地下水补给量和排泄量的确定

合集下载

水文地质学基础--8.补给与排泄

水文地质学基础--8.补给与排泄
上升泉(Ascending spring) 由承压水补给
侵蚀泉:
地形切割到潜水面
接触泉:
地形切割至隔水底板
溢流泉:
水流在前方受阻,水 位抬升,而溢流成泉
下降泉——
由潜水或上层滞水 补给
上升泉(承压含水层补给)
侵蚀泉
地形切割到隔水顶板
断层泉
通过导水断层出露成泉
接触带泉
通过接触带出露
思考题:试分析下列各泉的名称?
活塞式入渗(均质砂土)
是指入渗水的湿锋面整体向下推进,就象活塞的运移一样;
➢ 补充包气带水
分亏缺;
t1
➢ 年龄新的水推 动年龄老的水
下移,“老”
水在前,“新”
t2
水在后。
捷径式入渗 (粘性土介质)
是指入渗水由于存在水分运移的大空隙通道(根孔、虫孔、 裂缝等),入渗水流沿着该通道下渗,优先达到地下水面的 过程。
入渗
地表径流Rs 地表水
包气带Δ S
补给R
含水层
R=P-ET-Rs-ΔS
大气降水入渗补给量的确定
包气带
地中渗透仪 零通量面法
达西法 人工示踪剂 历史示踪剂 环境示踪剂 热示踪剂
水均衡法 物理方法
示踪方法 模拟模型
饱和带
水位动态法 达西法
地下水测年 环境示踪剂
10
大气降水入渗补给量的确定
平原区一般采用入渗系数法(α);
径流排泄与蒸发排泄的区别 径流排泄—水分(盐分)呈液态排出,盐随水去; 蒸发排泄—水分呈气态排出,盐分积累下来,水去盐留,
水质变化。
泉(Spring)
泉是地下水的天然露头,多为“点”状,属径流排泄; 泉的出露是地形、地质与水文地质条件有机结合的结果。

地下水的补给与排泄

地下水的补给与排泄

第七章地下水的补给与排泄第一节地下水的补给含水层或含水系统从外界获得水量的过程称作补给。

补给研究包括补给来源、补给条件与补给量。

地下水补给来源有天然与人工补给。

天然补给包括大气降水、地表水、凝结水和来自其他含水层或含水系统的水;与人类活动有关的地下水补给有灌溉回归水、水库渗漏水,以及专门性的人工补给(利用钻孔)。

一、大气降水对地下水的补给(1)大气降水入渗机制松散沉积物中的降水入渗存在活塞式与捷径式两种(见图7-1):活塞式下渗是入渗水的湿锋面整体向下推进,犹如活塞的运移如图7-1(a)。

图7—1活塞式与捷径式下渗(a)活塞式下渗;(b)捷径式与活塞式下渗的结合图7—2 降水入渗过程中包气带水分分布曲线—残留含水量;—饱和含水量活塞式下渗过程:a)雨季之前()时,包气带水分分布曲线如图7—2(a)所示,近地表面水分出现亏缺。

b)雨季初期~时,入渗的降水首先补充包气带水分分布曲线的亏缺部分,如图7—2(a)和所示。

c)随着降雨的继续,多余的入渗水分开始下渗,近地表面出现高含水量带,水分分布特征如图7—2(b)时的状况;如果连续降雨高含水量带将向下推进,如果此时停止降雨,高含水量带的水分向下缓慢消散(如图7—2(b)所示)。

d)停止降雨后,理想情况下,包气带水分向下运移最终趋于稳定,不下渗也无蒸发、蒸腾时,含水层获得补给,地下水水位抬升,此时均质土包气带水分分布如图7-2(c)所示。

活塞式下渗是在理想的均质土中室内试验得出的。

实际上,从微观的角度看,并不存在均质土。

尤其是粘性土,捷径式入渗往往十分普遍。

捷径式入渗:当降雨强度较大,细小孔隙来不及吸收全部水量时,一部分雨水将沿着渗透性良好的大孔隙通道优先快速下渗,并沿下渗通道水分向细小孔隙扩散。

存在比较连续的较强降雨时,下渗水通过大孔道的捷径优先到达地下水面。

如图7-1(b)所示。

捷径式下渗与活塞式下渗比较,主要有两点不同:(a)活塞式下渗是年龄较新的水推动其下的年龄较老的水,始终是老水先到达含水层;捷径式下渗时新水可以超前于老水先到达含水层;(b)对于捷径式下渗,入渗水不必全部补充包气带水分亏缺,即可下渗补给含水层。

8第八章 地下水的补给与排泄

8第八章  地下水的补给与排泄

第八章地下水的补给与排泄补给:recharge径流:runoff排泄:discharge8.1概述补给、径流、排泄是地下水参与自然界水循环的重要环节。

地下水通过补给与排泄,获得与消耗并重新分布可溶气体及盐量,更新溶滤能力。

地下水通过补给和排泄,保持不断流动循环支撑有关水文系统和生态环境系统正常运行。

8.2 地下水的补给补给––––饱水带获得水量的过程。

1.大气降水(precipitation)以松散沉积物为例,讨论降水入渗补给地下水的过程。

包气带截留的水量,用于补足降水间歇期由于蒸散造成的水分亏缺。

一次降水过程,除去植被截留以及包气带截留外,大气降水量最终转化为3部分:地表径流量、蒸散量及地下水补给量(图8.1)。

一次降水过程中,包气带水分变化及其对地下水补给的影响(图8.2)。

入渗机理:1)活塞式下渗(piston type infiltration)→Green–Ampt模型:求地表处的入渗率(稳定时v→K)(P48,公式6.11;P72,图8.3),累积入渗量。

2)捷径式下渗(short-circuit type infiltration ),或优势流(preferential flow )。

降水→地下水储量增加→地下水位抬高→势能增加。

降水转化为3种类型的水:① 地表水,地表径流(一般降水的10 ~ 20%产生为地表径流);② 土壤水,腾发返回大气圈(一般大于50%的降水转为土壤水,华北平原有70%的降水转化为土壤水);③ 地下水,下渗补给含水层(一般20 ~ 30%降水渗入地下进入含水层)。

因此,落到地面的降水归结为三个去向:(1)地表径流;(2)土壤水(腾发返回大气圈);(3)下渗补给含水层。

入渗补给地下水的水量:q x =p -D -∆S式中:q x ––––降水入渗补给含水层的量;p ––––年降水总量;D ––––地表径流量;∆S –––包气带水分滞留量。

