波动学基础作业
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 波动学基础
思考题
5.1 振动和波动有什么联系和区别?平面简谐波方程和简谐振动方程有什么联系和区别?振动曲线和波形图又有什么联系和区别?
答: (1)振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为)(t f y =;波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置x ,又是时间t 的函数,即),(t x f y =.
(2)在谐振动方程)(t f y =中只有一个独立的变量时间t ,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程),(t x f y =中有两个独立变量,即坐标位置x 和时间
t ,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律.
当谐波方程)(cos u
x
t A y -
=ω中的坐标位置给定后,即可得到该点的振动方程,而波源持续不断地振动又是产生波动的必要条件之一.
(3)振动曲线)(t f y =描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y ,横轴为t ;波动曲线),(t x f y =描述的是介质中所有质元的位移随位置,随时间变化的规律,其纵轴为y ,横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图.
5.2 平面简谐波方程])(cos[),(0ϕω+-=x t A t x y 中u x 项的意义是什么?如果改写为
]cos[),(0ϕω+-=kx t A t x y ,kx 又是什么意思?如果t 和x 都增加,但相应的])([0ϕω+-u x t 的
值不变,由此能从波方程说明什么?
答: 波动方程中的u x /表示了介质中坐标位置为x 的质元的振动落后于原点的时间;
u
x
ω则表示
x 处质元比原点落后的振动位相;设t 时刻的波动方程为
)cos(0φωω+-=u
x
t A y t
则t t ∆+时刻的波动方程为
])
()(cos[0φωω+∆+-
∆+=∆+u
x x t t A y t t
其表示在时刻t ,位置x 处的振动状态,经过t ∆后传播到t u x ∆+处.所以在)(u
x
t ωω-中,当t ,x
均增加时,)(u
x
t ωω-
的值不会变化,而这正好说明了经过时间t ∆,波形即向前传播了t u x ∆=∆的
距离,说明)cos(0φωω+-
=u
x
t A y 描述的是一列行进中的波,故谓之行波方程.
5.3 在波方程中,坐标原点是否一定要选在波源处?0=t 时刻是否一定是波源开始振动的时刻?波方程写成)(cos ),(u x t A t x y -=ω时,波源一定在坐标原点吗?在什么前提下波方程才能写成这种形式?
答: 由于坐标原点和开始计时时刻的选全完取是一种主观行为,所以在波动方程中,坐标原点不一定要选在波源处,同样,0=t 的时刻也不一定是波源开始振动的时刻;当波动方程写成
)(cos u
x
t A y -=ω时,坐标原点也不一定是选在波源所在处的.因为在此处对于波源的含义已做了
拓展,即在写波动方程时,我们可以把介质中某一已知点的振动视为波源,只要把振动方程为已知的点选为坐标原点,即可得题示的波动方程.
5.4 机械波的波长、频率、周期和波速,(1)在同一种介质中哪些量是不变的?(2)当波从一种介质进入另一种介质后,哪些量是不变的?
答: (1)机械波在同一种介质中传播时,其波长、频率、周期和波速都是不变的?(2)当波从一种介质进入另一种介质后,只有频率和周期是不变的?
5.5 波在弹性介质中传播时,介质元的能量具有怎样的特点,为什么与弹簧振子不同? 答: 我们在讨论波动能量时,实际上讨论的是介质中某个小体积元dV 内所有质元的能量.波动动能当然是指质元振动动能,其与振动速度平方成正比,波动势能则是指介质的形变势能.形变势能由介质的相对形变量(即应变量)决定.如果取波动方程为),(t x f y =,则相对形变量(即应变量)为x y ∂∂/.波动势能则是与x y ∂∂/的平方成正比.由波动曲线图(题5-3图)可知,在波峰,波谷处,波动动能有极小(此处振动速度为零),而在该处的应变也为极小(该处0/=∂∂x y ),所以在波峰,波谷处波动势能也为极小;在平衡位置处波动动能为极大(该处振动速度的极大),而在该处的应变也是最大(该处是曲线的拐点),当然波动势能也为最大.这就说明了在介质中波动动能与波动势能是同步变化的,即具有相同的量值.
对于一个孤立的谐振动系统,是一个孤立的保守系统,机械能守恒,即振子的动能与势能之和保持为一个常数,而动能与势能在不断地转换,所以动能和势能不可能同步变化.
5.6 在驻波的两个波节之间,各质点的振幅、频率、相位的关系怎样?在两相邻半波(波节两
侧)中又如何?驻波的能量又有什么特点?
答: 由驻波方程为vt x A y απλ
π
cos 2cos
2=可知,在相邻两波节中的同一半波长上,描述各
质点的振幅是不相同的(各质点的振幅是随位置按余弦规律x A λ
π
2cos
2变化的),而在这同一半
波长上,各质点的相则是相同的;而在两相邻半波(波节两侧)的质点振动位相则相反.
驻波没有能量传播,能量仅在波节与波腹之间传递。驻波中各质量元的能量不守恒,但两波节之间所有质量元的能量总和保持不变,能量在波节与波腹之间进行势能与动能的转换。
5.7 波源向着观察者运动和观察者向着波源运动,都会产生频率增高的多普勒效应,这两者有什么区别?
答: 波源向着观察者运动时,波面将被挤压,波在介质中的波长将被压缩变短,因而观察者在单位时间内接收到的完整数目(λ'/u )会增多,所以接收频率增高;而观察者向着波源运动时,波面形状不变,但观察者测到的波速增大(B v u u +='),因而单位时间内通过观察者完整波的数目
λ
u '
也
会增多,即接收频率也将增高.简单地说,前者是通过压缩波面(缩短波长)使频率增高,后者则是增加波速(相对与观察者)使得单位时间内通过的波面数增加而升高频率.
5.8把一根十分长的绳子拉成水平,用手握其一端,维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则
(A )振动频率越高,波长越长;(B )振动频率越低,波长越长; (C )振动频率越高,波速越大;(D )振动频率越低,波速越大。 答:(B )。
5.9 在下面几种说法中,正确的说法是
(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的; (B )波源振动的速度与波速相同;
(C )在波传播方向上的任一质点振动位相总是比波源的位相滞后; (D )在波传播方向上的任一质点的振动位相总是比波源的位相超前 答:(C )。
5.10. 下图(a )表示沿x 轴正向传播的平面简谐波在0=t 时刻的波形图,则图(b )表示的是:
(A) 质点m 的振动曲线 (B) 质点n 的振动曲线 (C) 质点p 的振动曲线 (D) 质点q 的振动曲线
图5.1 思考题5.10图