变压吸附工作基本原理

合集下载

变压吸附基本原理

变压吸附基本原理

变压吸附基本原理变压吸附(Pressure Swing Adsorption,PSA)是一种通过在不同压力下吸附和解吸物质来实现分离和纯化的技术。

它在许多工业领域中被广泛应用,如空分、气体纯化、制氧和制氢等。

变压吸附的基本原理是基于吸附剂对不同物质的吸附能力不同。

吸附剂通常是多孔的,具有高度发达的孔隙结构。

物质分子可以在其表面上发生物理吸附或化学吸附,并通过占据吸附剂的孔隙来稳定。

根据物质吸附的选择性,可以通过改变吸附剂中的压力来控制物质的吸附和解吸过程。

变压吸附通常包括吸附、解吸、冲洗和再生四个基本步骤。

首先,在较低压力条件下,吸附物质会向吸附剂表面扩散并发生吸附。

吸附物质沿着固体颗粒上的孔隙流动,直到达到平衡吸附量。

然后,通过增加压力,引起非吸附物质分子的竞争吸附,从而将吸附物质从吸附剂上解吸出来。

解吸过程发生在高压条件下,使物质能够从吸附剂表面多孔孔隙中脱附。

接下来是冲洗步骤,它的目的是去除吸附剂表面残留的吸附物质,并准备吸附剂进行再生。

在冲洗过程中,可以使用较低压力或其他介质来冲洗吸附剂,以清除吸附剂上的吸附物质。

最后,通过通过减少压力或其他的方法来减少吸附剂中的竞争吸附物质,再生吸附剂。

例如,可以利用减压或加热的方法来促进吸附剂中吸附物质的解吸和脱附。

变压吸附技术的性能和效率可以通过多种因素来调节和优化。

首先,合适的吸附剂选择是关键,因为不同的吸附剂对不同的物质具有不同的吸附能力和选择性。

其次,吸附剂的孔径分布和孔隙结构也会影响吸附过程的效果。

特别是,在分离气体混合物时,需要根据吸附物质的分子尺寸和相互作用来选择合适的孔径范围。

此外,变压吸附列的设计和操作条件的选择也会影响分离效果。

通过优化各种参数,如压力、温度、循环时间和冲洗剂浓度等,可以改善吸附和解吸性能。

总之,变压吸附是一种基于吸附剂对物质吸附和解吸能力的分离技术。

通过控制压力和操作条件,可以实现对物质的选择性吸附和解吸,从而实现分离和纯化的目的。

变压吸附技术的基本原理

变压吸附技术的基本原理

变压吸附技术的基本原理变压吸附技术是以吸附剂(多孔固体物质)内部表面对气体分子的物理吸附为基础,利用吸附剂在相同压力下易吸附高沸点组分、不易吸附低沸点组分和高压下吸附量增加(吸附组分)、减压下吸附量减少(解吸组分)的特性,将原料气在高压力下通过吸附剂床层,相对于氢的高沸点杂质组分被选择性吸附,低沸点组分的氢不(组份在吸附剂上的吸附等温线)易吸附而通过吸附剂床层,达到氢和杂质组分的分离,然后在减压下解吸被吸附的杂质组分使吸附剂获得再生,以于下一次再次进行吸附分离杂质. 这种高压力下吸附杂质提纯氢气、减压下解吸杂质使吸附剂再生的循环便是变压吸附过程.在变压吸附过程中吸附床内吸附剂解吸是依靠降低杂质分压实现的,常用方法是:1.降低吸附床压力(泄压),2. 用产品组分冲洗,3.由真空泵抽吸图1-1 示意说明吸附床的吸附、解吸过程.常压解吸(见图1-1,a)升压过程(A-B):经解吸再生后的吸附床处于过程的最低压P1、床内杂质吸留量为Q1(A点).在此条件下用产品组分升压到吸附压力P3,床内杂质吸留量Q 1不变(B点).吸附过程(B-C):在恒定的吸附压力下原料气不断进入吸附床,同时输出产品组分. 吸附床内杂质组分的吸留量逐步增加,当到达规定的吸留量Q3时(C 点)停止进入原料气,吸附终止. 此时吸附床内仍预留有一部分未吸附杂质的吸附剂(如吸附剂全部被吸附杂质,吸留量可为Q4,C’点)顺放过程(C-D):沿着进入原料气输出产品的方向降低压力,流出的气体仍为产品组分,用于别的吸附床升压或冲洗.在此过程中,随床内压力不断下降,吸附剂上的杂质被不断解吸,解吸的杂质又继续被未充分吸附杂质的吸附剂吸附,因此杂质并未离开吸附床,床内杂质吸留量Q3不变. 当吸附床降压到D点时,床内吸附剂全部被杂质占用,压力为P2逆放过程(D-E):开始逆着进入原料气输出产品的方向降低压力,直到变压吸附过程的最低压力P1(通常接近大气压力),床内大部分吸留的杂质随气流排出器外,床内吸流量为Q2.冲洗过程(E-A):根据实验测定的吸附等温线,在压力P1下吸附床仍有一部分杂质吸留量,为使这部分杂质尽可能解吸,要求床内压力进一步降低. 在此利用别的吸附床顺向降压过程排出的产品组分,在过程最低压力P1 下进行逆向冲洗不断降低杂质分压使杂质解吸并随冲洗气带出吸附床. 经一定程度冲洗后,床内杂质吸留量降低到过程的最低量Q1 时,再生终止。

变压吸附工作基本原理

变压吸附工作基本原理

变压吸附工作基本原理变压吸附(pressure swing adsorption,PSA)是一种常用的气体分离和纯化技术,广泛应用于化工、能源、环保等领域。

它的基本原理是利用吸附剂对气体分子的亲和力差异,通过周期性调节操作压力实现吸附剂的吸附和解吸,从而实现气体的分离与纯化。

首先,吸附阶段。

将混合气体通过压缩机压缩至一定的压力,然后进入变压吸附器。

在吸附器中填充有一种或多种吸附剂,如活性炭、分子筛等。

这些吸附剂具有可以对特定气体分子进行选择性吸附的能力。

吸附剂会吸附相对亲和力较大的气体分子,而对亲和力较小的气体分子则不易吸附。

其次,脱附阶段。

随着时间的推移,吸附剂逐渐饱和,即吸附剂上已经充满了吸附气体。

为了实现吸附气体的脱附,需要将吸附器的压力降低到较低的水平,以减少吸附剂与气体分子之间的相互作用力。

这样一来,亲和力较大的气体分子将从吸附剂上解吸下来,进而形成脱附气流。

然后,再生阶段。

为了使吸附剂再次具有吸附能力,需要对其进行再生。

再生是通过将脱附气流进一步抽真空,以减少吸附剂上的压力,从而促进脱附气体分子的解离和脱附。

脱附气流被抽出后,可通过冷却和脱水等处理方式进一步回收相应气体,并用于其他用途。

最后,平衡阶段。

在经历了吸附、脱附和再生等阶段后,变压吸附器重新达到平衡状态。

在平衡状态下,吸附器继续吸附和释放气体,以满足特定的工艺需求。

这个阶段被称为平衡阶段,也是一个动态过程。

平衡阶段的时间可以根据需求灵活调整,以满足不同应用的要求。

通过不断重复上述吸附、脱附、再生和平衡的循环操作,可以实现气体的高效分离和纯化。

变压吸附技术具有操作简便、能耗低、设备结构简单等优点,因此在气体分离和纯化中得到广泛应用。

例如,它可以用于制氧、制氢、天然气脱硫和脱水等方面的工艺中。

总之,变压吸附工作原理是利用吸附剂对气体分子的选择性吸附特性,通过周期性调节操作压力,周期性地吸附和脱附气体分子,实现气体的分离和纯化。

这种工艺具有高效、节能的特点,因此在各个领域都有着广泛的应用前景。

变压吸附的基本原理

变压吸附的基本原理

变压吸附的基本原理变压吸附的基本原理是:利用吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量随压力变化而变化的特性,实现气体混合物的分离和吸附剂的再生。