单位:mm 水柱。

大气降水补给地下水的影响因素:降水入渗系数(α)––––补给地下水的量与降水总量之比。

水文地质学 第七章__地下水的补给与排泄

水文地质学 第七章__地下水的补给与排泄

第七章地下水的补给与排泄补给:recharge径流:runoff排泄:discharge补给、径流、排泄是地下水参与自然界水循环的重要环节。

径流7.1 地下水的补给补给––––含水层或含水系统从外界获得水量的过程。

1.大气降水(precipitation)入渗机理:1)活塞式下渗(piston type infiltration)→Green–Ampt模型:求地表处的入渗率(稳定时v→K)(P49,公式5–14;P65,图7–3),累积入渗量。

2)捷径式下渗(short-circuit type infiltration),或优势流(preferential flow)。

降水→地下水储量增加→地下水位抬高→势能增加。

降水转化为3种类型的水:①地表水,地表径流(一般降水的10 ~ 20%产生为地表径流);②土壤水,腾发返回大气圈(一般大于50%的降水转为土壤水,华北平原有70%的降水转化为土壤水);③地下水,下渗补给含水层(一般20 ~ 30%降水渗入地下进入含水层)。

渗入地面以下的水:①滞留于包气带→土壤水,通过腾发ET(evapotranspiration)→返回大气圈;②其余下渗补给含水层→地下水。

因此,落到地面的降水归结为三个去向:(1)地表径流;(2)土壤水(腾发返回大气圈);(3)下渗补给含水层。

入渗补给地下水的水量:q x=X-D-∆S式中:q x ––––降水入渗补给含水层的量;X ––––年降水总量; D ––––地表径流量;∆S ––––包气带水分滞留量。

单位:mm 水柱。

降水入渗系数(α)––––补给地下水的量与降水总量之比。

Xq x=α (小数或%表示) 一般α =0.2 ~ 0.5。

定量计算(入渗系数法):Q=α·X ·F (注意单位统一,X :mm/a ,F :km 2,Q :m 3/a ) 影响降水入渗补给的因素:① 降水量大小:雨量大,α大;雨量小,α小;② 降水强度:间歇性的小雨,构不成对地下水的有效补给(如华北平原,一次降水<10mm 的为无效降雨);连绵小雨有利于补给;集中暴雨→一部分转化为地表径流→不利于补给;③ 包气带岩性:K 大,有利于入渗;K 小,不利于入渗;④ 包气带厚度:厚,入渗量小,河北平原存在“最佳埋深”,一般4 ~ 6m ,地下水位在“最佳埋深”时,入渗补给量最大,入渗系数α也最大;⑤ 降雨前期土壤含水量:含水量高,有利于补给;含水量低,不利于补给;⑥ 地形地貌:坡度大→地表径流量大→不利于补给;地势平缓,有利于补给; ⑦ 植被覆盖情况:植被发育,有利于拦蓄雨水和入渗;但浓密的植被,尤其是农作物,蒸腾量大,消耗的土壤水分多,不利于补给。

水文地质学-第6章地下水的补给、排泄和径流

水文地质学-第6章地下水的补给、排泄和径流
chd-qw 第六章 地下水的补给径流与排泄 9
二、地表水对地下水的补给
1.具备条件 1.具备条件
地表水位高于地下水位。 地表水位高于地下水位。
chd-qw
第六章 地下水的补给径流与排泄
10
河流上游 和中游
chd-qw
第六章 地下水的补给径流与排泄
11
长江瞿塘峡
chd-qw
第六章 地下水的补给径流与排泄
地下水的补给 排泄和径流
地下水的补给、径流、 地下水的补给、径流、排泄这三个环节 就是地下水的循环――即自然界循环中的水 , 即自然界循环中的水, 就是地下水的循环 即自然界循环中的水 处于地下隐伏阶段的循环。 处于地下隐伏阶段的循环。 基本概念 地下水的补给――含水层从外界获得水量的过 地下水的补给 程。 地下水的排泄――含水层失去水量的过程。 地下水的排泄 地下水的径流――获得水量到失去水量所经历 地下水的径流 的过程。
3.越流补给
越流补给是通过弱含水层的补给( 越流补给是通过弱含水层的补给(leakage recharge) ) 要弄清谁补给谁: 在水的密度相同时, 要弄清谁补给谁 : 在水的密度相同时 , 高水位补 给低水位, 不一定是高的含水层补给低的含水层。 给低水位 , 不一定是高的含水层补给低的含水层 。
chd-qw 第六章 地下水的补给径流与排泄 4
①入渗过程
a.渗润阶段:降水初期,如果土壤干燥,下 渗润阶段:降水初期,如果土壤干燥, 渗润阶段 渗水主要受静电引力作用, 渗水主要受静电引力作用 , 受土粒吸附 形成结合水, 结合水的饱和, 形成结合水 , 结合水的饱和 , 即本阶层 的结束; 的结束; b.渗漏阶段 : 随着土壤含水量增大 , 分子 渗漏阶段: 渗漏阶段 随着土壤含水量增大, 作用力( 静电引力) 作用力 ( 静电引力 ) 由毛管力和重力作 用取代, 逐渐充填岩土孔隙及下渗, 用取代 , 逐渐充填岩土孔隙及下渗 , 直 到重力起主导作用。 到重力起主导作用。 c.渗透阶段:孔隙水分近乎饱和,水主要受 渗透阶段: 渗透阶段 孔隙水分近乎饱和, 重力作用稳定向下流动。 重力作用稳定向下流动。

地下水水量评价的依据和原则

地下水水量评价的依据和原则

地下水水量评价的依据和原则一、各种用水的需水量二、地下水资源分类(一)地下水资源的组成成分1、地下水均均的三项因素在天然状态或开采状态下,地下水的补给、储存及排泄在一定时期和一定地域内,这三种量之间的关系都必须适应于地下水的均衡要求。

