一﹕转化——将不规则图形转化成规则图形★求阴影部分面积,这种问题绝大多数遇到的都是不规则图形,也就是说我们没有现成的公式去计算它们的面积,所以我们只能将其转化成规则图形,转化方面有下面常用的两种.例如,问题2.(2019年四川省宜宾市)、问题4.(2019江苏省扬州市)、问题8.(2019湖北省十堰市)等.★策略二﹕割补★割补法求阴影部分面积,这个方法我们从小学就知道,这也是我们解决这种问题(2019(2019河南省中考)、问题7.的主要策略,不用多说.例如本专题中的问题6.浙江省丽水市)、问题10.(2019 山东省临沂市)等.★策略三﹕大—小★所求阴影部分的面积有时割补法不太方便做,或者能割补,但计算量会特别大,这时我们可以利用第二种策略大—小,这种方法快捷方便,计算量较小,非常好用,例如本专题中的问题1.(2019年内蒙古鄂尔多斯市)、问题3.(2019山西省中考)、问题9.(2019重庆市中考A卷)、问题5.(2019江苏省苏州市)、问题8等都可以利用这种方法.★策略四﹕建系★在直接利用以上方法都不方便或者很难求出的面积时(只能是与圆无关的问题,多为与等边三角形、正方形有关的问题),我们可以利用建立坐标系,采用代数法求解.【十大常考压轴题特训】特训04——阴影面积问题题量﹕20题;分值﹕每小题5分,共计100分;推荐时间﹕45分钟问题1.(2019年内蒙古鄂尔多斯市)如图,ABC∆中,AB AC=,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF AC⊥于点F.若6∠=︒,则阴影部分的面积是AB=,15CDF.问题2.(2019年四川省宜宾市)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A .32B .235C .33D .34问题3.(2019山西省中考)如图,在Rt △ABC 中,∠ABC =90°,AB =32,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.2435π-B.2435π+C.π-32D.234π-问题4.(2019江苏省扬州市)如图,将四边形ABCD 绕顶点A 顺时针旋转45°至四边形AB ′C ′D ′的位置,若AB =16cm ,则图中阴影部分的面积为 cm 2.问题5.(2019江苏省苏州市)如图,一块含有45︒角的直角三角板,外框的一条直角边长为10cm ,三角板的外框线2cm ,则图中阴影部分的面积为_______cm (结果保留根号)问题6.(2019河南省中考)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥O A.若OA =2,则阴影部分的面积为.问题7.(2019浙江省丽水市)图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E =∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F →N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD=40cm.(1)如图3,当∠ABE=30°时,BC=cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为2256 cm2.问题8.(2019湖北省十堰市)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.问题9.(2019重庆市中考A卷)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)问题10.(2019山东省临沂市)如图,⊙O中,⌒AB=⌒AC,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+23πB.2+3+23πC.4+23πD.2+43π问题11. (2019山西省)如图,在Rt△ABC中,∠ABC=90°,AB=32,BC=2,以AB的中点为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A .2435π-B .2435π+C .π-32D .234π-问题12. (2019 四川省广安市)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =4,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( )A . 43π- 3B .23π-32C .13π-32D .13π-3 问题13. (2019 福建省龙岩市)如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是 .(结果保留π)问题14.(2019 甘肃省天水市)如图,在平面直角坐标系中,已知⊙D 经过原点O ,与x 轴、y 轴分别交于A 、B 两点,点B 坐标为(0,23),OC 与⊙D 交于点C ,∠OCA =30°,则圆中阴影部分的面积为 .问题15. (2019湖北省荆门市)如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.问题16. (2019湖北省十堰市)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.问题17. (2019山东省泰安市)如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为.