变压吸附脱碳技术就是根据变压吸附的原理,在吸附剂选择吸附的条件下,加压吸附原料气中的CO2等杂质组分,而氢气、氮气、甲烷等不易吸附的组分则通过吸附床层由吸附器顶部排出,从而实现气体混合物的分离,而通过降低吸附床的压力使被吸附的CO2等组分脱附解吸,使吸附剂得到再生。

吸附器内的吸附剂对不同组份的吸附是定量的,当吸附剂对有效组份的吸附达到一定量后,有效组份从吸附剂上能有效地解吸,使吸附剂能重复使用时,吸附分离工艺才有实用意义。

故每个吸附器在实际过程中必须经过吸附和再生阶段。

对每个吸附器而言,吸附过程是间歇的,必须采用多个吸附器循环操作,才能连续制取产品气。

吸附过程有以下特性:①吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异;②一种特定的气体在吸附剂上的吸附量随着其分压的降低而减少。

采用“抽空降压”的解吸工艺,可降低吸附的CO2等组分的分压,以使吸附剂得到彻底再生。

多床变压吸附的意义在于:保证在任何时刻都有相同数量的吸附床处于吸附状态,使产品能连续稳定地输出;保证适当的均压次数,使产品有较高的回收率。

变压吸附概况变压吸附(Pressure Swing Adsorption.简称PSA)是一种新型气体吸附分离技术,它有如下优点:⑴产品纯度高。

⑵一般可在室温和不高的压力下工作,床层再生时不用加热,节能经济。

⑶设备简单,操作、维护简便。

⑷连续循环操作,可完全达到自动化。

因此,当这种新技术问世后,就受到各国工业界的关注,竞相开发和研究,发展迅速,并日益成熟。

1960年Skarstrom提出PSA专利,他以5A沸石分子筛为吸附剂,用一个两床PSA装置,从空气中分离出富氧,该过程经过改进,于60年代投入了工业生产。

变压吸附原理

变压吸附原理

变压吸附原理在吸附平衡情况下,任何一种吸附剂在吸附同一气体时,气体压力越高,则吸附剂的吸附量越大。

反之,压力越低,则吸附量越小。

在空气压力升高时,碳分子筛将大量吸附氧气、二氧化碳和水分。

当压力降到常压时,碳分子筛对氧气、二氧化碳和水分的吸附量非常小。

变压吸附设备主要由A、B二只装有碳分子筛的吸附塔和控制系统组成。

当压缩空气从下至上通过A塔时,氧气、二氧化碳和水分被碳分子筛所吸附,而氮气则被通过并从塔顶流出。

当A塔内分子筛吸附饱和时便切换到B塔进行上述吸附过程并同时对A塔分子筛进行再生。

所谓再生,即将吸附塔内气体排至大气从而使压力迅速降低至常压,使分子筛吸附的氧气、二氧化碳和水分从分子筛内释放出来的过程,整个吸附,再生过程为120秒。

然气制氢由天然气蒸汽转化制转化气和提纯氢气(H2)两部分组成,压缩并后天然气与水蒸汽混合后,在镍催化剂的作用下于820~950℃将天然气物质转化为氢气(H2)、一氧化碳(CO)和二氧化碳(CO2)的转化气,转化气可以通过变换将一氧化碳(CO)变换为氢气(H2),成为变换气,然后,转化气或者变换气通过过程,得到高纯度的氢气(H2)。

天然气制氢气也是一个比较传统的技术,以前常用于大规模的氢气供应场合,例如5000m3/h以上的氢气供应量。

我们根据中国氢气用户分散而且规模较小的特点,开发了低投资和低消耗的天然气蒸汽转化制氢技术,非常适合中小规模的氢气需求场合。

在天然气丰富的地区,天然气制氢是最好的选择。

我公司已经为国内和国外用户建设了这类装置和转让了技术。

典型装置中国石油天然气股份有限公司吉林油田分公司天然气制氢装置天然气制氢的主要技术:天然气蒸汽一段转化技术,适合中小规模的制氢。

天然气蒸汽一段转化串接纯氧二段转化技术,适合于中大规模的制氢。

天然气两段换热式转化技术,适合中等规模的制氢技术。

天然气部分氧化制氢,适合大规模的制氢。

焦炉气部分氧化制氢,适合焦炉气资源丰富的地区。

变压吸附法的基本原理

变压吸附法的基本原理

变压吸附法的基本原理
变压吸附法的基本原理:
①利用固体吸附剂对气体混合物中各组分吸附能力差异在不同压力条件下实现分离纯化过程;
②常见吸附剂如活性碳硅胶沸石分子筛等具有发达孔隙结构高比表面积对特定气体分子表现强烈亲和力;
③工作循环包含两个主要阶段即吸附解吸在高压环境下目标气体被吸附剂捕获非目标气体透过;
④当吸附剂接近饱和前切换至低压环境此时被吸附气体因压力下降而脱离吸附位点实现解吸再生;
⑤解吸后吸附剂恢复初始状态可供下一次吸附循环使用整个过程连续高效适用于多种气体分离场合;
⑥典型应用包括空气分离制氧制氮天然气净化氢气回收等领域根据不同目标气体选择合适吸附材料;
⑦设计时需考虑吸附动力学热力学因素确定最佳操作条件如温度压力流速床层高度等参数;
⑧吸附解吸步骤可通过多塔切换实现在线再生无需中断生产流程提高装置运行效率与经济性;
⑨实践中往往采用多个吸附塔轮换工作模式一个塔处于吸附状态时其它塔处于解吸再生或待机状态;
⑩控制系统监测吸附塔内压力变化流体组成等关键指标适时切换阀门调节流程确保产品气体纯度稳定;
⑪伴随吸附解吸过程发生热量变化需配置相应换热装置移除吸附热或提供解吸所需的能量;
⑫随着技术进步新型高效吸附材料开发以及自动化控制水平提升变压吸附技术将在更多工业领域展现其独特价值。

