浙江理工大学 概率论与数理统计 复习题 第2章
概率论与数理统计浙大第四版答案 第二章
概率论与数理统计习题二参考答案1、将一颗骰子抛掷两次,以X 1表示两次所得点数之和,以X 2表示两次得到的点数的最小者,试分别求X 1和X 2的分布律。
解:X 1可取2、3、4、5、6、7、8、9、10、11、123616161)1,1()2(1=×===P X P36261616161)"1,2""2,1(")3(1=×+×=∪==P X P 363616161616161)"1,3""2,2""3,1(")4(1=×+×+×=∪∪==P X P …… 所以X 1的分布律为X 1 2 3 4 5 6 7 8 9 10 11 12 P k 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 X 2可取的数有1、2、3、4、5、6P (X 2=1)=P ()="1,6""1,5""1,4""1,3""1,2""6,1""5,1""4,1""3,1""2,1""1,1"∪∪∪∪∪∪∪∪∪∪3611所以X 2的分布律为 X 2 1 2 3 4 5 6 P k 11/36 9/36 7/36 5/36 3/36 1/36 2、10只产品中有2只是次品,从中随机地抽取3只,以X 表示取出次品的只数,求X 的分布律。
解:X 可取0、1、2{}310380C C X P ==157={}15713102812===C C C X P {}15123101822===C C C X P3、进行重复独立试验。
概率论与数理统计(浙大版)第二章
二、伯努利(Bernoulli)试验及二项分布 1、伯努利(Bernoulli)试验 (1)n次独立重复试验
将试验E重复进行n次,若各次试验的结果互 不影响,则称这n次试验是相互独立的. (2)n重伯努利试验 满足下列条件的试验称为伯努利(Bernoulli)试验: ①每次试验都在相同的条件下重复进行;
令X=“正面出现的次数”,则X是一个随着试 验结果不同而取值不同的量,其对应关系如下:
基本结果(e) 正面出现的次数X(e)
e1=(正,正)
2
e2=(正,反)
1
e3=(反,正)
1
e4=(反,反)
0
由上可知,对每一个样本点e,都有一个X的取值X(e)
与之对应。我们把X称为定义在这个试验上的随机变量。
P ( X x k ) p k k 1 ,2 ,3 , ( 1 )
称 (1) 式为离散型随机变量X的分布律. 注:离散型随机变量X的分布律可用公式法和表格 法描述。
1)公式法: P (X x k ) p k k 1 ,2 ,3 ,
2) 表格法:
X x1 x2 L pk p1 p2 L
例1:将一枚硬币连掷两次,求“正面出现的次 数X ”的分布律。
及 时 维 修 ” , 则 知 80台 中 发 生 故 障 不 能 及 时 维 修 的 概 率 为 :
P A 1 A 2 A 3 A 4 P A 1 P X 2
而 Xb20,0.01,故 有 :
1
1
PX21PXk1 C 2 k00.01k0.9920k0.0169
k0
k0
即 有 : P A 1 A 2 A 3 A 4 0 .0 1 6 9
text(x(1),pk(1), num2str(pk(1)),'FontSize',21); text(x(3),pk(3), num2str(pk(3)),'FontSize',21);
概率论第二章复习题
概率论与数理统计第二章 随机变量及概率分布 复习题一、填空题1. 在三次独立的贝努利实验中,事件B 至少出现一次的概率为19/27,若每次实验中B 发生的概率均为p ,则p =_______________2.设随机变量X 服从泊松分布,且已知{1}{2}P X P X ===,则{4}_____P X ==3.设随机变量)2,3(~2N X ,则{3}_______________P X ≤=4.设随机变量X 的概率密度为⎩⎨⎧≤>=-000)(2x x ke x f x ,则=k 二、选择题1.设随机变量~(1,1)X N ,其概率密度为)(x f ,则下列结论正确的是( )(A ){}{}000.5P X P X ≤=≥= (B ) ()(),(,)f x f x x =-∈-∞+∞(C ){}{}110.5P X P X ≤=≥= (D ) ()(),(,)F x F x x =-∈-∞+∞2.已知X 的概率密度为()f x =,010,ax b x +<<⎧⎨⎩其它,且15{}28P X >=,则( ) (A )1,21==b a (B )21,1==b a (C )1,1==b a (D )1,2==b a 3. 设随机变量X 的分布律为则下列正确的是( ) (A )151}1{2==X P (B )3019}2{2=<X P (C )307}1{2==X P (D )3011}3{2==X P三、计算题1. 设随机变量X 的概率密度函数为⎩⎨⎧<<-=其它010)()(2x x x A x f ,求: (1) 常数A ;(2)求X 的分布函数()F x ;(3))4321(≤<X P .2. 设).2,3(~2N X(1)求{28},{2}.P X P X -<≤>(2)确定c ,使得}.{}{c X P c X P ≤=>(3)设d 满足.9.0}{≥>d X P 问d 至多为多少?。
《概率论与数理统计》第二章习题解答
第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X 的分布律为:2、一袋中有5只乒乓球,编号为X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1)(1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45 k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计(二)试题及答案
概率论与数理统计B一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为()(A) 0; (B) 1; (C) 0.6; (D) 1/6 2. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为() (A)12; (B) 225; (C) 425; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A)518; (B) 13; (C) 12; (D)以上都不对4.某一随机变量的分布函数为()3xxa be F x e +=+,(a=0,b=1)则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( ) (A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对 二.填空题(每小题3分,共15分)1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = .2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =______.3.随机变量ξ的期望为()5E ξ=,标准差为()2σξ=,则2()E ξ=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。
设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为2()22af x x x =++,a 为常数,则P (ξ≥0)=_______. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.四.(本题10分) 设随机变量ξ的分布密度为, 03()10, x<0x>3Ax f x x⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望. 五.(本题10分) 设二维随机变量(ξ,η)的联合分布是(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()E ξη⋅;六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件?(注:(1.28)0.90Φ=,(1.65)0.95Φ=) 九.(本题6分)设事件A 、B 、C 相互独立,试证明AB 与C 相互独立.某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________. 十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824假定重复测量所得温度2~(,)N ξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间. (注:(1.96)0.975Φ=,(1.65)0.95Φ=)概率论与数理统计B 答案一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2()E ξ=29、4. 0.94、5. 3/4三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故P (A )=5/625=1/125------------------------------------------------------5分(2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法----------------------------------------------------7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故12572625360)(==B P --------------------------------------------------10分 四.解:(1)⎰⎰∞∞-==+=34ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)⎰==+=<1212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3300()()[ln(1)]1AxE xf x dx dx A x x x ξ∞-∞===-++⎰⎰13(3ln 4)1ln 4ln 4=-=-------------------------------------10分 五.解:(1)ξ的边缘分布为⎪⎪⎭⎫ ⎝⎛29.032.039.02 10--------------------------------2分 η的边缘分布为⎪⎪⎭⎫ ⎝⎛28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη⋅的分布列为因此,16.310.01011.0811.0509.0417.0203.0139.00)(=⨯+⨯+⨯+⨯+⨯+⨯+⨯=⋅ηξE-------10分另解:若ξ与η相互独立,则应有P(ξ=0,η=1)=P(ξ=0)P(η=1); P(ξ=0,η=2)=P(ξ=0)P(η=2); P(ξ=1,η=1)=P(ξ=1)P(η=1); P(ξ=1,η=2)=P(ξ=1)P(η=2);因此,)1()0()2,1()2,0()1,1()1,0(============ξξηξηξηξηξP P P P P P但10.012.003.005.0≠,故ξ与η不相互独立。
概率论及数理统计第二章考试题答案
第二章考试题答案一. 填空(共28分,每题4分)1. 抛掷一枚均匀对称的硬币,以X 表示正面出现的次数,则随机变量在区间2. , 取值的概率为 . 解:随机变量X 的散布律为所以{0.5}{1}0.551.P X P X <===≤3. 设随机变量~(1,6)U ξ, 则方程210x x ξ++=, 有实根的概率为 4/5 . 解:方程210x x ξ++=有实根,则判别式240ξ∆=-≥, 则2ξ≥或2ξ≤-,所以()2{}{40}{2}{2}P P P ξξξ=∆=-≥=≥⋃≤-方程有实根{2}{2}P P ξξ=≥+≤-又因为随机变量ξ服从参数为(1,6)的均匀散布,所以其概率密度函数为11,16,16()6150,0,x x f x ⎧⎧<<<<⎪⎪==-⎨⎨⎪⎪⎩⎩其它其它所以6222214{2}(),55{2}()00.P f t dt dt P f t dt dt ξξ+∞---∞-∞≥===≤-===⎰⎰⎰⎰ 故{}P 方程有实根{2}{2}P P ξξ=≥+≤-45=. 4. 设(2,),(3,)X b p Y b p , 若519{}P X ≥=, 则{1}P Y ≥=19/27. 解:由题意知随机变量X 和Y 别离服从参数为2和p 、3和p 的二项散布.5{1}1{0}9P X P X =≥=-=, 取得4{0}9P X ==, 即00222(1)(1)C p p p -=-49=,1329S2S1所以2(1)3p -=, 从而 300333219{1}1{0}1(1)1(1)1.327P Y P Y C p p p ⎛⎫≥=-==--=--=-= ⎪⎝⎭5. 设X 的概率密度函数为1,[0,1]32(),[3,6]90,x f x x ⎧∈⎪⎪⎪=∈⎨⎪⎪⎪⎩其它,若k 使得2{}3P X k ≥=, 则k 的取值范围是13k ≤≤. 解:此题用画图的方式来解:下图中红线即为()f x 的图像.()f xx0 1 2 3 4 5 6其中S1表示由红线1()3f x =与x 轴所夹部份的面积,即{01}P X ≤≤13=;S2表示红线2()9f x =与x 轴所夹部份面积,即{36}P X ≤≤22393=⨯=. 而{}P X k ≥即表示()f x 图像与x 轴所夹图形在直线x k =右边的面积(绿色虚线所示x=k范围). 因为2{}3P X k ≥={36}P X =≤≤,所以k 的取值范围只能在1和3之间, 即 13k ≤≤. 6. 设随机变量(1,4)XN , 则{12}P X <≤= .(已知(0.5)0.6915Φ=.)解:由(1,4)XN 可知,1,2μσ==. 第一进行正态散布的标准化,在查表计算11211{12}{0}222X X P X P P μμσσ----⎧⎫<≤=<≤=<≤⎨⎬⎩⎭ 1()(0)2=Φ-Φ0.69150.5=-=7. 设硕士研究生入学数学考试合格率为,则15名考生中数学考试合格人数X 的概率散布是二项散布,参数为15和, 解:15名考生参加考试,能够视为15次伯努利实验。
概率论与数理统计第二章随机变量习题答案
大学数学云课堂30.83028203.射手向目标独立地进行了次射击,每次击中率为,3求次射击中击中目标的次数的分布律及分布函数,32.并求次射击中至少击中次的概率,0123.X X =解设表示击中目标的次数则,,,3(0)(0.2)0.008P X ===123(1)C 0.8(0.2)0.096P X ===223(2)C (0.8)0.20.384P X ===3(3)(0.8)0.512P X ===X 故的分布律为01230.0080.0960.3840.512X p 0,00.008,01()0.104,120.488,231,3x x F x x x x <ìï£<ïï=£<íï£<ï³ïî(2)(2)(3)0.89P X P X P X ³==+==分布函数大学数学云课堂0.6,0.7,33028205.甲、乙两人投篮,投中的概率分别为今各投次,求:(1);两人投中次数相等的概率(2.)甲比乙投中次数多的概率~30.6),~(3,0.7)X Y X b Y b 解分别令、表示甲、乙投中次数,则(,1)()(0,0)(1,1)(2,2)(3,3)P X Y P X Y P X Y P X Y P X Y ====+==+==+==331212222233333(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)C (0.6)0.4C (0.7)0.3(0.6)(0.7=+++0.32076=(2)()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+(2,1)(3,1)(3,2)P X Y P X Y P X Y ==+==+==1232233322123333C 0.6(0.4)(0.3)C (0.6)0.4(0.3)(0.6)(0.3)C (0.6)0.4C 0.7(0.3)=+++31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.30.243++=3028207.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有辆汽车通过,10002问出事故的次数不小于的概率是多少(利用泊松定理)?解设表示出事故的次数,则(,)~10000.0001X X b0.10.1³=-=-==--´(2)1(0)(1)1e0.1eP X P X P X--大学数学云课堂大学数学云课堂0.3A 3028209.设事件在每一次试验中发生的概率为,3A 当发生不少于次时,指示灯发出信号,(1)5进行了次独立试验,试求指示灯发出信号的概率;(2)7.进行了次独立试验,试求指示灯发出信号的概率(1)5~650.3X A X 解设表示次独立试验中发生的次数,则(,)5553(3)C (0.3)(0.7)0.16308kkk k P X -=³==å(2)7~70.3Y A Y b 令表示次独立试验中发生的次数,则(,)7773(3)C (0.3)(0.7)0.35293kkk k P Y -=³==å大学数学云课堂e ,0,(0),00.xt A B x X F x ,x l -ì+³>í<î3028224.设随机变量分布函数为()=30282概率统计(北大出版社)课后习题二第24题分布函数视频详解1A B ()求常数,;2{2}{3}P X P X £()求,>;3().f x ()求分布密度00lim ()11(1),lim ()lim ()1x x x F x A F x F x B ®+¥®+®-=ì=ìï\íí==-îïîQ 解2(2)(2)(2)1eP X F l -£==-33(3)1(3)1(1e )e P X F l l -->=-=--=e ,0(3)()()0,0x x f x F x x l l -ì³¢==í<î大学数学云课堂a 3028227.求标准正态分布的上分位点,10.01;a a =(),求z /220.003.a a a =(),求z ,z (1)()0.01,1()0.01P X z z a a F >=\-=Q 解()0.09, 2.33z z a a F ==即查表得(2)()0.003,1()0.003P X z z a a F >=\-=Q ()0.997, 2.75z z a a F ==即查表得/2/2()0.0015,1()0.0015P X z z a a -F >=\=Q /2/2()0.9985, 2.96z z a a F ==即查表得x.大学数学云课堂00.9?3028235.随机数字序列要多长才能使数字至少出现一次的概率不小于()0~,0.1.X n X b n 解令为出现的次数,设数字序列中要包含个数字,则00(1)1(0)1C (0.1)(0.9)0.9nnP X P X ³=-==-³(0.9)0.1,22nn £\³即22.\随机数字序列至少要有个数字。
浙江大学概率论与数理统计第二章习题
3 k 3 k P{ X k } 0 . 6 0 . 4 , k 3 k 3 k P{Y k } 0 . 7 0 . 3 , k k 0,1,2,3
10x只能取值345x3时一只球编号为3另外两只球编号为12只有一种取法x4时一只球编号为4另外两只球只能从编号为123的三只球110310610设在15只同类型的零件中有2只是次品在其中取3次每次任取1只作不放回抽样
第二章习题
2. 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取 出的 3只球中的最大号码,写出随机变量X的分布律.