问题18. (2019山东省烟台市)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作狐,三段弧所围成的图形是一个曲边三角形,已如⊙O是△ABC的内切圆,则阴影部分面积为__________OAB C问题19. (2019山东省淄博市)如图,在Rt ABC∆中,90B∠=︒,BAC∠的平分线AD交BC于点D,点E在AC上,以AE 为直径的⊙O经过点D.若点F是劣弧AD的中点,且3CE=,阴影部分的面积是.问题20. (2019重庆市綦江县)如图,四边形ABCD是矩形,AB=4,AD=22,以点A为圆心,AB长为半径画弧,交CD 于点E,交AD的延长线于点F,则图中阴影部分的面积是.【十大常考压轴题特训】特训04——阴影面积问题题量﹕20题;分值﹕每小题5分,共计100分;推荐时间﹕45分钟问题1.(2019年内蒙古鄂尔多斯市)如图,ABC ∆中,AB AC =,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,连接DE ,过点D 作DF AC ⊥于点F .若6AB =,15CDF ∠=︒,则阴影部分的面积是 .【分析】根据S 阴影部分=S 扇形OAE -S △OAE 即可求解.【解答】解:连接OE ,∵∠CDF =15 °,∠C =75 °,∴∠OAE =∠OEA =30 °,∴∠AOE =120 °S △OAE =12AE · OE · sin ∠OEA =12×2 · OE · cos ∠OEA · OE · sin ∠OEA =934, S 阴影部分=S 扇形OAE -S △OAE =120360π ×32 - 934 =3 π - 934. 故答案3 π - 934 . 【点评】本题考查扇形的面积公式,等腰三角形的性质,三角形的面积等知识,解题的关键是学会用分割法求阴影部分的面积.问题2.(2019年四川省宜宾市)如图,∠EOF 的顶点O 是边长为2的等边△ABC 的重心,∠EOF 的两边与△ABC 的边交于E ,F ,∠EOF =120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是( )A .32B .235C .33D .34【分析】连接OB 、OC ,过点O 作ON ⊥BC ,垂足为N ,由点O 是等边三角形ABC 的内心可以得到∠OBC =∠OCB =30°,结合条件BC =2即可求出△OBC 的面积,由∠EOF =∠BOC ,从而得到∠EOB =∠FOC ,进而可以证到△EOB ≌△FOC ,因而阴影部分面积等于△OBC 的面积.【解答】连接OB 、OC ,过点O 作ON ⊥BC ,垂足为N ,∵△ABC 为等边三角形,∴∠ABC =∠ACB =60°,∵点O 为△ABC 的内心∴∠OBC =∠OBA =12∠ABC ,∠OCB =12∠AC B . ∴∠OBA =∠OBC =∠OCB =30°.∴OB =O C .∠BOC =120°,∵ON ⊥BC ,BC =2, ∴BN =NC =1,∴ON =tan ∠OBC •BN =33×1=33, ∴S △OBC =12BC •ON =33.∵∠EOF =∠AOB =120°,∴∠EOF ﹣∠BOF =∠AOB ﹣∠BOF ,即∠EOB =∠FO C . 在△EOB 和△FOC 中,⎩⎪⎨⎪⎧∠OBE =∠OCF =30°OB =OC ∠EOB =∠FOC, ∴△EOB ≌△FOC (ASA ).∴S 阴影=S △OBC =33故选:C . 【点评】此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.问题3.(2019山西省中考)如图,在Rt △ABC 中,∠ABC =90°,AB =32,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.2435π- B.2435π+C.π-32D.234π-【分析】阴影部分的面积可以用S 阴影=S △ABC -S △AOD -S 扇形BOD 来计算.【解答】作DE ⊥AB 于点E ,连接OD ,在Rt △ABC 中:tan ∠CAB =BCAB = 223 = 33 ,∴∠CAB =30°,∠BOD =2∠CAB =60°.在Rt △ODE 中:OE =12OD =32,DE =3OE =32.S 阴影=S △ABC -S △AOD -S 扇形BOD =12AB ·BC -12OD ·DE -60360π·OB 2=12 × 23×2 - 12×3×32 - 60360×π×(3)2=534-π2, 故选A【点评】本题主要考查了扇形面积公式、三角函数、解直角三角形、圆周角与圆心角的关系等知识.难度中等.问题4.(2019江苏省扬州市)如图,将四边形ABCD 绕顶点A 顺时针旋转45°至四边形AB ′C ′D ′的位置,若AB =16cm ,则图中阴影部分的面积为 cm 2.【分析】由旋转的性质得:∠BAB '=45°,四边形AB 'C 'D '≌四边形ABCD ,图中阴影部分的面积=四边形ABCD 的面积+扇形ABB '的面积﹣四边形AB 'C 'D '的面积=扇形ABB '的面积,代入扇形面积公式计算即可.【解答】由旋转的性质得:∠BAB '=45°,四边形AB 'C 'D '≌四边形ABCD ,则图中阴影部分的面积=四边形ABCD 的面积+扇形ABB '的面积﹣四边形AB 'C 'D '的面积=扇形ABB '的面积=45π×162360=32π;故答案为:32π. 【点评】本题考查了旋转的性质、扇形面积公式;熟练掌握旋转的性质,得出阴影部分的面积=扇形ABB '的面积是解题的关键.