波动学基础作业

合集下载

波动理论基础

波动理论基础

请批评指正! 谢谢!
低应变理论基础
2014年11月16日
一、波动与振动
弹性动力学主要目标是在给定扰动源信息及边界条件、初始条件下求解弹性 物体的动力响应。解答的形式有两种:一种是波动解,一种是振动解。前者描 述行波在弹性介质中的传播过程,后者描述弹性体的振动。为了说明两者的联 系与差异,首先考察波动与振动两个物理现象。 一个原来处于静止状态的物体,当其局部受到突然的扰动,并不能立即引 起物体各部分的运动。如下图所示的一根半无限长杆端部受到打击时,远离杆 端的区域并不能立即感受到端部的打击信号,而要经过一定的时间后才能接受 到这个信号。这是动力问题和静力问题最根本的区别。实际上由于连续介质中 的各个质点由某种约束力而彼此联系起来,在末受到扰动之前,质点之间的相 互作用力处于平衡状态。当某一个质点受到扰动以后,它就要偏离
惯性两个基本性质所决定的。弹性性质有使发生了位移的 质点回复到原来平衡位置的作用,而运动质点的惯性有使 当前的运动状态持续下去的作用,或者说弹性是贮存势能 的要素,惯性是维持动能的表征。正是由于这两种特性的 存在,系统的能量才能得以保持和传递,外部的扰动才能 激发起弹性被和弹性体的振动。弹性波的传播和弹性体的 振动,实际上可以看作是同一物理问题的不同表现形式。

原来的平衡位置而进入运动状态。由于质点间相对位置的 变化,使得受扰动质点同其周围质点之间增加了附加的弹 性力,从而与受扰动质点相邻的质点也必然受到影响而进 入运动状态。这种作用依次传递下去,便形成一个由扰动 源开始的波动现象。这种扰动借质点间的弹性力而逐渐传 播的过程,称为弹性波。如果介质是无限大的,扰动将会 随时间的发展一直传播出去。然而一个实际的物体总是有 边界的,当扰动到达边界时,将要和边界发生相互作用而 产生反射。对一个有界的物体,由于扰动在其边界上来回 反射,从而使得整个物体就会呈现出在其平衡位置附近的 一种周期性的振荡现象,称之为弹性体的振动。弹性波和 弹性体的振动之间存在着本质的内在联系。这两种现象的 形成有着相同的机制,它们都是由介质的弹性和

大学物理练习册习题及答案6--波动学基础

大学物理练习册习题及答案6--波动学基础

⼤学物理练习册习题及答案6--波动学基础习题及参考答案第五章波动学基础参考答案思考题5-1把⼀根⼗分长的绳⼦拉成⽔平,⽤⼿握其⼀端,维持拉⼒恒定,使绳端在垂直于绳⼦的⽅向上作简谐振动,则(A )振动频率越⾼,波长越长;(B )振动频率越低,波长越长;(C )振动频率越⾼,波速越⼤;(D )振动频率越低,波速越⼤。

5-2在下⾯⼏种说法中,正确的说法是(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的;(B )波源振动的速度与波速相同;(C )在波传播⽅向上的任⼆质点振动位相总是⽐波源的位相滞后;(D )在波传播⽅向上的任⼀质点的振动位相总是⽐波源的位相超前 5-3⼀平⾯简谐波沿ox 正⽅向传播,波动⽅程为010cos 2242t x y ππ??=-+ ?. (SI)该波在t =0.5s 时刻的波形图是()5-4图⽰为⼀沿x 轴正向传播的平⾯简谐波在t =0时刻的波形,若振动以余弦函数表⽰,且此题各点振动初相取-π到π之间的值,则()(A )1点的初位相为φ1=0(m)(A )(m)(m)(B )(C )(D )思考题5-3图思考题5-4图(B )0点的初位相为φ0=-π/2 (C )2点的初位相为φ2=0 (D )3点的初位相为φ3=05-5⼀平⾯简谐波沿x 轴负⽅向传播。

已知x=b 处质点的振动⽅程为[]0cos y A t ωφ=+,波速为u ,则振动⽅程为()(A)()0cos y A t b x ωφ??=+++??(B)(){}0cos y A t b x ωφ??=-++??(C)(){}0cos y A t x b ωφ??=+-+?? (D)(){}0cos y A t b x u ωφ??=+-+?? 5-6⼀平⾯简谐波,波速u =5m?s -1,t =3s 时刻的波形曲线如图所⽰,则0x =处的振动⽅程为()(A )211210cos 22y t ππ-??=?- (SI) (B )()2210cos y t ππ-=?+ (SI) (C )211210cos 22y t ππ-??=?+ (SI) (D )23210cos 2y t ππ-?=-(SI) 5-7⼀平⾯简谐波沿x 轴正⽅向传播,t =0的波形曲线如图所⽰,则P 处质点的振动在t =0时刻的旋转⽮量图是()5-8当⼀平⾯简谐机械波在弹性媒质中传播时,下述各结论⼀哪个是正确的?(A )媒质质元的振动动能增⼤时,其弹性势能减少,总机械能守恒;(B )媒质质元的振动动能和弹性势能都作周期变化,但两者的位相不相同;(C )媒质质元的振动动能和弹性势能的位相在任⼀时刻都相同,但两者的数值不相等;(D )媒质质元在其平衡位置处弹性势能最⼤。

chapter3波动学基础 (2)

chapter3波动学基础 (2)


光纤传输系统 EDFA
孤子源
调制
探测
隔离器 脉冲源 EDFA EDFA EDFA
光孤子通信系统构成方框图
光孤子源产生一系列脉冲宽度很窄的光脉冲,即光孤子流,
作为信息的载体进入光调制器,使信息对光孤子流进行调制。 被调制的光孤子流经掺铒光纤放大器和光隔离器后,进入光 纤进行传输。 为克服光纤损耗引起的光孤子减弱,在光纤线路上周期地插
光孤子的形成

在讨论光纤传输理论时,假设了光纤折射率n 和入射光强(光功率)无关,始终保持不变。 这种假设在低功率条件下是正确的,获得了 与实验良好一致的结果。 然而,在高功率条件下,折射率n随光强而变 化,这种特性称为非线性效应。


在强光作用下,光纤折射率n可以表示为 2 n n0 |E| n2
环光纤间接实验系统 (参看图7.37(b)),传输速率为2.4Gb/s,传
输距离达12000km;改进实验系统,传输速率为 10Gb/s,传输 距离达106km。
事实上,对于单信道光纤通信系统来说,光孤子通信系统的
性能并不比在零色散波长工作的常规(非光孤子)系统更好。 然而,零色散波长系统只能实现单信道传输,而光孤子系统 则可用于 WDM 系统,使传输速率大幅度增加,因而具有广 阔的应用前景。
包层包层输入光谱光强光发射输出光脉冲光强光输出光接收1213141516pskmnm30201010203011材料色散自由空间波长色度色散波导色散4210051005所有光源都是在一定波长范围内发射的非单色光当各种波长的光进入纤芯后由于波长与折射率有关所以在光纤波导中的光以不同的群速度在纤芯内传输波长短的波速度慢波长长的波速度快所以它们到达光纤末端的时间也不同导致输出脉冲展宽

波动学基础练习及答案

波动学基础练习及答案
(A)波长为 5 m ; (B)波速为10 m ⋅ s−1 ;
(C)周期为 1 秒; (D)波沿 x 正方向传播。 3
(C )
根据公式ω =6 π ,T = 2π / ω =1/3 秒。其它均不正确, λ = 100 / 3, u = 100 (忽略单位),传
播方向为-x。
3.下列叙述中不正确的是
(A)在波的传播方向上,相位差为 2π 的两个质元间的距离称波长;
t (s)
-A
d
O
Px
计算题 1 图
5
解:(1)
yP
=
A cos( 1 2
πt
+
π)

(2)
y
=
Acos[2π( t 4
+
x
− λ
d
)
+
π] ;(3)
y0
=
Acos(
1 2
πt) 。
解:(1)由振动曲线可知,P 处质点振动方程为
yP
=
Acos[( 2π t) 4
+
π] =
A cos( 1 2
πt
+
(D ) 由传播方向可知,时间项为正的 x/u;
设表达式为 y = A cos[ω(t + x / u) + φ] ,依图可知,x=0 处在 t=T/4 时相位为 − π ,代入后相 2
位公式得: φ =- π ,等价于 π 。
5.在同一介质中两列相干的平面简谐波的强度之比是 I1 I 2 = 4 ,则两列波的振幅之比是
2
2
O
(C) π 与 − π ; (D) − π 与 π 。
22
22
u