5 3 5 5 2 5 4 3 0.1 0.9 4 0.1 0.9 5 0.1 =0.00856
(3)P{X3} =P{X=0}+P{X=1}+P{X=2}+P{X=3} 5 5 4 5 2 3 5 3 2 0.9 0 . 1 0 . 9 0 . 1 0 . 9 0 . 1 0 . 9 0.99954. 1 2 3
X
3
4
5
Pk 1/10 3/10 6/10
3. 设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1 只,作不放回抽样.以X表示取出次品的只数.(1)求X的分布律;(2)画出 分布律的图形. 解 法一:X可能取值为0,1,2. 设事件Ai表示“第i次取到正 13 12 11 22 品”,i=1,2,3. P{X=0}=P(A A A )=P(A )P(A |A )P(A |A A ) 1 2 3 1 2 1 3 1 2
概率论与数理统计答案 第二章1-2节
1 P { X = 1} = P( A1 A 2 A3 ∪ A1 A 2 A3 ∪ A1 A 2 A3 ) = C3 p1 (1 − p)3−1
P { X = 2} = P ( A1 A 2 A3 ∪ A1 A 2 A3 ∪ A1 A 2 A3 ) = C32 p 2 (1 − p)3− 2
同时可知: lim P { X ≥ 1} = 1
n →∞
上式的意义为:若p较小,p≠0,只要n充分大,至少有 一次命中的概率很大。即“小概率事件”在大量试验 中“至少有一次发生”几乎是必然的。
17
例4:有80台同类型设备,各台工作是相互独立的,发生故障 的概率都是0.01,且一台设备的故障能由一个人处理。 考虑两种配备维修工人的方法: 其一是由4个人维护,每人负责20台; 其二是由3个人共同维护80台。 试比较这两种方法在设备发生故障时不能及时维修的概率 的大小。
P{X=k}<0.001, 当k≥11时
16
例3:某人独立射击n次,设每次命中率为p,0<p<1, 设命中X次,(1) 求X的概率分布律; (2) 求至少有一次命中的概率。
解:这是n重伯努利试验 ⇒ X ~ b ( n , p ) ∼
(1) P { X = k} = Cnk p k (1 − p)n−k ,k = 0,1, ⋅⋅⋅, n 2 ) P { X ≥ 1} = 1 − P { X = 0} = 1 − (1 − p) n (
随机变量离散型随机变量分布律连续型随机变量概率密度概率分布函数重伯努利实验二项分布泊松分布均匀分布正态分布指数分布随机变量的函数的分布随机变量离散型随机变量分布律连续型随机变量概率密度概率分布函数重伯努利实验二项分布泊松分布均匀分布正态分布指数分布随机变量的函数的分布23定义1随机变量例1
《概率论与数理统计》第02章习题解答.docx
P{ X = 1} = P[人(瓦U瓦)U孔A ] = 0.8(0.2 + 0.2-0.04) + 0.2 x (0.8)2
= 0.416
P{X=2} =P( £%為)=(0.8)3=0.512
3、据信有20%的美国人没有任何健康保险,现任意抽查12个美国人,以X表示15人无 任何健康保险的人数(设各人是否有健康保险是相互独立的),问X服从什么分布,写出X的分布律,并求下列情况下无任何健康保险的概率
解:(1)P{X>1}=f(x)dx=j"-(4-x2)dr = (-X- — X3)
"9927
(2)―叫刃’叩沟心]刃
22
27
10-R
£二0丄2,…,10
27■■
592
(3)P{y=2}=C^(—)2x(—)8=0.2998
s99s9?
p{r>2}= 1- p{r=0} - p{y=1}= 1-(—)° x(―)10- ^0(—)J(—)9= 0.5778
J;(0.2 + 1.2y)dy
—oo
y v _1
-1 < y < 0
0<y<\
0
0.2y + 0.2
0.6/+0.2j + 0.2
1
y <-1
0<y<l
沖1
P{0<Y<0.5} = F(0.5)-F(0) = 0.2+0.2x0.5 + 0.6x(0.5)2-0.2 = 0.25
P{y > 0.1} = 1-F(0」)=1一0.2-0.2x0」一0.6x0= 0.774
《概率论与数理统计》第二章习题解答
第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为 投保一年内因其他原因死亡:5万,概率为投保一年内没有死亡:0,概率为所以2、一袋中有5只乒乓球,编号为1、2X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1)(1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = k -k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。
04183概率论与数理统计(经管类)_第2章课后答案
常数a<6.5.解: ,
14.设X~N(0,1),则Y=2X+1的概率密度 = .
解:
三.袋中有2个白球3个红球,现从袋中随机地抽取2个球,以X表示取到红球的数,求X的分布律.
解: X=0,1,2
当X=0时,
当X=1时,
当X=2时,
X的分布律为:
(1)
(2)
(3)
(4)
5.设随机变量X的分布函数为
F(x) =a+barctanx,
求(1)常数a,b;
(2)
解: (1)由分布函数的基本性质 得:
解之a= , b=
(2)
(将x=1带入F(x) =a+barctanx)注:arctan为反正切函数,值域( ),arctan1=
6.设随机变量X的分布函数为
1
0
不存在
0
π
0
-1
0
不存在
(3)X的概率分布为:
2.设随机变量X的概率密度为
求: (1)常数a; (2) ;(3)X的分布函数.
解:
(1) ,即a=
(2)
(3)X的分布函数
3.求下列分布函数所对应的概率密度:
(1)
解: (柯西分布)
(2)
解: (指数分布)
(3)
解: (均匀分布)
4.设随机变量X的概率密度为
(1)Y=2X+1; (2) (3)
解: (1)Y=g(x)=2X+1,
X的概率密度为:
即
(2)
即
(3)
,
即
6.X~N(0,1),求以下Y的概率密度:
概率论与数理统计第四版第2章(浙大)
1、考虑为期一年的一张保险单,若投保人在投保一年后因意外死亡,则公司赔付20万元,若投保人因其他原因死亡,则公司赔付5万元,若投保人在投保期末生存,则公司无需付给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其他愿意死亡的概率为0.0010,求公司赔付金额的分布律。
解:设X为公司的赔付金额,X=0,5,20P(X=0)=1-0.0002-0.0010=0.9988P(X=5)=0.0010P(X=20)=0.00022.(1)一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,以X表示取出的三只中的最大号码,写出随机变量的分布律.解:方法一:考虑到5个球取3个一共有(:?=10种取法,数量不多可以枚举来解此题。
设样本空间为SS= {123,124,125,134,135,145,234,235,245,345 }易得,P {X=3 } = ; P {X=4 } = ; P {X=5 }=;方法二:X的取值为3,4,51当X=3时,1与2必然存在,P {X=3 }= =;当X=4时,1,2,3中必然存在2个,P {X=4 }=目扁;当X=5时,1,2,3,4中必然存在2个,P { X=5 }= =;(2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,试求X的分布律.解:P {X=1 } = P (第一次为1点)+P (第二次为1点)-P (两次都为一点)1 1 L I 1=石+冇詰=西;P {X=2 } = P (第一次为2点,第二次大于1点)+P (第二次为2点,第一次大于1点)-P (两次都为2点)15 15 196 * 6_ M=讯;P {X=3 } = P (第一次为3点,第二次大于2点)+P (第二次为3点,第一次大于2点)-P (两次都为3点)P {X=4 } = P (第一次为4点,第二次大于 3点)+P (第二次为4点,第一次大于 3 点)-P (两次都为4点)P {X=5 } = P (第一次为5点,第二次大于 4点)+P (第二次为5点,第一次大于 4 点)-P (两次都为5点)P {X=6 } = P (第一次为6点,第二次大于5点)+P (第二次为6点,第一次大于5点) -P (两次都为6点)111111 1— . —斑;X1 2 3 45 611/369/367/365/363/361/363•设在15只同类型的零件中有 2只是次品,在其中取 3次,每次任取1只,作不放回抽样 以X 表示取出的次品的只数. (1)求X 的分布律.M Ci 12P {X=1 }=研=甬cSc? iP {X=2 }= =.;X0 1 2P k22/3512/351/35(2)画出分布律的图形.分布律图形4、进行独立重复试验,设每次试验的成功率为 p ,失败概率为q=1-p (0<p<1 )解:P {X=0 }||2(1)将试验进行到出现一次成功为止,以X表示所需的试验次数,求X的分布律。
概率论与数理统计第二章习题答案(PDF)
第二章 随机变量及其分布习题2.11. 口袋中有5个球,编号为1, 2, 3, 4, 5.从中任取3只,以X 表示取出的3个球中的最大号码.(1)试求X 的分布列;(2)写出X 的分布函数,并作图. 解:样本点总数1012334535=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)X 的全部可能取值为3, 4, 5,且事件“X = 3”所含样本点个数为k 1 = 1,有1.0101}3{===X P , 事件“X = 4”所含样本点个数为31223232=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3.0103}4{===X P , 事件“X = 5”所含样本点个数为61234243=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有6.0106}5{===X P , 故X 的分布列为6.03.01.0543P X;(2)因分布函数F (x ) = P {X ≤ x },分段点为x = 3, 4, 5,当x < 3时,F (x ) = P {X ≤ x } = P (∅) = 0,当3 ≤ x < 4时,F (x ) = P {X ≤ x } = P {X = 3} = 0.1,当4 ≤ x < 5时,F (x ) = P {X ≤ x } = P {X = 3} + P {X = 4} = 0.1 + 0.3 = 0.4,当x ≥ 5时,F (x ) = P {X ≤ x } = P {X = 3} + P {X = 4} + P {X = 5} = 0.1 + 0.3 + 0.6 = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.5,1;54,4.0;43,1.0;3,0)(x x x x x F2. 一颗骰子抛两次,以X 表示两次中所得的最小点数.(1)试求X 的分布列; (2)写出X 的分布函数. 解:样本点总数n = 62 = 36,(1)X 的全部可能取值为1, 2, 3, 4, 5, 6,且事件“X = 1”所含样本点个数为k 1 = 62 − 52 = 11,有3611}1{==X P , 事件“X = 2”所含样本点个数为k 2 = 52 − 42 = 9,有369}2{==X P ,事件“X = 3”所含样本点个数为k 3 = 42 − 32 = 7,有367}3{==X P ,事件“X = 4”所含样本点个数为k 4 = 32 − 22 = 5,有365}4{==X P ,事件“X = 5”所含样本点个数为k 5 = 22 − 1 = 3,有363}5{==X P , 事件“X = 6”所含样本点个数为k 6 = 1,有361}6{==X P , 故X 的分布列为3613633653673693611654321PX ; (2)因分布函数F (x ) = P {X ≤ x },分段点为x = 1, 2, 3, 4, 5, 6,当x < 1时,F (x ) = P {X ≤ x } = P (∅) = 0,当1 ≤ x < 2时,3611}1{}{)(===≤=X P x X P x F , 当2 ≤ x < 3时,36203693611}2{}1{}{)(=+==+==≤=X P X P x X P x F , 当3 ≤ x < 4时,36273673693611}3{}2{}1{}{)(=++==+=+==≤=X P X P X P x X P x F ,当4 ≤ x < 5时,36323653673693611}{}{)(41=+++===≤=∑=k k X P x X P x F , 当5 ≤ x < 6时,36353633653673693611}{}{)(51=++++===≤=∑=k k X P x X P x F , 当x ≥ 6时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=.6,1;65,3635;54,3632;43,3627;32,3620;21,3611;1,0)(x x x x x x x x F 3. 口袋中有7个白球、3个黑球.(1)每次从中任取一个不放回,求首次取出白球的取球次数X 的概率分布列;(2)如果取出的是黑球则不放回,而另外放入一个白球,此时X 的概率分布列如何. 解:(1)X 的全部可能取值为1, 2, 3, 4,且107}1{==X P ,30797103}2{=×==X P ,12078792103}3{=××==X P , 1201778192103}4{=×××==X P , 故X 的概率分布列为120112073071074321PX ;(2)X 的全部可能取值仍为1, 2, 3, 4,且7.0107}1{===X P ,24.0108103}2{=×==X P ,054.0109102103}3{=××==X P , 006.01010101102103}4{=×××==X P ,故X 的概率分布列为006.0054.024.07.04321P X .4. 有3个盒子,第一个盒子装有1个白球、4个黑球;第二个盒子装有2个白球、3个黑球;第三个盒子装有3个白球、2个黑球.现任取一个盒子,从中任取3个球.以X 表示所取到的白球数. (1)试求X 的概率分布列;(2)取到的白球数不少于2个的概率是多少?解:设A 1 , A 2 , A 3分别表示“取到第一个、第二个、第三个盒子”,(1)X 的全部可能取值为0, 1, 2, 3,且P {X = 0} = P (A 1) P {X = 0 | A 1} + P (A 2) P {X = 0 | A 2} + P (A 3) P {X = 0 | A 3}610301304031353331353431=++=×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×=, P {X = 1} = P (A 1) P {X = 1 | A 1} + P (A 2) P {X = 1 | A 2} + P (A 3) P {X = 1 | A 3}2130330630635221331352312313524131=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛××=, P {X = 2} = P (A 1) P {X = 2 | A 1} + P (A 2) P {X = 2 | A 2} + P (A 3) P {X = 2 | A 3}10330630303512233135132231031=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+×=, P {X = 3} = P (A 1) P {X = 3 | A 1} + P (A 2) P {X = 3 | A 2} + P (A 3) P {X = 3 | A 3}30130100353331031031=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+×+×=, 故X 的概率分布列为30110321613210PX ; (2)所求概率为3130********}3{}2{}2{==+==+==≥X P X P X P . 5. 一批产品共有100件,其中10件是不合格品.根据验收规则,从中任取5件产品进行质量检验,假如5件中无不合格品,则这批产品被接受,否则就要重新对这批产品逐个检验. (1)试求5件产品中不合格品数X 的分布列; (2)需要对这批产品进行逐个检验的概率是多少?解:样本点总数7528752012345969798991005100=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n , (1)X 的全部可能取值为0, 1, 2, 3, 4, 5,且事件“X = 0”所含样本点个数为439492681234586878889905900=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k , 事件“X = 1”所含样本点个数为25551900123487888990104901101=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k , 事件“X = 2”所含样本点个数为5286600123888990129103902102=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 3”所含样本点个数为48060012899012389102903103=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 4”所含样本点个数为18900901234789101904104=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 5”所含样本点个数为252123456789105105=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,则583752.07528752043949268}0{===X P ,339391.07528752025551900}1{===X P ,070219.0752875205286600}2{===X P ,006384.075287520480600}3{===X P ,000251.07528752018900}4{===X P ,000003.075287520252}5{===X P ,故X 的分布列为000003.0000251.0006384.0070219.0339391.0583752.0543210P X ;(2)所求概率为P {X > 0} = 1 − P {X = 0} = 1 − 0.583752 = 0.416248. 