为了充分说明以地下水均衡为基础的地下水次源分类,将地下水循环过程中的补给量、排泄量及储存量三种其本均衡因素的内容光焕发及关系阐述如下。

1)补给量:系指进入单元含水层即任一均衡地段中的地下水量。

它以单位时间流经过水断面(水平的或垂直的)的水体积来表示根据补给量形成的阶段,可分为天然补给量和开采补给量两种。

1)天然补给量:指在天然状态下进入单元含水层中的水量,其中包括侧向流入量和垂向渗入量。

前者指地表水或地下水在天然水位差的作用下,经上游边界流入单元含水层中的水量。

后者指大气降水,凝结水及地表水通过表层渗入,以及相邻含水层水在天然状态及水头差的作用下通过弱隔水层的越流及通过隔水层中的通道绕流等的补给量。

2)开采补充量(简称补充量):系指在开采条件下除了抽了部分天然补给量之外,尚有能夺取过来的额外补给量及人工补给量。

开采时能否夺取这部分补充量,决定于开采地段的水文地质条件及开采强度等因素。

常见的开采补充量由下列来源组成:来自地表水的补充量:当引水工程靠近地表水体时,由于强烈抽水,迫使地下水位大幅度下降,这样就可改变或加强地表水的入渗条件,成为地下水开采的重要补充来源。

来自相邻含水层的补充量:当开采层与相邻含水层存在水力联系时,通过弱隔水层所获得的越流量及通过隔水层的通道(导水断层、隔水层的天窗等)所获得的补充量。

来自灌溉回渗水的补充量:在开采地段内,常分布有灌溉渠系或淹灌土地,由于开采造成灌溉水的入渗。

来自开采地段以外的补充量:开采过程中由于受水范围逐渐扩大以及地下分水岭的包移而增获的渗下量。

除此之外,也可以采取人工方法增加补充量。

2、排泄量:系指从单元含水层流出的地下水量,也以单位时间内排出的水体积表示。

地下水的补给、排泄与径流

地下水的补给、排泄与径流
• 强径流带:在某些发育不均一的泾流场中,强径流 区段往往成不规则的带状展布,故称之为强径流带 或集中径流带。
– 强径流带的意义
• 三、径流强度、居留时间和水质的关系
地下水的补给、排泄与径流
四、地下水径流量计算
1. 地下水径流模数(Mc)
• 每平方公里含水层面积上地下水的流量。升/秒·平方公里。
Mc
(一株大的植物,犹如一台生物抽水机)
成年树木的耗水 能力
饥饿草原护田对潜水位的影响
地下水的补给、排泄与径流
第三节 地下水的径流
地下水的补给、排泄与径流
一、径流方向、强度的影响因素
• 径流的定义:地下水由补给区向排泄区流动的过程称作径 流。 最简单的情况下,含水层自一个集中补给区流向集 中排泄区,具有单一径流方向。
•2、标准退水曲线法 –具体步骤: •确定标准退水线:图5-30 •确定洪峰段 •确定起涨点A和退水点B •将标准退水线绘于过程线上(图5-29)求出基流
–适用:河流与潜水无直接水力联系、地下水径流不受河水涨落影响。 –优点:一定程度反映了地下水泄流规律
•3、库捷林分割法(图5-31) –适用:河水与潜水有直接水力联系 –原理:枯水期,河流由地下水泄流组成,洪水期,地下水泄 流为零。
地下水的补给、排泄与径流
对于潜水来说, 山区地下水的 循环属于渗 入—径流型
干旱半干旱地区地形低平的细土堆积平原,径流很弱。 属于渗入—蒸发型
地下水的补给、排泄与径流
•径流强度
• 可用单位时间通过单位断面的流量表示,即以渗透流速 衡量。
• 根据达西定律V=KI 故径流强度与 含水层的透水性成正比 补绐区及排泄区之间的水位差成正比 与补给区到排泄区的距离成反比 与含水系统的构造有关 • 构造开启程度,图5-36 • 断层的导水性,图5-37

地下水量计算

地下水量计算

地下水量计算原理二 水均衡法的计算原理对于一个均衡区,在任意时段t ∆内的补给量和消耗的水量之差,恒等于这个含水层中水体积的变化量。

th F Q Q ∆∆±=-μ消补 补Q 的项目有:降雨入渗雨渗Q ,河流入渗河渗Q ,地下水侧向河流流入Q ,越流补给越入Q ,灌溉入渗灌入Q 等。

消Q 的项目有:开采量开Q ,蒸发量蒸发Q ,地下水侧向流出流出Q ,越流流出越出Q ,泉水,溢流量等。

河流排泄量排泄Q开采量:是目前实际正在开采的水量或预计开采的水量。

开采量应小于允许开采量。

th FQ Q ∆∆+=μ补允许 这是要消耗一部分储存量,消耗储存量是有要求的,如30年内年下降不得超过10m 。

5.0=∆∆th F Q Q μ21+=补允许 保守的允许开采量: 补允许Q Q =三 均衡区,均衡期和均衡要素的确定划分均衡区:研究区域确定均衡期:一般取一个水文年;确定均衡要素:补Q 的项目有: 雨渗Q , 侧入Q消Q 的项目有: 开Q , 蒸发Q , 河渗Q , 侧出Q四 确定各项目均衡区要素值1 降雨入渗补给量⎪⎩⎪⎨⎧---⋅⋅=均衡区面积有效入渗系数降雨量雨渗F x F x Q λλ降雨量:由气象部门获得,本次取年平均降雨量600㎜;有效降雨入渗系数(指渗入到地下水面的水量除以降雨量):与包气带岩性,厚度,含水量,降雨强度和降雨量密切相关;确定的方法:地中渗透仪法、分析潜水位动态法、人工降雨试验。

(本次直接给数据进行计算)由于地表岩性和包气带厚度不同,不同区有效入渗系数不同。

因此,对均衡区计算,本次评价分三区,分别为:河北区:这一区包气带岩性以红色粘土卵砾石为主,渗透性差,1.0=λ; 河谷区:这一区包气带岩性以卵砾石、砂砾石为主,且裸露于地表,渗入条件好,5.0=λ;河南区:这一区包气带岩性多以砂砾石为主,但表层有耕植土,入渗条件中等,20.025.0或=λ。

(1) 面积,从图上量测2 河流排泄量21Q Q Q -=河渗1Q —下游出均衡区断面流量;2Q —上游如均衡区断面流量;由于季节影响,河流流量是变化的,河渗Q 也是变化的。