问题5.(2019江苏省苏州市)如图,一块含有45 角的直角三角板,外框的一条直角边长为10cm ,三角板的外框线2cm ,则图中阴影部分的面积为_______cm (结果保留根号)【分析】C D【解答】如右图:过顶点A 作AB ⊥大直角三角形底边由题意:CE =2,AC =2 AB =5 2∴CD =AB -AC -BD =52-(2+2)=42-2 ∴12 ×10×10-12×(42-2)2=14+16 2 【点评】本题主要考查了等腰直角三角形的性质、勾股定理、平行线之间的距离处处相等等知识,当然本题也可以利用相似求解.问题6.(2019河南省中考)如图,在扇形AOB 中,∠AOB =120°,半径OC 交弦AB 于点D ,且OC ⊥O A .若OA =2,则阴影部分的面积为 .【分析】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是△AOD 的面积与扇形OBC 的面积之和再减去△BDO 的面积,本题得以解决.【解答】作OE ⊥AB 于点F ,∵在扇形AOB 中,∠AOB =120°,半径OC 交弦AB 于点D ,且OC ⊥O A .OA =23, ∴∠AOD =90°,∠BOC =90°,OA =OB , ∴∠OAB =∠OBA =30°,∴OD =OA •tan 30°=23×33=2,AD =4,AB =2AF =2×23×32=6,OF =3, ∴BD =2,∴阴影部分的面积是:S △AOD +S 扇形OBC ﹣S △BDO =23×22+30×π×(23)2360-2×32=3+π,故答案为:3+π.【点评】本题考查扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答.问题7.(2019浙江省丽水市)图2,图3是某公共汽车双开门的俯视示意图,ME 、EF 、FN 是门轴的滑动轨道,∠E =∠F =90°,两门AB 、CD 的门轴A 、B 、C 、D 都在滑动轨道上,两门关闭时(图2),A 、D 分别在E 、F 处,门缝忽略不计(即B 、C 重合);两门同时开启,A 、D 分别沿E →M ,F →N 的方向匀速滑动,带动B 、C 滑动:B 到达E 时,C 恰好到达F ,此时两门完全开启,已知AB =50cm ,CD =40cm .(1)如图3,当∠ABE =30°时,BC = cm .(2)在(1)的基础上,当A 向M 方向继续滑动15cm 时,四边形ABCD 的面积为 2256 cm 2.【分析】(1)先由已知可得B 、C 两点的路程之比为5:4,再结合B 运动的路程即可求出C 运动的路程,相加即可求出BC 的长;(2)当A 向M 方向继续滑动15cm 时,AA '=15cm ,由勾股定理和题目条件得出△A 'EB '、△D 'FC '和梯形A 'EFD '边长,即可利用割补法求出四边形四边形ABCD 的面积. 【解答】∵A 、D 分别在E 、F 处,门缝忽略不计(即B 、C 重合)且AB =50cm ,CD =40cm . ∴EF =50+40=90cm∵B 到达E 时,C 恰好到达F ,此时两门完全开启, ∴B 、C 两点的路程之比为5:4(1)当∠ABE =30°时,在Rt △ABE 中,BE =32AB =253cm , ∴B 运动的路程为(50﹣253)cm ∵B 、C 两点的路程之比为5:4∴此时点C 运动的路程为(50﹣253)×45=(40﹣203)cm∴BC =(50﹣253)+(40﹣203)=(90﹣453)cm 故答案为:90﹣453;(2)当A 向M 方向继续滑动15cm 时,设此时点A 运动到了点A '处,点B 、C 、D 分别运动到了点B '、C '、D '处,连接A 'D ',如图:则此时AA '=15cm ∴A 'E =15+25=40cm 由勾股定理得:EB '=30cm , ∴B 运动的路程为50﹣30=20cm ∴C 运动的路程为16cm ∴C 'F =40﹣16=24cm 由勾股定理得:D 'F =32cm ,∴四边形A 'B 'C 'D '的面积=梯形A 'EFD '的面积﹣△A 'EB '的面积﹣△D 'FC '的面积=12 ×90× (40+32)﹣12 ×30×40﹣12×24×32=2256cm 2.∴四边形ABCD 的面积为2256cm 2. 故答案为:2256.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.问题8.(2019湖北省十堰市)如图,AB 为半圆的直径,且AB =6,将半圆绕点A 顺时针旋转60°,点B 旋转到点C 的位置,则图中阴影部分的面积为 .【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC 的面积之和减去半圆的面积.【解答】由图可得,图中阴影部分的面积为:60π×62360 + π×(6÷2)22 -π×(6÷2)22=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.问题9.(2019重庆市中考A 卷)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC =60°,AB =2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)【分析】根据菱形的性质得到AC ⊥BD ,∠ABO =12∠ABC =30°,∠BAD =∠BCD =120°,根据直角三角形的性质求出AC 、BD ,根据扇形面积公式、菱形面积公式计算即可. 