6. 设随机变量X 的分布函数为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=.6,1;63,21;31,31;10,41;0,0)(x x x x x x F试求X 的概率分布列及P {X < 3},P {X ≤ 3},P {X > 1},P {X ≥ 1}. 解:X 的全部可能取值为其分布函数F (x ) 的分段点0, 1, 3, 6,且41041)00()0(}0{=−=−−==F F X P ,1214131)01()1(}1{=−=−−==F F X P , 613121)03()3(}3{=−=−−==F F X P ,21211)06()6(}6{=−=−−==F F X P ,故X 的概率分布列为2161121413210PX ; 且31)03(}3{=−=<F X P ;21)3(}3{==≤F X P ;32311)1(1}1{1}1{=−=−=≤−=>F X P X P ; 43411)01(1}1{1}1{=−=−−=<−=≥F X P X P .7. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.e ,1e;1,ln ;1,0)(x x x x x F试求P {X < 2},P {0 < X ≤ 3},P {2 < X < 2.5}.解:P {X < 2} = F (2 − 0) = ln 2;P {0 < X ≤ 3} = F (3) − F (0) = 1 − 0 = 1;P {2 < X < 2.5} = F (2.5 − 0) − F (2) = ln 2.5 − ln 2 = ln 1.25.8. 若P {X ≥ x 1} = 1 − α ,P {X ≤ x 2} = 1 − β ,其中x 1 < x 2 ,试求P {x 1 ≤ X ≤ x 2}.解:P {x 1 ≤ X ≤ x 2} = P {X ≤ x 2} − P {X < x 1} = P {X ≤ x 2} + P {X ≥ x 1} − 1 = 1 − β + 1 − α − 1 = 1 − α − β . 9. 从1, 2, 3, 4, 5五个数字中任取三个,按大小排列记为x 1 < x 2 < x 3 ,令X = x 2 ,试求(1)X 的分布函数;(2)P {X < 2}及P {X > 4}.解:样本点总数1012334535=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)X 的全部可能取值为2, 3, 4,且事件“X = 2”所含样本点个数为k 1 = 3,有3.0103}2{===X P , 事件“X = 3”所含样本点个数为k 2 = 2 × 2 = 4,有4.0104}3{===X P ,事件“X = 4”所含样本点个数为k 3 = 3,有3.0103}4{===X P ,因分布函数F (x ) = P {X ≤ x },分段点为x = 2, 3, 4, 当x < 2时,F (x ) = P {X ≤ x } = P (∅) = 0,当2 ≤ x < 3时,F (x ) = P {X ≤ x } = P {X = 2} = 0.3,当3 ≤ x < 4时,F (x ) = P {X ≤ x } = P {X = 2} + P {X = 3} = 0.3 +0.4 = 0.7, 当x ≥ 4时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=;4,1;43,7.0;32,3.0;2,0)(x x x x x F(2)P {X < 2} = P (∅) = 0,P {X > 4} = P (∅) = 0.10.设随机变量X 的密度函数为⎩⎨⎧≤≤−−=.,0;11|,|1)(其他x x x p试求X 的分布函数.解:分布函数F (x ) = P {X ≤ x },分段点为x = −1, 0, 1,当x < −1时,F (x ) = P {X ≤ x } = P (∅) = 0,当−1 ≤ x < 0时,21221122)](1[)()(22121++=⎟⎠⎞⎜⎝⎛+−−+=⎟⎟⎠⎞⎜⎜⎝⎛+=−−==−−∞−∫∫x x x x u u du u du u p x F xxx, 当0 ≤ x < 1时,xxxu u u u du u du u du u p x F 021200122)1()](1[)()(⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−+−−==−−∞−∫∫∫21202211022++−=−⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎠⎞⎜⎝⎛+−−=x x x x , 当x ≥ 1时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤++−<≤−++−<=.1,1;10,212;01,212;1,0)(22x x x x x x x x x F11.如果X 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=.,0;21,2;10,)(其他x x x x x p试求P {X ≤ 1.5}. 解:16132325.13021222)2()(}5.1{25.112125.11105.1=−⎟⎟⎠⎞⎜⎜⎝⎛−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+=−+==≤∫∫∫∞−x x x dx x xdx dx x p X P . 12.设随机变量X 的密度函数为⎪⎩⎪⎨⎧>≤=.2π||,0;2π||,cos )(x x x A x p 试求(1)系数A ;(2)X 落在区间 (0, π /4) 内的概率. 解:(1)由密度函数正则性知122πsin 2πsinsin cos )(2π2π2π2π==⎟⎠⎞⎜⎝⎛−−===−−∞+∞−∫∫A A A xA xdx A dx x p , 故21=A ;(2)所求概率为4204πsin 21sin 21cos 21}4π0{4π04π=−===<<∫x xdx X P .13.设连续随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(2x x Ax x x F试求(1)系数A ;(2)X 落在区间 (0.3, 0.7) 内的概率; (3)X 的密度函数.解:(1)由连续随机变量分布函数的连续性知A A x F F F x =⋅==−==−→211)(lim )01()1(1,故A = 1; (2)所求概率为P {0.3 < X < 0.7} = F (0.7) − F (0.3) = 0.7 2 − 0.3 2 = 0.4;(3)密度函数p (x ) = F ′(x ),当x < 0时,F (x ) = 0,有p (x ) = F ′(x ) = 0,当0 ≤ x < 1时,F (x ) = x 2,有p (x ) = F ′(x ) = 2x , 当x ≥ 1时,F (x ) = 1,有p (x ) = F ′(x ) = 0,故X 的密度函数为⎩⎨⎧<≤=.,0;10,2)(其他x x x p 14.学生完成一道作业的时间X 是一个随机变量,单位为小时.它的密度函数为⎩⎨⎧≤≤+=.,0;5.00,)(2其他x x cx x p (1)确定常数c ;(2)写出X 的分布函数;(3)试求在20min 内完成一道作业的概率; (4)试求10min 以上完成一道作业的概率. 解:(1)由密度函数正则性知1812423)()(5.00235.002=+=⎟⎟⎠⎞⎜⎜⎝⎛+=+=∫∫∞+∞−c x x c dx x cx dx x p ,故c = 21; (2)分布函数F (x ) = P {X ≤ x },分段点为x = 0, 0.5,当x < 0时,F (x ) = P {X ≤ x } = P (∅) = 0,当0 ≤ x < 0.5时,2727)21()()(2302302x x u u du u u du u p x F xxx+=⎟⎟⎠⎞⎜⎜⎝⎛+=+==∫∫∞−,当x ≥ 0.5时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤+<=;5.0,1;5.00,27;0,0)(23x x x x x x F(3)所求概率为5417181277312131731}316020{23=+=⎟⎠⎞⎜⎝⎛×+⎟⎠⎞⎜⎝⎛×=⎟⎠⎞⎜⎝⎛==≤F X P ;(4)所求概率为1081037212167161216171611}616010{23=−−=⎟⎠⎞⎜⎝⎛×−⎟⎠⎞⎜⎝⎛×−=⎟⎠⎞⎜⎝⎛−==≥F X P . 15.设随机变量X 和Y 同分布,X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;20,83)(2其他x x x p 已知事件A = {X > a }和B = {Y > a }独立,且P (A ∪B ) = 3/4,求常数a . 解:由于事件A 和B 独立,且显然有P (A ) = P (B ),则43)]([)(2)()()()()()()()(2=−=−+=−+=A P A P B P A P B P A P AB P B P A P B A P ∪, 可得21)(=A P 或23)(=A P (舍去), 显然0 < a < 2,有218181d 83}{)(32322=−===>=∫a x x x a X P A P a a , 故34=a .16.设连续随机变量X 的密度函数p (x ) 是一个偶函数,F (x ) 为X 的分布函数,求证对任意实数a > 0,有(1)∫−=−=−adx x p a F a F 0)(5.0)(1)(;(2)P {| X | < a } = 2F (a ) − 1;(3)P {| X | > a } = 2[1 − F (a )]. 证:(1)因p (x ) 为偶函数,有∫∫+∞−∞−=a a dx x p dx x p )()(且5.0)(0=∫∞−dx x p ,则∫∫∫∫+=+==∞−∞−a aa dx x p dx x p dx x p dx x p a F 0)(5.0)()()()(,故∫∫∫∫−=−=−===−∞−+∞−∞−a aadx x p a F dx x p dx x p dx x p a F 0)(5.0)(1)(1)()()(;(2)P {| X | < a } = P {−a < X < a } = F (a ) − F (−a ) = F (a ) − [1 − F (a )] = 2 F (a ) − 1; (3)P {| X | > a } = 1 − P {| X | ≤ a } = 1 − P {| X | < a } = 1 − [2 F (a ) − 1] = 2 − 2 F (a ).习题2.21. 设离散型随机变量X 的分布列为3.03.04.0202P X −试求E (X ) 和E (3X + 5).解:E (X ) = (−2) × 0.4 + 0 × 0.3 + 2 × 0.3 = −0.2;E (3X + 5) = (−1) × 0.4 + 5 × 0.3 + 11 × 0.3 = 4.4. 2. 某服装店根据历年销售资料得知:一位顾客在商店中购买服装的件数X 的分布列为04.009.013.031.033.010.0543210P X试求顾客在商店平均购买服装件数.解:平均购买服装件数为E (X ) = 0 × 0.10 + 1 × 0.33 + 2 × 0.31 + 3 × 0.13 + 4 × 0.09 + 5 × 0.04 = 1.9. 3. 某地区一个月内发生重大交通事故数X 服从如下分布002.0006.0026.0087.0216.0362.0301.06543210P X试求该地区发生重大交通事故的月平均数. 解:月平均数E (X ) = 0 × 0.301 + 1 × 0.362 + 2 × 0.216 + 3 × 0.087 + 4 × 0.026 + 5 × 0.006 + 6 × 0.002 = 1.201. 4. 一海运货船的甲板上放着20个装有化学原料的圆桶,现已知其中有5桶被海水污染了.若从中随机抽取8桶,记X 为8桶中被污染的桶数,试求X 的分布列,并求E (X ).解:样本点总数125970820=⎟⎟⎠⎞⎜⎜⎝⎛=n ,X 的全部可能取值为0, 1, 2, 3, 4, 5,且事件“X = 0”所含样本点个数64358150=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0511.01259706435}0{===X P , 事件“X = 1”所含样本点个数32175715151=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有2554.012597032175}1{===X P , 事件“X = 2”所含样本点个数50050615252=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3973.012597050050}2{===X P , 事件“X = 3”所含样本点个数30030515353=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有2384.012597030030}3{===X P , 事件“X = 4”所含样本点个数6825415454=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0542.01259706825}4{===X P , 事件“X = 5”所含样本点个数455315555=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0036.0125970455}5{===X P , 故X 的分布列为0036.00542.02384.03973.02554.00511.0543210PX且E (X ) = 0 × 0.0511 + 1 × 0.2554 + 2 × 0.3973 + 3 × 0.2384 + 4 × 0.0542 + 5 × 0.0036 = 2. 5. 用天平称某种物品的质量(砝码仅允许放在一个盘中),现有三组砝码:(甲)1, 2, 2, 5, 10(g );(乙)1, 2, 3, 4, 10(g );(丙)1, 1, 2, 5, 10(g ),称重时只能使用一组砝码.问:当物品的质量为1g 、2g 、…、 10g 的概率是相同的,用哪一组砝码称重所用的平均砝码数最少? 解:设X 1 , X 2 , X 3分别表示使用甲、乙、丙组砝码称重时需要的砝码个数,当物品的质量为1g 、2g 、…、10g 时,有X 1 = 1、1、2、2、1、2、2、3、3、1,即P {X 1 = 1} = 0.4,P {X 1 = 2} = 0.4,P {X 1 = 3} = 0.2, X 2 = 1、1、1、1、2、2、2、3、3、1,即P {X 2 = 1} = 0.5,P {X 2 = 2} = 0.3,P {X 2 = 3} = 0.2, X 3 = 1、1、2、3、1、2、2、3、4、1,即P {X 3 = 1} = 0.4,P {X 3 = 2} = 0.3,P {X 3 = 3} = 0.2,P {X 3 = 4} = 0.1,则平均砝码数E (X 1 ) = 1 × 0.4 + 2 × 0.4 + 3 × 0.2 = 1.8,E (X 2 ) = 1 × 0.5 + 2 × 0.3 + 3 × 0.2 = 1.7, E (X 3 ) = 1 × 0.4 + 2 × 0.3 + 3 × 0.2 + 4 × 0.1 = 2, 故用乙组砝码称重所用的平均砝码数最少.6. 假设有十只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品只数的数学期望.解:设X 表示在取到合格品之前已取出的不合格品只数,X 的全部可能取值为0, 1, 2,则54108}0{===X P ,45898102}1{=×==X P ,4518891102}2{=××==X P , 故9245124581540)(=×+×+×=X E .7. 对一批产品进行检查,如查到第a 件全为合格品,就认为这批产品合格;若在前a 件中发现不合格品即停止检查,且认为这批产品不合格.设产品的数量很大,可以认为每次查到不合格品的概率都是p .问每批产品平均要查多少件?