《水文地质基础》第六章 地下水的补给与排泄

《水文地质基础》第六章 地下水的补给与排泄

第1节 地下水的补给
Groundwater recharge
补给方式:大气降水入渗、地表水入渗、凝
结水入渗、其他含水层或含水系统 、人工补 给
补给量(Incremeng of aquifer)的确定:
研究每一种补给方式的补给量大小
影响补给量大小的因素:讨论每一种补给
方式的影响因素
第1节 地下水的补给—大气降水入渗补 给
(Interaquifer flow; Flow across)
影响补给量大小的因素
两个含水层之间的水头差; 裂隙、断层的透水性; 弱透水层的透水性及厚度
越流补给量的确定:
K —— 弱透水层垂向渗透系数;
(Coefficient of permeability) I —— 驱动越流的水力梯度;
系:
地表水入渗补给量的确定
平原地区。选择符合下列条件的典型渗漏地段 ⑴ 无支流 ⑵ 无降水 ⑶ 无取水排水 ⑷ 河流两侧岩性均一
实测河段上、下游断面流量Q1和Q2
则渗漏量△Q为:
△Q = Q1 – Q2 根据△Q 的大小确定地表水与地下水的补排关系和 渗漏量。
此法不适用于间歇性河流及侧向径流强烈,潜水位 与河水位不相连的经常性河流。因为消耗于包气带的 水量占相当比例,误差较大。
人工回灌
采用有计划的人为措施补充含水量的水量称为人工
补给地下水 。其目的有:
补充、储存地下水资源; 抬高地下水位以改善地下水开采条件; 储存热源以用于锅炉用水; 储存冷源用于空调冷却; 控制地面沉降; 防止海水倒灌与咸水入侵含水层;
第2节 地下水的排泄
Groundwater discharge
按出露原因: 侵蚀泉、接触泉、溢流泉——下降泉 (Destructional spring;boundary spring, Contact spring; Overflowing spring) 侵蚀泉、断层泉、接触带泉——上升泉 (Fault spring)

第8章 地下水的补给与排泄

第8章 地下水的补给与排泄
a=Q/( X*f*1000)= ∫(t0-t2)Qwd(t)/(∫ t0-t2)Q(t) *A*1000 d(t))。
三、含水层之间的补给
穿越数个含水层的钻孔或止水不良的分层钻孔,都将 人为地构成水由高水头含水层流入低水头含水层的通道
三、含水层之间的补给
越流量如何计算? 1、影响越流补给量大小的因素 (1)两个含水层之间的水头差; (2)裂隙、断层的透水性; (3)弱透水层的透水性及厚度。
2、越流补给量的确定
K —— 弱透水层垂向渗透系数; I —— 驱动越流的水力梯度; HA —— 含水层A的水头; HB —— 含水层B的水头; M —— 弱透水层厚度(等于渗透途径);
t2
存在比较连续的较强降 雨时,下渗水通过大孔道 的捷径优先到达地下水面。 潜水面
捷径式下渗与活塞式下渗的两点不同:
(1)活塞式下渗是较“新”的推动其下的较 “老”的水,始终是“老”水先到达含水层;
(2)捷径式下渗时“新”水可以超前于“老” 水到达含水层; 对于捷径式下渗,入渗水不必全部补充包气带 水分亏缺,即可下渗补给含水层。
ΔS qS
(5)其它
入渗系数(α)——大气降水补给地下水的份额,常以小 数表示。
入渗水补足水分亏缺后,其余部分继续下渗,达到含水层 时,构成地下水的补给。
我国,入渗系数α通常变化于0.2~0.4 之间,南方岩溶地区 可高达0.8 以上,西北极端干旱的山间盆地则趋于零。
(1)降雨量与补给量之间呈近似线性关系(定埋 深); (2)降雨量中有一部分要补充水分亏损,才有补 给地下水; (3)地下水埋深越浅,补给量越大(定降潜水雨埋量藏)深
qs
P
由经验与实验等方法得出全年降水入渗补给量: Q=P× α×F×1000

6 地下水的补给与排泄

6  地下水的补给与排泄


分布地区 多在高山、沙漠等昼夜温差较大的地区,尤其是降雨稀 少,地表径流贫乏的西北、内蒙等荒漠干旱地区。凝结水也 是地下水的主要来源之一。
6.1.5 地下水的人工补给
ห้องสมุดไป่ตู้
无意识的:人类某些生产活动引起的对地下水的补给,如修 建水库,农业灌溉、渠道渗漏等。 专门的:有意识的修建一些工程,采取一些措施,将地表水 引入或灌回地下,如人工回灌


蒸发的影响因素
a.气候因素:
干燥,气温高,蒸发量愈大 b.地下水位埋深: 蒸发极限埋深:随着埋深的增 加,潜水的蒸发逐渐减少,达 到一定深度后就停止蒸发,这 一深度称为潜水蒸发极限埋深。
超过蒸发极限深度则蒸发→0
如 : 华 北 地 区 , 水 位 埋 深
>5m,基本不考虑蒸发;
西北干旱地区,极限水位埋
降水延续 t2 :
土层达到一定的含水量,重力和静水压力的传递作用下, 下渗趋于稳定——渗润阶段
降水再持续:
降水入渗过程
当土层湿锋面推进到支持毛细水带时, 含水量获得补给,潜水位上升
水分分布带
转页
入渗率:在单位时间内渗入单位面积 的入渗降雨量。
入渗过程(i~t)
(1)降雨充沛p0>i (2)降雨强度p0<i
6.1.1 大气降水对地下水的补给
讨论:入渗机制?影响因素??补给量的确定???
1、大气降水入渗机制
包气带是降水对地下水补给的枢纽,包气带的岩性结
构和含水量状况对降水人渗补给起着决定性作用
目前认为,松散沉积物的降水入渗有两种方式:
降水入渗的现象—两类空隙的入渗过程——总结:
均匀砂土层——活塞式
西北极端干旱地区的山间盆地则趋于0。

第八讲地下水的补给与排泄(1)

第八讲地下水的补给与排泄(1)

“捷径式”下渗
一、大气降水对地下水的补给
降水入渗过程
降水初期
t1 :
土层干燥,毛细负压大,吸水能力很强,雨水下 渗快 降水延续 t2 : 含水量增加,毛细力减小,入渗速率下降,直至 下渗趋于稳定 降水再继续:
当土层湿锋面推进到支持毛细水带时,含水量获 得补给,潜水位上升
z hc hc Vt K K (1 ) z z
问:补给获得水量后,含水层或含水系统会发生什么变化?
地下水位上升,增加势能,地下水保持不停流动
构造封闭或气候干旱,得不到补给,地下水流动将停滞
研究内容:补给来源、影响因素与补给量 补给来源:
天然:大气降水、地表水、凝结水及相邻含水层的补给等 人工:灌溉水入渗、水库或渠道渗漏、生产生活排水及人工 回灌
测水分损失量
接渗瓶 实验场 观测室
地中渗透仪结构图
二、地表水对地下水的补给
地表水体:都可以成为地下水的补给来源。
河流补给:因地而异(空间上),不同部位,岩性等;
因时而异(时间上),不同季节,不同补排关系。 比较长年性河流与季节性河流对地下水的补给的异 同点; 河流补给的主要影响因素有哪些?用达西定律分析
降雨之前,包气带上部水分亏缺,水量小于残留含水量 降雨后,首先补足水分亏缺,多余的水分才能下渗
下渗水达到地下水面时,地下水位抬升
一、大气降水对地下水的补给 2. 降水补给的影响因素 qG = P - Rs - E -Δ S

