不等式的基本性质(1)
不等式的基本性质(1)
差等公式的应用
三、例题分析:
例5:已知 2 a 3, 4 b 3,求 a b, a b, a , ab, b2 的取值范围。
ba
解:(1) 2 a 3, 4 b 3
-2 a+b 0
(加法法则-同向可加性)
(2) 4 b 3
3 -b 4(乘法单调性)
2a3
5 a b 7(加法法则)
A.Ø
B.R
C.(ba,+∞)
D.(-∞,-ba)
2.设 a=lg e,b=lg2e,c=lg e,则( )
A.a>b>c
B.a>c>b
C.c>a>b
D.c>b>a
解析:∵0<lg e<1,∴lg e>12lg e>lg2e. ∴a>c>b.
答案:B
3.已知a+b>0,b<0,则a,b,-a,-b的大小关 系为( )
( 2 ab) (a b 2 ab)
ba
立方和 变形
a3 b3 ab
(a b)
(a b)(a b)2 ab
0
(
a
2
)
1 2
(
b
2
)
1 2
a
b
b
a
小结:
作差比较大小(变形是关键)
常用手段:配方法,因式分
变形
解法
常见形式:变形为常数;
一个常数与几
个平方和;
几个因式的积
注:平方差,完全平方,立方和、
A.a>b>-b>-a B.a>-b>-a>b
C.a>-b>b>-a D.a>b>-a>-b
不等式的基本性质(一)
不等式的基本性质(一)一、教学目的:1.了解不等式的实际应用及不等式的重要地位和作用;2.掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小.二、教学重点:比较两实数大小.三、教学难点:差值比较法:作差→变形→判断差值的符号四、教学过程:1、 复习:不等式的基本性质 1 :不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
不等式的基本性质 2 : 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变不等式的基本性质 3 :不等式的两边都乘以(或除以)同一个负数,不等号的方向 改变3、作差法:b a b a ba b a b a b a <⇔<-=⇔=->⇔>-0004、例题分析:cb c a b a ±>±>,则即:若()0,>>⋅>⋅>c c b c a c b c a b a ,则即:若()0,<<⋅<⋅>c cb c a c b c a b a ,则即:若例2 对任意实数 x ,比较(x +1)(x +2) 与 (x -3)(x +6) 的大小 .练习1、练习2、例3:()()()()22221111a a a a a a +-+++-+比较与的大小练习3:111,1b 1a b a <<--若比较与的大小例4: 的大小与比较且如果22,0++>>a b a b b a a 的大小(与试比较(若)g )(,12)(,13)22x x f x x x g x x x f -+=--=()()()()()()()()(){()的解析式。
求设x h x h x x x g x x x g x f x f x g x f x g ,,.,22,12,13x f ≥<=-+=--=练习4:例5:练习5:似曾相识:的大小与比较122-+++b a ab b a ()的大小与比较52222-++b a b a 的大小与比较且改为:把例)0(,,04>++>>m m a m b a b b a a ()()()上的单调性。
不等式的性质(1)(2)
2.1不等式的基本性质1(导学案)组卷人:苏卫国审卷人:刘金涛姓名:学号:一、学习目标:1、学会用两个实数差的符号来规定两个实数大小2、掌握不等式的基本性质,并能加以证明;二、复习旧知:1、a>b是a-b>0的条件;a=b是 a-b=0的条件;a<b是a-b<0的条件。
以上是证明不等式性质的基础。
2、在初中我们学习了以下等式的性质:a=b,b=c⇒a=c;a=b,c=d⇒a+c=b+d;a=b⇒ac=bc。
三、新课导学:1.通过类比等式的性质,得到关于以下不等式的三个结论;请你判断它们是否正确,正确的加以证明;错误的举反例。
结论1 如果a>b,b>c,那么a>c。
结论2 如果a>b,c>d,那么a+c>b+d。
结论3 如果a>b,那么ac>bc。
同学们;结论3是否正确如果不正确,你能改变条件,让它成为正确命题吗?试试看:通过以上结论的推敲请同学们根据课本自己归纳不等式的基本性质性质1性质2性质3性质4你能给它们分别起一个名字吗?试试看。
利用以上性质证明下面结论:性质(5)如果a >b >0,c >d >0,那么ac >bd 。
性质(6)如果a >b >0,那么0ba 11<<。
四、课堂探究例1.判断下列命题的真假。
(1)若a >b ,那么ac >2bc 2。
(2)若ac >2bc 2,那么a >b 。
(3)若a >b ,c >d ,那么a-c >b-d 。
(4)若cda b <,那么ad bc <。
例2.提问:判断以下两个命题的真假:如果是真命题,请加以证明;如果是假命题,请举出反例。
(1)如果a >b ,c >d ,那么ac >bd 。
变式:a >b 0>,c >d 0>,那么ac >bd 。
不等式的基本性质与解法总结
不等式的基本性质与解法总结不等式是数学中常见的一种数值关系表达形式,它描述了两个数或者数值表达式之间大小关系的不同情况。
