河南省2018年高考文科数学试题及答案汇总(word解析版)
(word完整版)2018年高考文科数学(全国I卷)试题及答案,推荐文档
2018年普通高等学校招生全国统一考试文科数学注意事项:1 •答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2 •回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干 净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
、选择题:本题共 12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
3 •某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:1 A .-35.已知圆柱的上、下底面的中心分别为则该圆柱的表面积为绝密★启用前则下面结论中不正确的是 种植收入减少 策二产业收入捽端牧入柚收.入Hr 他收入建设后经济收入构威比例 A .新农村建设后, B .新农村建设后, C .新农村建设后, D .新农村建设后, 2 C :笃 a其他收入增加了一倍以上 养殖收入增加了一倍 4.已知椭圆养殖收入与第三产业收入的总和超过了经济收入的一半 2y_ 41的一个焦点为 (2,0),贝U C 的离心率为 A . 12 2n 6•设函数f(x) B . 12n (a 1)x 2ax.若 C . 82nD . 10nA . y 2x f(x)为奇函数,则曲线 C . y 2x y f (x)在点(0,0)处的切线方程为 7 .在△ ABC 3 uuu A . - AB 4AD 为BC 边上的中线,E 为AD 的中点,贝U 1 UUT 1 UUU 3 UUIT AC B . -AB AC中, D . y x uuuEBA . {0,2}B . {1,2}C . {0}、九 1 i2.设z2i ,则 | z|1 iA . 0B . 1C . 12D • { 2, 1,0,1,2} .为更好地了解该地区农村的经济收入 01 , 02,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,1.已知集合 A= {0,2} , B= {- 2,- 1,0,1,2},则 AI BC . 3 UJID 1 uuuAB AC4 41 uuu 3 UJIT D. - AB AC4 42&已知函数f (x) 2cos x2sin x 2,贝VA. f (x)的最小正周期为n,最大值为3B. f (x)的最小正周期为n,最大值为4C . f (x)的最小正周期为2n,最大值为3D.f (x)的最小正周期为 2 n,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图•圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从A . 2 17B. 25C. 3D . 210.在长方体ABCD ABGD i中,AB BC 2 , AC i与平面BB i C i C所成的角为30,则该长方体的体积为B. 6. 2C. 8.2D. 8 3A(1,a) , B(2,b),且cos2 2,则|a b|A. 1B C. 2.5 D . 15552 x,x w 0,12.设函数f(x)1,则满足f(x1) f (2x)的x的勺取值范围是x0,A . (,1]B.(0,)C.(1,0)D . (,11.已知角的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国1卷-文科数学试卷及答案(清晰word版).doc
2018年高考全国1卷-文科数学试卷及答案(清晰word版)文科数学试题 第2页(共19页)2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,2}A,{2,1,0,1,2}B,则AB =A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--2.设1i2i 1iz -=++,则||z =文科数学试题第3页(共19页)文科数学试题 第4页(共19页)D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为A .13B .12C 2D 225.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数32()(1)f x xa x ax=+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 8.已知函数22()2cossin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3文科数学试题 第5页(共19页)B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4 9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C所成的角为30︒, 则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴文科数学试题 第6页(共19页)的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||a b -= A .15B 5C 25D .112.设函数2,0,()1,0,x x f x x -⎧=⎨>⎩≤ 则满足(1)(2)f x f x +<的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞二、填空题:本题共4小题,每小题5分,共20分。