影响降水入渗补给因素?
E
P Rs
气候因素(P,E);降水总量; 降水强度;降水频率;降水延续时 间。总量大,强度适中,间隔短, 适中时间长的绵绵细雨最有利。温 度适中,温差较小,相对湿度大, 蒸发强度小,有利补给。 地形: 高或低,陡或缓 地质: 渗透性愈大则愈有利于入渗 地下水位埋深:太大或太小都不利 其他:植被,既有利也不利 qG

地下水基础—第七章 地下水的补给与排泄

地下水基础—第七章  地下水的补给与排泄

开封柳园口悬河
山东境内黄河
(二)河流对地下水补给的过程-间歇河流为例
1、汛期开始以垂直入渗为主, 潜水面处形成水丘。
2、水丘水位不断抬高, 与河水连成一体。
3、汛期结束, 潜水位普遍抬高。
(三)河流补给地下水的影响因素
1、河床面积 2、河床透水性 3、河床水位与地下水位之差。
(四)河流补给地下水的水量的确定
蒸发及蒸腾返回大气,不构成地下水的有效补给。 集中式暴雨降水强度超过地面入渗能力而部分转 化为地表径流,入渗系数偏低。连绵细雨不超过 地面入渗速率的最有利于地下水的补给。
α
间歇小雨
连绵细雨
降水强度(单位时间内降水量) 集中暴雨
(三)影响大气降水补给地下水的的因素
3、包气带渗透性与厚度

积 200 入
Q
f X 1000
Q 地下水排泄量(泉的排泄量、河流的基流量) (m3/a)
f 汇水面积(Km2) X 年降水量(mm)
四、凝结水的补给
特点 :1、昼夜温差大(撒哈拉大沙漠昼夜温差 50℃ )。
2、夜间土壤(沙层)温度低,首先自身凝 结出水,其次是大气层凝结出水(敦煌壁画受 到凝结水的破坏)。
湿润锋面
>>入渗特点:
*发生在空隙均匀的岩土体中;
*入渗水湿润面整体向下推进,犹如活塞的运移;
*年龄新的水推动年龄老的水下移,“老”水在前, “新”水在后,始终是“老”水先到达含水层。
大气降水对地下水的补给
2、捷径式 由于孔隙大小的差异,当降水强度较大,入
渗水将沿着渗透性良好的大孔隙通道优先下渗,同时向下 渗通道周围扩散。在接受连续入渗补给后,大通道的入渗 水将优先到达地下水面。

第七章 地下水的补给径流与排泄

第七章 地下水的补给径流与排泄

第七章地下水的补给径流与排泄我们认为:世界是物质的,物质是运动的,运动是有规律的,规律是可以认识并可以利用的。

地下水是自然界广泛存在的非常重要的物质,对它运动规律我们从微观上已经进行过一些研究,如达西线性渗透定律,V = Kl;讨论了结合水、①毛细水的运动规律;学习了地下水化学成分的形成与变化。

而在宏观上关于地下水的运动,只在自然界水循环中作过简单的介绍。

在以下几章里,将分别介绍地下水水质、水量的时空变化规律。

这个变化的:过程——地下水的动态;数量关系——地下水的均衡;结果——地下水资源。

在“自然界水循环”当中讲到:水文循环——大气水、地表水、地壳浅部水之间的相互转化过程。

(发生在海 陆之间的叫大循环;发生在海海与陆陆内部的叫小循环。

)地质循环——地球浅部层圈与深部层圈之间水分的相互转化过程。

地下水经常不断地参与着自然界的水循环,我们把下面三个概念(过程)叫做* 地下水循环——地下水的补给、径流与排泄过程。

* ①补给——含水层(含水系统)从外界获得水量的过程。

* ②径流——水由补给处向排泄处的运动过程。

* ③排泄——含水层(含水系统)失去水量的过程。

地下水在补给、径流、排泄过程中,不断的进行着水量的交换和运移。

由于水是盐分和热量的良好的溶剂和载体,所以在水量交换的同时,也伴随着水化学场和温度场的响应的变化。

即水量、盐量、热量都在变化。

这些变化的特点决定了含水层(含水系统)中水量、水质、水温的分布规律。

因此,在做地下水研究时,只有搞清地下水的补、径、排规律或特点,才能正确的评价水资源,才能更合理的利用地下水,更有效的防范地下水害。

* 一、地下水的补给——含水层(含水系统)从外界获得水量的过程。

研究地下水的补给,主要研究如下三个问题:a. 补给源:大气降水、地表水、凝结水、相邻含水层(含水系统)的水以及人工补给水源。

b. 补给条件:主要是发生补给的地质—水文地质条件,如补给方式和补给通道的情况等。

c. 补给量:含水层(含水系统)获得了多少水。

水文地质勘查技术:水均衡法

水文地质勘查技术:水均衡法
水文地质勘查技术
——地下水资源量计算 水均衡法
水均衡法
一、基本原理 二、特点及适用条件 三、计算步骤 四、计算与评价
水均衡法:也称水量平衡法,它主要是研究某一地区(均衡区)在一定时间段(均衡期内) 地下水的补给量、储存量和消耗量之间的数量转化关系,通过平衡计算,评价地下水的允许开 采量。
一、基本原理
二、特点及适用条件
水均衡法的原理明确,计算公式简单,其成果要求可粗可精,所以 适应性强。在地下水补排条件简单,水均衡要素容易确定,开采后变 化不大的地区,用该法评价地下水资源的效果较好。
通常用水均衡法或其他方法来论证用解析公式计算的开采量。
三、计步骤
1、划分均衡区,确定均衡期,建立均衡方程 首先按边界划分均衡区,再按均衡要素大体一致的情况进一步分区,分别计算后,再加总。 (1)一级分区:通常以含水介质成因类型和地下水类型的组合作为一级分区依据,如在山前 冲洪扇地带,可分扇顶至中部的潜水区、扇中至扇缘的浅部潜水区及承压水区。 (2)二级分区:如果同一区内的水文地质条件还有较大差异,可以根据不同的定量指标划分 为若干区,分区指标通常是含水层导水系数、给水度、水位埋深、动态变同及包气带岩性等。 均衡期一般以年为单位,也可将旱季、雨季分开计算。 确定各分区的在均衡期内的均衡要素,建立均衡方程。 2、确定每个区的各项均衡要素值 (1)测定天然流场下各项补给量和消耗量,计算天然状态下是否均衡。 (2)再考虑开采条件下的补给增量和可能减少的消耗量,以此作为地下水的允许开采量。 Q允开 ≈ΔQ补+ΔQ消≈Q补+ΔQ补 = Q开补≈ Q补 3、计算与评价
四、计算与评价
将各项均衡要素值代入均衡式中,计算出补给与消耗的差值,检查地下 水储存量的变化量是否与之相符。