物理波动试题

物理波动试题

物理波动试题波动是物理学中重要的一个分支,它涉及到波的传播、干涉、衍射等现象。

本试题将涵盖波动的基本概念、公式和应用,旨在考察学生对波动知识的理解和应用能力。

1.简答题(每题10分)(1)什么是波动?简要说明波动的特点及分类。

波动是指能量或信息沿着空间传播的现象。

特点:波动是在介质中传播的,介质不随波传播而移动;波动是由某种原因(振动源)激发产生的;波动可以传播能量和动量;波动可以壁相互作用产生干涉、衍射等现象。

分类:机械波和电磁波。

(2)什么是机械波?它们传播的基本特点是什么?机械波是指需要介质来传播的波动现象。

机械波传播的基本特点是:需要介质来传播,介质的微小部分进行振动,振动的能量沿波的传播方向传递。

(3)什么是波长和频率?它们之间的关系是怎样的?波长是指一次完整振动所对应的距离,用符号λ表示。

频率是指在单位时间内波动上通过某一点的次数,用符号f表示。

它们之间的关系可以由式子v = fλ表示,其中v代表波速。

波速等于波长乘以频率。

(4)什么是相位差?简要说明相位差对波动干涉的影响。

相位差是指两个波源相对于某一点的等效相位差。

它是由波源到该点距离的变化与波长之比所决定。

相位差对波动干涉的影响是:当相位差为整数倍的倍数时,波峰和波峰或波谷和波谷同时到达干涉点,形成增强干涉;当相位差为奇数倍的半数时,波峰和波谷同时到达干涉点,形成减弱干涉。

2.计算题(每题20分)(1)一根被两端固定的弦子上,泛起了两个频率相同且弦长相同的基本振动波。

若两波的相位差为π/4,求出相邻两个波腹之间的距离。

解析:相邻两个波腹之间的距离等于半个波长,即λ/2。

根据相位差为π/4,可以得出相位差对应的距离变化为λ/8。

所以,λ/2 = λ/8,化简可得λ = 4d,其中d为波腹之间的距离。

所以相邻两个波腹之间的距离为4d。

(2)一个平面波以速度v在某介质中传播,当波长λ减小一倍,频率f变为2f,则速度v变为多少?解析:根据波速公式v = fλ,代入新的波长和频率,得到新的波速v' = 2v。

波动力学基础知识与实践应用

波动力学基础知识与实践应用

波动力学基础知识与实践应用波动力学是一种描述粒子运动的理论,它试图揭示微观世界中粒子的行为和宏观的物理规律之间的联系。

波动力学的基本概念包括波函数、薛定谔方程和量子态等。

它广泛应用于物理、化学、材料科学、电子学、计算机科学和生物学等领域。

波函数是波动力学的核心概念,它是描述微观粒子的数学函数。

波函数的平方模长可以表示粒子在某个位置出现的可能性大小。

波函数描述了一个粒子的所有性质和运动状态,包括位置、速度、动量、能量和自旋等。

波函数的形式通常是复数形式,它可以反映出粒子的相位信息。

薛定谔方程是波动力学的基本方程之一,它描述了波函数随时间的演化规律。

薛定谔方程可以用于计算波函数在各种条件下的变化,从而推算出粒子的运动和相互作用。

薛定谔方程的求解是波动力学理论应用的核心问题之一,它通常采用数值计算方法或近似求解方法。

量子态是波动力学中的一个重要概念,它描述了粒子在特定条件下的状态和行为。

量子态分为可观测态和纯态两种情况。

可观测态是指粒子经过测量后所处的状态,而纯态描述了粒子受到外界干扰前的状态。

量子态具有非常奇特的性质,例如叠加态、量子纠缠、量子隧道效应等。

波动力学的应用具有极其广泛的范围,从微观粒子到宏观世界,从基础研究到技术应用都有其身影。

在物理学领域,波动力学解释了量子力学中的量子隧道效应、双缝实验、汤川劈裂等基本现象。

在化学领域,波动力学可以用于计算分子的电子结构和化学反应机理。

在材料科学领域,波动力学可以帮助研究新材料的电子性质和光学性质。

在电子学领域,波动力学可以解释半导体器件的工作原理和量子点的光电特性。

在计算机科学领域,波动力学可以用于量子计算、量子通信和量子密码学。

在生物学领域,波动力学可以帮助研究生物分子的结构和功能,以及生物大分子的相互作用。

总之,波动力学是现代物理学和化学研究中不可或缺的理论基础,它的实践应用涉及各个领域和方面。

尽管波动力学理论具有一定的复杂性和难度,但它为人类认识自然界提供了独特的视角和工具,因此值得我们深入研究和应用。

大学物理参考答案(白少民)第10章 波动学基础

大学物理参考答案(白少民)第10章 波动学基础
450。已知波速为 15cm/s,试求波的频率和波长。 解:波长可看成是沿波射线相位差 2π 的两点间的距离,则由题知其波长为
3.5 u 15 = 28 cm , 进而可求得波的频率为 ν = = = 0.54 Hz π /4 λ 28 10.14 证 明 y = A cos( kx −ω t ) 可 写 成 下 列 形 式 : y = A cos k ( x − u t ) , x x 1 x y = A cos 2π ( − ν t ) , y = A cos 2π ( − ) ,以及 y = A cos ω( − t ) 。 λ T u λ ω 2πν t ) = k ( x − ut ) 证明 : kx − ω t = k ( x − t ) = k ( x − k 2π / λ 所以波函数可写为: y = A cos k ( x − ut ) 2π x x x − 2πν t = 2π ( −νt ) ,则波函数还可写为 y = A cos 2π ( −ν t ) 又 kx − ω t = λ λ λ 1 x t 由ν = 则还可得: y = A cos 2π ( − ) T λ T k x x kx − ω t = ω( x − t ) = ω( − t ) ,则波函数还可写为 y = A cos ω( − t ) ω u u 10.15 波源 做 简谐振动,位移与时间的关系为 y = ( 4.00 ×10 −3 ) cos 240π t m ,它所 激发的波以 30.0m/s 的速率沿一直线传播。求波的周期和波长,并写出波函数。 解:由波源的振动方程 y = ( 4.00 ×10 −3 ) cos 240πt m 知振动角频率 ω = 240π . 而波的频率就等于波源的振动频率,所以波的频率和周期分别为 ω 1 1 ν= = 120 Hz , T = = = 8.33 ×10 −3 s ν 120 2π u 30.0 = 0.25 m 进一步计算波长为 λ = = ν 120 x x −3 )m 最后可写出波函数为 y = A cos ω(t − ) = ( 4.00 ×10 ) cos 240π (t − u 30 10.16 沿 绳子 行进的 横 波波函数为 y =10 cos(0.01π x − 2π t ) ,式中长度的 单 位是 cm,时间的单位是 s。试求:(1)波的振幅、 频率、传播速率和波长;(2)绳上某质点的最 大横向振动速率。 解:(1)由 y = 10 cos(0.01π x − 2π t ) = 10 cos 2π (t − 5.0 ×10 −3 x ) 知: ω 2π ν= = = 1 Hz ; 波 长 振 幅 A = 10cm = 0.1m ; 频 率 2π 2π

波动光学练习题

波动光学练习题

波动光学练习题1. 介绍波动光学是物理学中的一个重要分支,研究光在传播过程中的波动性质。

它深入研究了光的传播和干涉、衍射、偏振、散射等现象,对于理解光的本质和应用具有重要意义。

本文将为大家介绍一些波动光学的练习题,以帮助读者更好地理解相关概念和原理。

2. 题目一:干涉现象一束波长为550nm的单色光以垂直入射的方式照射到一块玻璃薄膜上,该薄膜的折射率为1.5,厚度为500nm,折射率与入射角度无关。

求在此条件下,该薄膜表面反射光的相位差和干涉条纹的间距。

解析:根据菲涅尔公式,入射角为垂直入射的情况下,反射光的相位差为2δ,其中δ为反射光的相位改变:δ = 2πnt/λ其中n为玻璃的折射率,t为薄膜的厚度,λ为入射光的波长。

代入具体数值,可得:δ = 2π * 1.5 * 500 * 10^(-9) / 550 * 10^(-9) ≈ 5.455rad干涉条纹的间距d可以由以下公式计算得到:d = λ / (2sinθ)其中θ为反射光的角度。