变压吸附技术原理

变压吸附技术原理

变压吸附技术原理变压吸附技术是一种常用于气体分离和纯化的方法。

它基于物质在不同压力下吸附性能的差异,通过调节压力来实现气体的分离和纯化。

变压吸附技术的原理可以简单概括为以下几个步骤:吸附、脱附、再生和冷却。

首先是吸附过程。

在吸附剂中,气体分子会与吸附剂表面发生相互作用,从而被吸附剂捕获。

不同气体分子与吸附剂之间的相互作用力不同,因此各种气体分子在吸附剂上的吸附量也不同。

这种差异性是变压吸附技术能够实现气体分离的基础。

接下来是脱附过程。

当吸附剂达到一定的吸附饱和度时,需要将吸附的气体分子从吸附剂上解吸出来。

这可以通过降低吸附剂的压力来实现。

由于不同气体分子的吸附性能差异,它们在不同的压力下会被逐渐解吸出来,从而实现气体的分离。

然后是再生过程。

在脱附后,吸附剂需要进行再生,以便重新使用。

再生的方法通常是通过升高吸附剂的温度来实现。

在一定的温度下,吸附剂上的残余气体分子会被蒸发或反应,从而使吸附剂恢复到初始的吸附状态。

最后是冷却过程。

在再生后,吸附剂需要冷却到适宜的工作温度。

这是为了保证吸附剂在下一轮吸附过程中能够正常工作。

变压吸附技术的应用非常广泛。

例如,在石油化工行业中,变压吸附技术可以用于天然气的脱水和脱硫,以及烃类混合物的分离。

在环境保护领域,变压吸附技术可以用于废气处理和空气净化。

此外,变压吸附技术还可以应用于制氢、气体储存和气体分析等领域。

变压吸附技术通过利用吸附剂对不同气体分子的选择性吸附能力,实现了气体的分离和纯化。

它在气体处理和纯化领域具有重要的应用价值,并且在不同行业中发挥着重要作用。

随着科学技术的不断进步,相信变压吸附技术将会得到更广泛的应用和发展。

(完整word版)变压吸附技术的基本原理

(完整word版)变压吸附技术的基本原理

变压吸附技术的基本原理变压吸附技术是以吸附剂(多孔固体物质)内部表面对气体分子的物理吸附为基础,利用吸附剂在相同压力下易吸附高沸点组分、不易吸附低沸点组分和高压下吸附量增加(吸附组分)、减压下吸附量减少(解吸组分)的特性,将原料气在高压力下通过吸附剂床层,相对于氢的高沸点杂质组分被选择性吸附,低沸点组分的氢不(组份在吸附剂上的吸附等温线)易吸附而通过吸附剂床层,达到氢和杂质组分的分离,然后在减压下解吸被吸附的杂质组分使吸附剂获得再生,以于下一次再次进行吸附分离杂质. 这种高压力下吸附杂质提纯氢气、减压下解吸杂质使吸附剂再生的循环便是变压吸附过程.在变压吸附过程中吸附床内吸附剂解吸是依靠降低杂质分压实现的,常用方法是:1.降低吸附床压力(泄压),2. 用产品组分冲洗,3.由真空泵抽吸图1-1 示意说明吸附床的吸附、解吸过程.常压解吸(见图1-1,a)升压过程(A-B):经解吸再生后的吸附床处于过程的最低压P1、床内杂质吸留量为Q1(A点).在此条件下用产品组分升压到吸附压力P3,床内杂质吸留量Q 1不变(B点).吸附过程(B-C):在恒定的吸附压力下原料气不断进入吸附床,同时输出产品组分. 吸附床内杂质组分的吸留量逐步增加,当到达规定的吸留量Q3时(C 点)停止进入原料气,吸附终止. 此时吸附床内仍预留有一部分未吸附杂质的吸附剂(如吸附剂全部被吸附杂质,吸留量可为Q4,C’点)顺放过程(C-D):沿着进入原料气输出产品的方向降低压力,流出的气体仍为产品组分,用于别的吸附床升压或冲洗.在此过程中,随床内压力不断下降,吸附剂上的杂质被不断解吸,解吸的杂质又继续被未充分吸附杂质的吸附剂吸附,因此杂质并未离开吸附床,床内杂质吸留量Q3不变. 当吸附床降压到D点时,床内吸附剂全部被杂质占用,压力为P2逆放过程(D-E):开始逆着进入原料气输出产品的方向降低压力,直到变压吸附过程的最低压力P1(通常接近大气压力),床内大部分吸留的杂质随气流排出器外,床内吸流量为Q2.冲洗过程(E-A):根据实验测定的吸附等温线,在压力P1下吸附床仍有一部分杂质吸留量,为使这部分杂质尽可能解吸,要求床内压力进一步降低. 在此利用别的吸附床顺向降压过程排出的产品组分,在过程最低压力P1 下进行逆向冲洗不断降低杂质分压使杂质解吸并随冲洗气带出吸附床. 经一定程度冲洗后,床内杂质吸留量降低到过程的最低量Q1 时,再生终止。

变压吸附基本原理

变压吸附基本原理

变压吸附基本原理变压吸附(Pressure Swing Adsorption,简称PSA)是一种广泛应用于气体分离和纯化过程中的技术。

其基本原理是利用吸附材料对气体组分的吸附能力不同,通过改变压力和吸附剂之间的接触状态来实现气体的分离和富集。

变压吸附技术通常用于处理高纯度气体或多组分混合气体,以获得所需纯度的特定气体。

其中,最常见的应用是空气分离中的氮气和氧气的分离。

变压吸附过程通常包括三个关键步骤:吸附、脱附和冲洗。

在吸附阶段,混合气体通过吸附器的床层,其中装填有选择性吸附剂。

吸附剂通常是多孔的固体材料,如活性炭、硅胶等,具有大量的孔隙和表面积,以提供大量的吸附位点。

当气体混合物与吸附剂接触时,吸附剂表面的孔隙会吸附气体分子。

吸附剂选择性吸附不同气体成分的能力是基于它们与吸附剂之间的相互作用性质,如极性、分子尺寸和亲和性等。

在脱附阶段,吸附剂经过一段时间的吸附后,需要被再次脱附以释放被吸附的气体。

这是通过减小吸附器的压力来实现的。

降低压力会减少气体与吸附剂的相互作用力,从而使吸附剂上的气体分子脱附。

吸附剂的脱附性能取决于吸附剂和气体的性质,如吸附剂的孔径大小、吸附剂材料、吸附剂的厚度等。

脱附后的气体经过净化处理后即可获得高纯度的所需气体。

在冲洗阶段,通常使用惰性气体(如空气或氮气)将吸附剂中残留的被吸附气体进一步冲洗出去。

这有助于提高下一轮吸附的效果。

变压吸附过程的关键是通过连续循环吸附剂床的操作来实现高效的气体分离。

在一个吸附器中,当床A通过吸附、脱附和冲洗阶段进行气体分离时,床B同时进行再生。

当床A完成一次周期后,床B切换到分离操作,而床A进行再生。

这样,吸附器可以实现连续的气体分离过程。

变压吸附技术的运行参数可以通过吸附剂的选择和操作条件的调整来调节。

例如,改变压力、温度和吸附剂床厚度可以影响气体分离效果。

此外,吸附剂的再生和再利用也是一个重要的技术问题,以提高吸附剂的使用寿命和降低操作成本。

变压吸附原理

变压吸附原理

变压吸附原理
变压吸附的基本原理是:利用吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量随压力变化而变化的特性,实现气体混合物的分离和吸附剂的再生。