解:设X 表示检查一批产品要查的件数,X 的全部可能取值为1, 2, …, a – 1, a ,则P {X = 1} = p ,P {X = 2} = (1 – p )p ,…,P {X = a – 1} = (1 – p ) a − 2 p ,P {X = a } = (1 – p ) a − 1, 即E (X ) = 1 ⋅ p + 2 (1 – p ) p + … + (a – 1) (1 – p ) a − 2 p + a (1 – p ) a − 1,有(1 – p )E (X ) = 1 ⋅ (1 – p ) p + 2 (1 – p )2 p + … + (a – 2) (1 – p ) a − 2 p + (a – 1) (1 – p ) a − 1 p + a (1 – p ) a , 得E (X ) – (1 – p )E (X ) = p + (1 – p ) p + … + (1 – p ) a − 2 p + a (1 – p ) a − 1 – (a – 1) (1 – p ) a − 1 p – a (1 – p ) a ,即)]1()1([)1()1(1])1(1[)(11p a p a a p p p p X pE a a −−−−−+−−−−=−−= 1 – (1 – p ) a − 1 + (1 – p ) a − 1 ⋅ p = 1 – (1 – p ) a − 1 ⋅ (1 – p ) = 1 – (1 – p ) a ,故pp X E a)1(1)(−−=.8. 某厂推土机发生故障后的维修时间T 是一个随机变量(单位:h ),其密度函数为⎩⎨⎧≤>=−.0,0;0,e 02.0)(02.0t t t p t 试求平均维修时间. 解:平均维修时间5002.0e e e )e (e 02.0)(002.0002.0002.0002.0002.0=−=+−=−=⋅=+∞−∞+−∞+−∞+−∞+−∫∫∫tttt t dt t d t dt t T E .9. 某新产品在未来市场上的占有率X 是仅在区间 (0, 1) 上取值的随机变量,它的密度函数为⎩⎨⎧<<−=.,0;10,)1(4)(3其他x x x p 试求平均市场占有率.解:平均市场占有率∫∫−+−=−⋅=143213)412124()1(4)(dx x x x x dx x x X E5154342105432=⎟⎠⎞⎜⎝⎛−+−=x x x x .10.设随机变量X 的密度函数如下,试求E (2 X + 5).⎩⎨⎧≤>=−.0,0;0,e )(x x x p x 解:7e 25e 2e )52()e )(52(e )52()52(0=−=++−=−+=+=++∞−+∞−+∞−+∞−+∞−∫∫∫xx xx x dx x d x dx x X E .11.设随机变量X 的分布函数如下,试求E ( X ).⎪⎪⎪⎩⎪⎪⎪⎨⎧≥−<≤<=−−.1,e 211;10,21;0,2e )()1(21x x x x F x x解:因分布函数F (x ) 是连续函数,有X 为连续型,密度函数p (x ) = F ′(x ),当x < 0时,2e )()(xx F x p =′=,当0 < x < 1时,p (x ) = F ′(x ) = 0,当x > 1时,)1(21e 41)()(−−=′=x x F x p ,∫∫∞+−−∞−⎟⎠⎞⎜⎝⎛−⋅+⋅=1)1210][e 21)(e 21x x d x d x 则∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)12101)1(210e 41e 21e 412e )()(dx x dx x dx x dx x dx x xp X E x x x x ,因1e 0e e )(e e 00000−=−=−⋅=⋅=∞−∞−∞−∞−∞−∫∫∫xx xx x dx x d x dx x , 6e42e2e2][e2e1)1211)1(211)1(211)1(211)1(21=−=+−=⋅−=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x ,故1641)1(21)(=×+−×=X E .12.某工程队完成某项工程的时间X (单位:月)是一个随机变量,它的分布列为1.02.03.04.013121110P X(1)试求该工程队完成此项工程的平均月数;(2)设该工程队所获利润为Y = 50(13 – X ),单位为万元.试求该工程队的平均利润; (3)若该工程队调整安排,完成该项工程的时间X (单位:月)的分布为1.04.05.0121110P X则其平均利润可增加多少?解:(1)平均月数E (X ) = 10 × 0.4 + 11 × 0.3 + 12 × 0.2 + 13 × 0.1 = 11.(2)平均利润为E (Y ) = E [50 (13 – X )] = 150 × 0.4 + 100 × 0.3 + 50 × 0.2 + 0 × 0.1 = 100(万元); (3)因E (Y 1) = E [50 (13 – X 1)] = 150 × 0.5 + 100 × 0.4 + 50 × 0.1 = 120,有E (Y 1) – E (Y ) = 20,故平均利润增加20万元.13.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤=.,0π;0,2cos 21)(其他x x x p 对X 独立重复观察4次,Y 表示观察值大于π /3的次数,求Y 2的数学期望.解:Y 的全部可能取值为0, 1, 2, 3, 4,因216πsin 2πsin2sin2cos 21}3π{π3ππ3π=−===>=∫x dx x X P p , 则161)1(}0{4=−==p Y P ,164)1(14}1{3=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P ,166)1(24}2{22=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P , 164)1(34}1{3=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P ,161}4{4===p Y P , 故5168016141643166216411610)(222222==×+×+×+×+×=Y E .14.设随机变量X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;20,83)(2其他x x x p 试求21X 的数学期望. 解:438383112020222==⋅=⎟⎠⎞⎜⎝⎛∫∫dx dx x x X E .15.设X 为仅取非负整数的离散随机变量,若其数学期望存在,证明∑+∞=≥=1}{)(k k X P X E .证:)(}{}{}{}{11111X E n X nP n X P n X P k X P n n nk k kn k =======≥∑∑∑∑∑∑+∞=+∞==+∞=+∞=+∞=.16.设连续随机变量X 的分布函数为F (x ),且数学期望存在,证明∫∫∞−+∞−−=0)()](1[)(dx x F dx x F X E .证:设X 的密度函数为p (x ),有p (x ) = F ′(x ),故∫∫∫∫∞−∞−+∞+∞∞−+∞+−−−−=−−000)]([)()](1[)](1[)()](1[x F xd x xF x F xd x F x dx x F dx x F)()()()()(0)]([00000X E dx x xp dx x xp dx x xp dx x xp dx x p x ==+=+−−−=∫∫∫∫∫+∞∞−∞−+∞∞−+∞.习题2.31. 设随机变量X 满足E (X ) = Var (X ) = λ ,已知E [(X − 1) (X − 2)] = 1,试求λ . 解:因E (X ) = Var (X ) = λ ,有E (X 2) = Var (X ) + [E (X )]2 = λ + λ 2 ,则E [(X − 1) (X − 2)] = E (X 2 – 3X + 2) = E (X 2) – 3E (X ) + 2 = λ + λ 2 – 3λ + 2 = λ 2 – 2λ + 2 = 1, 得λ 2 – 2λ + 1 = 0,即 (λ – 1)2 = 0, 故λ = 1.2. 假设有10只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品数的方差.解:设X 表示在取到合格品之前已取出的不合格品只数,X 的全部可能取值为0, 1, 2,则54108}0{===X P ,45898102}1{=×==X P ,4518891102}2{=××==X P , 得9245124581540)(=×+×+×=X E ,且154451245124581540)(2222==×+×+×=X E , 故4058892154)]([)()Var(222=⎟⎠⎞⎜⎝⎛−=−=X E X E X . 3. 已知E (X ) = –2,E (X 2) = 5,求Var (1 – 3X ).解:因Var (X ) = E (X 2) – [E (X )]2 = 5 – (–2) 2 = 1,故Var (1 – 3X ) = (–3)2 Var (X ) = 9 × 1 = 9. 4. 设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥−<≤<=−−.1,e 211;10,21;0,2e )()1(21x x x x F x x试求Var (X ).解:因分布函数F (x ) 是连续函数,有X 为连续型,密度函数p (x ) = F ′(x ),当x < 0时,2e )()(xx F x p =′=,当0 < x < 1时,p (x ) = F ′(x ) = 0, 当x > 1时,)1(21e 41)()(−−=′=x x F x p ,则∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)12101)1(21e 41e 21e 412e )()(dx x dx x dx x dx x dx x xp X E x x x x ,因1e 0e e )(e e 00000−=−=−⋅=⋅=∞−∞−∞−∞−∞−∫∫∫xx xx x dx x d x dx x , 6e42e2e2][e2e1)1211)1(211)1(211)1(211)1(21=−=+−=⋅−=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x ,可得1641)1(21)(=×+−×=X E ,且∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)1(212021)1(2120222e 41e 21e 412e )()(dx x dx x dx x dx x dx x p x X E x x x x因2e 202e e )(e e 00020202=−=⋅−⋅=⋅=∫∫∫∫∞−∞−∞−∞−∞−dx x xdx x d x dx x x x xx x ,∫∫∫∞+−−+∞−−∞+−−∞+−−⋅+−=⋅−=1)1(211)1(2121)1(2121)1(2122e2e2][e2exdx x d x dx x x x x x26642e421)1(21=×+=+=∫∞+−−dx x x ,可得2152641221)(2=×+×=X E ,故2131215)]([)()Var(222=−=−=X E X E X .5. 设随机变量X 的密度函数为⎪⎩⎪⎨⎧≤<−≤<−+=.,0;10,1;01,1)(其他x x x x x p试求Var (3X + 2).解:因061613232)1()1()()(13201321001=+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−++==−−∞+∞−∫∫∫x x x x dx x x dx x x dx x xp X E , 且611211214343)1()1()()(1043014310201222=+=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−++==−−∞+∞−∫∫∫x x x x dx x x dx x x dx x p x X E , 则61)]([)()Var(22=−=X E X E X , 故23619)Var(9)23Var(=×==+X X .6. 试证:对任意的常数c ≠ E (X ),有Var (X ) = E (X – E (X ))2 < E (X – c )2.证:因E (X – c )2 = E (X 2 – 2cX + c 2) = E (X 2) – 2c E (X ) + c 2 = E (X 2) – [E (X )]2 + [E (X )]2 – 2c E (X ) + c 2= E (X – E (X ))2 + [E (X ) – c ]2 > E (X – E (X ))2 = Var (X ).7. 设随机变量X 仅在区间[a , b ]上取值,试证a ≤ E(X) ≤ b ,22)Var(⎟⎠⎞⎜⎝⎛−≤a b X .证:因X ≥ a ,有X – a ≥ 0,得E (X – a ) = E (X ) – a ≥ 0,即E (X ) ≥ a ,又因X ≤ b ,同理可得E (X ) ≤ b ,故a ≤ E (X ) ≤ b ;因a ≤ X ≤ b ,有222a b b a X a b −≤+−≤−−,得2222⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−a b b a X , 则022222222≤⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛+−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛+−a b b a X E a b b a X E ,即2222⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−a b b a X E , 故22222))(()Var(⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−≤−=a b b a X E X E X E X .8. 设随机变量X 取值x 1 ≤ … ≤ x n 的概率分别是p 1 , …, p n ,11=∑=nk k p .证明212)Var(⎟⎠⎞⎜⎝⎛−≤x x X n .证:因x 1 ≤ X ≤ x n ,有222111x x x x X x x n n n −≤+−≤−−,得212122⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−x x x x X n n ,故2121212222))(()Var(⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−≤−=x x x x E x x X E X E X E X n n n .9. 设g (x ) 为随机变量X 取值的集合上的非负不减函数,且E (g (X )) 存在,证明:对任意的ε > 0,有)())((}{εεg X g E X P ≤>.注:此题应要求g (ε ) ≠ 0.证:以连续型随机变量为例加以证明,设连续型随机变量X 的密度函数为p (x ),因g (x ) 为非负不减函数,当x > ε 时,有g (x ) ≥ g (ε ) > 0,即1)()(≥εg x g , 故)())(()()()()()()()()()(}{εεεεεεεg X g E g X g E dx x p g x g dx x p g x g dx x p X P =⎟⎟⎠⎞⎜⎜⎝⎛=≤≤=>∫∫∫∞+∞−∞+∞+. 10.设X 为非负随机变量,a > 0.若E (e aX)存在,证明:对任意的x > 0,有axaX E x X P e )(e }{≤≥.证:以连续型随机变量为例加以证明,设连续型随机变量X 的密度函数为p (x ),故ax aX ax aX ax au xax auxE E du u p du u p du u p x X P e )(e e e )(e e )(e e )(}{=⎟⎟⎠⎞⎜⎜⎝⎛=≤≤=≥∫∫∫∞+∞−∞+∞+. 11.已知正常成人男性每升血液中的白细胞数平均是7.3 × 10 9,标准差是0.7 × 10 9.试利用切比雪夫不等式估计每升血液中的白细胞数在5.2 × 10 9至9.4 × 10 9之间的概率的下界. 解:设X 表示“每升血液中的白细胞数”,有E (X ) = 7.3 × 10 9,Var (X ) = (0.7 × 10 9) 2 = 0.49 × 10 18,则P {5.2 × 10 9 ≤ X ≤ 9.4 × 10 9} = P {–2.1 × 10 9 ≤ X – 7.3 × 10 9 ≤ 2.1 × 10 9} = P { | X – E (X ) | ≤ 2.1 × 10 9}989111041.41049.01)101.2()Var(1181829=−=××−=×−≥X ,故所求概率的下界为98.习题2.41. 一批产品中有10%的不合格品,现从中任取3件,求其中至多有一件不合格品的概率. 解:设X 表示“取到的不合格品个数”,有X 服从二项分布b (3, 0.1),故所求概率为972.09.01.0139.0}1{}0{}1{23=××⎟⎟⎠⎞⎜⎜⎝⎛+==+==≤X P X P X P . 2. 一条自动化生产线上产品的一级品率为0.8,现检查5件,求至少有2件一级品的概率. 解:设X 表示“检查到的一级品个数”,有X 服从二项分布b (5, 0.8),故所求概率为99328.02.08.0152.01}1{}0{1}2{45=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P . 3. 某优秀射手命中10环的概率为0.7,命中9环的概率为0.3.试求该射手三次射击所得的环数不少于29环的概率.解:设X 表示“三次射击所中的10环次数”,有X 服从二项分布b (3, 0.7),故所求概率为784.07.03.07.023}3{}2{}2{32=+××⎟⎟⎠⎞⎜⎜⎝⎛==+==≥X P X P X P .4. 经验表明:预定餐厅座位而不来就餐的顾客比例为20%.如今餐厅有50个座位,但预定给了52位 顾客,问到时顾客来到餐厅而没有座位的概率是多少? 解:设X 表示“到时来到餐厅的顾客人数”,有X 服从二项分布b (52, 0.8),故所求概率为0001279.08.02.08.05152}52{}51{}51{5251=+××⎟⎟⎠⎞⎜⎜⎝⎛==+==≥X P X P X P .5. 