在解决实际问题中,我们经常会遇到需要研究不等式的性质并解决不等式的问题。
本文将总结不等式的基本性质和解法,帮助读者更好地理解和运用不等式。
一、不等式的基本性质1. 加法性质:如果a<b,那么对于任意的实数c,a+c<b+c仍然成立;如果a>b,那么对于任意的实数c,a+c>b+c仍然成立。
2. 减法性质:如果a<b,那么对于任意的实数c,a-c<b-c仍然成立;如果a>b,那么对于任意的实数c,a-c>b-c仍然成立。
3. 乘法性质:如果a<b且c>0,那么ac<bc仍然成立;如果a<b且c<0,那么ac>bc仍然成立。
4. 除法性质:如果a<b且c>0,那么a/c<b/c仍然成立;如果a<b且c<0,那么a/c>b/c仍然成立。
5. 等式的性质:如果a=b且b=c,那么a=c仍然成立。
可以在不等式的两边加上或者减去相等的数值,不等式的关系仍然保持不变。
二、不等式的分类与解法不等式可以分为一元不等式和二元不等式两类。
一元不等式指只有一个变量的不等式,而二元不等式指含有两个变量的不等式。
下面将分别介绍一元不等式和二元不等式的解法。
1. 一元不等式的解法(1)图像法:将一元不等式转化为二元不等式,绘制出二元不等式的图像,通过观察图像得到一元不等式的解集。
(2)数线法:将一元不等式表示在数轴上,根据不等式的性质,确定不等式的解集。
(3)代数法:通过变形和运算等方式将不等式转化为更简单的形式,进而得到不等式的解集。
2. 二元不等式的解法(1)图像法:将二元不等式表示为平面上的区域,通过观察图像确定变量的取值范围,得到不等式的解集。
(2)代数法:利用一元不等式的解法,将一个变量表示成另一个变量的函数,通过求解一元不等式得到二元不等式的解集。
不等式的基本性质(1)
教学设计一、教学目标1.知识与技能目标:(1)掌握不等式的基本性质.(2)经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同.2.过程与方法目标:(1)能说出一个不等式为什么可以从一种情势变形为另一种情势,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯.(2)进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力.3.情感态度与价值观目标目标:(1)尊重学生的个体差异,关注学生的学习情感和自信心的建立. (2)关注学生对问题的实质性认识与理解.二、教学重点与难点重点:探索不等式的基本性质,并能灵活地掌握和应用.难点:能根据不等式的基本性质进行化简.三、教学准备教具:多媒体、苹果、书本.学具:教材、笔、练习本.四、教学方法直观演示法、讲授法、自学指点法、小组合作探究法.五、学法指点引导学生学习、运用、视察、思考、抽象、归纳、分析、对照等方法. 六、教学过程本节课设计了五个教学环节:(一)情景引入,提出问题;(二)新知探究;(三)巩固练习;(四)例题讲授及运用巩固;(五)课堂小结;(六)当堂检测;(一)情景引入,提出问题老师手中呈现两本一模一样的书,假如其中一本书的质量为m㎏,另一本书的质量为n㎏,我们如何来表示这两本书的质量关系呢?现在,老师手中有两个苹果(一大一小),如果一个苹果的质量为c㎏,另一个的质量为d㎏,请问:你可以用一个怎样的式子来表示这两个苹果的质量关系呢?设计意图:由两本书的质量相同,引导学生得出m=n,通过直接视察得出两个苹果的质量关系为c>d,从而得出一个等式与一个不等式。
通过回顾等式的基本性质,引导学生类比等式的基本性质来探索不等式的基本性质。
(二)新知探究Ⅰ.对于4<6,那么(1)4+2 ____ 6+2 (2)4-2 ____ 6-2 (3)4+0____ 6+0 (4)4-0____6-0 类比“等式基本性质1”,尝试总不等式的性质.新知归纳:不等式的性质1:不等式的两边________,不等号的方向 ____ 。
不等式的基本性质
=-5<0
∴(2x-5)(x+1)<2x2-3x
亲爱的同学们,下节课见!
第二章 不等式
2.1 不等式的基本性质
1.作差比较法:比较两个实数的大小,可以通过考察它们的差来实现.
对于两个任意的实数a和b,有:a-b>0⇔a>b;
a-b=0⇔a=b;
a-b<0⇔a<b.
2.不等式的性质.
(1)性质1(加法法则):如果a>b,那么a+c>b+c.
(2)性质2(乘法法则):如果a>b,c>0,那么ac>bc;
(
√ )
2.如果a>b,且c>d,那么a+c>b+d.
(
√ )
3.如果a>b,且c>d,那么ac>bd.
(
× )
三、选择题
1.已知a>b,且ac>bc,那么(
A. c>0
B. c=0
A ).
C. c<0
2.若m>3,则下列不等式中必定成立的是(
A. m>0
B. m-3<0
3.如果a>b,那么(
A. ac<bc
(4)设a>b,则-2a< -2b,
(5)设x<y,则1-2x>1-2y,
1 1
(6)设x>y>0,则 < .
2.根据条件,写出x的取值范围:
(1)x+4>7, x>3
(2)2x-1<3,x<2
(3)3-2x>5, x<-1
(4)2-x<x-4, x>3
二、判断题
1.如果a<b,且b<c,那么a<c.
(
三、解答题
比较大小.
1.x2+1与(x+1)2,其中x>0.