变压吸附脱碳技术就是根据变压吸附的原理,在吸附剂选择吸附的条件下,加压吸附原料气中的CO2等杂质组分,而氢气、氮气、甲烷等不易吸附的组分则通过吸附床层由吸附器顶部排出,从而实现气体混合物的分离,而通过降低吸附床的压力使被吸附的CO2等组分脱附解吸,使吸附剂得到再生。

吸附器内的吸附剂对不同组份的吸附是定量的,当吸附剂对有效组份的吸附达到一定量后,有效组份从吸附剂上能有效地解吸,使吸附剂能重复使用时,吸附分离工艺才有实用意义。

故每个吸附器在实际过程中必须经过吸附和再生阶段。

对每个吸附器而言,吸附过程是间歇的,必须采用多个吸附器循环操作,才能连续制取产品气。

吸附过程有以下特性:①吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异;②一种特定的气体在吸附剂上的吸附量随着其分压的降低而减少。

采用“抽空降压”的解吸工艺,可降低吸附的CO2等组分的分压,以使吸附剂得到彻底再生。

多床变压吸附的意义在于:保证在任何时刻都有相同数量的吸附床处于吸附状态,使产品能连续稳定地输出;保证适当的均压次数,使产品有较高的回收率。

变压吸附的原理及应用

变压吸附的原理及应用

变压吸附的原理及应用1. 什么是变压吸附变压吸附是一种常用于气体和液体分离以及分析的技术。

它利用吸附剂表面的物理或化学吸附能力,通过改变吸附剂表面的压力和温度,控制物质在吸附剂和流体之间的转移,从而实现分离和富集的目的。

2. 变压吸附的原理变压吸附的原理基于吸附剂表面对待吸附物质的吸附能力。

吸附剂通常是多孔的材料,具有较大的比表面积。

当待吸附物质进入吸附剂孔隙时,由于吸附剂表面与待吸附物质之间的相互作用力的存在,待吸附物质会被吸附在吸附剂的表面上。

变压吸附过程可以分为两个主要阶段:吸附和解吸。

在吸附阶段,待吸附物质通过压力差或温度差被吸附在吸附剂表面上。

在解吸阶段,通过改变吸附剂的压力和温度,待吸附物质从吸附剂表面解吸出来。

3. 变压吸附的应用变压吸附技术广泛应用于以下领域:3.1. 气体分离变压吸附在气体分离中起到重要作用。

通过调节吸附剂的压力和温度,可以实现气体的选择性吸附和脱附。

常用的气体分离应用包括天然气的甲烷/乙烷分离、氦气的氮/氧分离等。

3.2. 液体分离变压吸附技术在液体分离中也有广泛应用。

例如,可以利用吸附剂对废水中的污染物进行吸附,从而实现废水处理和净化的目的。

此外,变压吸附还可以用于液体混合物的分离和富集。

3.3. 气体和液体分析由于变压吸附可以有效地分离混合物中的成分,因此在气体和液体分析领域被广泛使用。

变压吸附可以用于提取样品中的目标物质,从而实现对目标物质的分析和检测。

3.4. 催化剂和吸附剂研究变压吸附技术在催化剂和吸附剂研究中扮演着重要角色。

通过变压吸附,可以了解催化剂和吸附剂的吸附性能,优化其催化和吸附效果,提高其活性和选择性。

4. 变压吸附的优点变压吸附作为一种分离和富集技术,具有以下优点:•可控性强:通过调节压力和温度,可以实现对待吸附物质的高选择性吸附和脱附。

•分离效率高:多孔吸附剂具有较大的比表面积,可以有效地吸附待吸附物质。

•应用范围广:变压吸附技术在气体和液体分离、分析以及催化剂和吸附剂研究等领域都有广泛的应用。

变压吸附的基本原理

变压吸附的基本原理

变压吸附的基本原理变压吸附技术是一种流程分离技术,广泛应用于气体混合物中有毒气体的纯化和分离,具有高分离效果和低能耗的特点。

其基本原理是利用不同气体在不同压力下与吸附剂之间相互作用力的差异,使不同气体在吸附剂表面的相对分布发生变化,实现气体的分离。

1.吸附剂选择:变压吸附过程依赖于吸附剂,吸附剂应具有高吸附容量和较高的选择性,能够与目标气体发生较强的静电作用力或分子间作用力。

常用的吸附剂包括活性炭、分子筛等。

2.吸附平衡:吸附剂在一定温度下与气体接触后,会达到一定的吸附平衡。

在吸附平衡状态下,气体分子以一定的速率从气相吸附到吸附剂表面,同时从吸附剂表面解吸进入气相。

吸附平衡的建立要经过一定的时间。

3.吸附等温线:吸附过程中,吸附剂与气体之间的吸附量随着气体压力、温度的变化而变化,表现为一条曲线,称为吸附等温线。

吸附等温线的形状主要受吸附剂和气体性质的影响。

4.变压过程:变压吸附过程中,当气体压力从低压逐渐增加到高压时,吸附剂表面的吸附物质分布也会发生变化。

在低压下,吸附剂上的吸附物质主要是低亲和力的气体,而在高压下则主要是高亲和力的气体。

在变压吸附过程中,一般通过两个吸附塔进行操作,分为吸附和解吸两个步骤。

在吸附阶段,原料气体在较低压力下与吸附剂接触,选择性地吸附其中的目标组分。

而在解吸阶段,通过减小吸附塔的压力,使吸附剂表面的吸附组分从表面解吸进入气相,以达到脱附的目的。

两个吸附塔轮流进行吸附和解吸操作,以实现连续的气体纯化过程。

总的来说,变压吸附的基本原理是通过调节气体压力,利用吸附剂对不同气体的选择性吸附特性,实现气体分离与纯化。

这种技术具有操作简便、能耗低、分离效果好等优势,在化工、环保等领域得到广泛应用。

变压吸附制氮机的工作原理及流程

变压吸附制氮机的工作原理及流程

变压吸附制氮机的工作原理及流程一、工作原理:变压吸附制氮机采用吸附剂吸附氮气和氧气的不同吸附性能来实现分离氮气和氧气的目的。

当氮气和氧气经过吸附剂时,由于吸附剂对氧气的亲和力较大,氧气会被吸附下来,而氮气则流过吸附剂,从而实现了氮气和氧气的分离。

二、工作流程:1.压缩机工作:首先,压缩机会将空气进行压缩,增加其压力。

然后将压缩空气送入吸附器。

2.吸附器吸附过程:压缩空气进入吸附器后,通过吸附剂层,氧气被吸附下来,而氮气则流过吸附剂层,进入脱附器。

此时,吸附器中的吸附剂已经饱和,需要进行脱附和再生。

3.脱附器脱附过程:当吸附器中的吸附剂饱和后,需要通过降低压力来使其脱附。

此时,通过控制阀门,将吸附器的压力降低,吸附剂释放出被吸附的氧气。