设随机变量X ~ b (n , p ),已知E (X ) = 2.4,Var (X ) = 1.44,求两个参数n 与p 各为多少? 解:因X ~ b (n , p ),有E (X ) = np = 2.4,Var (X ) = np (1 – p ) = 1.44,有6.04.244.11==−p , 故p = 0.4,64.04.2==n . 6. 设随机变量X 服从二项分布b (2, p ),随机变量Y 服从二项分布b (4, p ).若P {X ≥ 1} = 8/9,试求P {Y ≥ 1}.解:因X 服从二项分布b (2, p ),有98)1(1}0{1}1{2=−−==−=≥p X P X P ,即32=p ,故8180311)1(1}0{1}1{44=⎟⎠⎞⎜⎝⎛−=−−==−=≥p Y P Y P .7. 一批产品的不合格率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品.分别用以下方法求拒收的概率:(1)用二项分布作精确计算;(2)用泊松分布作近似计算. 解:设X 表示“发现的不合格品个数”,有X 服从二项分布b (40, 0.02),(1)所求概率为1905.098.002.014098.01}1{}0{1}2{3940=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P ;(2)因n = 40较大,p = 0.02很小,取λ = np = 0.8,有)8.0(~P X ,故查表可得所求概率为191.0809.01}1{1}2{=−=≤−=≥X P X P . 8. 设X 服从泊松分布,且已知P {X = 1} = P {X = 2},求P {X = 4}. 解:设X 服从泊松分布P (λ ),有λ > 0,则λλλλλ−−=====e 2}2{e 1}1{21P X P ,得22λλ=,即λ = 2,故查表可得P {X = 4} = P {X ≤ 4} – P {X ≤ 3} = 0.947 – 0.857 = 0.090.9. 已知某商场一天来的顾客数X 服从参数为λ 的泊松分布,而每个来到商场的顾客购物的概率为p ,证明:此商场一天内购物的顾客数服从参数为λ p 的泊松分布. 证:设Y 表示“该商场一天内购买商品的顾客人数”,Y 的全部可能取值为0, 1, 2, …,有∑∑∞=−−∞=−⎟⎟⎠⎞⎜⎜⎝⎛⋅======rk rk r k rk p p r k k k X r Y P k X P r Y P )1(!e }|{}{}{λλ ∑∑∑∞=+−∞=−−∞=−−−=−−=−−⋅⋅=0!)1(!e )!()1(!e )1()!(!!!e n nr n r rk rk k r rk rk r k n p r p r k p r p p p r k r k k λλλλλλpr p r n n r r r p r p n p r p λλλλλλλλ−−−−∞=−=⋅=−=∑e !)(e !e )(!)]1([!e )1(0, r = 0, 1, 2, …, 故Y 服从参数为λ p 的泊松分布.10.从一个装有m 个白球、n 个黑球的袋子中返回地摸球,直到摸到白球时停止.试求取到黑球数的期望. 解:设X 表示“取到的黑球数”,有X + 1服从参数为n m mp +=的几何分布,有mn m p X E +==+1)1(, 故mnm n m X E =−+=1)(. 11.某种产品上的缺陷数X 服从下列分布列:121}{+==k k X P ,k = 0, 1, …,求此种产品上的平均缺陷数.解:因X + 1服从参数为21=p 的几何分布⎟⎠⎞⎜⎝⎛21Ge ,有21)1(==+p X E ,故E (X ) = 2 – 1 = 1. 12.设随机变量X 的密度函数为⎩⎨⎧<<=.,0;10,2)(其他x x x p 以Y 表示对X 的三次独立重复观察中事件{X ≤ 1/2}出现的次数,试求P {Y = 2}.解:因412}21{212210===≤∫x xdx X P ,有Y 服从二项分布⎟⎠⎞⎜⎝⎛41,3b , 故649434123}2{2=⋅⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛==Y P .13.某产品的不合格品率为0.1,每次随机抽取10件进行检查,若发现其中不合格品数多于1,就去调整设备.若检验员每天检查4次,试问每天平均要调整几次设备. 解:设X 表示“所取10件中的不合格品数”,有X 服从二项分布b (10, 0.1),则需要调整设备的概率为2639.09.01.01109.01}1{}0{1}2{910=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P , 设Y 表示“每天调整设备的次数”,有X 服从二项分布b (4, 0.2639), 故E (X ) = 4 × 0.2639 = 1.0556,即每天平均要调整1.0556次设备.习题2.51. 设随机变量X 服从区间 (2, 5)上的均匀分布,求对X 进行3次独立观察中,至少有2次的观察值大于3的概率. 解:设Y 表示“X 大于3的次数”,有Y 服从二项分布b (3, p ),且322535}3{=−−=>=X P p , 故所求概率为272032313223}2{32=⎟⎠⎞⎜⎝⎛+⋅⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛=≥Y P . 2. 在 (0, 1)上任取一点记为X ,试求⎭⎬⎫⎩⎨⎧≥+−081432X X P .解:因X 服从区间 (0, 1)上的均匀分布,且021*******≥⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−=+−X X X X ,即41≤X 或21≥X ,故432110412141081432=⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧≥≤=⎭⎬⎫⎩⎨⎧≥+−X X P X X P 或.3. 设K 服从 (1, 6)上的均匀分布,求方程x 2 + Kx + 1 = 0有实根的概率.解:因方程x 2 + Kx + 1 = 0有实根,有判别式 ∆ = K 2 – 4 ≥ 0,即K ≤ – 2或K ≥ 2,故所求概率为5416260}22{=−−+=≥−≤K K P 或. 4. 设流经一个2 Ω 电阻上的电流I 是一个随机变量,它均匀分布在9A 至11A 之间.试求此电阻上消耗的平均功率,其中功率W = 2I 2.解:因电流I 的密度函数为⎪⎩⎪⎨⎧<<=.,0,119,21)(其他x x p故平均功率36023212)(2)2()(1193119222==⋅===∫∫∞+∞−x dx x dx x p x I E W E . 5. 某种圆盘的直径在区间 (a , b )上服从均匀分布,试求此种圆盘的平均面积. 解:设d 表示“圆盘的直径”,S 表示“圆盘的面积”,有2π41d S =, 因直径d 密度函数为⎪⎩⎪⎨⎧<<−=.,0,,1)(其他b x a ab x p 故平均面积)(4π)(4π1π41)(π41π41)(223222b ab a a b x dx a b x dx x p x d E S E ba b a ++=−=−⋅==⎟⎠⎞⎜⎝⎛=∫∫∞+∞−. 6. 设某种商品每周的需求量X 服从区间 (10, 30)上的均匀分布,而商店进货数为区间 (10, 30)中的某一整数,商店每销售1单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每一单位商品仅获利300元.为使商店所获利润期望值不少于9280元,试确定最少进货量.解:因X 的密度函数为⎪⎩⎪⎨⎧≤≤=,,0,3010,201)(其它x x p 并设每周进货量为a 单位商品,商店所获利润为Y 元,当X ≤ a 时,Y = 500X − 100 (a − X ) = 600X − 100a ;当X > a 时,Y = 500a + 300 (X − a ) = 300X + 200a ,即⎩⎨⎧>+≤−==,,200300,,100600)(a X a X a X a X X g Y则∫∫∫++−==+∞∞−3010201)200300(201)100600()()()(a adx a x dx a x dx x p x g Y E5250350215)10215()515(2302102++−=++−=a a ax x ax x a a ,要使得92805250350215)(2≥++−=a a Y E ,有040303502152≤+−a a ,可得26362≤≤a ,故a 可取21, 22, 23, 24, 25, 26,即最少进货量为21单位商品. 7. 已知X ~ Exp (λ ),试在λ = 0.1下求P {5 ≤ X ≤ 20}.解:因X 的密度函数为⎩⎨⎧<≥=−,0,0,0,e )(x x x p x λλ 故4712.0e e )e (e 1.0e }205{25.02051.02051.0205=−=−===≤≤−−−−−∫∫x x x dx dx X P λλ.8. 统计调查表明,英格兰在1875年至1951年期间,在矿山发生10人或10人以上死亡的两次事故之间的时间T (以日计)服从均值为241的指数分布.试求P {50 ≤ T ≤ 100}.解:因T 服从指数分布,且2411)(==λT E ,有T 的密度函数为⎪⎩⎪⎨⎧<≥=−,0,0,0,e 2411)(241t t t p t故1523.0ee)e(e 2411}10050{241100241501005024110050241=−=−==≤≤−−−−∫x t dt T P .9. 若一次电话通话时间X (单位:min )服从参数为0.25的指数分布,试求一次通话的平均时间. 解:因X 服从参数为λ = 0.25的指数分布,故一次通话的平均时间41)(==λX E .10.某种设备的使用寿命X (以年计)服从指数分布,其平均寿命为4年.制造此种设备的厂家规定,若设备在使用一年之内损坏,则可以予以调换.如果设备制造厂每售出一台设备可盈利100元,而调换一台设备需花费300元.试求每台设备的平均利润.解:因X 服从指数分布,且41)(==λX E ,有X 的密度函数为⎪⎩⎪⎨⎧<≥=−,0,0,0,e 41)(4x x x p x设Y 表示“每台设备的利润”,当X ≤ 1时,Y = 100 − 300 = −200;当X > 1时,Y = 100.故平均利润∫∫∞+−−+−=>+≤−=14104e 41100e 41200}1{100}1{200)(dx dx X P X P Y E xx 6402.33200e 300e100)e 1(200)e (100)e (2004141411414=−=+−−=−+−−=−−−+∞−−x x.11.设顾客在某银行的窗口等待服务的时间X (以min 计)服从指数分布,其密度函数为⎪⎩⎪⎨⎧>=−.,0,0,e 51)(5其他x x p x某顾客在窗口等待服务,若超过10min ,他就离开.他一个月要到银行5次,以Y 表示一个月内他未。
概率论与数理统计-第二章习题附答案
习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生. 写出随机变量X 的分布律.解2. 已知随机, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P . 解由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c =. 所求概率为P {X <1| X 0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布,若{P X ≥51}9=, 求{P Y ≥1}.解注意p{x=k}=k k n kn C p q -,由题设5{9P X =≥21}1{0}1,P X q =-==-故213q p =-=. 从而{P Y ≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率. 解设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大, 写出随机变量X 的分布律.解X1. 设X 的分布律为解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩ (2) {11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+-11111().24242ππππ=+⋅---=3. 设随机变量X 的分布函数为F (x )=0, 0,01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.习题2-41.选择题 (1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩如果c =( ), 则()f x 是某一随机变量的概率密度函数.(A)13. (B) 12. (C) 1. (D) 32. 本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ). (A) 1. (B) 0. (C) 12. (D) -1. 本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A) cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C) 22()2,0,()0,0.≥x x f x x μσ--=<⎧⎩ (D) e ,0,()0,0.≥x x f x x -=<⎧⎨⎩本题应选(D).(6) 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-<则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1 <μ2. (D) μ1 >μ2. 答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A) 2u α . (B) 21α-u. (C) 1-2u α. (D) α-1u .答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布,要使1{2}4P k X k <<=成立, 应当怎样选择数k ?解X 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3.设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是304d 0.5a x x =⎰,因此a =4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 由()()F x f x '=得2,01,()0,其它.x x f x <<⎧=⎨⎩(2) 22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )=2,01,0,x x ⎧⎨⎩ ≤≤ 其它,求P {X ≤12}与P {14X <≤2}. 解{P X ≤12201112d 2240}x x x ===⎰;1{4P X <≤12141152}2d 1164x x x ===⎰. 6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得12221121111d ()d []122x x A x x xAx x A =+-=+-=-⎰⎰,于是2A =;(2) 由公式()()d x F x f x x -∞=⎰可得〔过程简略〕220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它, 对X 独立观察3次, 求至少有2次的结果大于1的概率.解2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=. 8.设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解若方程有实根, 则21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{P X =-<<11d 5x =-15=-.10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--,于是22()10.3Φσ-=, 从而2()0.65Φσ=.所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=.习题2-52. 设~(1,2),23X N Z X =+, 求Z 所服从的分布与概率密度.解若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++这里1,μσ==所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞.3. 已知随机变量X 的分布律为(1) 求Y =2解 (1)(2)4.已知随机变量()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解)(y F Y ={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P X y =-<-=1-2()d yX f x x --∞⎰.于是可得Y 的概率密度为121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解因为对于0<y <4,(){Y F y P Y =≤2}{y P X =≤}{y P =X (X X F F =-.于是随机变量2Y X =的概率密度函数为()Y fy (X X f f =0 4.y =<<即()04,0,.其它f y y =<<⎩。
浙江大学《概率论与数理统计》第2章
6
概率分布
写出所有可能取值 写出取每个可能取值相应的概率
例:若随机变量X的概率分布律为
P(X k) ck ,k 0,1, 2,, 0
k!