解:∵(x2+1)-(x+1)2
=x2+1-(x2+2x+1)
不等式及其基本性质(1)
如果a>b,那么b<a
不等式同向传递性:
如果a>b,blt; y,下列哪些不等式成立?
(1) x – 3 < y – 3
(3) - 3 x +2 < - 3 y + 2
(2)- 5 x < - 5 y
(4)- 3 x + 2 > - 3y + 2
用式子表示下列关系:
(1) 2x 与3的和不大于-6;
(2)
2x+3≤6
x
的5倍与1的差小于
x的3倍;
a-b<0
5x-1<3x
(3)a与b的差是负数。
不等式的定义
用不等号(>、≥、<、≤或≠)连接,表 示不等关系的式子叫做不等式
注:不大于,即小于或等于,用“≤”表示; 不小于,即大于或等于,用“≥”表示。
64 > 0
知识拓展:
正 (1) ∵ 2a < 3a , ∴a是____数
a a 正 (2) ∵ , ∴a是____数 2 3
(3) ∵ ax < a 且 x > 1 , 负 ∴a是____数
本课小结:
今天学的是不等式的五个基本性质:
不等式的基本性质1:
如果a >b,那么a±c>b±c.就是说,不等式两边都 加上 (或减去)同一个数(或式子),不等号方向不变。
(1)m-7<n-7
(2)3m<3n (3)-5m>-5n m n (4) 9 9 (5) m+5≥n+5
(
( ( ( (
)
) ) ) )
针对练习
2、填空
(1)如果x-5>4,那么两边都 可得到x>9
不等式的基本性质1
• 不等式的同向相加性 (逆向相减性)
PPT心得分享 心得分享 上海市崇明中学
a >b,b > c ⇒a > c
a >b,c > 0⇒ac >bc a >b,c < 0⇒ac <bc
a >b,c > d ⇒a +c >b+d a >b,c > d ⇒a −d >b−c
© 2007 GEC Corporation
• 不等式的加法性质 a >b ⇒a+c >b+c • 不等式的乘法性质
不等式的同向相加性(逆向相减性)
6
类比
a >b ⇒a+c >b+d c > d a >b ⇒a−d >b−c c > d
同向相加性
等式中
回顾
特殊值验证
取特殊值
a = b ⇒ a+c =b+d c = d
5 > 3 ⇒ 5+ 4 > 3+ 2 4 > 2 5 > 3 ⇒ 5− 2 > 3− 4 4 > 2
© 2007 GEC Corporation
PPT心得分享 心得分享 上海市崇明中学
不等式的基本性质 图解的世界
例题与练习1 例题与练习
7
判断下列命题是否正确,并说明理由
(1 a >b > 0⇒a2 > ab ) (2)a >b ⇒a c2 >b c2 (3 c2 >b c2 ⇒a >b )a a b (4)a > b ⇒ 2 > 2 1 1 c c (5) < ⇒a > b a b
不等式的性质(1)
针对练习
加上5 加上 (1)如果x 5>4, (1)如果x-5>4,那么两边都 如果 到x>9 (2)如果在-7<8的两边都加上9 (2)如果在-7<8的两边都加上9可得到 如果在 的两边都加上 (3)如果在5>-2的两边都加上a+2可得到 a+7 > a (3)如果在5>- 的两边都加上a+2可得到 如果在5> a+2 (4)如果在-3>- 的两边都乘以7 (4)如果在-3>-4的两边都乘以7可得到 -21>-28 如果在 (5)如果在8>0的两边都乘以8 (5)如果在8>0的两边都乘以8可得到 如果在8>0的两边都乘以 可得
2、 判断 、
Q a < b∴ a − b < b − b
(√)
a b Q a < b∴ < (√) 3 3 Q a < b ∴ − 2 a < − 2 b (×)
Q −2a > 0 ∴ a > 0
Q −a < −3 ∴ a < 3
(×) (×)
我是最棒的 ☞
例1:利用不等式的性质解下 列不等式, 列不等式,并在数轴上表 示解集. 示解集.