2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2018年全国统一高考数学试卷(文科)(全国新课标Ⅰ)一、选择题目:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}2.(5分)设z=+2i,则|z|=()A.0B.C.1D.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.5.(5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π6.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x7.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+ 8.(5分)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为49.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.210.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C 所成的角为30°,则该长方体的体积为()A.8B.6C.8D.811.(5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.112.(5分)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1]B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)二、填空题目:本题共4小题,每小题5分,共20分。
(完整版)2018年高考文科数学(全国I卷)试题及答案(可编辑修改word版)
EB A. - 绝密★启用前注意事项:2018 年普通高等学校招生全国统一考试文科数学1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A = {0, 2} , B = {- 2,- 1, 0,1, 2} ,则 A B =A .{0, 2}B .{1, 2}C .{0}D .{-2, -1, 0,1, 2}2.设 z = 1 - i+ 2i ,则| z |=1 + iA. 0B. 1 2C .1D . 3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半x 2 4. 已知椭圆C : a y 2+= 1 的一个焦点为(2, 0) ,则C 的离心率为 4 A.13B. 12C.2 2D. 2 235. 已知圆柱的上、下底面的中心分别为O 1 , O 2 ,过直线O 1O 2 的平面截该圆柱所得的截面是面积为8 的正方形,则该圆柱的表面积为 A .12 2πB.2π C. 8 2π D. 0π6. 设函数 f (x ) = x 3 + (a - 1)x 2 + ax . 若 f (x ) 为奇函数,则曲线 y = f (x ) 在点(0, 0) 处的切线方程为A. y = -2xB. y = -xC. y = 2xD. y = x 7. 在△ABC 中,AD 为 BC 边上的中线,E 为 AD 的中点,则=3 1AB AC B . 1 - 3 AC 22AB4 4 4 4C . + AB 2 ⎨ ⎩ 3 1 AB ACD . 1 + 3AC4 44 48. 已知函数 f (x ) = 2 cos 2 x - sin 2 x + 2 ,则A. f (x ) 的最小正周期为π ,最大值为3B. f (x ) 的最小正周期为π ,最大值为 4C. f (x ) 的最小正周期为2π ,最大值为3D. f (x ) 的最小正周期为2π ,最大值为 49. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为A. 2B. 2C. 3D. 210. 在长方体 ABCD - A 1B 1C 1D 1 中, AB = BC = 2 , AC 1 与平面 BB 1C 1C 所成的角为30︒ ,则该长方体的体积为A. 8B. 6C. 8D. 8 11. 已知角的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1, a ) , B (2, b ) ,且cos 2= 2,则3| a - b |=A.15B.5 5C. 2 55D .1⎧2-x , 12. 设函数 f (x ) = ⎨ ⎩1, x ≤ 0,x > 0, 则满足 f (x + 1) < f (2x ) 的 x 的取值范围是A . (-∞, -1]B . (0, +∞)C . (-1, 0)D . (-∞, 0)二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
关注公众号”一个高中僧“获取更多高中资料
第 3 页(共 28 页)
18.(12 分)如图,在平行四边形 ABCM 中,AB=AC=3,∠ACM=90°,以 AC 为 折痕将△ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA.
(1)证明:平面 ACD⊥平面 ABC; (2)Q 为线段 AD 上一点,P 为线段 BC 上一点,且 BP=DQ= DA,求三棱锥
A.12 π
B.12π
C.8 π
D.10π
【考点】LE:棱柱、棱锥、棱台的侧面积和表面积. 菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.
【分析】利用圆柱的截面是面积为 8 的正方形,求出圆柱的底面直径与高,然后
求解圆柱的表面积.
【解答】解:设圆柱的底面直径为 2R,则高为 2R,
(2)估计该家庭使用节水龙头后,日用水量小于 0.35m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,
同一组中的数据以这组数据所在区间中点的值作代表)
20.(12 分)设抛物线 C:y2=2x,点 A(2,0),B(﹣2,0),过点 A 的直线 l 与 C 交于 M,N 两点.
参考答案与试题解析
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选 项中,只有一项是符合题目要求的。
1.(5 分)已知集合 A={0,2},B={﹣2,﹣1,0,1,2},则 A∩B=( )
A.{0,2}
B.{1,2}
C.{0}
D.{﹣2,﹣1,0,1,2}
【考点】1E:交集及其运算. 菁优网版权所有
问题解决问题的能力.