求常数c.
8
解:
1 P{X k}
k 0
k
c
ce
k0 k !
c e
例:某人骑自行车从学校到火车站, 一路上要经过3个独立的交通灯,设各 灯工作独立,且设各灯为红灯的概率 为p,0<p<1,以X表示首次停车时所通 过的交通灯数,求X的概率分布律。
P(X 3) 1 P(X 2) 0.875347981
37
超几何分布
若随机变量X的概率分布律为
P( X
k)
Cak
C nk b
CNn
,k
l1, l1
1, ..., l2 ,
其中,l1 max(0, n b), l2 min(a, n).
称X服从超几何分布
例:一袋中有a个白球,b个红球,a+b=N, 从中不放回地取n个球,设每次取到各球的 概率相等,以X表示取到的白球数,则X服从 超几何分布。
39
几何分布
若随机变量X的概率分布律为
P( X k) p(1 p)k1, k 1, 2,3,..., 0 p 1.
称X服从参数p的几何分布
例:从生产线上随机抽产品进行检测,设 产品的次品率为p,0<p<1,若查到一只次 品就得停机检修,设停机时已检测到X只产 品,则X服从参数p的几何分布。
np
事实上,Cnk pk
1 p
nk
k
n! !(n
k)!
n
k
1
n
nk
k
概率论与数理统计第二章随机变量习题答案
大学数学云课堂30.83028203.射手向目标独立地进行了次射击,每次击中率为,3求次射击中击中目标的次数的分布律及分布函数,32.并求次射击中至少击中次的概率,0123.X X =解设表示击中目标的次数则,,,3(0)(0.2)0.008P X ===123(1)C 0.8(0.2)0.096P X ===223(2)C (0.8)0.20.384P X ===3(3)(0.8)0.512P X ===X 故的分布律为01230.0080.0960.3840.512X p 0,00.008,01()0.104,120.488,231,3x x F x x x x <ìï£<ïï=£<íï£<ï³ïî(2)(2)(3)0.89P X P X P X ³==+==分布函数大学数学云课堂0.6,0.7,33028205.甲、乙两人投篮,投中的概率分别为今各投次,求:(1);两人投中次数相等的概率(2.)甲比乙投中次数多的概率~30.6),~(3,0.7)X Y X b Y b 解分别令、表示甲、乙投中次数,则(,1)()(0,0)(1,1)(2,2)(3,3)P X Y P X Y P X Y P X Y P X Y ====+==+==+==331212222233333(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)C (0.6)0.4C (0.7)0.3(0.6)(0.7=+++0.32076=(2)()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+(2,1)(3,1)(3,2)P X Y P X Y P X Y ==+==+==1232233322123333C 0.6(0.4)(0.3)C (0.6)0.4(0.3)(0.6)(0.3)C (0.6)0.4C 0.7(0.3)=+++31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.30.243++=3028207.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有辆汽车通过,10002问出事故的次数不小于的概率是多少(利用泊松定理)?解设表示出事故的次数,则(,)~10000.0001X X b0.10.1³=-=-==--´(2)1(0)(1)1e0.1eP X P X P X--大学数学云课堂大学数学云课堂0.3A 3028209.设事件在每一次试验中发生的概率为,3A 当发生不少于次时,指示灯发出信号,(1)5进行了次独立试验,试求指示灯发出信号的概率;(2)7.进行了次独立试验,试求指示灯发出信号的概率(1)5~650.3X A X 解设表示次独立试验中发生的次数,则(,)5553(3)C (0.3)(0.7)0.16308kkk k P X -=³==å(2)7~70.3Y A Y b 令表示次独立试验中发生的次数,则(,)7773(3)C (0.3)(0.7)0.35293kkk k P Y -=³==å大学数学云课堂e ,0,(0),00.xt A B x X F x ,x l -ì+³>í<î3028224.设随机变量分布函数为()=30282概率统计(北大出版社)课后习题二第24题分布函数视频详解1A B ()求常数,;2{2}{3}P X P X £()求,>;3().f x ()求分布密度00lim ()11(1),lim ()lim ()1x x x F x A F x F x B ®+¥®+®-=ì=ìï\íí==-îïîQ 解2(2)(2)(2)1eP X F l -£==-33(3)1(3)1(1e )e P X F l l -->=-=--=e ,0(3)()()0,0x x f x F x x l l -ì³¢==í<î大学数学云课堂a 3028227.求标准正态分布的上分位点,10.01;a a =(),求z /220.003.a a a =(),求z ,z (1)()0.01,1()0.01P X z z a a F >=\-=Q 解()0.09, 2.33z z a a F ==即查表得(2)()0.003,1()0.003P X z z a a F >=\-=Q ()0.997, 2.75z z a a F ==即查表得/2/2()0.0015,1()0.0015P X z z a a -F >=\=Q /2/2()0.9985, 2.96z z a a F ==即查表得x.大学数学云课堂00.9?3028235.随机数字序列要多长才能使数字至少出现一次的概率不小于()0~,0.1.X n X b n 解令为出现的次数,设数字序列中要包含个数字,则00(1)1(0)1C (0.1)(0.9)0.9nnP X P X ³=-==-³(0.9)0.1,22nn £\³即22.\随机数字序列至少要有个数字。
概率论与数理统计(浙江大学)各章练习题
第一、二章一、 填空题1.设事件A ,B 相互独立且互不相容,则min (P (A ),P (B ))=___________。
2.设随机变量X 在区间[1,3]上服从均匀分布,则P (1.5<X<2.5)=___________.3.从0,1,2,3,4五个数中任意取三个数,则这三个数中不含0的概率为___________。
4.袋中有50个球,其中20个黄球、30个白球,今有2人依次随机地从袋中各取一球,取后不放回,则第2个人取得黄球的概率为_____________.5.一批产品,由甲厂生产的占45% ,其次品率为5%,由乙厂生产的占 55%,其次品率为10%,从这批产品中随机取一件,恰好取到次品的概率为___________。
6.设随机变量X~N (2,4),则P{0<X ≤4}=___________。
(附:Φ(1)=0.8413)7. 设3.0)(,7.0)(=-=B A P A P ,则P(____AB )=______。
8.设X 的分布律为N k Nak X P ,,2,1,}{ ===,则=a 9.已知,6.0)(,5.0)(==B A P A P 若B A 、互不相容,则=)(B P ;若B A 、相互独立,则=)(B P10.已知====)|(,5.0)(,4.0)(,7.0)(B A P B A P B P A P 则11.设生男生女是等可能的,某一个家庭有两个小孩,已知其中一个是女孩,则另一个也是女孩的概率为12. 设随机变量3.0}42{,2~2=<<X P N X ),且(σ,=<}0{X P 0.2 13.设),(~p n b X ,且}3{2}2{}1{=====X P X P X P ,则=n ,=p 14.已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P ,则=)(B A P 15.设)5,0(~N K ,则方程02442=+++K Kx x 有实根的概率为 16.设}{}{),3,1(~2c X P c X P N X ≤=>-,则=c二、选择题1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误的是( ) A.P (A )=1-P (B ) B.P (AB )=P (A )P (B ) C. P (AB )=0 D.P (A ∪B )=1 2.对一批次品率为p(0<p<1)的产品逐一检测,则第二次或第二次后才检测到次品的概率为( )A .pB .1-pC .(1-p)pD .(2-p)p3.设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是( )互不相容与、B A A 相容与、B A B)()()(B P A P AB P C =、 )()(A P B A P D =-、4.设A ,B 为两个互不相容的随机事件,P (A )=0.3, P (B )=0.6,则P (A |B )=( )A. 0.18B.0C. 0.5D.15.某人独立射击三次,其命中率为0.8,则三次中至多击中一次的概率为( ) A.0.002 B.0.008 C.0.08 D.0.1046.设事件{X=K}表示在n 次独立重复试验中恰好成功K 次,则称随机变量X 服从( ) A.两点分布 B.二项分布 C.泊松分布 D.均匀分布7.设事件B A 与的概率均大于零,且B A 与为对立事件,则有( ) 相互独立与、B A A 互不相容与、B A B 相互独立与、B A C 相互独立与、B A D 8.设B A ,为任意两个事件,则下列结论肯定正确的是( )A. A B B A =-)(B.A B B A =- )(C.A B B A ⊂- )(D.A B B A ⊂-)( 9.设10张奖券中含有3张中奖的奖券,每人购买1张,则在前3个购买者中恰有一人中奖的概率为( )A.3.07.02310⨯⨯C B. 0.3 C. 7/40 D. 21/4010. 随机变量X 服从正态分布),(2σμN ,随着σ的增大,概率{}σμ<-X P 满足( ) (A)单调增大 (B )单调减少 (C )保持不变 (D )增减不定 11. 设)1,1(~N X ,密度函数为)(x f ,则有( )(A)}0{}0{>=≤X P X P (B ))()(x f x f -= (C )}1{}1{>=≤X P X P (D ))(1)(x F x F --=12. 9.设x x f sin )(=,要使)(x f 为某个随机变量X 的概率密度,则X 的可能取值区间为( )(A)]23,[ππ (B)]2,23[ππ (C) ],0[π (D)]21,0[π 13. 下列函数中可以作随机变量的是( )(A )()()241010x x x p x ⎧-≤<⎪=⎨⎪⎩其他,(B )()()221110x x x p x ⎧-≤<⎪=⎨⎪⎩其他,(C )(),xp x e x -=-∞<<+∞ (D )(),xp x ex -=-∞<<+∞。
浙江理工大学 概率论与数理统计 复习题 第2章
第2章 随机变量及其分布一、 知识网络图⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧-随机变量函数的分布正态分布指数分布均匀分布常见分布密度函数及其性质连续型随机变量泊松分布二项分布分布常见分布分布律及其性质离散型随机变量质分布函数的概念及其性随机变量10 二、 内容与要求1、内容随机变量概念、分布函数概念与性质、分布律性质、密度函数性质、随机变量函数的分布。
2、要求(1)理解随机变量及其分布函数的概念和性质。
(2)理解离散型随机变量及其分布律的概念,掌握0-1分布、二项分布、泊松分布及其应用。
(3)理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用。
(4)会利用随机变量的分布律或概率密度函数求分布函数。
(5)会利用分布函数)(x F 计算随机变量X 落在某一区间中的概率。
(6)会利用X 的分布求随机变量)(X g Y =的分布。