水文地质学基础——地下水的补给与排泄

水文地质学基础——地下水的补给与排泄

7.1.2 地表水对地下水的补给 地表水对地下水的补给
补给来源:地表水体(河、湖、水库等) 补给机制: 因地而异(空间上),不同部位,岩性等; 因时而异(时间上),不同季节,不同补排关系 地表水补给地下水的必要条件有哪些: (1)存在水力联系 (2)地表水水位高于地下水水位(存在水头差)
目前认为,松散沉积物的降水入渗有两种方式:
降水入渗的现象— 两类空隙的入渗过程——总结:
均匀砂土层——活塞式 (piston/diffuse) 含裂隙的土层——捷径式 (bypass)
7.1.1 大气降水对地下水的补给
1、大气降水入渗机制
“活塞式”入渗 ——适用条件: 均匀的砂土层
降水初期 t1 : 土层干燥,吸水能力很强,雨水下渗快-渗润阶段
对于常年性河流,为了确定河水渗漏补给地下水的水 量,可在渗漏河段上下游分别测定断面流量Q1及Q2,则河 水渗漏量等于(Q1-Q2)t,t为河床过水时间。此渗漏量即 为河水补给地下水的水量; 但是,对于过水时间很短的间歇性河流? 思考:大气降水和河流补给地下水的异同?
大气降水与地表水作为地下水补给来源的比较 从空间分布上看,大气降水属于面状补给,范围普遍且较 均匀;地表水则可看作线状补给,局限于地表水体周边。
水文地质学基础 Fundamentals of Hydrogeology
防灾科技学院
张耀文
本章内容
7.1地下水的补给
7.2 地下水的排泄
7.3 地下水径流
7.4 地下水补给、径流与排泄对地下水水质的影响
基本概念
地下水是通过补给与排泄两个环节参与自然界的水循环。
补给:含水层或含水系统从外界获得水量的过程,水量增加的
7.1.3 含水层之间的补给 越流 —— 地下水 量的内部转化 潜水 — 承压水之 间的补给 思考题:

地下水的补给、排泄与径流

地下水的补给、排泄与径流
• 地下水经常不断地参与着自然界的水循 环。含水层或含水系统经由补给从外界 获得水量,通过径流将水量由补给处输 送到排泄处向外界排出。在补给与排泄 过程中,含水层与含水系统除了与外界 交换水量外,还交换能量、热量与盐量。 因此,补给、排泄与径流决定着地下水 水量水质在空间与时间上的分布
6.1地下水的补给
6.1地下水的补给
6.1地下水的补给
• 就地表接受降雨入渗的能力而言,初期较大, 逐渐变小趋于一个定值。降雨初期,由于表土 干燥,毛细负压很大,毛细负压与重力共同使 水下渗,此时包气带的入渗能力很强。随着降 雨延续,湿锋面推进到地下一定深度,相对于 重力水力梯度( I = 1),毛细水力梯度逐渐变 小,入渗速率逐渐趋于某一定值(图)。在降 雨强度超过地表入渗能力时,便将产生地表坡 流。
6.1地下水的补给
• 6.1.2 地表水对地下水的补给 • 河流与地下水的补关系沿着河流纵断面而有所变化 (图)。一般说来,山区河谷深切,河水位常低于地下 水位,起排泄地下水的作用(图a)洪水期则河水补给地 下水。山前,由于河流的堆积作用,河床处于高位,河 水常年补给地下水(图b)。冲积平原与盆地的某些部 位,河水位与地下水位的关系,随季节而变(图c)。而 在某些冲积平原中,河床因强烈的堆积作田而形成所谓 “地上河”,河水经常补给地下水(图d)。
6.1地下水的补给
6.1地下水的补给
• 均匀砂土层——活塞式 • 在理想情况下,包气带水分趋于稳定,不下渗也无蒸发、 蒸腾时,均质土包气带水分分布如图(c)中九所示。 包气带上部保持残留含水量( W 0 ),一定深度以下, 由于支持毛细水的存在,含水量大于W0 并向下渐增, 接近地下水面的毛细饱和带以及饱水带,含水量达到饱 和含水量( W s )。 • 实际情况下,只有在雨季过后包气带水分稳定时最接近 此理想情况,雨季之前,由于旱季的土面蒸发与叶面蒸 腾,包气带上部的含水量已低于残留含水量W0 ,而造 成所谓的水分亏缺(a,(t 0))。 • 雨季初期的降雨,首先要补足水分亏缺,多余的水分才 能下渗(图b, t3、t4)。