由于入射角为垂直入射,故θ = 0,因此d无穷大,即干涉条纹间距无限宽。

3. 题目二:衍射光斑有一束波长为600nm的单色光通过一条宽度为0.1mm的狭缝照射到屏幕上,屏幕距离狭缝的距离为1m。

求衍射光斑的宽度和位置。

解析:根据夫琅禾费衍射公式,衍射光斑的宽度可以由以下公式计算得到:δy = (λL) / (2d)其中δy为衍射光斑的宽度,λ为入射光的波长,L为狭缝到屏幕的距离,d为狭缝的宽度。

代入具体数值,可得:δy = (600 * 10^(-9) * 1) / (2 * 0.1 * 10^(-3)) ≈ 3mm衍射光斑的位置可以由以下公式计算得到:y = (λL) / d其中y为光斑离中心的偏移距离。

代入具体数值,可得:y = (600 * 10^(-9) * 1) / (0.1 * 10^(-3)) ≈ 6mm所以,衍射光斑的宽度为3mm,位置偏移约为6mm。

波动学基础.ppt

波动学基础.ppt

(1)体现波动在时间上和空间上都具有周期性
(2)用 x = x1(定值)代入,得 x1 点的振动表达式
y(x1, t)
Acos( 2
T
t
2
x1 )
y(x2 , t)
Acos( 2
T
t
2
x2 )
在波的传播方向上,各质点的振动相位依次
落后。两定点 x1 和 x2 振动的相位差为
x1
x2
T
波的周期和频率就是介质中各质点的 振动周期和频率,等于波源的振动周期和 频率。 周期和频率反映了波动在时间上的周期性
频率与传播介质有没有关系?
波速 u —— 振动相位的传播速度
u
T
波速和波长由介质的性质决定,而波的 频率与介质的性质无关,由波源决定。
二、 平面简谐波的波函数
平面简谐波 —— 波阵面为平面的简谐波
y(x,t) Acos(t 2 x ) 2
(2). t=0时波形曲线方程为:
y A cos( 2 x ) A sin 2 x
2
t=T时的波形与上式给出的应该相同
y
TC T+T/4
u
B
oA
D E F
I H
x
G
附(1): A, B, C, D, E, F, G, H, I在t=T时刻的运动方向? 根据波前进方向, 看t+dt时波形图则清楚!
x) u
A cos
(t
x u
)
沿 x 轴正方向传播的平面简谐波的波函数
y(x,t) Acos (t x )
u
y(x,t) Acos 2 (t x ) Acos 2 ( t x )
Tu

大学物理波动学基础

大学物理波动学基础

单位时间内振动状态(振动相位)的传 播速度,又称相速。
振动状态完全相同的相邻两质点 间的距离。 位相差为 2 ,一个完整波形长度
u

T
f
2、周期 T: 波传播一个波长所需要的时间 该时间内波源正好完成一次全振动,⑵ 波速由弹性介质性质决定,频率 波动周期=振动周期 (或周期)则由波源的振动特性决定。 T由波源决定,与介质无关。 §12-2 平面简谐波的波函数 或 f 3、频率 : ——定量地描述前进中的波动(行波) 单位时间内传播完整波的个数 一、波函数的建立 (等于波源的振动频率)
P.6/91
波动学基础
P点的振动表达式:
(3)若波源在 x=x0处,则
x yP A cos t 0 u
即t=x/u时,P点的振动状态与O点 t=0时的状态相同。 x P点的相位落后O点
x x0 y A cos t u
② “±”反应波传播方向: “-”:波向右传波(x 轴正方向) ③ x0为波源坐标。
2016/7/2
t x x0 y A cos 2π 0 “+”:波向左传波(x 轴负方向) T
P.8/91
波动学基础
二、波函数的物理意义
讨论: 由波动→振动:
x x0 t t t u
'
x y A cos t 0 u 平面简谐波波函数(波源在原点):
② “±”反应波传播方向: “-”:波向右传波(x 轴正方向)
“+”:波向左传波(x 轴负方向)
x y A cos t 0 u
机械波:机械振动在弹性介质中的 传播过程 电磁波:交变电磁场在空间的传播 过程 物质波:微观粒子的运动,其本身 具有的波粒二象性

第二章波动力学基础

第二章波动力学基础
P → −ih∇ 只适用于直角坐标系
(3)与牛顿方程不同,概率流守恒定律自动地包含在薛定谔方程之中。 (4)薛定谔方程为波函数的归一化提供了必要的理论基础。
§2. 4 一维方势阱
1.一维无限深势阱
⎧0 ⎪ 一维薛定谔方程在势场 U(x) = ⎨ ⎪ ⎩∞ x <a x ≥a
(2.4.1)
下的解。由于在 x ≥ a 处,势场为无限大,因此粒子出现的几率为零。
程。设单粒子体系的哈密顿量为
H=
p2 + U (r, t ) 2m
(2.3.1)
利用对应规则,将能量、动量均用算符表示,并作用在波函数上得
ih
∂ψ h2 2 =− ∇ ψ + U (r, t )ψ = Hψ ∂t 2m
(2.3.2)
(2.3.2)式称为薛定谔方程。对多粒子体系,薛定谔方程为
N ∂ψ h2 2 ih = −∑ ∇ iψ + U (r1 , r2 ,LrN , t )ψ ∂t i =1 2mi


ψ (r1 , r2 ,..., rN , t ) dr1 dr2 L drN = 1
2
(2.1.4)
(6)描述粒子微观运动的波函数不仅可用坐标 r、时间 t 为自变量,也可以用其他变
量,比如用动量 p 为自变量。以 p、t 为独立变量的波函数 C (p, t ) ,它的物理意义是
C (p, t ) dp 表示在 t 时刻,粒子的动量在 p → p + dp 的几率,相应的归一化条件是
ψ = C1ψ 1 + C 2ψ 2 + ⋅ ⋅ ⋅C nψ n = ∑ C nψ n
i =1
n
( 2.2.3)
也是体系的一个可能状态; (2)关于态叠加原理的讨论:

《水声学》习题作业-波动声学基础

《水声学》习题作业-波动声学基础

一、简答题1.理想流体介质中小振幅波所满足的波动方程可根据哪些方程导出?2.波动方程的定解条件有哪些?3.均匀浅海声道中的简正波是如何形成的?说明简正波的特性。

4.何谓简正波的相速度、群速度?硬底均匀浅海中简正波的相速度、群速度有何特征?5.何谓波导的截止频率?6.判断正误并解释命题:浅海波导中,声波的频率越低,其传播距离就一定越远。

一、简答题答案1.答:根据质量守恒定律、牛顿第二定律和绝热压缩定律,理想流体介质中小振幅波所满足的波动方程可根据连续性方程、运动方程和状态方程导出。

2.答:满足物理问题的具体条件称为定解条件。

波动方程的定解条件有边界条件、辐射条件、奇性条件和初始条件。

其中边界条件包含绝对软边界条件、绝对硬边界条件、混合边界条件、边界上声压和振速连续边界条件。

3.答:简正波的形成原因:与z轴夹角满足特定关系的上行波和下行波的迭加形成某一阶次的简正波。

简正波在垂直方向为驻波、水平方向为行波,每阶简正波有各自的简正频率,简正波的相速度与阶次有关,不同阶次的简正波其相速度不同,称为频散。

4.答:等相位面的传播速度称为相速度,波形包络的传播速度称为群速度。

简正波的相速度、群速度与声波频率有关。

随着频率的升高,相速度逐渐减小群速度逐渐增大,最终趋近于介质的声速。

相速度和群速度的乘积为常数。

5.答:最低阶简正波的临界频率即为波导的截止频率。

当声波频率低于波导的截止频率时,波导中各阶简正波都为衰减的简正波,声波不能远距离传播。

6.答:命题不正确。

对相同的声源,频率越高,介质的吸收衰减越大,因此传播距离就越近。

频率降低,吸收损失减小,传播距离变远。

但是当声波频率低于波导的截止频率时,介质中不存在传播的简正波,它们都随水平距离的增大指数衰减,因此频率低于一定值后,传播距离反而变近。

波动力学基础

波动力学基础

第二章 波动力学基础一、填空1. 一维谐振子的能量本征值E n 与_____有关,能量是量子化的.最低的能量是____,称为_____.能级都是等间距的,间隔都是____.2. 定态的性质:粒子坐标的____和____不随时间变化;任何不显含时间变量的力学量的____和____不随时间变化.二、概念与名词解释1. 态叠加原理;2. 概率流守恒定律;3. 定态,束缚态;4. 奇宇称,偶宇称三、计算1. 由下列定态波函数计算几率流密度: (1) ikr 1e r 1=ψ, (2)ikr 2e r1−=ψ. 从所得结果说明ψ1表示向外传播的球面波,ψ2表示向内(即向原点)传播的球面波.2. 设()()为常数a Ae x 22x a 21−=ϕ(1)求归一化常数(2).?p ?x x ==3. 设在t=0时,粒子的状态为 φ=A[sin 2kx+(coskx)/2],求粒子动量和能量的平均值.4. 已知做直线运动的粒子处于状态ix11)x (−=ϕ (1) 将φ(x)归一化; (2) 求出粒子坐标取值概率为最大处的位置.5. 若粒子处于状态⎪⎩⎪⎨⎧>β−≤≤<=ϕ)a x ()x exp(B )a x 0()kx sin(A )0x (0)x ( 其中k,β为已知常数。