2 ( 4 ) x > 50 3
2 解:为了使不等式 x > 50中不等号的一边变为 x,根据不等式 3 3 的性质 2,不等式两边都乘 ,不等号的方向不变, 得 2
x > 75
这个不等式的解集在数轴的表示是
0
75
5x +1 x−5 −2 > 6 4
解:不等式两边同时乘以12,得 不等式两边同时乘以12, 12 2(5x+1)2(5x+1)-2×12>3(x-5) 12>3(x去分母 10x+2-24>3x10x+2-24>3x-15 去括号 10x-3x>2410x-3x>24-2-15 7x>7 X>1
不等式的基本性质 (1)
不等式的基本性质教学目标:1、掌握不等式的基本性质,并能准确使用它们将不等式变形;2、提升学生观察、比较、归纳的水平,渗透类比的思维方法;教学重点和难点:重点:掌握不等式的基本性质并能准确使用它们将不等式变形。
难点:掌握不等式的基本性质并能准确使用它们将不等式变形。
教法:猜想、讨论、总结教学过程:一、导课解标:我们知道,在等式的两边都加上或都减去同一个数或整式,等式不变。
在等式的两边都乘以或除以一个非零的常数,等式也不变。
那么在不等式的两边实行上述变形,不等式是否也不变呢?这个节课我们来研究这个问题。
这个节课我们的目标是:1、掌握不等式的基本性质;2、能准确使用不等式的基本性质将简单的不等式变为“x>a ”或者“x<a ”的形式二、检测预习:已知x <y (1)22++y x ; (2)y x 3131; (3)y x --; (4)m y m x --三、精讲达标:1、等式的基本性质得出猜想:在不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
验证:∵3<4∴3+2<4+2 3-2<4-2 3+a <4-a所以,我们的猜想是准确的。
不等式的基本性质1:在不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
这个性质用数学语言表述为:a >b ,则a ±c >b ±c 。
现在,老师的年龄比你们大,2年之后,老师的年龄还是比你们大,如果过上3年、4年、5年。
a 年呢?谁能用不等式的基本性质来解释这个现象。
不等式的这条性质和等式相似。
下来我们继续研究不等式的其他性质2、在下列空格中填上“>”或者“<”。
2<3,2×5 3×5;212⨯ 213⨯; 2×(-1) 3×(-1);2×(-5) 3×(-5);2×(21-) 3×(21-) 你发现了什么?小组交流,总结。
当给不等式两边都乘以或除以同一个正数的时候,不等号的方向和原来的方向一致,但是当给不等式的两边同时乘以或除以同一个负数的时候,不等号的方向要改变。
不等式的基本性质
不等式的基本性质考点总体描述:不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用.在中考中多以填空题或选择题的形式出现. ①维度1 不等式基本性质研读不等式基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,即如果a <b ,那么a+c <b+c (或a-c <b-c ).不等式基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号方向不变;如果a<b ,且c>0,那么ac<bc(或cb c a < ) 不等式基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号方向改变. 这三条基本性质是进行不等式变形的主要依据. 如果a<b ,且c<0,,那么ac>bc(或 c b c a > )例1:设a >b ,用不等号连结下列各题中的两式:(1)a-3与b-3;(2)2a 与2b ;(3)-a 与-b.思路分析:第1步:观察已知的不等式与所要研究的对象之间的不同;第2步:对照不等式基本性质,选择变形依据作答.解答过程:(1)因为a >b ,两边都减去3,由不等式的基本性质1,得a-3>b-3;(2)因为a >b ,2>0,由不等式的基本性质2,得2a >2b ;(3)因为a >b ,-1<0,由不等式的基本性质3,得-a <-b.本例题总结:处理这类问题的一般思路是以不等式的性质作为依据,确定合适的不等号,要特别注意的是不等式基本性质3的应用.关键字:例题难度:中表现形式:呈现内容说明:例2: 根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式:(1)x-2<3;(2)6x >5x-1;(3)-4x >4.思路分析:第1步:根据变形要求选用不等式的基本性质;第2步:根据性质变形.解答过程:(1)由不等式的性质1可知,不等式的两边都加上2,不等号的方向不变,所以x-2+2<3+2,即x <5;(2)由不等式的性质1可知,不等式的两边都减去5x ,不等号的方向不变,所以6x-5x >5x-1-5x ,即x >-1;(3)由不等式的性质3可知,不等式的两边都除以-4,不等号的方向改变,所以x <-1. 本例题总结:运用不等式的基本性质时,注意不等号方向的是否改变.关键字:例题难度:中表现形式:呈现内容说明:1.(2009年柳州)若a <b ,则下列各式中一定成立的是( )A. a-1<b-1B.33b a >C. -a <-bD. ac <bc 思路分析:第1步:观察已知的不等式与所要研究的对象之间的不同;第2步:对照不等式基本性质,选择合适的变形方式作答.解答过程:在不等式三条基本性质中要特别注意“不等式两边同时乘以或除以一个负数时,不等号的方向要改变”.由不等式基本性质2,不等式两边同除以3,B 选择项的不等号方向不变;C 选项不等式两边同乘-1,不等号方向要改变;D 选择项c 可取任意实数故不等号方向无法确定;A 选项因为a <b ,由不等式基本性质1得a-1<b-1,故选A.答案:A .2. 