4.脱附气体排出:脱附器中释放的氧气会被排出系统,通常用作其它用途。

5.再生过程:当吸附剂饱和后,需要进行再生。

再生通常分为两个阶段:吸附器再生和脱附器再生。

6.吸附器再生:通过升高吸附器的压力,将吸附剂上吸附的氧气释放出来。

然后,通过排气阀,将释放的气体排出系统。

7.脱附器再生:通过降低脱附器的压力,将吸附剂中的氮气释放出来。

释放的氮气进入吸附器进行吸附。

8.循环重复:上述吸附和脱附的过程会循环进行。

变压吸附制氮机根据设定的工作参数,可以实现高纯度氮气的连续制取。

总结:变压吸附制氮机是利用吸附剂吸附氮气和氧气的不同吸附性能来实现分离氮气的设备。

其工作流程包括压缩机工作、吸附器吸附过程、脱附器脱附过程、脱附气体排出、再生过程和循环重复。

通过这一工作流程,可以实现高纯度氮气的连续制取。

变压吸附工作基本原理

变压吸附工作基本原理

变压吸附工作基本原理变压吸附(Pressure Swing Adsorption, PSA)是一种常用于气体分离或制备过程中的吸附技术。

其基本原理是利用吸附剂对混合气中的物质分子进行吸附和解吸,从而实现对气体组分的分离或纯化。

一、变压吸附工作原理:1.吸附剂选择:吸附剂是实现变压吸附分离的关键。

吸附剂通常是具有较高表面积和孔隙度的多孔介质,如活性炭、分子筛等。

吸附剂的表面上存在着一定的吸附位点,可以吸附物质分子。

2.吸附:将混合气体通过吸附剂床层,吸附剂床层中的吸附剂对混合气中的组分进行吸附。

吸附过程通常是物理吸附,即吸附剂表面对物质分子产生吸引力,使其附着在表面上。

3.解吸:当吸附剂饱和时,需要对吸附剂进行再生,将已吸附的物质分子从吸附剂上解吸出来。

解吸过程可以通过降低吸附剂表面的吸附位点上的压力或增加温度来实现。

4.变压吸附循环:变压吸附通常通过变压来实现吸附和解吸的循环。

首先,将混合气体通过吸附剂床层进行吸附,将目标组分吸附在吸附剂上,然后通过减压或增加温度的方式解吸目标组分,使其从吸附剂上解吸出来,此时吸附剂可以再次被用于吸附新的混合气体。

二、变压吸附工作流程:1.吸附过程:混合气体从吸附剂床层的一端进入,经过吸附剂床层时,吸附剂对其中的目标组分进行吸附,非目标组分通过吸附剂床层,最终从另一端出口排放。

2.脱附过程:当吸附剂饱和时,需要进行解吸或再生。

通常采用变压或变温的方式来实现脱附,即将吸附剂中的压力降低或温度升高,使吸附在吸附剂上的目标组分解吸出来。

3.再生过程:脱附的目标组分通过减压或增加温度输送到吸附剂床层的另一部分或其他吸附剂床层中,以供进一步吸附。

原吸附剂床层通过回收吸附剂后,可以进行再生,使其重新用于吸附。

4.循环过程:利用不同压力、温度条件交替进行吸附和解吸或再生,实现吸附剂循环使用,从而实现对混合气体的分离和纯化。

三、变压吸附技术的应用:变压吸附技术广泛应用于气体的分离和纯化,常见的应用包括:1.氧氮分离:变压吸附可以快速分离空气中的氧气和氮气,用于制备高纯度氧气。

变压吸附的基本原理

变压吸附的基本原理

变压吸附的基本原理变压吸附的基本原理是:利用吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量随压力变化而变化的特性,实现气体混合物的分离和吸附剂的再生。

变压吸附脱碳技术就是根据变压吸附的原理,在吸附剂选择吸附的条件下,加压吸附原料气中的CO2等杂质组分,而氢气、氮气、甲烷等不易吸附的组分则通过吸附床层由吸附器顶部排出,从而实现气体混合物的分离,而通过降低吸附床的压力使被吸附的CO2等组分脱附解吸,使吸附剂得到再生。

吸附器内的吸附剂对不同组份的吸附是定量的,当吸附剂对有效组份的吸附达到一定量后,有效组份从吸附剂上能有效地解吸,使吸附剂能重复使用时,吸附分离工艺才有实用意义。

故每个吸附器在实际过程中必须经过吸附和再生阶段。

对每个吸附器而言,吸附过程是间歇的,必须采用多个吸附器循环操作,才能连续制取产品气。

吸附过程有以下特性:①吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异;②一种特定的气体在吸附剂上的吸附量随着其分压的降低而减少。

采用“抽空降压”的解吸工艺,可降低吸附的CO2等组分的分压,以使吸附剂得到彻底再生。

多床变压吸附的意义在于:保证在任何时刻都有相同数量的吸附床处于吸附状态,使产品能连续稳定地输出;保证适当的均压次数,使产品有较高的回收率。

变压吸附概况变压吸附(Pressure Swing Adsorption.简称PSA)是一种新型气体吸附分离技术,它有如下优点:⑴产品纯度高。

⑵一般可在室温和不高的压力下工作,床层再生时不用加热,节能经济。

⑶设备简单,操作、维护简便。

⑷连续循环操作,可完全达到自动化。

因此,当这种新技术问世后,就受到各国工业界的关注,竞相开发和研究,发展迅速,并日益成熟。

1960年Skarstrom提出PSA专利,他以5A沸石分子筛为吸附剂,用一个两床PSA装置,从空气中分离出富氧,该过程经过改进,于60年代投入了工业生产。

变压吸附技术

变压吸附技术

变压吸附技术变压吸附技术是一种涉及吸附剂的分子工程技术,可以改变吸附剂表面立体结构,并最大化吸附剂的有效空间来提高吸附剂的吸附性能。

它主要应用于吸附有机物、金属离子、放射性离子、颗粒物质等污染物的净化和回收中。

下面主要介绍变压吸附技术的基本原理和应用。

一、变压吸附技术的基本原理变压吸附技术的基本原理是,有机物分子以多种形式(如核酸对配体、双层结构长链醇)与吸附剂表面上的官能团结合,从而形成立体复合体,以改善吸附剂的有效空间,放大吸附剂的表面结构,从而提高吸附剂的吸附性能。

具体而言,变压吸附技术可以在保持吸附剂原有表面结构基础上,通过调节吸附剂与有机物分子的配体和结合强度,以及吸附剂表面的电性负载,来改变其立体结构,扩大吸附剂的有效空间,使其与有机物的作用力更强,从而提高其吸附性能。