求归一化常数,并给出在1≤x ≤a 区域内发现粒子的概率.6. 粒子处在势能的场中运动,()⎪⎩⎪⎨⎧+<<+≤≤+≤≤+><∞=b)a x a (,U b)2a x b a a x 0(,0b)2a x 0x (,x U 0当和当和当求在能量小于U 0的情况下,决定能量的关系式.7. 求一维谐振子处在第一激发态时几率最大的位置.8. 一维运动的粒子处于的状态. 求归一化系数A ,粒子的动量分布函数及动量平均值。

()⎩⎨⎧<>=ϕλ−0x 00x Axe x x9. 若线谐振子处于第一激发态,)x a 21aexp(-)2a ((x)222131π=ϕ,求其坐标概率最大的位置,其中a>0.10. 设粒子的能量E>0,求粒子在势阱壁x=0处的反射系数. ()⎩⎨⎧><= 0)(x 00)(x U x U 011. 一维谐振子处在⎥⎦⎤⎢⎣⎡ω−−π=ϕt 2i 2x a exp a (x)221/2状态, 求:势能的平均值;动量的概率分布函数;动量的平均值.12. 分子间的范德瓦耳斯力所产生的势能可以近似地表示为()⎪⎪⎩⎪⎪⎨⎧<≤≤−<≤<∞=x b ,0bx a ,U a x 0,U 0x ,x U 10求束缚态的能级所满足的方程,其中U 0>0,U 1>0.13. 粒子在如下三维势场()⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧><∞≤≤==⎩⎨⎧><∞≤≤==b/2)(x -b/2),(x b/2)y (-b/2 0U 0U a/2)(x -a/2),(x a/2)x (-a/2 0U z y,,x U y z x中运动, 求粒子的能量和对应的波函数.14. 设粒子处于一维势阱中,式中U ⎪⎩⎪⎨⎧>≤≤−<∞=a)(x 0a)x (0 U 0)(x U(x) 00>0.若粒子具有一个E=-U 0/4的本征态,试确定此势阱的宽度.15. 设粒子在势阱宽度为a 的一维无限深势阱中运动,如果粒子的状态由波函数a x cos a x sin 4(x)2πππ=ϕ描述,求粒子能量的可能值和相应的概率. 16. 在势阱宽度为a 的一维无限深势阱中运动的粒子,如果粒子的状态由波函数φ(x)=Ax(a-x)描述,A 为归一化常数,求粒子的能量的概率分布和能量的平均值.17. 一个粒子处与中心势场中,设其径向波函数为R(r)=u(r)/r ,u(r)满足的方程为⎩⎨⎧<≥=a)(r 0a)(r U )r (U 00)r (u r )1l (l ))r (U E (2)r (u dr d 2222=⎥⎦⎤⎢⎣⎡+−−µ+h ,若l=0,求该粒子小于U 0的能量和相应的本征函数.18. 粒子在势场中运动,试给出小于零的能量本征值和本征函数,其中U ⎩⎨⎧≥<δ−=0)(x U 0)(x (x)a U )x (U 101>0,U 0a>0.19. 粒子在如下势场中运动,求其能级. ⎩⎨⎧>ω≤∞=0)(x /2x m 0)(x )x (U 2220. 粒子在双δ势阱U(x)= -U 0d[δ(x+a)+ δ(x-a)]中运动,求其束缚能级满足的方程. 21. 设两个方势垒的形状分别是⎩⎨⎧≤≤><<=⎩⎨⎧≤≤<=c)x (b U c)x b,x (a 0)x (U , a)x (0 U 0)(x 0)x (U 21,求粒子连续贯穿两个方势垒的贯穿系数.22. 求势场U(x)= -U 0/(e x/a +1),入射粒子能量E>0时的反射系数.23. 能量为E=3U 0的粒子射向如下势场,求粒子的透射和反射系数.⎪⎩⎪⎨⎧≥<<≤=a)(x 2U a)x (0 U 0)(x 0U(x)0 024. 能量为E>0的粒子通过如下势阱U(x)= -U 0δ(x),求粒子的透射和反射系数,其中U 0>0.25. 氢原子处在基态0a /r 30e a 1−π=ψ, 求:(1) r 的平均值; (2) 势能-e 2/r 的平均值; (3) 最可几的半径;(4) 动能的平均值; (5) 动量的几率分布函数.26. 设氢原子处于状态()()()()()/2,Y r R 3/2,Y r R ,,r 11211021ϕθ−ϕθ=ϕθψ−求氢原子能量、角动量平方及角动量z 分量的可能值, 这些可能值出现的几率和这些力学量的平均值.27. 粒子处于状态()⎥⎦⎤⎢⎣⎡ξ−⎟⎟⎠⎞⎜⎜⎝⎛πξ=ψ2202124x x p i exp 21x h 式中ξ为常量. 求粒子的动量平均值, 并计算测不准关系 ()()_______2_____2p x ∆∆28. 设粒子在一维势垒宽度为a 的无限高势垒中运动,求粒子作用在势垒壁上的平均力.29. 设氢原子处在基态,求:它在动量表象中的表示式;p x 和p x 2的平均值;x 和x 2的平均值.30. 设势场为U(r)= -a/r+A/r 2(a 、A>0),求粒子的能量本征值.31. 设势场为U(r)= Br 2+A/r 2 (A 、B>0),求粒子的能量本征值.32. 一个质量为m 的粒子被限制在半径为r=a 和r=b 的两个不可穿透的同心球面之间运动,不存在其他势场.求粒子的基态能量和基态波函数.33. 求一维薛定谔方程在势场V(x)= -Ze 2/x 下的能级和波函数,并与势场⎩⎨⎧≤∞>=0)(x 0)(x /x Ze -V(x)2的结果相比较. 四、证明1. 证明在定态中, 几率流密度与时间无关.2. 设粒子处于复位势V(r)=V 1(r)+iV 2(r)中,式中V 1(r)和V 2(r)皆为实函数,证明此时粒子的概率不守恒.3. 设粒子处于实位势V(r)中,证明在任意束缚态下其能量平均值为τ⎥⎦⎤⎢⎣⎡φφ+φ∇⋅φ∇=τρ=∫∫d )r ()r )V(r ()r ()r (2md E **2h 式中ρ为能量密度.4. 证明属于不同本征能量的束缚态本征函数是正交的.5. 利用厄米多项式的递推关系H n+1(ξ)-2ξH n (ξ)+2n H n-1(ξ)=0,证明[][]22n n 2-n n 21n 1-n n /2(x) 2)1)(n (n (x)1)(2n (x) 1)-n(n (x)x /(x) 1)/2(n (x) n/2(x)x αφ+++φ++φ=φαφ++φ=φ++ 式中φn (x)为线谐振子的第n 个本征波函数,h /m ω=α.进而证明在任意本征态下,坐标的平均值为零,势能的平均值为相应本征能量的一半.6. 证明对于一维谐振子,无论处在哪个本征态,它的动能平均值恒等于势能平均值.7. 在一维势场中运动的粒子, 势能对原点对称:U(-x)=U(x), 证明粒子的定态波函数具有确定的宇称.8. 证明对于任意势垒,粒子的反射系数R 和透射系数D 之和等于1.9. 粒子在势能为的场中运动,证明对于能量E<U ⎪⎩⎪⎨⎧≥<<≤=)a x (U )a x 0(0)0x (U )x (U 21当当当1<U 2的状态,能量由21mU 2k arcsin mU 2k arcsinn ka h h −−π=关系式决定,其中2/mE 2k h = 10. 证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的.11. 证明在非相对论量子力学中,在辏力场V(r)中运动的粒子,其束缚态满足322r L 21dr )r (dV 2m )0(π−π=ϕ,式中φ(0)是原点波函数,L 2是角动量平方(选ћ=1为单位).五、综合题1. 利用氢原子的能谱公式,写出:(1) 电子偶素(positronium),即e +-e -形成的束缚态的能级;(2) 以µ-子代表核外电子所形成的µ原子的能级;(3) µ+和e -形成的束缚态(Muonium)的能级.2. 一个质量为m 的粒子在一个三维方势阱V(r)中运动.(1) 证明:对于一个半径R 一定的阱,只有阱深至少有一个极小值时,才可能有束缚态,并计算这一极小值.(2) 在一维情况下,类似问题的结果和三维的有何不同?(3) 上述(1)、(2)结果中的一般性质对任意形状的势阱是否仍然成立?例如在一维情况下,若,保持f(x)不变,讨论不同的λ值.⎩⎨⎧><≤≤<λ=)或b x a (x 0b)x (a 0f(x)U(x)3. 一电子在一无限大接地平面导体的上方运动,它被自己的像电荷吸收,但电子不能穿透导体表面.试写出电子作三维运动的哈密顿量和它满足的边界条件,并求出电子的能级和在基态时,电子和导体表面之间的平均距离.4. 质量为m 的非相对论粒子在一势场中运动,势场是U(x,y,z)=A(x 2+y 2+2λxy)+B(z 2+2µz),其中A>0,B>0,|λ|<1,µ是任意的,求:(1) 能量的本征值;(2) 使势变成,求基态能量. ⎩⎨⎧µ<∞µ>=任意)、+任意)、y x ,-(z y x ,-(z U U new 5. 一个刚体具有惯性矩I z ,可以自由的在x-y 平面中运动.令θ为x 轴与转动轴之间的夹角,求:(1) 能量本征值和相应的本征函数;(2) 若在t=0时,转子由波包φ(0)=Asin 2θ描述,求在t>0时的φ(t).6. 考虑一维波函数φ(x)=A(x/x 0)n e -x/x0,其中A 、n 、x 0是常数,(1) 利用薛定谔方程,求势场U(x)和能量E.(这时φ(x)可视为当x →∞时V(x)→0的薛定谔方程的本征函数).(2) 比较你所给出的势场和轨道角动量为l 的氢原子态的有效径向势的异同.7. 通常在量子力学薛定谔方程中,若已知全部能谱和全部本征函数,可以反过来推出相互作用势,这称为反散射问题.若只知道部分能谱和波函数,有时也可给出关于势场的一些性质.证明:(1) 若势场满足d 2V/dr 2>或<0,则零点波函数满足|φ2s (0) |>或<|φ1s (0) |;(2) 记势场V(r)中粒子状态为l n r r l ,n φ=,则若,0r 1)l(l V dr d 222>⎥⎦⎤⎢⎣⎡++必有|φ0l (0) |≤|φ1l (0) |.8. 对于2P 和3D 能级,定义ε=E 2P -E 3D ,u=r φ2P ,v=r φ3D .势场满足V=λ2V(λr),λ是小参量,证明:(1) 在(0,∞)区间中,u 2-v 2有且仅有一个零点;(2) 令W(x)=x[2V+x(dV/dx)],则若满足W(0)=0,且d 2W/dx 2≥或≤0,相应的必有d ε/d λ≤或≥0.9. 粒子在势壁附近的行为,可从下面近似模型出发考虑. 一粒子在一维势场⎩⎨⎧<∞>δ=-d)(x -d)(x (x)U -U(x)0中运动,求: (1) 当势壁离粒子很远时,对束缚态能量的修正值.并据此说明“远离”的意义;(2) 至少存在一个束缚态时,U 0和d 应满足的条件.10. 一维薛定谔方程的本征值谱可依次排列成:E 1<E 2<…<E n <….(1) 若势场U 1(x)给的本征值为E 1n ,U 2(x)给的本征值为E 2n ,且U 1(x) ≤ U 2(x),证明必有E 1n ≤E 2n .(2) 考虑势场,a)x ( /2ka a)x ( /2kx U(x)22⎪⎩⎪⎨⎧≥<=求这个势所能具有的最大的束缚态的数目N.11. 放射性同位素83Bi 212衰变成81Tl 208,同时放出能量为6.1MeV 的α粒子(1) 为了计算寿命,首先讨论如下图有限高势垒,计算一个质量为M 的粒子从左边入射的透射系数T ,粒子的能量为E ,并设T<<1;(2) 利用上面的结果,选择敏感的势垒参数来近似α粒子势,对83Bi 212的寿命做一个粗略的数值估计.12. 一束单一能量E 的非相对论中子打到一个厚度为t 的平板平面上,在这平板中。