在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.(1)若a-3<9,则a_____12; (2)若-a <10,则a_____-10;(3)若41a >-1,则a_____-4; (4)若-32a >0,则a_____0. 解析:根据前后两个式子之间的关系,对照不等式的基本性质加以变形.答案:(1)a <12,根据不等式基本性质1; (2)a >-10,根据不等式基本性质3;(3)a >-4,根据不等式基本性质2; (4)a <0,根据不等式基本性质3.②维度2 不等式的基本性质与等式的性质对比不等式的基本性质与等式的基本性质有相似之处,也有不同之处,特别是不等式的基本性质3,不等式两边同乘以(或同除以)一个负数,不等号的方向要改变,这一点要尤为引起重视,这一性质的运用,也是本章的难点之一.下面将不等式的基本性质与等式的性质的例1: 若a >b ,c <0,则下列四个不等式成立的是( ).A.ac >bcB.cb c a < C.a -c <b -c D. a|c|<a|c| 思路分析:第1步:比较已知不等关系与选项中的不等关系;第2步:确定变形方法是否符合法则. 解答过程:根据不等式的性质1,在不等式a >b 的两边同时减去c,不等号的方向不变,故C 错误;根据不等式的性质2,在不等式a >b 的两边同时乘以正数|c|,不等号的方向不变,故D 错误;根据不等式的性质3,在不等式a >b 的两边同时乘以或除以负数c ,不等号的方向要改变,故A 是错误的;故选B .本例题总结:本题主要考查不等式的三条基本性质,运用不等式基本性质时,关注不等号方向的“不变”与“改变”是关键.关键字:表现形式:呈现内容说明:例2:已知-2x+3y=3x-2y+1,试比较x 和y 的大小关系.析解:要比较x 和y 的大小关系,只需利用等式变形求出(x-y)的值,再根据其正负判断大小。
不等式及其性质与解法
(1)一元一次不等式:只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。
(2)一元一次不等式的解法:求接方法与解一元一次方程类似,根据不等式性质将不等式变形,从而等到解集.(3)一般步骤:一、去分母;二、去括号;三、移项;四、合并,化成b ax >或b ax <的形式(其中0≠a );五、两边都除以未知数的系数,得到不等式的解集。
热身练习1、判断下列各题是否正确?正确的打“√”,错误的打“×”。
(1) 不等式两边同时乘以一个整数,不等号方向不变.( × ) (2) 如果a >b ,那么3-2a >3-2b.( × ) (3) 如果a <b ,那么a 2<b 2.( × ) (4) 如果a 为有理数,则a >-a.( × ) (5) 如果a >b ,那么ac 2>bc 2.( × ) (6) 如果-x >8,那么x >-8.( × ) (7) 若a <b ,则a +c <b +c.( √ )2、若x >y,则ax >ay ,那么a 一定为( A )。
[来源A 、a >0B 、a<0C 、a≥0D 、a ≤03、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( C )。
A 、小于或等于3的有理数 B 、小于3的有理数 C 、小于或等于-3的有理数 D 、小于-3的有理数4、若b a <,则下列各式中一定成立的是( B ) A 、0>-b a B 、0<-b a C 、0>ab D 、0<ab5、如果t>0,那么a+t 与a 的大小关系是 ( A ).A 、a+t>aB 、a+t<aC 、a+t ≥aD 、不能确定 6、同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 ( B ). A 、1,2,3 B 、0,1,2,3 C 、1,2,3,4 D 、0,1,2,3,47、若三个连续正奇数的和不大于27,则这样的奇数组有( B )A .3组B .4组C .5组D .6组 8、若a <0,则-2b a +__<__-2b[来源:学.科.网] 11.设a <b ,用“>”或“<”填空:[来源:Z*xx*ka -1__<__b -1, a +3__<__b +3, -2a__>__-2b ,3a __<__3b12.实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b__<__0, a +b__<__0,ab __>__0,a 2__>__b 2,a 1__>__b1,︱a ︱__>__︱b ︱ 13.若a <b <0,则21(b -a )_>___0 14、不等式2(x + 1) - 12732-≤-x x 的解集为_____1314≥x ________。
不等式的基本性质与解法
不等式的基本性质与解法不等式是数学中常见的描述数量关系的工具,它可以表达两个数、两个量或两个函数之间的大小关系。
在解决实际问题时,不等式的理解和运用至关重要。
本文将介绍不等式的基本性质以及解法,并通过一些例子来进一步说明。
一、不等式的基本性质不等式有以下基本性质:1. 加减性质:对于不等式两边同时加减一个相同的数,不等号的方向不变。
例如:若a < b,则a + c < b + c;若a > b,则a - c > b - c。
2. 乘除性质:对于不等式两边同时乘除一个正数,不等号的方向不变;而若乘除一个负数,则不等号的方向反转。
例如:若a < b,c > 0,则ac < bc;若a > b,c < 0,则ac > bc。
3. 倒置性质:若不等式两边同时倒置(取倒数),不等号的方向也要倒置。
例如:若a < b,则1/a > 1/b;若a > b,则1/a < 1/b。
二、不等式的解法1. 图解法:对于简单的一元一次不等式,我们可以通过图解法来求解。
例如,对于不等式2x + 1 > 5,我们可以先绘制出直线y = 2x + 1和y = 5的图像,然后找到两条直线的交点,交点右侧的区域即为不等式的解集。