【解答】∵四边形ABCD 是菱形,∴AC ⊥BD ,∠ABO =12∠ABC =30°,∠BAD =∠BCD =120°,∴AO =12AB =1,由勾股定理得,OB =AB 2-OA 2=3, ∴AC =2,BD =23,∴阴影部分的面积=12×2×23﹣120π×12360×2=23﹣23π,故答案为:23﹣23π.【点评】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.问题10.(2019 山东省临沂市)如图,⊙O 中, ⌒AB =⌒AC ,∠ACB =75°,BC =2,则阴影部分的面积是( )A .2+23πB .2+3+23πC .4+23πD .2+43π【分析】分析连接OB 、OC ,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长2,利用三角形和扇形的面积公式即可求解【解答】∵⌒AB =⌒AC ,∴AB =AC , ∵∠ACB =75°, ∴∠ABC =∠ACB =75°, ∴∠BAC =30°, ∴∠BOC =60°, ∵OB =OC ,∴△BOC 是等边三角形, ∴OA =OB =OC =BC =2, 作AD ⊥BC , ∵AB =AC , ∴BD =CD , ∴AD 经过圆心O ,∴OD =32OB =3,∴AD =2+3,∴S △ABC =12BC •AD =2+3,S △BOC =12BC •OD =3,∴S 阴影=S △ABC +S 扇形BOC ﹣S △BOC =2+3+60π×22360-3=2+23,故选:A .【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S阴影=S △ABC +S扇形BOC ﹣S △BOC 是解题的关键.问题11. (2019 山西省)如图,在Rt △ABC 中,∠ABC =90°,AB =32,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A .2435π- B .2435π+C .π-32D .234π-【分析】所求阴影部分的面积表示为S 阴影=S △ABC -S △AOD -S 扇形BOD ,这样方便求出各个图形的面积.问题即可得到解决.【解答】作DE ⊥AB 于点E ,连接OD ,在Rt △ABC 中:tan ∠CAB =BCAB =223=33, ∴∠CAB =30°,∠BOD =2∠CAB =60°.在Rt△ODE中:OE=12OD=32,DE=3OE=32S阴影=S△ABC-S△AOD-S扇形BOD=12·AB·BC-12·OD·OE-60360·π·OB2=12×23×2-12× 3 ×32-60360×π× (3)2=532-π2故选A【点评】本题主要考查了扇形的面积计算公式,勾股定理,解答本题的关键是将所求阴影部分的面积表示成一些规则图形的面积和差.问题12. (2019四川省广安市)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为()A.43π- 3 B.23π-32C.13π-32D.13π-3【分析】根据三角形的内角和得到∠B=60°,根据圆周角定理得到∠COD=120°,∠CDB=90°,根据扇形和三角形的面积公式即可得到结论.【解答】∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∴∠COD=120°,∵BC=4,BC为半圆O的直径,∴∠CDB=90°,∴OC=OD=2,∴CD=32BC=23,图中阴影部分的面积=S扇形COD﹣S△COD=120π×22360-12×23×1=4π3-3,故选:A.【点评】本题考查扇形面积公式、直角三角形的性质、解题的关键是学会分割法求面积,属于中考常考题型.问题13. (2019福建省龙岩市)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】延长DC,CB交⊙O于M,N,则图中阴影部分的面积=14×(S圆O-S正方形ABCD)=14×(4π-4)=π-1,故答案为:π-1.【点评】本题考查了扇形面积的计算,正方形的性质,正确的识别图形是解题的关键.问题14.(2019甘肃省天水市)如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,点B坐标为(0,23),OC与⊙D交于点C,∠OCA=30°,则圆中阴影部分的面积为.【分析】连接AB,根据∠AOB=90°可知AB是直径,再由圆周角定理求出∠OBA=∠C=30°,由锐角三角函数的定义得出OA及AB的长,根据S阴影=S半圆﹣S△ABO即可得出结论.【解答】连接AB,∵∠AOB=90°,∴AB是直径,根据同弧对的圆周角相等得∠OBA=∠C=30°,∵OB=23,∴OA=OB tan∠ABO=OB tan30°=23×33=2,AB=AO÷sin30°=4,即圆的半径为2,∴S阴影=S半圆﹣S△ABO=π×222﹣12×2×23=2π﹣23.故答案为:2π-23.【点评】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出直角三角形是解答此题的关键.问题15. (2019湖北省荆门市)如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.【分析】分析过A作AM⊥BC于M,EN⊥BC于N,根据等边三角形的性质得到AM=32BC=3 2×2=3,求得EN=12AM=32,根据三角形的面积和扇形的面积公式即可得到结论.