【重点】(1) 分布函数的概念(2) 离散型随机变量分布律与分布函数(3) 连续型随机变量密度函数与分布函数的关系【难点】(1) 二项分布的判断(2) 随机变量函数的分布三、 概念、定理的理解与典型错误分析1、 随机变量设随机试验E 的样本空间}{ω=Ω,如果对任意的基本事件Ω∈ω,有一个实数)(ωX X =与之对应,就称X 为随机变量.2、 分布函数分布函数的定义)()(x X P x F ≤=分布函数性质(1) 关于x 单调不减,即当21x x <时,)()(21x F x F ≤;(2) 1)(0≤≤x F . 1)(lim )(,0)(lim )(==+∞==-∞+∞→-∞→x F F x F F x x ; (3) )()(a F b F b X a P -=≤<)(;(4) )(x F 关于x 右连续,即对任意+∞<<∞-0x ,都有)()(lim )0(0000x F x F x F x x ==++→.3、 离散型随机变量如果随机变量X 所有可能取的值只有有限个或可列无限多个(即可以和自然数集},,,2,1{ n N =中的元素11-对应),则称X 为离散型随机变量.离散型随机变量X 的分布律k k p x X P ==)(, ,2,1=k .分布律的性质(1) ,, 21,0=≥k p k ; (2) 11=∑∞=k k p.离散型随机变量分布律与分布函数的关系∑≤=x x k k p x F )(0-1分布、独立试验和二项分布如果随机试验的结果只有两种可能:事件A 发生或者不发生,则可以用0-1分布随机变量来描述:⎩⎨⎧=不发生,事件发生, 事件A A X 01 n 次相互独立的重复试验称为伯努利试验, n 重伯努利试验中事件A 发生的次数X 服从二项分布X ~),(p n B ,其中p 为每次试验中事件A 发生的概率.二项分布的分布律为n k q p C k P k n k k n n ,,1,0,)( ==-二项分布可以表示为n 个相互独立的0-1分布随机变量之和.由于伯努利试验是n 次相互独立的重复试验,每次试验只有两个可能结果,即事件A 发生或者不发生,如果令⎩⎨⎧=, 否则发生次试验中,第01A i X i , n i ,,2,1 = 则每一个i X 都服从0-1分布,且有相同的分布律i X 0 1i p p -1 pn ,,1i =, n 次伯努利试验中事件A 发生的次数n X X X X +++= 21泊松分布如果随机变量X 所有可能取值为 ,2,1,0,而取各个值的概率为,2,1,0,!)(===-k e k k X P k λλ, (2.6)其中0>λ为常数,则称X 服从参数为λ的泊松分布,记X ~)(λπ.4、 连续型随机变量如果随机变量X 的分布函数)(x F 可以表示成为某一非负可积函数)(x f 的积分⎰∞-=≤=xdt t f x X P x F )()()(,则称X 为连续型随机变量,称)(x f 为X 的概率密度函数,简称密度函数或密度.注意到连续型随机变量的分布函数)(x F 在)(+∞<<-∞x 上连续.实例 设随机变量X 具有密度函数⎪⎩⎪⎨⎧<≤-<<= 其他 ,021,210,)(x x x x x f求X 的分布函数.解⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤--=-++⋅<≤=+⋅<=⋅=≤=⎰⎰⎰⎰⎰⎰∞-∞-∞-010120022121122)2(010,200,00)()(x x x x x x x dt t tdt dt x x tdt dt x dt x X P x F , 典型错误: 21<≤x 时,2122)2()(21--=-=⎰x x dt t x F x原因: 只注意到x 的变化范围为)2,1[,未注意到分布函数)(x F 的定义是随机变量X 在∞-到x 取值的概率.避免这种错误的方法是利用密度函数计算分布函数时,先画出密度函数的图形,再根据图形中的随机变量变化范围进行积分.密度函数的性质(1) 0)(≥x f .(2) 1)(=⎰+∞∞-dx x f .(3) ⎰=≤<ba dx x fb X a P )()(.(4) 在)(x f 的连续点上,有)()(x f dxx dF =. 均匀分布 如果X 服从区间],[b a 上的均匀分布,即X 具有概率密度 ⎪⎩⎪⎨⎧≤≤-=, 其他, 01)(b x a a b x f记X ~],[b a U .均匀分布的特点:X 在区间],[b a 中长度相等的任意两个子区间上取值是等可能的. 指数分布 如果随机变量X 具有密度函数⎩⎨⎧≤>=-000)(x x e x f x , , λλ则称随机变量X 服从参数为λ的指数分布,其中0>λ为某一常数.正态分布 如果随机变量X 的概率密度为 +∞<<-∞=--x e x f x ,21)(222)(σμσπ其中)0(,>σσμ为常数,则称X 服从参数为σμ,的正态分布(或高斯分布),记为X ~),(2σμN .一般正态分布与标准正态分布的关系 设X ~),(2σμN ,则X 的分布函数可以表示为 )()(σμ-Φ=x x F5、 随机变量函数的分布离散型随机变量函数的分布 如果已知X 的分布律X 1x 2x k x k p 1p 2p k p 则随机变量)(X g Y =的分布律可以通过下表求得:Y )(1x g )(2x g )(k x g k p 1p 2p k p 若)(k x g 的任意两个值都不相等,则上表即为Y 的分布律;否则应把那些相同的)(k x g 分别合并,同时把对应的概率相加,即可得到)(X g Y =的分布律.连续型随机变量函数的分布 如果已知X 的密度函数)(x f X ,则随机变量)(X g Y =的密度函数可以通过以下方法求得:第一步,利用分布函数的定义求出Y 的分布函数))(()()(y X g P y Y P y F Y ≤=≤=,再把))((y X g P ≤用)(⋅X F 表示;第二步,利用密度函数性质dyy dF y f Y Y )()(=求出)(y f Y . 四、 解题方法与题例例1 设随机变量X 具有分布律X 1- 0 2 4 k p 2.0 4.0 3.0 1.0求)30(≤<X P 和)30(≤≤X P .解法一7.03.04.0)2()0()30(3.0)2()30(=+==+==≤≤===≤<X P X P X P X P X P 解法二先求出X 的分布函数,再利用分布函数求概率.⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<≤--<=4,142,9.02x 0 6,.001,2.010)( x , x x x x F 3.06.09.0)0()3()30(=-=-=≤<F F X P7.04.06.09.0)0()0()3()30(=+-==+-=≤≤X P F F X P比较两种不同方法可知直接利用分布律计算概率要简单一些.例2 设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<=2,121,7.01x 21 5,.0210,1.000)(x x x x x F , 求X 的分布律.解 分布函数)(x F 的间断点即为X 取值概率大于零的点,且取这些值的概率分别为)(x F 在对应点的跳跃值的大小. )(x F 共有四个间断点: 1,21,0=x 和2,)(x F 在0=x 的跳跃值为1.0,即 1.001.0)(lim )(lim )0(00=-=-==-→+→x F x F X P x x ,同理 0210214.01.05.0)(lim )(lim )21(-→+→=-=-==x x x F x F X P ,2.05.07.0)(lim )(lim )1(0101=-=-==-→+→x F x F X P x x 3.07.01)(lim )(lim )2(0202=-=-==-→+→x F x F X P x x X 的分布律为X 0 21 12 k p 1.0 4.0 2.0 3.0例3 设随机变量X 具有分布律X 0 1 2 3k p 91 )(θθ-12 91 θ21- 试确定常数θ.解 由分布律的性质1=∑k k p 知 129112191)1(2912=-=-++-+θθθθ,解得31±=θ, 再由10≤≤k p 得31=θ 例4 一条自动生产线上产品的一级品率为6.0,随机检查10件,求至少有两件一级品的概率.解 设被检查的10件产品中一级品的件数为X ,则X ~)6.0,10(B .9983.04.06.04.06.01)1()0(1)2(9110100010=⨯-⨯-==-=-=≥C C X P X P X P例5 有90台独立工作的同类型设备,每台设备出故障的概率都是0.01.现有3人负责管理和维修这些设备,任何时刻,每人最多只能维修一台设备.考虑以下两种管理方法:(1) 每人各分管30台;(2) 3人共同负责管理90台.比较上述两种管理方法,分析发生设备不能及时维修情况的概率大小.解(1) 设备分为3组,设第i 组设备发生故障的的台数为i X ,则i X ~)01.0,30(B ,3,2,1=i .第i 组设备不能及时维修的概率为036148.099.001.099.01)1()0(1)2(2913030=⨯--==-=-=≥C X P X P X P i再设Y 为3个组中发生设备不能及时维修的组数,则Y ~)036148.0,3(B ,从而设备不能及时维修的概率为104571.0963852.01)0(1)1(3=-==-=≥Y P Y P(3) 3人共同管理90台.设Z 为90台设备中同时出故障的设备台数,则Z ~)01.0,90(B ,利用迫松逼近, 9.001.090=⨯=λ,设备不能及时维修的概率为0134587.0!9.01)3()2()1()0(1)4(9..030=-==-=-=-=-=≥-=∑e k Z P Z P Z P Z P Z P k k由于104571.00134587.0<,知3人共同管理90台设备的方法较好.例6 一台总机共有300台分机,总机拥有13条外线假设每台分机需要外线的概率都为0.01,求(1) 每台分机需要外线时能及时得到满足的概率;(2) 同时需要外线的分机的最可能台数.解 每台分机要外线的概率01.0=p ,300台分机所需外线数X 服从二项分布)01.0,300(B 所求概率为(1)k k k k CX P -=∑=≤300130300)99.0()01.0()13(,计算较复杂,可以利用泊松分布逼近:301.0300=⨯==np λ,则999997.0000003.01!31!3)13(3143130=-=-=≈≤-+∞=-=∑∑e k e k X P k kk k(2)泊松分布的分布律)(k X P p k ==有一个从小到大,再从大到小的过程.设0k 为泊松分布)(λπ的最可能台数,则它满足⎩⎨⎧=≤+==≤-=)()1()()1(0000k X P k X P k X P k X P 即⎪⎪⎩⎪⎪⎨⎧≤+≤---+---λλλλλλλλe k e k e k e k k k k k !)!1(!)!1(0010010000 解得⎩⎨⎧-=不为整数时,当为整数时,当和λλλλλ][10k 从而320或=k ,即同时需要外线的分机数最有可能是2台或3台.例7 设连续型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤--<≤<=2121121100)(22x x x Cx x Bx x A x F , , , , (1) 求常数C B A ,,;(2) 求X 的密度函数)(x f ;(3) 用两种方法计算)21(>X P . 解 (1)由连续型随机变量分布函数的连续性知1)(lim 32)(lim 0202==-=+→-→x F C x F x x ,从而2=C .再由)(lim )(lim 0101x F x F x x +→-→=得 211212=--=B ,再由)(lim )(lim 00x F x F x x +→-→=知0=A (2) ⎪⎩⎪⎨⎧<≤-<<== 其他 ,021,210,)()(x x x x dx x dF x f (3) 方法一:87)21(211)21(1)21(2=⋅-=-=>F X P 方法二: 872111)()21(210221210=-=-==>⎰⎰+∞x xdx dx x f X P 例8 设随机变量K ~)5,0(U ,求方程02442=+++K Kx x 有实根的概率.解 02,0)2(44)4(22≥--⇒≥+⨯⨯-=∆K K K K ,所求概率为 53510)2()1(52=+=≥+-≤⎰dx K P K P 例9设某书店收银台顾客排队等待服务的时间X (以分记)服从指数分布,密度函数为⎪⎩⎪⎨⎧≤>=-00051)(5x x e x f x , , 分别利用X 的密度函数和分布函数计算)10(>X P .解法一 利用X 的密度函数求解:251051)10(--∞+==>⎰e dx e X P x解法二 先求出X 的分布函数⎪⎩⎪⎨⎧≤>-=⎪⎩⎪⎨⎧≤>=--⎰0,00,10,00,51)(505x x e x x dx e x F x x x 2)10(1)10(1)10(-=-=≤-=>e F X P X P例10 某机器生产的螺栓长度(cm)服从参数06.005.10==σμ,的正态分布,规定长度在范围12.005.10±内为合格品.求该机器生产的螺栓的合格率.解 设螺栓长度为X ,则X ~)06.0,05.10(2N ,所求概率为)06.005.1012.005.10()06.005.1012.005.10()12.005.10()12.005.10()12.005.10(--Φ--+Φ=--+=≤-P P X P 9544.019772.021)2(2)2()2(=-⨯=-Φ=-Φ-Φ= 例11 设离散型随机变量X 具有分布律X 2- 1- 0 1 2 3k p 161 162 164 165 163 161 (1) 求26X Y -=的分布律.(2) 求),2m ax (2X X Z +=的分布律.解 (1) 26X Y -=时Y 的取值范围为6,5,2,3-26X Y -= 2 5 6 5 2 3-X 2- 1- 0 1 2 3 k p161 162 164 165 163 161 ,161)3()3(===-=X P Y P 164)2()2()2(==+-===X P X P Y P , 167)1()1()5(==+-===X P X P Y P Y 的分布律为Y 3- 2 5 6k p 161 164 167 164 (2) ),2m ax (2X X Z +=时,Z 的取值范围为9,4,3,2,1 ),2m ax (2X X Z += 4 1 2 3 4 9X 2- 1- 0 1 2 3k p 161 162 164 165 163 161 165)1()3(,164)0()2(,162)1()1(=========-===X P Z P X P Z P X P Z P161)3()9(,164)2()2()4(======+-===X P Z P X P X P Z PZ 的分布律为Z 1 2 3 4 9k p 162 164 165 164 161 例12 设随机变量X ~)2,0(U ,求随机变量2)1(2--=X Y 的密度函数.