2. 转化法:有些不等式可以通过转化为等价的形式来求解。
例如,对于不等式x^2 - 4x + 3 > 0,我们可以将其转化为(x - 1)(x - 3) > 0的形式,然后根据函数图像的正负性来确定解集。
3. 分类讨论法:对于复杂的不等式,我们可以通过分类讨论的方法来求解。
例如,对于不等式|x - 2| < 3,我们可以将其拆解为两个不等式x - 2 < 3和-(x - 2) < 3,并分别求解得到解集,然后取它们的交集。
4. 根据性质求解:我们可以根据不等式的性质来求解。
例如,对于不等式x^2 - 5x + 6 < 0,我们可以分解它为(x - 2)(x - 3) < 0,然后根据乘法性质可知,当x在2和3之间时,不等式成立。
初一数学上册不等式及其基本性质(一)教案
远耀教育个性化辅导教案讲义任教科目:数学授课题目:不等式及其基本性质(一)年级:七年级任课教师:授课对象:合肥远耀个性化教育新站校区教研组长签字:教学主任签字:日期:【讨论提高】a>b a+c>b+c不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2.观察:用“<”或“>”填空,并找一找其中的规律8__128×4__12×48÷4__12÷4(-4)__(-6)(-4)×2__(-6)×2(-4)÷2__(-6)÷28×(-4)__12×(-4)8÷(-4)__12÷(-4)(-4)×(-2)__(-6)×(-2)(-4)÷(-2)__(-6)÷(-2)想一想:你发现了什么规律?不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.应用:1.用不等式表示下列关系①亮亮的年龄(记为x)不到14岁。
_____________②七年级(1)班的男生数(记为y)不超过30人。
_____________耀教育教务处附:跟踪回访表主任签字:远耀教育教务处3.1.2 等式的性质教学目标:①了解等式的两条性质;②会用等式的性质解简单的(用等式的一条性质)一元一次方程;③培养学生观察、分析、概括及逻辑思维能力;④渗透“化归”的思想.教学重点:理解和应用等式的性质教学难点:应用等式的性质把简单的一元一次方程化成“x=a”.教学过程:一、提出问题用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1) 3x-5=22; (2) 0.28-0.13y=0.27y+1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、探究新知①实验演示:教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律.然后按教科书第82页图2.1-2的方法演示实验.教师可以进行两次不同物体的实验.②归纳:请几名学生回答前面的问题.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11” . ③表示:问题1:你能用文字来叙述等式的这个性质吗?在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2:等式一般可以用a=b 来表示.等式的性质1怎样用式子的形式来表示?④观察教科书第71页图吗?在学生观察图2.1一3时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.问题3如:用5元钱可以买一支钢笔,用2元钱可以买一本笔记本,那么用7元钱就可以买一支钢笔和一本笔记本,15元钱就可以买3支钢笔.相当于: “5元一买1支钢笔的钱;2元一买1本笔记本的钱. 5元+2元=买1支钢笔的钱+买1本笔记本的钱. 3×5元=3×买1支钢笔的钱.” 三、应用举例方程是含有未知数的等式,我们可以运用等式的性质来解方程。
06 不等式的三条基本性质
名师精编优秀教案
不等式的三条基本性质
不等式基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变(即原来较大的一边仍然较大,原来较小的一边仍然较小).不等式基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变(即原来较大的一边仍然较大,原来较小的一边仍然较小).不等式基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变(即原来较大的一边反而较小,原来较小的一边反而较大).。
不等式的基本性质(一)
试一试
1.若-m>5,则m < -5.
2.如果x/y>0, 那么xy > 0.
3.如果a>-1,那么a-b > -1-b.
4.-0.9<-0.3,两边都除以(-0.3),得
同一个负数,不等号的方向
改变
如果a<b,c>0那么ac<bc,a/c<b/c.
如果a>b,c<0那么ac<bc,a/c<b/c;
选择适当的不等号填空:
(1)∵0 < 1, ∴ a <a+1(不等式的基本性质1)
(2)∵(a-1)2 ≥ 0, ∴(a-1)2-2 ≥ -2(不等式的基本性质1)
(3)若x+1>0,两边同加上-1,得 ___x__>_-_1_____ (依据:__不_等__式__的_基__本_性__质_1_______). (4)若2 x >-6,两边同除以2,得 ___x_>__-3__,依据
会发现:当不等式两边加或减去同一个数时, 不等号的方向_不__变___
当不等式的两边同乘同一个正数时,不 等号的方向__不__变__;而乘同一个负数时,不等 号的方向__改__变____.
不等式的基本性质1 不等式的两边 都加上(或减去)同一个数(或式子), 不等号的方向不变.
即 如果a>b,那么a+c>b+c,a-c>b-c;
5.
__3_>__1__.
8 x 1,两边都乘
7
,得
x7 _____8_.