变压吸附技术的研究主要集中在吸附剂表面活性中,包括表面官能团和结构和功能之间的关系,以及它们如何影响吸附反应的热力学和动力学过程等,使其能够改变吸附剂的立体结构,并有效地吸附有机物。

二、变压吸附技术的应用变压吸附技术可用于吸附有机物、金属离子、放射性离子、颗粒物质等污染物的净化和回收,是一种非常有效的净化技术。

(1)变压吸附技术应用于有机物的净化中变压吸附技术可用于改善吸附剂表面活性,从而提高对有机物的吸附率,从而净化有机物污染物。

该技术可广泛应用于水处理、空气净化等行业。

(2)变压吸附技术应用于金属离子的回收中变压吸附技术可以改善吸附剂表面活性,提高对金属离子的吸附性能,从而有效地回收金属离子,如铁、铜、铝、钛等。

它可以用于高纯度的金属回收,从而提高金属的收率。

(3)变压吸附技术应用于放射性离子的净化中变压吸附技术也可以改善吸附剂的表面活性,提高对放射性离子的吸附性能,从而有效地净化放射性离子,如钠、钙、铷等。

这种技术可以在食品、医疗、环境、工业等放射性离子污染处理中应用。

三、结论变压吸附技术是一种改变吸附剂立体结构的分子工程技术,可以提高吸附剂的吸附性能,从而应用于有机物、金属离子、放射性离子、颗粒物质等污染物的净化和回收中。

变压吸附的基本原理

变压吸附的基本原理

变压吸附的基本原理:变压吸附技术是以吸附剂(多孔固体物质)内部表面对气体分子的物理吸附为基础,利用吸附剂在相同压力下易吸附高沸点组分、不易吸附低沸点组分和高压下吸附量增加(吸附组分)、减压下吸附量减少(解吸组分)的特性,将原料气在压力下通过吸附剂床层,相对于氢的高沸点杂质组分被选择性吸附,低沸点组分的氢不易吸附而通过吸附剂床层,达到氢和杂质组分的分离。

然后在减压下解吸被吸附的杂质组分使吸附剂获得再生,以利于再次进行杂质的吸附分离。

变压吸附提纯氢气的优点:变压吸附提纯氢气与其它方法相比有许多优点:(1)原料范围广:对化肥厂尾气,炼油厂石油干气,乙烯尾气,氨裂解气,甲醇分成尾气,水煤气等等各种含氢气源,杂质含量从0.5%到40%都能获得高纯氢气;(2)能一次性去除氢气中多种杂质成分,简化了工艺流程;(3)处理范围大,能从0-100%调节装置处理影响装置工作及产品纯度。

它启动方便,除首次开车需要调整、建立各操作步骤和工况外,平时随时可以开停机;(4)能耗小、操作费用低。

由于它能在0.8MPa—3MPa下操作运行,这对于许多氢气源如弛放气、变换气、石化精炼气等,其本身压力满足这一要求,省去加压设备及能耗。

特别是对一些尾气的回收综合利用大大降低了产品成本;(5)装置运行中几乎无转动设备,并采用全自动阀门切换,因此设备稳定性好、自动化程度高、安全可靠;(6)吸附剂寿命长,并且对周围环境无污染,可露天放置。

变压吸附制氢装置的实际应用:冶金行业的冷轧生产工艺中,在罩式炉内的煺火处理时需有按一定比例混合后的氢氮气作保护。

过去氢气的制取主要采用电解水的方法获得,但用这种方法制取的氢成本太高。

随着我国变压吸附分离技术工业化的迅速发展,变压吸附制氢装置已被广泛应用于冶金、石油、化工等行业,规模从260 Nm3/h到1×106Nm3/h 均有在建装置。

以工业煤气为原料采用变压吸附法制取高纯度的氢气(99.999%),制氢成本低,只相当于电解水制氢成本的1/3~1/4。

变压吸附 专著 -回复

变压吸附 专著 -回复

变压吸附专著-回复什么是变压吸附?变压吸附是一种常用于分离和净化气体和液体混合物的技术。

它基于吸附剂的选择吸附容量因所采用的操作条件的变化而变化的原理。

变压吸附的基本原理是利用吸附剂表面上的孔洞和微小通道,通过选择性吸附来分离混合物中的不同组分。

在吸附过程中,气体或液体混合物通过吸附器中的吸附床,其中填充了吸附剂。

根据各组分与吸附剂之间的相互作用力的不同,不同的组分将被吸附在吸附剂表面上,从而实现分离。

变压吸附的过程通常涉及两个主要步骤:亲吸附和脱附。

在亲吸附步骤中,混合物中的组分被吸附到吸附剂表面上。

在脱附步骤中,吸附剂通过改变操作条件(如温度、压力等)来释放或回收被吸附的组分。

这种循环过程重复进行,以获得更高的纯度和更高的产物收率。

变压吸附的成功关键在于选择合适的吸附剂。

吸附剂应具有适当的吸附容量和选择性,以便吸附和分离混合物中的目标组分。

常见的吸附剂包括活性炭、分子筛和硅胶等。

吸附剂的选择还应考虑其稳定性、再生能力和经济性。

变压吸附在许多领域都得到了广泛的应用。

在工业上,它经常被用来分离和提纯气体混合物,如氧氮分离、乙烯乙烷分离等。

在环境保护领域,变压吸附可以用于处理废气和废水中的有害物质。

在能源领域,它可以用于煤气化和天然气净化。

此外,变压吸附还在制药、化学工程和食品工业中得到了广泛的应用。

为了实现优化的变压吸附过程,操作条件的选择也非常重要。

影响变压吸附性能的主要操作条件包括温度、压力和流速等。

通过调节这些操作条件,可以实现更高的吸附容量、更高的分离效率和更低的运行成本。

总之,变压吸附是一种重要的分离和净化技术,可以广泛应用于各个领域。

通过选择合适的吸附剂和优化的操作条件,可以实现高效的分离和纯化过程。

变压吸附的研究和发展将进一步推动科学技术的进步,为各行各业提供更好的解决方案。

变压吸附工作基本原理

变压吸附工作基本原理

变压吸附(PSA)法基本工作原理吸附的基本概念和吸附剂一、吸附的定义当气体分子运动到固体表面上时,由于固体表面原子剩余引力的作用,气体中的一些分子便会暂时停留在固体表面上,这些分子在固体表面上的浓度增大,这种现象称为气体分子在固体表面上的吸附。