振动、波动学基础选择题及参考答案

振动、波动学基础选择题及参考答案

)振动学基础一、选择题:1、一质量为m 的物体挂在倔强系数为k 的轻弹簧下面,振动园频率为ω,若把此弹簧分割 为二等份,将物体m 挂在分割后的一根弹簧上,则振动园频率为: (A )ω2。

(C )ω2。

(C )2ω。

(D )22ω。

2、一质点沿x 轴作简谐振动,振动方程为))(32cos(1042SI t x ππ+⨯=-,从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为: (A )s )8/1(。

(B )s )4/1(。

(C )s )2/1(。

(D )s )3/1(。

(E )s )6/1(。

3 (A )s 62.2。

(B )s 40.2。

(C )s 20.2。

(D )s 00.2。

4、已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒,则此简谐振动方程为:(A )cm t x )3232cos(2ππ+=。

(B )cm t x )3232cos(2ππ-=。

(C )cm t x 3234cos(2ππ+=。

(D )cm t x 3234cos(2ππ-=。

(E )cm t x )434cos(2ππ-=。

5、一弹簧振子作简谐振动,总能量为1E ,如果简谐振动动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量1E 变为:(A )4/1E 。

(B )2/1E 。

(C )12E 。

(D )14E 。

6、一物体作简谐振动,振动方程为)2/cos(πω+=t A x 。

则该物体在0=t 时刻的动能与8/T t =(T 为周期)时刻的动能之比为:(A )4:1。

(B )2:1。

(C )1:1。

(D )1:2。

(E )1:4。

7、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取作坐标原点。

若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为: (A )s 1。

波动学基础-1

波动学基础-1
机械波的传播速度与媒质有关,而与波的频率无关。
2)波长
沿波的传播方向,两个相邻的、相位差为 2π 的振动质点
之间的距离,即一个完整波形的长度。对于横波,波长就 是相邻两个波峰或波谷的距离,对于纵波就是相邻两个疏 部或密部的距离。
Ay
u
O
x
-A
3) 周期T 波传播一个波长的距离所需要的时间.
u
sin i u1 1 n 21 sin r u2 2
u1/u2为第二种介质相对第一种介质的折射率。
惠更斯原理不足之处(未涉及振幅,相位等 的分布规律)。
7.2 平面简谐波的波函数
平面简谐波:若在平面波的传播过程中,振源作简谐振动, 而且波所经历的所有质元都做简谐振动,则此平面波称为平 面简谐波。
.
u
8m 5m 9m
C
B oA
Dx
1)以 A 为坐标原点,写出波动方程
A 310-2 m T 0.5s 0 uT 10m
y Acos[2π ( t - x ) ] T
y 310-2 cos2π( t - x ) 0.5 10
2)以 B 为坐标原点,写出波动方程 yA 310 -2 cos 4 π t
这是一个二阶偏微分方程。对于任一平面波,可以认为是 许多不同频率的平面简谐波的合成,也可得到此结果。它 反映了平面波的共同特征,所以称为平面波的波动方程。
举例
1.已知波函数求各物理量 2.已知各物理量求波函数
例1 已知波动方程如下,求波长、周期和波速.
y 5cosπ[2.50t - 0.01x].
➢ 波动表达式的其它形式
y(x,t) Acos[2 π( t x ) ]

y(x,t) Acos[2 (t x ) ]