【解答】过A作AM⊥BC于M,EN⊥BC于N,∵等边三角形ABC的边长为2,∠BAC=∠B=∠ACB=60°,∴AM=32BC=32×2=3,∵AD=AE=1,∴AD=BD,AE=CE,∴EN=12AM=32,∴图中阴影部分的面积=S△ABC-S扇形ADE-S△CEF-(S△BCD-S扇形DCF)=12×2×3-60π×1360-1 2×3×32﹣(12×12× 2 × 3 –30π×3360)=π12+32-34,故答案为:π12+32-34.【点评】本题考查了扇形的面积的计算,等边三角形的性质,正确的作出辅助线是解题的关键.问题16. (2019湖北省十堰市)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.【分析】阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积;【解答】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.解答解:由图可得,图中阴影部分的面积为:60π×62360+π×(6÷2)22-π×(6÷2)22=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.问题17. (2019山东省泰安市)如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为.【分析】连接OC,作CH⊥OB于H,根据直角三角形的性质求出AB,根据勾股定理求出BD,证明△AOC为等边三角形,得到∠AOC=60°,∠COB=30°,根据扇形面积公式、三角形面积公式计算即可.【解答】连接OC ,作CH ⊥OB 于H ,∵∠AOB =90°,∠B =30°, ∴∠OAB =60°,AB =2OA =6,由勾股定理得,OB =AB 2-OA 2= 33, ∵OA =OC ,∠OAB =60°, ∴△AOC 为等边三角形, ∴∠AOC =60°, ∴∠COB =30°,∴CO =CB ,CH =12OC =32,∴阴影都分的面积=60π×32360 - 12 ×3×3×32+12×33×32- 30π×32360=34π,故答案为:34π.【点评】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式、三角形的面积公式是解题的关键.问题18. (2019 山东省烟台市)如图,分别以边长为2的等边三角形ABC 的三个顶点为圆心,以边长为半径作狐,三段弧所围成的图形是一个曲边三角形,已如⊙O 是△ABC 的内切圆,则阴影部分面积为__________ABC【分析】本题中所求阴影部分的面积可表示为三倍弓形AB 的面积+△ABC 的面积 - ⊙O 面积,问题可得到解决.【解答】令⊙O得半径为r,过点O作OD⊥AB于D,连接OB,则OB=2r,BD=3r=12AB=1,∴r=33.由题意,可知扇形ABC的面积=60π×22360=23π,△ABC的面积=12AB2·sin60°=3.⊙O面积=πr2=13π.∴阴影部分面积=3×扇形ABC的面积﹣2×△ABC的面积﹣⊙O面积=3×23π﹣2 3 ﹣13π=53π﹣23.【点评】本题考查了与扇形有关的阴影部分面积的计算.问题19. (2019山东省淄博市)如图,在Rt ABC∆中,90B∠=︒,BAC∠的平分线AD交BC于点D,点E在AC上,以AE 为直径的⊙O经过点D.若点F是劣弧AD的中点,且3CE=,阴影部分的面积是.【分析】证明△OFD、△OF A是等边三角形,S阴影=S扇形DFO,即可求解.【解答】(1)①连接OD,OAB CD∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,∴∠DAO=∠ADO,∴DO//AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE·CA;(2)连接DE、OE,设圆的半径为R,∵点F是劣弧AD的中点, 是OF是DA中垂线,∴DF=AF,∴∠FDA=∠FAD,∵DO//AB,∴∠PDA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠F AD,∴AF=DF=OA=OD,∴△OFD、△OF A是等边三角形,∴∠C=30°,∴OD=12OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=60360×π× 32=3π2.【点评】此题属于圆的综合题,涉及了平行四边形的性质、等边三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.问题20. (2019重庆市綦江县)如图,四边形ABCD是矩形,AB=4,AD=22,以点A为圆心,AB长为半径画弧,交CD 于点E,交AD的延长线于点F,则图中阴影部分的面积是.【分析】根据题意可以求得∠BAE和∠DAE的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与△ADE的面积之差的和,本题得以解决.【解答】连接AE,∵∠ADE=90°,AE=AB=4,AD=22,∴sin∠AED=ADAE=224=22,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=22,∴阴影部分的面积是:(4×2 2 –45π×42360-2 2 ×222)+(45π×42360-2 2 ×222)=82﹣8,故答案为:82-8.【点评】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.。