相反,固体表面上被吸附的分子返回气体相的过程称为解吸或脱附。

被吸附的气体分子在固体表面上形成的吸附层,称为吸附相。

吸附相的密度比一般气体的密度大得多,有可能接近液体密度。

当气体是混合物时,由于固体表面对不同气体分子的引力差异,使吸附相的组成与气相组成不同,这种气相与吸附相在密度上和组成上的差别构成了气体吸附分离技术的基础。

吸附物质的固体称为吸附剂,被吸附的物质称为吸附质。

伴随吸附过程所释放的热量叫吸附热,解吸过程所吸收的热量叫解吸热。

气体混合物的吸附热是吸附质的冷凝热和润湿热之和。

不同的吸附剂对各种气体分子的吸附热均不相同。

按吸附质与吸附剂之间引力场的性质,吸附可分为化学吸附和物理吸附。

化学吸附:即吸附过程伴随有化学反应的吸附。

在化学吸附中,吸附质分子和吸附剂表面将发生反应生成表面络合物,其吸附热接近化学反应热。

化学吸附需要一定的活化能才能进行。

通常条件下,化学吸附的吸附或解吸速度都要比物理吸附慢。

石灰石吸附氯气,沸石吸附乙烯都是化学吸附。

物理吸附:也称范德华(van der Waais)吸附,它是由吸附质分子和吸附剂表面分子之间的引力所引起的,此力也叫作范德华力。

由于固体表面的分子与其内部分子不同,存在剩余的表面自由力场,当气体分子碰到固体表面时,其中一部分就被吸附,并释放出吸附热。

在被吸附的分子中,只有当其热运动的动能足以克服吸附剂引力场的位能时才能重新回到气相,所以在与气体接触的固体表面上总是保留着许多被吸附的分子。

由于分子间的引力所引起的吸附,其吸附热较低,接近吸附质的汽化热或冷凝热,吸附和解吸速度也都较快。

被吸附气体也较容易地从固体表面解吸出来,所以物理吸附是可逆的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压吸附(PSA)法基本工作原理吸附的基本概念和吸附剂一、吸附的定义当气体分子运动到固体表面上时,由于固体表面原子剩余引力的作用,气体中的一些分子便会暂时停留在固体表面上,这些分子在固体表面上的浓度增大,这种现象称为气体分子在固体表面上的吸附。

相反,固体表面上被吸附的分子返回气体相的过程称为解吸或脱附。

被吸附的气体分子在固体表面上形成的吸附层,称为吸附相。

吸附相的密度比一般气体的密度大得多,有可能接近液体密度。

当气体是混合物时,由于固体表面对不同气体分子的引力差异,使吸附相的组成与气相组成不同,这种气相与吸附相在密度上和组成上的差别构成了气体吸附分离技术的基础。

吸附物质的固体称为吸附剂,被吸附的物质称为吸附质。

伴随吸附过程所释放的热量叫吸附热,解吸过程所吸收的热量叫解吸热。

气体混合物的吸附热是吸附质的冷凝热和润湿热之和。

不同的吸附剂对各种气体分子的吸附热均不相同。

按吸附质与吸附剂之间引力场的性质,吸附可分为化学吸附和物理吸附。

化学吸附:即吸附过程伴随有化学反应的吸附。

在化学吸附中,吸附质分子和吸附剂表面将发生反应生成表面络合物,其吸附热接近化学反应热。

化学吸附需要一定的活化能才能进行。

通常条件下,化学吸附的吸附或解吸速度都要比物理吸附慢。

石灰石吸附氯气,沸石吸附乙烯都是化学吸附。

物理吸附:也称范德华(van der Waais)吸附,它是由吸附质分子和吸附剂表面分子之间的引力所引起的,此力也叫作范德华力。

由于固体表面的分子与其内部分子不同,存在剩余的表面自由力场,当气体分子碰到固体表面时,其中一部分就被吸附,并释放出吸附热。

在被吸附的分子中,只有当其热运动的动能足以克服吸附剂引力场的位能时才能重新回到气相,所以在与气体接触的固体表面上总是保留着许多被吸附的分子。

由于分子间的引力所引起的吸附,其吸附热较低,接近吸附质的汽化热或冷凝热,吸附和解吸速度也都较快。

被吸附气体也较容易地从固体表面解吸出来,所以物理吸附是可逆的。

分离气体混合物的变压吸附过程系纯物理吸附,在整个过程中没有任何化学反应发生。

本工艺为物理吸附。

二、吸附剂1.吸附剂的种类工业上常用的吸附剂有:硅胶、活性氧化铝、活性炭、分子筛等,另外还有针对某种组分选择性吸附而研制的吸附材料。

气体吸附分离成功与否,很大程度上依赖于吸附剂的性能,因此选择吸附剂是确定吸附操作的首要问题。

硅胶是一种坚硬、无定形链状和网状结构的硅酸聚合物颗粒,分子式为SiO2.nH2O,为一种亲水性的极性吸附剂。

它是用硫酸处理硅酸钠的水溶液,生成凝胶,并将其水洗除去硫酸钠后经干燥,便得到玻璃状的硅胶,它主要用于干燥、气体混合物及石油组分的分离等。

工业上用的硅胶分成粗孔和细孔两种。

粗孔硅胶在相对湿度饱和的条件下,吸附量可达吸附剂重量的80%以上,而在低湿度条件下,吸附量大大低于细孔硅胶。

活性氧化铝是由铝的水合物加热脱水制成,它的性质取决于最初氢氧化物的结构状态,一般都不是纯粹的Al2O3,而是部分水合无定形的多孔结构物质,其中不仅有无定形的凝胶,还有氢氧化物的晶体。

由于它的毛细孔通道表面具有较高的活性,故又称活性氧化铝。

它对水有较强的亲和力,是一种对微量水深度干燥用的吸附剂。

在一定操作条件下,它的干燥深度可达露点-70℃以下。

活性炭是将木炭、果壳、煤等含碳原料经炭化、活化后制成的。

活化方法可分为两大类,即药剂活化法和气体活化法。

药剂活化法就是在原料里加入氯化锌、硫化钾等化学药品,在非活性气氛中加热进行炭化和活化。

气体活化法是把活性炭原料在非活性气氛中加热,通常在700℃以下除去挥发组分以后,通入水蒸气、二氧化碳、烟道气、空气等,并在700~1200℃温度范围内进行反应使其活化。

活性炭含有很多毛细孔构造,所以具有优异的吸附能力。

因而它用途遍及水处理、脱色、气体吸附等各个方面。

沸石分子筛又称合成沸石或分子筛,其化学组成通式为:[M(Ⅰ)M(Ⅱ)]O.Al2O3.nSiO2.mH2O式中M(Ⅰ)和M(Ⅱ)分别为为一价和二价金属离子,多半是钠和钙,n称为沸石的硅铝比,硅主要来自于硅酸钠和硅胶,铝则来自于铝酸钠和Al(HO)3等,它们与氢氧化钠水溶液反应制得的胶体物,经干燥后便成沸石,一般n=2~10,m=0~9。

沸石的特点是具有分子筛的作用,它有均匀的孔径,如3A0、4A0、5A0、10A0细孔。

有4A0孔径的4A0沸石可吸附甲烷、乙烷,而不吸附三个碳以上的正烷烃。

它已广泛用于气体吸附分离、气体和液体干燥以及正异烷烃的分离。

碳分子筛实际上也是一种活性炭,它与一般的碳质吸附剂不同之处,在于其微孔孔径均匀地分布在一狭窄的范围内,微孔孔径大小与被分离的气体分子直径相当,微孔的比表面积一般占碳分子筛所有表面积的90%以上。