波动学基本

波动学基本

ππ
π
y1
=
A cos(200π
t
−16 ×
2

2
)
=
A cos( 200π
t

) 2
同理,
y2
=
A cos( 200π
t

20 ×
π 2

π 2
)
=
A cos(200π
t

π) 2
4
自治区精品课程—大学物理学
黄新民、张晋鲁主编《普通物理学》习题解答
初相位分别为:t=0
时, φ1 0
=
−π 2
,φ20

f
(2)
∵平面简谐波的波动方程为: y
=
Acos ω(t −
x )
c
∴绳子上各质点的振动速度为: ν = ∂y = − Aω sin ω(t − x)
∂t
c
绳子上各质点的振动加速度为: a = ∂ 2 y = − Aω 2 cosω(t − x )
∂t 2
c
∴绳子上各质点振动时的最大速度为 vmax = Aω =0.5π=1.57(m/s)
当取波源为原点并且该波沿+X 方向传播时,波动方程为
y
=
0.1cos(4π
t
π −
x)
5
(2) 沿波传播方向距离波源为λ/2 处的振动方程为:
y = 0.1cos(4π t − π ⋅ λ ) = −0.1cos(4π t) 52
(3) 距离波源分别为 λ , λ , 3λ 和λ的各点的振动方程为: 42 4
B

CC
∵ c = λf ,∴ λ = CT = B ⋅ 2π = 2π . CB C

第二章波动力学基础一、填空1.一维谐振子的能量本征值En与_____

第二章波动力学基础一、填空1.一维谐振子的能量本征值En与_____

第二章 波动力学基础一、填空1. 一维谐振子的能量本征值E n 与_____有关,能量是量子化的.最低的能量是____,称为_____.能级都是等间距的,间隔都是____.2. 定态的性质:粒子坐标的____和____不随时间变化;任何不显含时间变量的力学量的____和____不随时间变化.二、概念与名词解释1. 态叠加原理;2. 概率流守恒定律;3. 定态,束缚态;4. 奇宇称,偶宇称三、计算1. 由下列定态波函数计算几率流密度: (1) ik r 1e r 1=ψ, (2)ik r 2e r 1-=ψ.从所得结果说明ψ1表示向外传播的球面波,ψ2表示向内(即向原点)传播的球面波.2. 设()()为常数a Ae x 22x a 21-=ϕ(1) 求归一化常数 (2) .?p ?x x ==3. 设在t=0时,粒子的状态为 φ=A[sin 2kx+(coskx)/2],求粒子动量和能量的平均值.4. 已知做直线运动的粒子处于状态ix11)x (-=ϕ(1) 将φ(x)归一化;(2) 求出粒子坐标取值概率为最大处的位置.5. 若粒子处于状态 ⎪⎩⎪⎨⎧>β-≤≤<=ϕ)a x ()x e x p (B )a x 0()kx sin(A )0x (0)x (其中k,β为已知常数。

求归一化常数,并给出在1≤x ≤a 区域内发现粒子的概率.6. 粒子处在势能()⎪⎩⎪⎨⎧+<<+≤≤+≤≤+><∞=b)a x a (,U b)2a x b a a x 0(,0b)2a x 0x (,x U 0当和当和当的场中运动,求在能量小于U 0的情况下,决定能量的关系式.7. 求一维谐振子处在第一激发态时几率最大的位置.8. 一维运动的粒子处于()⎩⎨⎧<>=ϕλ-0x 00x Axe x x 的状态. 求归一化系数A ,粒子的动量分布函数及动量平均值。