[数学]-专题17 圆中阴影部分的面积七种计算方法(原版)

[数学]-专题17 圆中阴影部分的面积七种计算方法(原版)

专题17 圆中阴影部分的面积七种计算方法(原卷版)第一部分 典例剖析+针对训练方法一 公式法典例 1 (2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC =90°,则扇形部件的面积为( )A .12π米2B .14π米2C .18π米2D .116π米2针对训练1.(2021•卧龙区二模)如图,△ABC 中,D 为BC 的中点,以点D 为圆心,BD 长为半径画弧,交边BC 于点B ,交边AC 于点E ,若∠A =60°,∠B =100°,BC =6,则扇形BDE 的面积为 .方法二 和差法典例2(2022•荆州)如图,以边长为2的等边△ABC 顶点A 为圆心、一定的长为半径画弧,恰好与BC 边相切,分别交AB ,AC 于D ,E ,则图中阴影部分的面积是( )A .√3−π4B .2√3−πC .(6−π)√33D .√3−π2针对训练1.(2022•玉树市校级一模)如图,在扇形OAB 中,已知∠AOB =90°,OA =2,过AB ̂的中点C 作CD ⊥OA ,CE ⊥OB ,垂足分别为点D ,E ,则图中阴影部分的面积为( )A .π﹣1B .π﹣2C .π﹣4D .π2−1方法三 等积变形法典例3(2020•朝阳)如图,点A ,B ,C 是⊙O 上的点,连接AB ,AC ,BC ,且∠ACB =15°,过点O 作OD ∥AB 交⊙O 于点D ,连接AD ,BD ,已知⊙O 半径为2,则图中阴影面积为 .针对训练1.(2022秋•天桥区期末)如图,菱形OABC 的三个顶点A ,B ,C 在⊙O 上,对角线AC ,OB 交于点D ,若⊙O 的半径是2√3,则图中阴影部分的面积是( )A .2πB .6πC .√33πD .√3π方法四 化零为整法(整体法)典例4 (2021•天桥区二模)如图,已知正六边形的边长为4,分别以正六边形的6个顶点为圆心作半径是2的圆,则图中阴影部分的面积为 .针对训练1.如图,分别以五边形的各个顶点为圆心,1cm 长为半径作圆,则图中阴影部分的面积为 π cm 2.方法五 割补法(拼接法)典例5(2022•铜仁)如图,在边长为6的正方形ABCD 中,以BC为直径画半圆,则阴影部分的面积是()A.9B.6C.3D.12针对训练1.(2021•郑州模拟)如图,在扇形CBA中,∠ACB=90°,连接AB,以BC为直径作半圆,交AB于点D.若阴影部分的面积为(π﹣1),则阴影部分的周长为.方法6 图形变化法(旋转、平移、翻折)典例6(2022•武威模拟)在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC 绕点A按逆时针方向旋转90°后得到△AB'C'.则图中阴影部分的面积为.针对训练1.(2022•西宁)如图,等边三角形ABC内接于⊙O,BC=2√3,则图中阴影部分的面积是.典例7(2022•九龙坡区自主招生)如图,正方形ABCD的边长为4,O为对角线的交点,点E,F分别为BC,AD的中点,以C为圆心,4为半径作圆弧BD,再分别以E,F为圆心,2为半径作圆弧BO,OD,则图中阴影部分的面积为.(结果保留π)针对训练1.(2021•重庆模拟)如图,在正方形ABCD中,扇形BAD的半径AB=4,以AB为直径的圆与正方形的对角线BD相交于O,连接AO.则图中阴影部分的面积为.(结果保留π)典例8(2019•招远市)如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:̂沿弦CE翻折,交CD于点F,图中阴影部分的面积5,AB=8.点E为圆上一点,∠ECD=15°,将CE=.针对训练1.(如图,将半径为4cm的圆形纸片折叠后,圆弧恰好经过圆心O,折痕为AB,则图中阴影部分的面积为.方法七重叠求余法例七(2022•鄂尔多斯二模)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是.针对训练1.(2022•市南区校级一模)如图所示,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,将三角形绕着BC的中点O逆时针旋转60°,点A的对应点为E,则图中阴影部分的面积为.第二部分 专题提优训练一.选择题(共15小题)1.