碳分子筛的孔结构主要分布形式为:大孔直径与碳粒的外表面相通,过渡孔从大孔分支出来,微孔又从过渡孔分支出来。

在分离过程中,大孔主要起运输通道作用,微孔则起分子筛的作用。

以煤为原料制取碳分子筛的方法有炭化法、气体活化法、碳沉积法和浸渍法。

其中炭化法最为简单,但要制取高质量的碳分子筛必须综合使用这几种方法。

碳分子筛在空气分离制取氮气领域已获得了成功,在其它气体分离方面也有广阔的前景。

2.吸附剂的物理性质吸附剂的良好吸附性能是由于它具有密集的细孔构造。

与吸附剂细孔有关的物理性能有:a. 孔容(V P):吸附剂中微孔的容积称为孔容,通常以单位重量吸附剂中吸附剂微孔的容积来表示(cm3/g).孔容是吸附剂的有效体积,它是用饱和吸附量推算出来的值,也就是吸附剂能容纳吸附质的体积,所以孔容以大为好。

吸附剂的孔体积(V k)不一定等于孔容(V P),吸附剂中的微孔才有吸附作用,所以V P中不包括粗孔。

而V k中包括了所有孔的体积,一般要比V P大。

b. 比表面积:即单位重量吸附剂所具有的表面积,常用单位是m2/g。

吸附剂表面积每克有数百至千余平方米。

吸附剂的表面积主要是微孔孔壁的表面,吸附剂外表面是很小的。

c. 孔径与孔径分布:在吸附剂内,孔的形状极不规则,孔隙大小也各不相同。

直径在数埃(A0)至数十埃的孔称为细孔,直径在数百埃以上的孔称为粗孔。

细孔愈多,则孔容愈大,比表面也大,有利于吸附质的吸附。

粗孔的作用是提供吸附质分子进入吸附剂的通路。

粗孔和细孔的关系就象大街和小巷一样,外来分子通过粗孔才能迅速到达吸附剂的深处。

所以粗孔也应占有适当的比例。

活性炭和硅胶之类的吸附剂中粗孔和细孔是在制造过程中形成的。

沸石分子筛在合成时形成直径为数微米的晶体,其中只有均匀的细孔,成型时才形成晶体与晶体之间的粗孔。

孔径分布是表示孔径大小与之对应的孔体积的关系。

由此来表征吸附剂的孔特性。

d. 表观重度(d l):又称视重度。

吸附剂颗粒的体积(V l)由两部分组成:固体骨架的体积(V g)和孔体积(V k),即:V l= V g+ V k表观重度就是吸附颗粒的本身重量(D)与其所占有的体积(V l)之比。

吸附剂的孔体积(V k)不一定等于孔容(V P),吸附剂中的微孔才有作用,所以V P中不包括粗孔。

而V k中包括了所有孔的体积,一般要比V P大。

e. 真实重度(d g):又称真重度或吸附剂固体的重度,即吸附剂颗粒的重量(D)与固体骨架的体积V g之比。

假设吸附颗粒重量以一克为基准,根据表观重度和真实重度的定义则:d l==l/V l; d g=l/V g于是吸附剂的孔体积为:V k=l/d l– l/d gf. 堆积重度(d b):又称填充重度,即单位体积内所填充的吸附剂重量。

此体积中还包括有吸附剂颗粒之间的空隙,堆积重度是计算吸附床容积的重要参数。

以上的重度单位常用g/cm3、kg/l、kg/m3表示。

g. 孔隙率(εk):即吸附剂颗粒内的孔体积与颗粒体积之比。

εk=V k/(V g+V k)=(d g-d l)/ d g=1-d l/d gh. 空隙率(ε):即吸附颗粒之间的空隙与整个吸附剂堆积体积之比。

ε=(V b-V l)/V b=(d l-d b)/d l=1-d b/d l表2-1列出了一些吸附剂的物理性质:表2-1 吸附剂的物理性质三、吸附平衡和等温吸附线—吸附的热力学基础吸附刚开始时吸附剂存在大量的活性表面,被吸附的吸附质分子数大大超过离开表面的分子数。

随着吸附的进行,吸附剂表面逐渐被吸附质分子遮盖,吸附剂表面再吸附的能力下降,直到吸附速度等于解吸速度时,就表示吸附达到了平衡。

在密闭的容器内,吸附剂与吸附质充分接触,呈平衡时为静态吸附平衡。

含有一定量吸附质的惰性气流通过吸附剂固定床,吸附质在流动状态下被吸附剂吸附,最后达到的平衡为动态平衡。

为了解释吸附过程的实质,曾提出了各式各样的理论。

在这些理论中,迄今没有一个能够说明所有的吸附现象。

个别理论虽然能够完善地说明吸附现象的一个方面,但是却不能用来解释这一现象的其它方面。

这些理论适用与否,是取决于吸附质和吸附剂的性质,以及吸附的具体条件。

不管对吸附机理的各种解释如何,他们都认为吸附剂对吸附质的吸附数量与被吸附气体的压力及吸附过程的温度有关,即:q=f(P,T)式中:q—单位重量(或体积)吸附剂所吸附的物质量(吸附量);P—吸附组分在气相中平衡时的分压;T—吸附过程的温度。

在此函数中,当温度(T)一定时,称为等温吸附线;当压力(P)一定时,称为等压吸附线;而当吸附量一定时,称为等量吸附线。

最常用的就是等温吸附线。

布隆耐尔(Bronaner)曾将物理吸附等温吸附线分为五种类型,如图2-1所示。

图中纵坐标为吸附量q,横坐标为吸附质分压P(当平衡温度在吸附质临界温度以下时,通常与该温度下饱和蒸汽压力P0的比值P/P0表示).五种类型的吸附等温线其形状的差异是由于吸附剂和吸附质分子之间作用力不同造成的。

类型Ⅰ是平缓地趋近饱和的朗格谬而型等温吸附线。

这种吸附相当于在吸附剂表面上只形成单分子层吸附。

类型Ⅱ是最普通的物理吸附,能形成多分子层。

类型Ⅲ比较少见,它的特点是吸附热与被吸附组分的液化热大致相等。

第Ⅳ、Ⅴ种认为是由于毛细管凝结现象所致。

物理吸附等温曲线不只限于这五种。

例如,有的物理吸附其等温吸附线是阶梯状的,并且等温吸附线常常与解吸曲线不一致,还常有滞后的拖尾现象。

表达等温吸附线的数学式,称为等温吸附方程。

由于各学者针对不同的吸附平衡现象,采用不同的假设和模型,因而推导出各种等温吸附方程。

现将几种常用的等温吸附方程简单介绍如下:1.亨利(Henry)方程通常都知道,一定温度下气体在液体中的溶解度与气体的分压成正比,这就是亨利定律。

而在吸附过程中,亦存在这种现象,即在吸附过程中吸附量与压力成正比。

和气体在溶液中的溶解是相同的,故称为亨利吸附。

其方程为:q=k h.c式中:q—吸附剂的吸附量;k h—亨利系数;c—吸附质在气体中的浓度。

相关文档
最新文档