9. 若线谐振子处于第一激发态,)x a 21aex p(-)2a ((x )222131π=ϕ,求其坐标概率最大的位置,其中a>0.10. 设粒子的能量E>0,求粒子在势阱()⎩⎨⎧><= 0)(x 00)(x U x U 0壁x=0处的反射系数.11. 一维谐振子处在⎥⎦⎤⎢⎣⎡ω--π=ϕt 2i 2x a exp a (x)221/2状态, 求:势能的平均值;动量的概率分布函数;动量的平均值.12. 分子间的范德瓦耳斯力所产生的势能可以近似地表示为()⎪⎪⎩⎪⎪⎨⎧<≤≤-<≤<∞=x b ,0bx a ,U a x 0,U 0x ,x U 10求束缚态的能级所满足的方程,其中U 0>0,U 1>0.13. 粒子在如下三维势场()⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧><∞≤≤==⎩⎨⎧><∞≤≤==b/2)(x -b/2),(x b/2)y (-b/2 0U 0U a/2)(x -a/2),(x a/2)x (-a/2 0U z y,,x U y z x中运动, 求粒子的能量和对应的波函数.14. 设粒子处于一维势阱中⎪⎩⎪⎨⎧>≤≤-<∞=a)(x 0a)x (0 U 0)(x U(x) 0,式中U 0>0.若粒子具有一个E=-U 0/4的本征态,试确定此势阱的宽度.15. 设粒子在势阱宽度为a 的一维无限深势阱中运动,如果粒子的状态由波函数a x cos a x sin 4(x )2πππ=ϕ描述,求粒子能量的可能值和相应的概率.16. 在势阱宽度为a 的一维无限深势阱中运动的粒子,如果粒子的状态由波函数φ(x)=Ax(a-x)描述,A 为归一化常数,求粒子的能量的概率分布和能量的平均值.17. 一个粒子处与中心势场⎩⎨⎧<≥=a)(r 0a)(r U )r (U 0中,设其径向波函数为R(r)=u(r)/r ,u(r)满足的方程为0)r (u r )1l (l ))r (U E (2)r (u dr d 2222=⎥⎦⎤⎢⎣⎡+--μ+ ,若l=0,求该粒子小于U 0的能量和相应的本征函数.18. 粒子在势场⎩⎨⎧≥<δ-=0)(xU 0)(x (x)a U )x (U 10中运动,试给出小于零的能量本征值和本征函数,其中U 1>0,U 0a>0.19. 粒子在如下势场中运动⎩⎨⎧>ω≤∞=0)(x /2x m 0)(x )x (U 22,求其能级. 20. 粒子在双δ势阱U(x)= -U 0d[δ(x+a)+ δ(x-a)]中运动,求其束缚能级满足的方程.21. 设两个方势垒的形状分别是⎩⎨⎧≤≤><<=⎩⎨⎧≤≤<=c)x (b U c)x b,x (a 0)x (U , a)x (0 U 0)(x 0)x (U 21,求粒子连续贯穿两个方势垒的贯穿系数.22. 求势场U(x)= -U 0/(e x/a +1),入射粒子能量E>0时的反射系数.23. 能量为E=3U 0的粒子射向如下势场⎪⎩⎪⎨⎧≥<<≤=a)(x 2U a)x (0 U 0)(x 0U(x)0 0,求粒子的透射和反射系数.24. 能量为E>0的粒子通过如下势阱U(x)= -U 0δ(x),求粒子的透射和反射系数,其中U 0>0.25. 氢原子处在基态0a /r 30e a 1-π=ψ, 求:(1) r 的平均值; (2) 势能-e 2/r 的平均值; (3) 最可几的半径;(4) 动能的平均值;(5) 动量的几率分布函数.26. 设氢原子处于状态()()()()()/2,Y r R 3/2,Y r R ,,r 11211021ϕθ-ϕθ=ϕθψ-,求氢原子能量、角动量平方及角动量z 分量的可能值, 这些可能值出现的几率和这些力学量的平均值.27. 粒子处于状态()⎥⎦⎤⎢⎣⎡ξ-⎪⎪⎭⎫ ⎝⎛πξ=ψ2202124x x p i exp 21x ,式中ξ为常量. 求粒子的动量平均值, 并计算测不准关系()()_______2_____2p x ∆∆28. 设粒子在一维势垒宽度为a 的无限高势垒中运动,求粒子作用在势垒壁上的平均力.29. 设氢原子处在基态,求:它在动量表象中的表示式;p x 和p x 2的平均值;x 和x 2的平均值.30. 设势场为U(r)= -a/r+A/r 2(a 、A>0),求粒子的能量本征值.31. 设势场为U(r)= Br 2+A/r 2 (A 、B>0),求粒子的能量本征值.32. 一个质量为m 的粒子被限制在半径为r=a 和r=b 的两个不可穿透的同心球面之间运动,不存在其他势场.求粒子的基态能量和基态波函数.33. 求一维薛定谔方程在势场V(x)= -Ze 2/x 下的能级和波函数,并与势场⎩⎨⎧≤∞>=0)(x 0)(x /x Ze -V(x)2的结果相比较. 四、证明1. 证明在定态中, 几率流密度与时间无关.2. 设粒子处于复位势V(r)=V 1(r)+iV 2(r)中,式中V 1(r)和V 2(r)皆为实函数,证明此时粒子的概率不守恒.3. 设粒子处于实位势V(r)中,证明在任意束缚态下其能量平均值为τ⎰⎰⎥⎦⎤⎢⎣⎡φφ+φ∇⋅φ∇=τρ=d )r ()r )V (r (*)r ()r (*2m d E 2 式中ρ为能量密度.4. 证明属于不同本征能量的束缚态本征函数是正交的.5. 利用厄米多项式的递推关系H n+1(ξ)-2ξH n (ξ)+2n H n-1(ξ)=0,证明[][]22n n 2-n n 21n 1-n n /2(x) 2)1)(n (n (x)1)(2n (x) 1)-n(n (x)x /(x) 1)/2(n (x) n/2(x)x αφ+++φ++φ=φαφ++φ=φ++,式中φn (x)为线谐振子的第n 个本征波函数, /m ω=α.进而证明在任意本征态下,坐标的平均值为零,势能的平均值为相应本征能量的一半.6. 证明对于一维谐振子,无论处在哪个本征态,它的动能平均值恒等于势能平均值.7. 在一维势场中运动的粒子, 势能对原点对称:U(-x)=U(x), 证明粒子的定态波函数具有确定的宇称.8. 证明对于任意势垒,粒子的反射系数R 和透射系数D 之和等于1.9. 粒子在势能为⎪⎩⎪⎨⎧≥<<≤=)a x (U )a x 0(0)0x (U )x (U 21当当当的场中运动,证明对于能量E<U 1<U 2的状态,能量由21mU 2k arcsin mU 2k arcsinn ka --π=关系式决定,其中2/mE 2k = 10. 证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的.11. 证明在非相对论量子力学中,在辏力场V(r)中运动的粒子,其束缚态满足322r L 21dr )r (dV 2m )0(π-π=ϕ,式中φ(0)是原点波函数,L 2是角动量平方(选ћ=1为单位).五、综合题1. 利用氢原子的能谱公式,写出:(1) 电子偶素(positronium),即e +-e -形成的束缚态的能级;(2) 以μ-子代表核外电子所形成的μ原子的能级;(3) μ+和e -形成的束缚态(Muonium)的能级.2. 一个质量为m 的粒子在一个三维方势阱V(r)中运动.(1) 证明:对于一个半径R 一定的阱,只有阱深至少有一个极小值时,才可能有束缚态,并计算这一极小值.(2) 在一维情况下,类似问题的结果和三维的有何不同?(3) 上述(1)、(2)结果中的一般性质对任意形状的势阱是否仍然成立?例如在一维情况下,若⎩⎨⎧><≤≤<λ=)或b x a (x 0b)x (a 0f(x)U(x),保持f(x)不变,讨论不同的λ值.3. 一电子在一无限大接地平面导体的上方运动,它被自己的像电荷吸收,但电子不能穿透导体表面.试写出电子作三维运动的哈密顿量和它满足的边界条件,并求出电子的能级和在基态时,电子和导体表面之间的平均距离.4. 质量为m 的非相对论粒子在一势场中运动,势场是U(x,y,z)=A(x 2+y 2+2λxy)+B(z 2+2μz),其中A>0,B>0,|λ|<1,μ是任意的,求:(1) 能量的本征值;(2) 使势变成⎩⎨⎧μ<∞μ>=任意)、+任意)、y x ,-(z y x ,-(zU U new ,求基态能量.5. 一个刚体具有惯性矩I z ,可以自由的在x-y 平面中运动.令θ为x 轴与转动轴之间的夹角,求:(1) 能量本征值和相应的本征函数;(2) 若在t=0时,转子由波包φ(0)=Asin 2θ描述,求t>0时的φ(t).6. 考虑一维波函数φ(x)=A(x/x 0)n e -x/x0,其中A 、n 、x 0是常数,(1) 利用薛定谔方程,求势场U(x)和能量E.(这时φ(x)可视为当x →∞时V(x)→0的薛定谔方程的本征函数).(2) 比较你所给出的势场和轨道角动量为l 的氢原子态的有效径向势的异同.7. 通常在量子力学薛定谔方程中,若已知全部能谱和全部本征函数,可以反过来推出相互作用势,这称为反散射问题.若只知道部分能谱和波函数,有时也可给出关于势场的一些性质.证明:(1) 若势场满足d 2V/dr 2>或<0,则零点波函数满足|φ2s (0) |>或<|φ1s (0) |;(2) 记势场V(r)中粒子状态为l n r r l ,n φ=,则若,0r 1)l(l V dr d 222>⎥⎦⎤⎢⎣⎡++必有|φ0l (0) |≤|φ1l (0) |.8. 对于2P 和3D 能级,定义ε=E 2P -E 3D ,u=r φ2P ,v=r φ3D .势场满足V=λ2V(λr),λ是小参量,证明:(1) 在(0,∞)区间中,u 2-v 2有且仅有一个零点;(2) 令W(x)=x[2V+x(dV/dx)],则若满足W(0)=0,且d 2W/dx 2≥或≤0,相应的必有d ε/d λ≤或≥0.9. 粒子在势壁附近的行为,可从下面近似模型出发考虑. 一粒子在一维势场⎩⎨⎧<∞>δ=-d)(x-d)(x (x)U -U(x)0中运动,求: (1) 当势壁离粒子很远时,对束缚态能量的修正值.并据此说明“远离”的意义;(2) 至少存在一个束缚态时,U 0和d 应满足的条件.10. 一维薛定谔方程的本征值谱可依次排列成:E 1<E 2<…<E n <….(1) 若势场U 1(x)给的本征值为E 1n ,U 2(x)给的本征值为E 2n ,且U 1(x) ≤ U 2(x),证明必有E 1n ≤E 2n .(2) 考虑势场,a)x ( /2ka a)x ( /2kx U(x )22⎪⎩⎪⎨⎧≥<=求这个势所能具有的最大的束缚态的数目N.11. 放射性同位素83Bi 212衰变成81Tl 208,同时放出能量为6.1MeV 的α粒子.(1) 为了计算寿命,首先讨论如下图有限高势垒,计算一个质量为M 的粒子从左边入射的透射系数T ,粒子的能量为E ,并设T<<1;(2) 利用上面的结果,选择敏感的势垒参数来近似α粒子势,对83Bi 212的寿命做一个粗略的数值估计.12. 一束单一能量E 的非相对论中子打到一个厚度为t 的平板平面上,在这平板中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 波动学基础思考题5.1 振动和波动有什么联系和区别?平面简谐波方程和简谐振动方程有什么联系和区别?振动曲线和波形图又有什么联系和区别?答: (1)振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为)(t f y =;波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置x ,又是时间t 的函数,即),(t x f y =.(2)在谐振动方程)(t f y =中只有一个独立的变量时间t ,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程),(t x f y =中有两个独立变量,即坐标位置x 和时间t ,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律.当谐波方程)(cos uxt A y -=ω中的坐标位置给定后,即可得到该点的振动方程,而波源持续不断地振动又是产生波动的必要条件之一.(3)振动曲线)(t f y =描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y ,横轴为t ;波动曲线),(t x f y =描述的是介质中所有质元的位移随位置,随时间变化的规律,其纵轴为y ,横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图.5.2 平面简谐波方程])(cos[),(0ϕω+-=x t A t x y 中u x 项的意义是什么?如果改写为]cos[),(0ϕω+-=kx t A t x y ,kx 又是什么意思?如果t 和x 都增加,但相应的])([0ϕω+-u x t 的值不变,由此能从波方程说明什么?答: 波动方程中的u x /表示了介质中坐标位置为x 的质元的振动落后于原点的时间;uxω则表示x 处质元比原点落后的振动位相;设t 时刻的波动方程为)cos(0φωω+-=uxt A y t则t t ∆+时刻的波动方程为])()(cos[0φωω+∆+-∆+=∆+ux x t t A y t t其表示在时刻t ,位置x 处的振动状态,经过t ∆后传播到t u x ∆+处.所以在)(uxt ωω-中,当t ,x均增加时,)(uxt ωω-的值不会变化,而这正好说明了经过时间t ∆,波形即向前传播了t u x ∆=∆的距离,说明)cos(0φωω+-=uxt A y 描述的是一列行进中的波,故谓之行波方程.5.3 在波方程中,坐标原点是否一定要选在波源处?0=t 时刻是否一定是波源开始振动的时刻?波方程写成)(cos ),(u x t A t x y -=ω时,波源一定在坐标原点吗?在什么前提下波方程才能写成这种形式?答: 由于坐标原点和开始计时时刻的选全完取是一种主观行为,所以在波动方程中,坐标原点不一定要选在波源处,同样,0=t 的时刻也不一定是波源开始振动的时刻;当波动方程写成)(cos uxt A y -=ω时,坐标原点也不一定是选在波源所在处的.因为在此处对于波源的含义已做了拓展,即在写波动方程时,我们可以把介质中某一已知点的振动视为波源,只要把振动方程为已知的点选为坐标原点,即可得题示的波动方程.5.4 机械波的波长、频率、周期和波速,(1)在同一种介质中哪些量是不变的?(2)当波从一种介质进入另一种介质后,哪些量是不变的?答: (1)机械波在同一种介质中传播时,其波长、频率、周期和波速都是不变的?(2)当波从一种介质进入另一种介质后,只有频率和周期是不变的?5.5 波在弹性介质中传播时,介质元的能量具有怎样的特点,为什么与弹簧振子不同? 答: 我们在讨论波动能量时,实际上讨论的是介质中某个小体积元dV 内所有质元的能量.波动动能当然是指质元振动动能,其与振动速度平方成正比,波动势能则是指介质的形变势能.形变势能由介质的相对形变量(即应变量)决定.如果取波动方程为),(t x f y =,则相对形变量(即应变量)为x y ∂∂/.波动势能则是与x y ∂∂/的平方成正比.由波动曲线图(题5-3图)可知,在波峰,波谷处,波动动能有极小(此处振动速度为零),而在该处的应变也为极小(该处0/=∂∂x y ),所以在波峰,波谷处波动势能也为极小;在平衡位置处波动动能为极大(该处振动速度的极大),而在该处的应变也是最大(该处是曲线的拐点),当然波动势能也为最大.这就说明了在介质中波动动能与波动势能是同步变化的,即具有相同的量值.对于一个孤立的谐振动系统,是一个孤立的保守系统,机械能守恒,即振子的动能与势能之和保持为一个常数,而动能与势能在不断地转换,所以动能和势能不可能同步变化.5.6 在驻波的两个波节之间,各质点的振幅、频率、相位的关系怎样?在两相邻半波(波节两侧)中又如何?驻波的能量又有什么特点?答: 由驻波方程为vt x A y απλπcos 2cos2=可知,在相邻两波节中的同一半波长上,描述各质点的振幅是不相同的(各质点的振幅是随位置按余弦规律x A λπ2cos2变化的),而在这同一半波长上,各质点的相则是相同的;而在两相邻半波(波节两侧)的质点振动位相则相反.驻波没有能量传播,能量仅在波节与波腹之间传递。