(2022•兰州)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角∠O =120°形成的扇面,若OA =3m ,OB =1.5m ,则阴影部分的面积为( )A .4.25πm 2B .3.25πm 2C .3πm 2D .2.25πm 22.(2022秋•西华县期末)如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,则图中阴影部分的面积是( )A .π﹣1B .π﹣2C .12π﹣1D .12π+13.(2022•泰安)如图,四边形ABCD 中,∠A =60°,AB ∥CD ,DE ⊥AD 交AB 于点E ,以点E 为圆心,DE 为半径,且DE =6的圆交CD 于点F ,则阴影部分的面积为( )A .6π﹣9√3B .12π﹣9√3C .6π−9√32D .12π−9√324.(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC ,分别以点A ,B ,C 为圆心,以AB 长为半径作BC ̂,AC ̂,AB ̂,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为( )A .2π﹣2√3B .2π−√3C .2πD .π−√35.现在很多家庭都使用折叠型餐桌来节省空间,两边翻开后成圆形桌面(如图①),餐桌两边AB 和CD 平行且相等(如图②),小华用皮尺量出BD =1米,BC =0.5米,则阴影部分的面积为( )A .(π12−√38)平方米 B .(π6−√38)平方米 C .(π12−√34)平方米 D .(π6−√34)平方米 6.(2022•鞍山)如图,在矩形ABCD 中,AB =2,BC =√3,以点B 为圆心,BA 长为半径画弧,交CD 于点E ,连接BE ,则扇形BAE 的面积为( )A .π3B .3π5C .2π3D .3π47.(2022•赤峰)如图,AB 是⊙O 的直径,将弦AC 绕点A 顺时针旋转30°得到AD ,此时点C 的对应点D 落在AB 上,延长CD ,交⊙O 于点E ,若CE =4,则图中阴影部分的面积为( )A .2πB .2√2C .2π﹣4D .2π﹣2√28.(2022•毕节市)如图,一件扇形艺术品完全打开后,AB ,AC 夹角为120°,AB 的长为45cm ,扇面BD 的长为30cm ,则扇面的面积是( )A .375πcm 2B .450πcm 2C .600πcm 2D .750πcm 29.(2022•山西)如图,扇形纸片AOB 的半径为3,沿AB 折叠扇形纸片,点O 恰好落在AB̂上的点C 处,图中阴影部分的面积为( )A .3π﹣3√3B .3π−9√32C .2π﹣3√3D .6π−9√3210.(2022•连云港)如图,有一个半径为2的圆形时钟,其中每个相邻刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A .23π−√32B .23π−√3C .43π﹣2√3D .43π−√3二.填空题11.(2020•巩义市二模)如图,点A 、B 、C 在半径为8的⊙O 上,过点B 作BD ∥AC ,交OA 延长线于点D .连接BC ,且∠BCA =∠OAC =30°,则图中阴影部分的面积为 .12.(2021•宛城区一模)如图所示,在扇形OAB 中,∠AOB =90°,OA =2,长为2的线段CD 的两个端点分别在线段OA 、OB 上滑动,E 为CD 的中点,点F 在AB̂上,连接EF 、BE .若AF ̂的长是π3,则线段EF 的最小值是 ,此时图中阴影部分的面积是 .13.(2022•贵港)如图,在▱ABCD中,AD=23AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=3√2,则图中阴影部分的面积是.14.(2020春•亭湖区校级期中)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=6,则阴影部分的面积是.15.(2022•黔西南州)如图,边长为4的正方形ABCD的对角线交于点O,以OC为半径的扇形的圆心角∠FOH=90°.则图中阴影部分面积是.16.(2020•康巴什一模)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积为.17.(2021秋•招远市期末)如图,在扇形OAB中,点C在AB̂上,∠AOB=90°,∠ABC=30°,AD⊥BC于点D,连接AC,若OA=4,则图中阴影部分的面积为.。