7
8
思考: 已知a<0 ,试比较2a与a的大小。
简述不等式的4个基本性质
简述不等式的4个基本性质
不等式的基本性质:1、在一个区间上可导,在另一个区间上也可导;2、对于任何实数,都存在至少一个解析式;3、当不等式两边同时乘以或除以一个常数时,所得结果仍然是不等式。
4、如果有增根,那么它们互为相反数。
不等式的解题思路:首先要弄清楚该不等式左右两边到底是什么关系,因此必须从函数的角度考虑问题,即把不等式转化成一般形式,然后再利用各种方法进行求解。
由于不等号两边的关系较复杂,建议大家通过举例来理解和掌握。
在做题过程中,应注意分类讨论的作用,多联想一些与之有关的知识点,能起到事半功倍的效果。
不等式的概念和基本性质
不等式的概念和基本性质重点:不等式的基本性质难点:不等式基本性质的应用主要内容:1.不等式的基本性质(1)a>b b<a(2)a>b,b>c a>c(3)a+b<c a<c-ba>b a+c>b+c(4)a>b2.不等式的运算性质(1)加法法则:a>b,c>d a+c>b+d(2)减法法则:a>b,c>d a-d>b-c(3)乘法法则:a>b>0,c>d>0ac>bd>0(4)除法法则:a>b>0,c>d>0>>0(5)乘方法则:a>b>0,a n>b n>0 (n∈N, n≥2)(6)开方法则:a>b>0,>>0(n∈N, n≥2)3.基本不等式(1)a∈R,a2≥0 (当且仅当a=0时取等号)(2)a,b∈R,a2+b2≥2ab(当且仅当a=b时取等号)(3)a,b∈R+,≥(当且仅当a=b时取等号)(4)a,b,c∈R+,a3+b3+c3≥3abc(当且仅当a=b=c时取等号)(5)a,b,c∈R+,≥(当且仅当a=b=c时取等号)(6)|a|-|b|≤|a±b|≤|a|+|b|4.不等式的概念和性质是进行不等式的变换,证明不等式和解不等式的依据,应正确理解和运用不等式的性质,弄清每条性质的条件与结论,注意条件与结论之间的关系。
基本不等式可以在解题时直接应用。
例1.对于实数a,b,c判断以下命题的真假(1)若a>b, 则ac<bc;(2)若ac2>bc2, 则a>b;(3)若a<b<0, 则a2>ab>b2; (4)若a<b<0, 则|a|>|b|;(5)若a>b, >, 则a>0, b<0.解:(1)因为c的符号不定,所以无法判定ac和bc的大小,故原命题为假命题。
不等式的性质(1)
等式基本性质1:
等式的两边都加上(或减去)同一个整 式,等式仍旧成立
如果a=b,那么a±c=b±c
等式基本性质2:
等式的两边都乘以(或除以)同一个不 为0的数,等式仍旧成立 如果a=b,那么ac=bc或 a b(c≠0),
cc
不等式是否具有类似的性质呢? ➢如果 7 > 3 那么 7+5 __>__ 3+ 5 , 7 -5__>__3-5 ➢如果-1< 3, 那么-1+2_<___3+2, -1- 4__<__3 - 4
今天学的是不等式的三个基本性质 ➢不等式的基:.就是说,不等式两边都 加上 (或减去)同一个数(或式子),不等号方向不变。
➢不等式基本性质2: 如果a >b,c > 0 ,那么 ac>bc(或
a c
b c
) 就是说
不等式的两边都乘以(或除以)同一个正数,不等号
(2)正确,根据不等式基本性质1.
(3)正确,根据不等式基本性质2. . (4)正确,根据不等式基本性质1.
(5)不对,应分情况逐一讨论. 当a>0时,3a>2a.(不等式基本性质2) 当 a=0时,3a=2a. 当a<0时,3a<2a.(不等式基本性质3)
例2:设a>b,用“<”或“>”填空并 口答是根据哪一条不等式基本性质。
如果a>b, 那么a±c>b±c
不等式基本性质1:不等式的 两边都加上(或减去)同一 个整式,_不__等__号__的__方__向__不__变__。
如果_a_>_b_,那么_a±__c_>_b_±__c_.
不等式还有什么类似的性质呢?
➢如果 7 > 3 那么 7×5 _>___ 3× 5 ,
不等式的基本性质
(2)如果在不等式的两边都加上或减去同一个 整式,那么结果会怎样?举例试一试。
不等式的基本性质 1 :
不等式的两边都加上(或减去)同一个整 式,不等号的方向不变。
完成下列填空: 2<3 < ×5; 2×5______3 2× ½ ______3 < ×½; 2×(-1)______3 > × (-1) ; 2×(-5)______3 > × (-5) ; 2×(- ½)______3 > ×(- ½) . 从以上能发现什么?可以得到什么结论?
< (2)3a____3b ;
(3)-a-2____ < ; > -b -2; (4)a-b____0
1 1 > (5)-—a____-—b; 3 3
2 ≤ (6)ac2_____bc
( c 为有理数 )
作业: 习题1.2
; ; 坊鬻阬
练一练
2、已知x﹥y,下列不等式一定能成立吗? ( 1) x - 6 ﹤ y - 6 (2)3x ﹤ 3y (3)-2x ﹤-2y ( 4) x + 3 ﹤ y + 3
不成立
不成立 成立
不成立
(5)-4x + 2﹤-4y + 2 成立
练一练
3、已知 a﹤b,用“<”或“>”号填空:
< -4; (1) a-4____b
(2)根据不等式的基本性质3,两边都除以 -2,得 3 x <- — . 2
练一练
1、将下列不等式化成“ x > a” 或“x < a”的形式: 5 ( 1) x – 1 > 2 ; (2) -x ﹤— 6
解:
(1)根据不等式的基本性质1,两边都加上1,得 x>2+1 , 即 x >3 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章一元一次不等式与一元一次不等式组
2.不等式的基本性质
一、学生知识状况分析
本章是在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。
学生已经掌握等式的基本性质,同时经历了解一元一次方程、二元一次方程组的研究过程及方法,为进一步学习不等式的基本性质奠定了基础。
学习时可以类比七年级上册学习的等式的基本性质。
二、教学任务分析
不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。
经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。
本节课教学目标:
(1)知识与技能目标:
①经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。
②掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式。
(2)过程与方法目标:
①能说出不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。
②通过研究等式的基本性质过程类比研究不等式的基本性质过程,体会类比的数学方法。
③进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
(3)情感与态度目标:
①通过学生自我探索,发现不等式的基本性质,提高学生学习数学的兴趣和学好数学的自信心。
②尊重学生的个体差异,关注学生对问题的实质性认识与理解。
三、教学过程分析
本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。
第一环节:情景引入,提出问题
活动内容:利用班上同学站在不同的位置上比高矮。
请最高的同学和最矮的同学“同时站在地面上”,“矮的同学站在桌子上”,“高的同学站到楼下一楼”三种不同的情况下比较高矮。
问题1:怎样比才公平?