驻波中各质量元的能量不守恒,但两波节之间所有质量元的能量总和保持不变,能量在波节与波腹之间进行势能与动能的转换。

5.7 波源向着观察者运动和观察者向着波源运动,都会产生频率增高的多普勒效应,这两者有什么区别?答: 波源向着观察者运动时,波面将被挤压,波在介质中的波长将被压缩变短,因而观察者在单位时间内接收到的完整数目(λ'/u )会增多,所以接收频率增高;而观察者向着波源运动时,波面形状不变,但观察者测到的波速增大(B v u u +='),因而单位时间内通过观察者完整波的数目λu '也会增多,即接收频率也将增高.简单地说,前者是通过压缩波面(缩短波长)使频率增高,后者则是增加波速(相对与观察者)使得单位时间内通过的波面数增加而升高频率.5.8把一根十分长的绳子拉成水平,用手握其一端,维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A )振动频率越高,波长越长;(B )振动频率越低,波长越长; (C )振动频率越高,波速越大;(D )振动频率越低,波速越大。

答:(B )。

5.9 在下面几种说法中,正确的说法是(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的; (B )波源振动的速度与波速相同;(C )在波传播方向上的任一质点振动位相总是比波源的位相滞后; (D )在波传播方向上的任一质点的振动位相总是比波源的位相超前 答:(C )。

5.10. 下图(a )表示沿x 轴正向传播的平面简谐波在0=t 时刻的波形图,则图(b )表示的是:(A) 质点m 的振动曲线 (B) 质点n 的振动曲线 (C) 质点p 的振动曲线 (D) 质点q 的振动曲线图5.1 思考题5.10图答:(B )。

5.11图示为一沿x 轴正向传播的平面简谐波在t =0时刻的波形,若振动以余弦函数表示,且此题各点振动初相取-π到π之间的值,则()(A )1点的初位相为φ1=0 (B )0点的初位相为φ0=-π/2 (C )2点的初位相为φ2=0 (D )3点的初位相为φ3=0 答:(A )。

5.12一平面简谐波沿x 轴负方向传播。

已知x=b 处质点的振动方程为[]0cos y A t ωφ=+,波速为u ,则振动方程为( )(A)()0cos y A t b x u ωφ⎡⎤=+++⎣⎦ (B)(){}0cos y A t b x ωφ⎡⎤=-++⎣⎦ (C)(){}0cos y A t x b ωφ⎡⎤=+-+⎣⎦ (D) (){}0cos y A t b x u ωφ⎡⎤=+-+⎣⎦ 答:(C )。

5.13一平面简谐波,波速u =5m ·s -1,t =3s 时刻的波形曲线如图所示,则0x =处的振动方程为( )(A )211210cos 22y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI)(B )()2210cos y t ππ-=⨯+ (SI)(C )211210cos 22y t ππ-⎛⎫=⨯+ ⎪⎝⎭ (SI)(D )23210cos 2y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI)答:(A )。

5.14当一平面简谐机械波在弹性媒质中传播时,下述各结论一哪个是正确的? (A )媒质质元的振动动能增大时,其弹性势能减少,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期变化,但两者的位相不相同;(C )媒质质元的振动动能和弹性势能的位相在任一时刻都相同,但两者的数值不相等; (D )媒质质元在其平衡位置处弹性势能最大。

答:(D )。

5.15图示为一平面简谐机械波在t 时刻的波形曲线。

若此时A 点处媒质质元的振动动能在增大,图5.2 思考题5.11图图5.3 思考题5.13图则(A) A 点处质元的弹性势能在减小; (B) 波沿x 轴负方向传播; (C) B 点处质元的振动动能在减小, (D)各点的波的能量密度都不随时间变化。

答:(B )。

5.16一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中 (A)它的势能转换成动能; (B)它的动能转换成势能;(C)它从相邻的一段媒质质元获得能量,其能量逐渐增加; (D)它把自己的能量传给相邻一段媒质质元,其能量逐渐减小。

答:(C )。

5.17 S 1和S 2是波长为λ的两个相干波的波源,相距3λ/4,S 1的位相比S 2超前π/2,若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,则在S 1、S 2连线上S 1外侧和S 2外侧各点,合成波的强度分别是(A) 4 I 0, 4 I 0; (B) 0, 0; (C) 0, 4 I 0; (D) 4 I 0,0。

答:(D )。

5.18在一根很长的弦线上形成的驻波是(A)由两列振幅相等的相干波,沿着相同方向传播叠加而形成的; (B)由两列振幅不相等的相干波,沿着相同方向传播叠加而形成的; (C)由两列振幅相等的相干波,沿着反方向传播叠加而形成的; (D)由两列波,沿着反方向传播叠加而形成的。

答:(C )。

5.19在弦线上有一简谐波,其表达式是212010cos 2002203t x y ππ-⎡⎤⎛⎫=⨯-+⎪⎢⎥⎝⎭⎣⎦.. (SI) 为了在此弦线上形成驻波,并且在x =0处为一波节,此弦线上还应有一简谐波,其表达式为(A )222010cos 2002203t x y ππ-⎡⎤⎛⎫=⨯++⎪⎢⎥⎝⎭⎣⎦.. (SI) (B )2222010cos 2002203t x y ππ-⎡⎤⎛⎫=⨯++ ⎪⎢⎥⎝⎭⎣⎦.. (SI) (C )2242010cos 2002203t x y ππ-⎡⎤⎛⎫=⨯++ ⎪⎢⎥⎝⎭⎣⎦.. (SI) (D )222010cos 2002203tx y ππ-⎡⎤⎛⎫=⨯+-⎪⎢⎥⎝⎭⎣⎦.. (SI)答:(C )。

相关文档
最新文档