六上数学每日一练:正方形的面积练习题及答案_2020年解答题版

六上数学每日一练:正方形的面积练习题及答案_2020年解答题版

六上数学每日一练:正方形的面积练习题及答案_2020年解答题版答案解析答案解析答案解析2020年六上数学:空间与图形_四边形及多边形_正方形的面积练习题1.(2019山亭.六上期末) 求下列图形阴影部分的面积。

(单位:厘米,π≈3.14)(1)(2)考点: 正方形的面积;梯形的面积;圆的面积;2.(2019龙华.六上期末) 在边长为20dm 的正方形铁皮上剪圆片。

图1 图2(1) 如图1,正方形铁皮剪完一个圆后剩下的边角料的面积是多少?(2) 如图2,像这样剪4个大小相等的圆,剩下的边角料的面积是多少?正中心的边角料(阴影部分)面积是多少?(3) 猜想:继续像上面这样剪圆片,在正方形铁皮上剪下9个大小相等的圆,剩下的边角料是多少?剪16个圆呢?从中你发现了什么?为什么会这样呢?请写出你的想法。

考点:正方形的面积;圆的面积;3.(2020原.六上期末) 求阴影部分的面积。

考点: 正方形的面积;圆的面积;4.(2020龙华.六上期中) 在学习“圆的认识”时,王老师在边长为20cm 的正方形硬纸板上剪圆。

(不能拼接)(1) 如图1,正方形硬纸板剪完一个圆后剩下的边角料的面积是多少?(2) 如图2,像这样剪4个大小相等的圆,剩下的边角料的面积是多少?正中心的边角料(阴影部分)的面积是多少?答案解析答案解析(3) 猜想:继续像上面这样剪圆片,在正方形硬纸板上剪下9个大小相等的圆,剩下的边角料是多少?剪16个圆呢?从中你发现了什么?为什么会这样呢?请写出你的想法。

考点: 正方形的面积;圆的面积;5.(2019韶关.六上期中) 已知图中正方形的面积是30m²,求圆的面积。

考点: 正方形的面积;圆的面积;2020年六上数学:空间与图形_四边形及多边形_正方形的面积练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知直角三角形的面积是20平方厘米,求阴影部分的面积。

( 取3.14)
如图,圆的半径是2厘米,请分别求出大正方形和正方形的面积。

等腰梯形的面积是54平方厘米,上底是5厘米,下底是13厘米,若要在这个等腰梯形内剪下一个面积最大的圆,这个梯形剩下的面积是多少?
下图是一个立体图形的侧面展开图(单位:cm),求这个立体图形的表面积和体积
如下图,两个相同的直角三角形重叠在一起,求阴影部分的面积是多少?(单位:cm)
一间房子要用方砖铺地,用边长20厘米的方砖铺成1750块;若用边长50厘米的方砖来铺需要多少块?如图,已知环形面积为12.56平方厘米,求阴影部分的面积。

三角形ABC的面积为36cm²,点D在AB上,BD=2AD,点E在DC上,DE=2EC,求三角形BCE 的面积。

如图,梯形的上底3cm,下底5cm,阴影部分的面积是18cm³,求空白部分的面积。

已知平行四边形ABCD的面积是37平方厘米,E、F、G、H是各边的中点,P是平行四边形内任意一点,求阴影部分的面积。

如图,AB=BC=10厘米,三角形BOC比三角形AOD的面积大20平方厘米,AD长多少厘米?
数一数图中共有三角形多少个?
工地有一个圆柱形沙堆,底面周长12米,高1.2米,如果每立方米沙重1.7吨,这堆沙一共有多少吨?(得数保留整吨数, 取3)。

相关文档
最新文档