水文地质勘查:地下水资源量评价——地下水资源量的分类

水文地质勘查:地下水资源量评价——地下水资源量的分类

小结
本次课程讲述了《供水水文地质勘察规范》(GB 50027-2001 )中 的分类——“三量” 分类法,要求大家正确理解并重点掌握补给量、储 存量、允许开采量的含义及组成。
课后作业
1.什么是补给量、储存量、允许开采量? 2.补给量及其组成?说明补给增量的来源?储存量及其组成和计算? 3.写出开采量的水量均衡方程,说明开采量由哪三部分组成?,讨 论如何按这三部分量来确定允许开采量?
夺取量;
(2)减少的天然排泄量( Q排 ),如开采后潜水蒸发消耗量的减少、泉流量
减少甚至消失、侧向流出量的减少等。这部分水量实质上就是由取水构筑物截获的天
然补给量,可称为开采截取量。它的最大极限等于天然排泄量,接近于天然补给量;
(3)可动用的储存量( F h ),是含水层中永久储存量所提供的一部分
(枯水期抽水)。
间的总补给量和总消耗量是接近相等的,即 Q补 Q排 ;如果不相等,则含水层
中的水就会逐渐被疏干或者水会储满含水层而溢出地表。
在人工开采地下水时,增加了一个经常定量的地下水排泄点,改变了地下水的天然 排泄条件,即在天然流场上又叠加了一个人工流场。这既破坏了补给、消耗之间的天 然动平衡,又力图建立新的、开采状态下的动平衡。 在开采最初阶段,由于增加了一个人工开采量,必须减少地下水的储存量,使开采 地段水位下降形成一个降落漏斗。随着漏斗扩大,流场发生了变化,使天然排泄量减 少,促使补给量增加,即为补给增量。 在开采状态下,地下水动态可以用下面水均衡方程表示:
W F h V
式中: W——潜水的储存量,m3;
——含水层的给水度(小数或百分数);
F——潜水含水层的面积,m2;
h——潜水含水层的厚度,m;
V——潜水含水层的体积,m3。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地下水补给量和排泄量的确定李恒太河北工程大学水电学院河北邯郸056021摘要:在地下水资源评价过程中,不管采用什么方法,其补给量和排泄量的确定是必需要完成的工作,本文就地下水的补给量和排泄量的确定进行了详尽地阐述。

关键词:地下水;补给量;排泄量;基流;越流地下水是人们赖以生存和使用的主要资源之一,但是存在于地下的水究竟有多少?又有多少能供我们利用?人们为了探究此问题,水行政管理部门专门组织专业技术人员进行定量评价与计算,在评价计算过程中,不管采用什么方法,不管其方法多先进,都得确定地下水补给量和排泄量,可见地下水补给量和排泄量的确定在地下水评价中的重要意义,因此,下面将详述地下水补给量和排泄量的确定。

1 地下水补给量地下水的补给来源主要有大气降水、地表水、凝结水、其他含水层(或含水系统)的水、侧给补给、人工补给、融雪水和融冻水等。

1.1大气降水入渗补给地下水降水入渗补给量是指降水(包括坡面漫流和填洼水)渗入到土壤中并在重力作用下渗透补给地下水的水量。

降水入渗补给量一般采用下列方法确定。

1.1.1 地中渗透仪法地中渗透仪是测量降水入渗量、潜水蒸发量和凝结水量的一种地下装置,该装置通过导水管与给水设备相连接的承受补给和蒸发的各种土柱圆筒和测量水量的马利奥特瓶组成,也称为地中蒸渗仪、地中渗透计。

该仪器在各地的地下水均衡试验场中被广泛应用。

由于该法测得的潜水蒸发量和降水入渗补给量虽然是实测值,但仍很难如实模拟天然的入渗补给条件。

其中,潜水面的埋深对潜水补给量有很大影响,同样,对潜水蒸发量也有一定影响。

潜水面在雨季因降水入渗补给而升高,旱季因蒸发排泄而降低,处于连续不断的变动中,而地中渗透仪的每一圆筒中的潜水面都是固定的,因而其实测结果的可靠性还有待进一步证实,且此法只适用于松散岩层,使其应用受到限制。

其结构装置如图1.1所示,工作原理如下:首先调整水位管14,使其内水面与渗透仪中的设计地下水面(6,相当于潜水埋深)保持在同一高度上。

当渗透仪中的地柱接受降水入渗或凝结水的补给时,其补给量将会通过导水管2流入接渗瓶15内,可直接读出补给水量;当土柱内的水面产生蒸发时,便可由水位调整管14供给水量,再从马利奥特瓶13读出供水水量(即潜水蒸发消耗量)。

1.1.2 有限差分法该方法是利用同一剖面上三个观测孔水位资料,按有限差分方程式计算降水入渗量Q 雨渗。

B图1.2 同一剖面上观测孔的水位变化图如图1.2所示,其有限差分方程为:()()()()⎥⎦⎤⎢⎣⎡-+--++∆-∆=----21111121222l H H h h l H H h h l l t K H Q C B C B B A B A B μ雨渗 (1) 式中:Q 雨渗为降雨入渗量;K 为渗透系数;μ为给水度;Δt 为两次时间间隔;其它意义如图中所示。

1.1.3 泰森多边形法在典型地段布置观测孔组,并有一个水文年以上的水位观测资料时,可用差分方法计算均衡期的降水入渗补给量或潜水蒸发量,只要观测资料可靠,计算结果便有代表性。

如图1.3所示,其计算过程如下:∑=----∆∆=n i O i O i O i O r H H Tb t h F Q 1μ渗 (2) 式中:Q 渗为泰森多边形内的入渗量或蒸发量,m 3/d ;F 为泰森多边形面积,m 2;μ为给水度(无量纲);Δt 为中央孔在时段的水位变幅,m ;T 为导水系数,m 2/d ;H i 、H o 为i 号孔和中央孔O 的水位,m ;b i-o 、r i-o 为中央孔和周围各孔之间过水断面的宽度和距离,m 。

图1.3 泰森多边形示意图1.1.4 利用降水前后地下水观测资料估算这种方法适用于地下水位埋藏深度较大的平原区。

根据降水前后的地下水水位观测资料,Q 雨渗可近似求得:Q 雨渗=μ(H max -H ±ΔHt ) (3) 式中:Q 雨渗为降水入渗补给量,m ;μ为地下水位变动带内的给水度(无量纲);H max 为降水后观测孔中的最大水柱高度,m ;H 为降水前观测孔中的水柱高度,m ;ΔH 为临近降水前,地下水水位的天然平均降(升)速,m/d ;t 为观测孔水柱高度从H 变到Hmax 的时间,d 。

1.1.5 水量平衡法因大气降水主要补给潜水,根据质量守恒定律,建立研究区的潜水水量平衡方程,可确定降水入渗补给量。

潜水均衡方程为:A-B=μΔH (4) μΔH=(Q 雨渗+Q 河渗+Q 凝结+Q 侧入+Q 越入)-(Q 蒸发+Q 溢出+Q 侧出) (5)式中:A 为潜水的收入项;B 为潜水的支出项;μ为给水度;ΔH 为潜水位变幅;Q 雨渗为降水入渗补给量;Q 河渗为地表水入渗补给量;Q 凝结为凝结水补给量;Q 侧入为上游断面潜水流入量;Q 越入为下覆承压含水层越流补给潜水水量,若潜水向承压水越流排汇,则其前符号相反;Q 蒸发为潜水蒸发量(包括土面蒸发及叶面蒸腾);Q 溢出为潜水以泉或泄流形式的排泄量;Q 侧出为下游断面潜水流出量。