解 2120<<⇒<<Y X ,当21<<y 时 )21())1(2()()(2y X P y X P y Y P y F Y -≥-=≤--=≤=)21()21(1)21()21(y F y F y X P y X P X X --+-+-=--≤+-+≥= 从而密度函数⎪⎩⎪⎨⎧<<--+-+⋅-== 其他 ,021)],21()21([221)()(y y f y f y dy y dF y f X X Y Y ⎪⎩⎪⎨⎧<<- 其他 =,021,221y y⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<=-+== 其他 ,02,3220,34)()()()(θθθθθy y y f y f dy y dF y f X X Y Y 24. 设随机变量X 的密度函数为⎪⎩⎪⎨⎧<<= 其他 ,00,2)(2ππx x x f求X Y sin =的密度函数.解}arcsin {}arcsin 0{}{sin }{)(ππ≤≤-+≤<=≤=≤=X y P y X P Y X P y Y P y F Y )arcsin (1)(arcsin y F y F X X --+=π)11)(arcsin (11)(arcsin )()(22yy f y y f y y F y f X X Y Y -----=∂∂=π ⎪⎩⎪⎨⎧<<- 其他 ,010,122y y π五、练习1. 从一个装有4个红球和2个白球的口袋中不放回地任取5个球,以X 表示取出的红球个数.(1) 求X 的分布律;(2) 求X 的分布函数; (3) 求)40(<<X P .2. 设随机变量X 的分布函数为 ⎪⎪⎩⎪⎪⎨⎧≥+<≤-<≤--<=2,21,3211,10)(x b a x a x a x x F ,, 且21)2(==X P ,求b a ,和X 的分布律. 3. 设随机变量X 具有分布律X -1 0 1 2 3k p 0.16 10a 2a 5a 0.3 确定常数a . 4. 设在时间t(min)内,通过某十字路口的汽车数X 服从参数与t 成正比的泊松分布.已知在1min 内没有汽车通过的概率为0.2,求在2min 内有多于1辆汽车通过的概率.5. 有一决策系统,其中每一成员作出决策互不影响,且每一成员作出正确决策的概率均为)10(<<p p ,当半数以上成员作出正确决策时,系统作出正确决策,问p 多大时,5个成员的决策系统比3个成员的决策系统更为可靠?6. 某商店出售某种商品,根据历史记录分析,月销售量服从参数5=λ的泊松分布.问在月初进货时要库存多少件该种商品,才能以0.999的概率满足顾客的需求?7. 设随机变量X ~),2(2σN ,且3.0)42(=<<X P ,求)0(<X P .8. 设随机变量X ~),0(2σN ,问当σ取何值时, 概率)31(<<X P 取到最大?9. 设随机变量X 的密度函数为 ⎩⎨⎧<≥=-0,00,4)(2x x xe x f x求: (1) X 的分布函数;(2) )121(<≤-X P ; (3) )23(=X P . 10. 设随机变量X ~)1,0(U ,求X Y 32-=的密度函数.11. 设随机变量X 的密度函数为+∞<<-∞=-x Aex f x ,)(,求:(1) 确定常数A ;(2) )10(<<X P ;(3) X 的分布函数.12. 设随机变量X 的密度函数为 ⎪⎩⎪⎨⎧<<<<= 其他 ,032,21,)(x B x Ax x f 且))3,2(())2,1((∈=∈X P X P ,求:(1) 常数A,B;(2) X 的分布函数.13. 设随机变量X 的绝对值不大于1, 81)1(=-=X P ,41)1(==X P ,在事件)11(<<-X 出现的条件下, X 在)1,1(-内的任一子区间上的取值的条件概率与该子区间的长度成正比,求X 的分布函数)()(x X P x F ≤=.14.设离散型随机变量X 具有分布律 ,2,1,21)(===k k X P k ,求随机变量X Y 2sin π=的分布律.15. 设一电路装有三个同种电器元件,其工作状态相互独立,且无故障工作时间都服从参数为0>λ的指数分布,当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作时间T 的概率分布.16. 设随机变量X ~)1,0(N ,求:(1) 122+=X Y 的密度函数; (2) X Z =的密度函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13. 设随机变量的绝对值不大于1, ,,在事件出现的条件下, 在内的任一子 区间上的取值的条件概率与该子区间的长度成正比,求的分布函数. 14.设离散型随机变量具有分布律,求随机变量的分布律.
15. 设一电路装有三个同种电器元件,其工作状态相互独立,且无故 障工作时间都服从参数为的指数分布,当三个元件都无故障时,电路正常 工作,否则整个电路不能正常工作,试求电路正常工作时间的概率分布. 16. 设随机变量~,求: (1) 的密度函数; (2) 的密度函数.
别为在对应点的跳跃值的大小. 共有四个间断点: 和,在的跳跃值为,即 ,同理 , 的分布律为
例3 设随机变量具有分布律
试确定常数. 解 由分布律的性质知
,解得, 再由 得
例4 一条自动生产线上产品的一级品率为,随机检查件,求至少有两件 一级品的概率.
解 设被检查的件产品中一级品的件数为,则~. 例5 有90台独立工作的同类型设备,每台设备出故障的概率都是பைடு நூலகம்.01.
记~. 均匀分布的特点:在区间中长度相等的任意两个子区间上取值是等可能 的. 指数分布 如果随机变量具有密度函数
则称随机变量服从参数为的指数分布,其中为某一常数. 正态分布 如果随机变量的概率密度为
其中为常数,则称服从参数为的正态分布(或高斯分布),记为~. 一般正态分布与标准正态分布的关系 设~,则的分布函数可以表示为
现有3人负责管理和维修这些设备,任何时刻,每人最多只能维修一台设 备.考虑以下两种管理方法:
(1) 每人各分管30台; (2) 3人共同负责管理90台. 比较上述两种管理方法,分析发生设备不能及时维修情况的概率大小. 解
(1) 设备分为3组,设第组设备发生故障的的台数为,则~,.第组设备不能 及时维修的概率为 再设为3个组中发生设备不能及时维修的组数,则~,从而设备不能及时 维修的概率为
(1) 求常数; (2) 求的密度函数; (3) 用两种方法计算. 解 (1)由连续型随机变量分布函数的连续性知 ,从而.再由得 ,再由知 (2) (3) 方法一:
方法二: 例8 设随机变量~,求方程有实根的概率. 解 ,所求概率为 例9设某书店收银台顾客排队等待服务的时间(以分记)服从指数分布,密度 函数为 分别利用的密度函数和分布函数计算. 解法一 利用的密度函数求解: 解法二 先求出的分布函数
5、 随机变量函数的分布 离散型随机变量函数的分布 如果已知的分布律
则随机变量的分布律可以通过下表求得:
若的任意两个值都不相等,则上表即为的分布律;否则应把那些相同的分 别合并,同时把对应的概率相加,即可得到的分布律. 连续型随机变量函数的分布 如果已知的密度函数,则随机变量的密度函 数可以通过以下方法求得:
第一步,利用分布函数的定义求出的分布函数 , 再把用表示;
第二步,利用密度函数性质求出. 四、 解题方法与题例
例1 设随机变量具有分布律
求和. 解法一 解法二 先求出的分布函数,再利用分布函数求概率. 比较两种不同方法可知直接利用分布律计算概率要简单一些. 例2 设随机变量的分布函数为
求的分布律. 解 分布函数的间断点即为取值概率大于零的点,且取这些值的概率分
正确决策的概率均为,当半数以上成员作出正确决策时,系统作出
正确决策,问多大时,5个成员的决策系统比3个成员的决策系统更
为可靠?
6. 某商店出售某种商品,根据历史记录分析,月销售量服从参数的泊松分
布.问在月初进货时要库存多少件该种商品,才能以0.999的概率满足顾客
的需求?
7. 设随机变量~,且,求.
第2章 随机变量及其分布
一、 知识网络图 二、 内容与要求 1、内容 随机变量概念、分布函数概念与性质、分布律性质、密度函数性质、随 机变量函数的分布。 2、要求 (1)理解随机变量及其分布函数的概念和性质。 (2)理解离散型随机变量及其分布律的概念,掌握0-1分布、二项分 布、泊松分布及其应用。 (3)理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态 分布、指数分布及其应用。 (4)会利用随机变量的分布律或概率密度函数求分布函数。 (5)会利用分布函数计算随机变量落在某一区间中的概率。 (6)会利用的分布求随机变量的分布。 【重点】 (1) 分布函数的概念 (2) 离散型随机变量分布律与分布函数 (3) 连续型随机变量密度函数与分布函数的关系 【难点】 (1) 二项分布的判断 (2) 随机变量函数的分布 三、 概念、定理的理解与典型错误分析 1、 随机变量
(3) 3人共同管理90台.设为90台设备中同时出故障的设备台数,则~, 利用迫松逼近, ,设备不能及时维修的概率为
由于,知3人共同管理90台设备的方法较好. 例6 一台总机共有300台分机,总机拥有13条外线假设每台分机需要
外线的概率都为0.01,求 (1) 每台分机需要外线时能及时得到满足的概率; (2) 同时需要外线的分机的最可能台数.
解 每台分机要外线的概率,台分机所需外线数服从二项分布所求概 率为 (1),计算较复杂,可以利用泊松分布逼近:,则 (2)泊松分布的分布律有一个从小到大,再从大到小的过程.设为泊松分 布的最可能台数,则它满足
即 解得 从而,即同时需要外线的分机数最有可能是2台或3台. 例7 设连续型随机变量的分布函数为
和自然数集中的元素对应),则称为离散型随机变量. 离散型随机变量的分布律
分布律的性质 (1) ; (2) .
离散型随机变量分布律与分布函数的关系
0-1分布、独立试验和二项分布 如果随机试验的结果只有两种可能:事件A发生或者不发生,则可以 用0-1分布随机变量来描述:
,
且,求和的分布律.
3. 设随机变量具有分布律
-1 0 1 2 3
0.16
0.3
确定常数.
4. 设在时间t(min)内,通过某十字路口的汽车数服从参数与t成正比
的泊松分布.已知在1min内没有汽车通过的概率为0.2,求在2min内
有多于1辆汽车通过的概率.
5. 有一决策系统,其中每一成员作出决策互不影响,且每一成员作出
实例 设随机变量具有密度函数
求的分布函数.
解
典型错误: 时, 原因: 只注意到的变化范围为,未注意到分布函数的定义是随机变 量在到取值的概率.避免这种错误的方法是利用密度函数计算分布函数 时,先画出密度函数的图形,再根据图形中的随机变量变化范围进行积分. 密度函数的性质 (1) . (2) . (3) . (4) 在的连续点上,有. 均匀分布 如果服从区间上的均匀分布,即具有概率密度
次相互独立的重复试验称为伯努利试验, 重伯努利试验中事件A发生的 次数服从二项分布~,其中为每次试验中事件A发生的概率.二项分布的分 布律为
二项分布可以表示为个相互独立的0-1分布随机变量之和.由于伯 努利试验是次相互独立的重复试验,每次试验只有两个可能结果,即事件 发生或者不发生,如果令
, 则每一个都服从0-1分布,且有相同的分布律
设随机试验的样本空间,如果对任意的基本事件,有一个实数与之对应, 就称为随机变量. 2、 分布函数
分布函数的定义
分布函数性质 (1) 关于单调不减,即当时,; (2) . ; (3) ; (4) 关于右连续,即对任意,都有. 3、 离散型随机变量 如果随机变量所有可能取的值只有有限个或可列无限多个(即可以
, 次伯努利试验中事件发生的次数
泊松分布
如果随机变量所有可能取值为,而取各个值的概率为
,
(2.6)
其中为常数,则称服从参数为的泊松分布,记~.
4、 连续型随机变量
如果随机变量的分布函数可以表示成为某一非负可积函数的积分
,
则称为连续型随机变量,称为的概率密度函数,简称密度函数或密度.
注意到连续型随机变量的分布函数在上连续.
例10 某机器生产的螺栓长度(cm)服从参数的正态分布,规定长度在 范围内为合格品.求该机器生产的螺栓的合格率.
解 设螺栓长度为,则~,所求概率为 例11 设离散型随机变量具有分布律
(1) 求的分布律. (2) 求的分布律. 解 (1) 时的取值范围为
, 的分布律为
(2) 时,的取值范围为
的分布律为
例12 设随机变量~,求随机变量的密度函数. 解 ,当时 从而密度函数
24. 设随机变量的密度函数为 求的密度函数. 解 五、练习
1. 从一个装有4个红球和2个白球的口袋中不放回地任取5个球,以表
示取出的红球个数.
(1) 求的分布律;(2) 求的分布函数; (3) 求.
2. 设随机变量的分布函数为
8. 设随机变量~,问当取何值时, 概率取到最大?
9. 设随机变量 的密度函数为
求: (1) 的分布函数; (2) ; (3) .
10. 设随机变量~,求的密度函数.
11. 设随机变量的密度函数为,求: (1) 确定常数; (2) ; (3) 的分布函数. 12. 设随机变量的密度函数为
且,求: (1) 常数A,B; (2) 的分布函数.