活动目的:让学生体会当两位同学同时增高相同的高度或同时减少相同的高度时,比较才是公平的,高的同学仍然高,矮的同学仍然矮,这是不可能改变的事实。
活动实际效果:学生对能自己参与的活动很感兴趣,体会到不相等的两个量的比较要在“公平”的情况下进行,即要加同时加,要减同时减。
第二环节:活动探究,验证明确结论
活动内容:参照教材与多媒体课件提出问题:
(1)还记得等式的基本性质吗?请用字母表示它。
不等式有类似的性质吗?先猜一猜。
(2)用等号或不等号完成下面的填空。
如果2 < 3;那么
2 × 5
3 × 5;
2 ×
3 ×;
2 × (-1)
3 × (- 1);
2 × (- 5)
3 × (- 5);
2 × (-)
3 × (-).
(3)验证你的结论,用字母表示你所发现的结论。
(4)与同伴交流你的结论,并展示。
生1:等式的基本性质1用字母可以表示为:c b c a b a ±=±∴=, , 类似地得到,如果在不等式的两边都加上或都减去同一个整式,结果不等号方向不变。
字母表示为:∵a >b ,∴a ±c >b ±c ;或∵a >b ,∴a ±c <b ±c 。
生2:对于等式的基本性质2,用字母可以表示为: c b c a c b c a b a ÷=÷⨯=⨯∴=,, ,其中0≠c 。
经过前面的探索,可类似地得到:
如果不等式两边同时乘以(或除以)同一个正数,不等号方向不变;如果不等式两边同时乘以(或除以)同一个负数,不等号的方向要发生改变。
字母表示如下:
c b c a c b c a c b a ÷>÷⨯>⨯∴>>,,0,
c b c a c b c a c b a ÷<÷⨯<⨯∴><,,0,
c b c a c b c a c b a ÷<÷⨯<⨯∴<>,,0,
c b c a c b c a c b a ÷>÷⨯>⨯∴<<,,0,
活动目的:通过等式的基本性质对比不等式的基本性质,由特殊的数值到字母代表数,从中归纳出一般性结论。
进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
活动实际效果:以问题的形式引导学生从对比中自己先猜想不等式的基本性质、再通过具体数值验算性质、最后自己总结归纳出性质并能用字母表示出来。
因此在整个教学教程中,学生均处于主导地位,教师只是从旁引。
这时,学生对于由自己推导出性质应该感到非常兴奋。
第三环节:例题讲解及运用巩固
活动内容:
1、在上一节课中,我们猜想,无论绳长l 取何值,圆的面积总大于正方形的面积,即16
42
2l l >π。
你相信这个结论吗?你能利用不等式的基本性质解释这一结论吗?
2、将下列不等式化成“a x >”或“a x <”的形式:
(1)15->-x (2)32>-x
练习设计:
1、将下列不等式化成“a x >”或“a x <”的形式:
(1)21>-x (2)65<-x (3)32
1≤x 2、已知y x >,下列不等式一定成立吗?
(1)66-<-y x (2)y x 33<
(3)y x 22-<- (4)1212+>+y x 3、小明做这样一题:已知2x>3x,求x 的范围。
结果小明两边同时除以x ,得到2>3。
你知道他错在哪?
活动目的:在讲解例题的过程中要求学生说出每一步变形的依据,加强学生对不等式的基本性质的理解。
随堂练习学生独立完成,师生共同讲解,能说出一个不等式为什么可以从一种形式变形为另一种形式,养成步步有据、准确表达的良好学习习惯,并通过这种方式达到熟练掌握不等式的基本性质的目的。
活动实际效果:学生在讲解例题与练习的过程中,思维非常活跃,都非常踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范,达到预期教学目的。
第四环节:课堂小结
活动内容:学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论交流。
活动目的:学生说出自己的收获与感想与全班交流,若有任何疑问可以当堂提出供大家讨论。
教师要学会倾听并鼓励学生的回答,关注学生对问题的实质性认识与理解,尊重学生的个体差异,关注学生的学习情感和自信心的建立。
活动实际效果:学生自我总结本节课所学到的知识和重点注意的问题,畅所欲言自己的切身感受与实际收获,除了今天所学新的内容之外,还复习巩固了等式的基本性质,体会新旧知识的联系与区别。
第五环节:布置作业
习题2.2
四、教学反思
本节课通过复习等式的基本性质,类比得出不等式的基本性质雏形。
教学中问题的设置通过与等式的基本性质相对比,引导学生自己先猜想不等式基本性质、再通过具体数值验算性质、最后自己总结归纳完善性质定理并能用字母表示出来。
在接下来的讲解例题与练习的过程中,每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范。
在整个教学过程中,学生始终处于主导地位,不等式的基本性质主要由学生自己推导得出。