451.1.6 降水入渗系数法降水入渗系数α是一个地区单位面积上降水入渗补给地下水的量与总降水量的比值则一个无量纲系数。

它不是一个常数,其值在0-1之间,并随空间和时间的变化而变化。

其地下水量可以用下式计算。

F P P r ⋅⋅⋅=-α110 (6) 式中,Pr 为降水入渗补给量(万m 3);P 为有效降水量(mm );α为降水入渗补给系数(无因次);F 为均衡计算区计算面积(km 2)。

有效降水量是指一次降水能实际形成地下水补给量的降水量。

根据多年降水系列资料,用皮尔逊III 型曲线进行频率分析,得出不同保证率(如P=50%, P=75%和P=95%)条件下的降水量,然后分别计算出不同保证率条件下的入渗补给量。

该方法的优点是应用方便,只要有径流和降水两项资料即能求得,但方法本身也存在着缺点和不足,例如在均衡方程中没有考虑包气带的作用,且当存在其他补排条件时但不能应用,因此只能是近似解。

1.1.7 水文学法在缺乏地下水长期观测资料,但有河流流量资料的地区,可用水文学方法推求流域平均的降水入渗补给量,主要有水文分割法。

降雨按照水流进入河道的路径可分为地表径流(直接径流)、壤中流(快速表层流)和基流(地下径流)三种。

洪水分析中经常需要将流量过程线分割成不同的径流成分,因而需要进行基流分割。

通过分割河流流量过程线把地表径流和地下径流区分开来的方法称为水文分割法。

目前对于基流分割存在许多方法。

总的来说,就我国而言,径流的划分主要有两步:先是从总径流过程中割去所谓的深层地下径流,采用的方法一般是取历年最枯流量的平均值或本年汛前最枯流量用水平线分割:然后再将剩下的径流划分为地面径流(又叫直接径流)和浅层地下径流,采用的方法一般是斜线分割法。

而国外的径流水源划分一般是将总径流直接划分为地面径流和基流两个部分,基流的分割方法有单线性水库法,双线性水库法、滑动最小值法、数字滤波法等。

1.1.7.1直线分割法直线分割法分为水平线分割法和斜线分割法。

要将流量过程线分割成部分流量过程线,首先需要判断地表径流开始点,即流量过程线与前期稳定基流消退曲线的分叉点,即图中a点。

接下来的关键就是要确定地表径流的终止点。

(1)水平线分割法从实测流量过程线的起涨点a作一水平线交过程线的退水段于e点,即把e点作为地表径流的终止点。

水平线ae就是该次洪水的地表地下径流分割线,ac线以下的就是基流。

(2)斜线分割法将同一流域上的多条流量退水曲线组合在一起,画在同一坐标纸上,使其下部重叠,这样得到的组合线的下包线即为标准退水曲线。

将标准退水曲线移绘到透明纸上,再将其覆盖到要分割的流量过程线的退水段上(注意比例尺要一致),使横轴重合,然后左右平移使两者退水段尾部吻合,则两线开始重叠的时刻,就可以作为地面径流的终止点。

从实测流量过程线的起涨点a到地面径流终止点e连一斜线ae,ae线以下的即为基流。

另外.也可以用半对数退水曲线来确定地表径流终止点。

1.1.7.2参数分割法以地下径流形成的基本规律为基础,建立水库的蓄泄方程和水量平衡方程。

联立求解,推导出地下径流分割的计算公式,再进行参数的优选。

1.1.7.3滑动最小值法滑动最小值法由英国水文研究所提出,它将整个流量序列划分成以5天为一个单元的互不嵌套的块。

然后确定这些块中的最小值,采用一定的规则确定由这些最小值所组成的拐点,将各个拐点连接起来得到基流序列。

1.1.7.4滤波法滤波法为近年来国际上研究最为广泛的基流分割方法。

它试图通过数字滤波器将信号分解为高频和低频信号,相应地将径流过程划分为地表径流和基流两个部分。

1.1.7.5水文模拟法通常采用单一线性水库模型演算地下径流过程,也有用两个线性水库串联去分割河川基流。

1.1.8 水分通量法水分通量是指单位时间内垂直通过单位面积所传递的水量。

水分通量法是计算降水入渗补给量的一种重要物理方法。

该方法无需考虑水分在土壤中的实际运动过程,通过已知断面的水分通推求降水入渗补给量。

水分通量法一般是零通量面(ZFP)法和定位能量面法相结合使用。

1.1.8.1 零通量面(ZFP )法零通量面是指在包气带中通过土壤水势梯度为零的点的水平断面。

此断面以上的水分全部消耗于蒸发蒸腾(土壤水分向上运动),该断面以下的水分全部消耗于补给潜水(土壤水分向F 运动),通过该断面的土壤水分通量为零。

零通量面随时间而变,并不固定。

由达西定律,土壤水分通量为:Z H h K q ∂∂-=)(,当0=∂∂Z H 时,q=0,即为零通量面,图1.4中的A 、B 两断面均为零通量面。

图1.4 土壤剖面水势分布及零通面应用零通量面法计算土壤水分通量时,在t1至t2计算时段内,根据零通量面的发育状况不同,可分为ZFP 稳定条件下的计算公式和ZFP 移动条件下的计算公式。

(1)ZFP 稳定条件下的的计算公式在t1至t2时段内,零通量面以下某一深度Z 处下渗量计算公式为:⎰⎰-=z z zz dZ t z dZ t Z D 00),(),(21θθ (7) 式中D 为t1至t2时段内在土壤剖面深度Z 处的下渗量。

(2)ZFP 移动条件下的计算公式零通量面随时间的变化实际上是移动的,ZFP 的位置是时间的函数,即Zo (t)。

它的发育受多种因素影响,所以,零通量面的位置是随时间不断地变化,在这种情况下,土壤下渗量的计算公式为:(8)1.1.8.2 定位通量面法 当土壤水分长期处于蒸发或入渗状态时,土壤剖面上并不一定存在零通量面,在这种情况下,若能己知某一断面上的土壤水分通量,则可利用己知断面通量,推求其它断面通量,这种方法称为己知通量法。

常用的己知通量法是定位通量法。

定位通量法与ZFP 法一样,它的理论基础仍然是达西定律和质量守恒原理。

相关文档
最新文档