(完整版)2018全国高考1卷文科数学试题及答案(官方)word版
2018年普通高等学校招生全国统一考试文科数学注意事项:1 •答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2•回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑•如需改动,用橡皮擦干净后,再选涂其它答案标号•回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3 •考试结束后,将本试卷和答题卡一并交回.、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1 .已知集合A0 ,2 , B 2, 1 , 0, 1 , 2,则AI B ( )A •0 , 2B•1, 2 C •0D • 2 , 1 , 0 , 1 ,22•设z 1 i1 i2i,则z( )A • 0B•1 C • 12D •23•某地区经过一年的新农村建设,农村的经济收入增加了一倍•实现翻番•为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例•得到如下饼图:则下面结论中不正确的是()A •新农村建设后,种植收入减少B •新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D •新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2 24已知椭圆C: J 丁1的一个焦点为2,0,则C的离心率(5•已知圆柱的上、下底面的中心分别为 O i , O 2,过直线。
1。
2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A • 12 2B . 12D . 106. 设函数f 1 x 2ax .若为奇函数,则曲线 y f x 在点o ,o 处的切线方程为7. 8. ( )A . y 2x在△ ABC 中, 3 uun A . -AB43 uunC . — AD 为BC 边上的中线,E 为AD1 ujir AC 4 1 uur — AC 4C.y 2x的中点,则 uuEB1 juu -AB 3uurB3 AC4 41 uuu -AB 3uur D3 AC4 4已知函数f x2 2cos x 2sin x 2,则(的最小正周期为 ,最大值为 的最小正周期为,最大值为C . f x的最小正周期为 ,最大值为3 的最小正周期为,最大值为49.某圆柱的高为 2,底面周长为16,其三视图如图所示,圆柱表面上的点 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 在此圆柱侧面上,从 M 到N 的路径中,最短路径的长度为()A . 2 17B . 2 5C . 3(M B ,则A1B1C1D1 中,AB10.在长方体ABCD BC 2 , AG与平面BB1C1C所成的角为30,则该长方体的体积为()A. 8B. 6 2C. 8.2D. 8 - 3x 2y 2 < 0x y 1 > 0 ,则z 3x 2y 的最大值为 y < 015. _________________________________________________________________ 直线y x 1与圆x 2y 22y 3 0交于A , B 两点,贝U |AB ______________________________________________ ._ 2 2 216. __________________________ △ ABC 的内角 A , B , C 的对边分别为 a , b , c ,已知 bsinC csinB4asinBsinC ,b c a 则△ ABC 的面积为.三、解答题(共70分。
2018年高考真题——文科数学(全国卷Ⅰ)+Word版含解析【KS5U+高考】
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合A={0 , 2},B={−2 , −1 , 0 , 1 , 2},则A∩B=A. {0 , 2}B. {1 , 2}C. {0}D. {−2 , −1 , 0 , 1 , 2}【答案】A【解析】分析:利用集合的交集中元素的特征,结合题中所给的集合中的元素,求得集合A∩B中的元素,最后求得结果.详解:根据集合交集中元素的特征,可以求得A∩B={0,2},故选A.点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.2. 设z=1−i1+i+2i,则|z|=A. 0B. 12C. 1D. √2【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到z=i,根据复数模的公式,得到|z|=1,从而选出正确结果.详解:因为z=1−i1+i +2i=(1−i)2(1+i)(1−i)+2i=−2i2+2i=i,所以|z|=√0+12=1,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 已知椭圆C:x2a2+y24=1的一个焦点为(2 , 0),则C的离心率为A. 13B. 12C. √22D. 2√23【答案】C【解析】分析:首先根据题中所给的条件椭圆的一个焦点为(2 , 0),从而求得c=2,再根据题中所给的方程中系数,可以得到b2=4,利用椭圆中对应a,b,c的关系,求得a=2√2,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知c=2,因为b2=4,所以a2=b2+c2=8,即a=2√2,所以椭圆C的离心率为e=2√2=√22,故选C.点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中a,b,c的关系求得结果.5. 已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. 12√2πB. 12πC. 8√2πD. 10π【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为2√2的正方形,结合圆柱的特征,可知该圆柱的底面为半径是√2的圆,且高为2√2,所以其表面积为S=2π(√2)2+2π⋅√2⋅2√2=12π,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.6. 设函数f(x)=x3+(a−1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0 , 0)处的切线方程为A. y=−2xB. y=−xC. y=2xD. y=x【答案】D【解析】分析:利用奇函数偶此项系数为零求得a=1,进而得到f(x)的解析式,再对f(x)求导得出切线的斜率k,进而求得切线方程.详解:因为函数f(x)是奇函数,所以a−1=0,解得a=1,所以f(x)=x 3+x ,f′(x)=3x 2+1, 所以f′(0)=1,f(0)=0,所以曲线y =f(x)在点(0,0)处的切线方程为y −f(0)=f′(0)x , 化简可得y =x ,故选D.点睛:该题考查的是有关曲线y =f(x)在某个点(x 0,f(x 0))处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得f′(x),借助于导数的几何意义,结合直线方程的点斜式求得结果. 7. 在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ⃑⃑⃑⃑⃑ = A. 34AB ⃑⃑⃑⃑⃑ −14AC ⃑⃑⃑⃑⃑ B. 14AB ⃑⃑⃑⃑⃑ −34AC ⃑⃑⃑⃑⃑ C. 34AB ⃑⃑⃑⃑⃑ +14AC ⃑⃑⃑⃑⃑ D. 14AB ⃑⃑⃑⃑⃑ +34AC ⃑⃑⃑⃑⃑ 【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得BE ⃑⃑⃑⃑⃑ =12BA ⃑⃑⃑⃑⃑ +12BC ⃑⃑⃑⃑⃑ ,之后应用向量的加法运算法则-------三角形法则,得到BC ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ ,之后将其合并,得到BE ⃑⃑⃑⃑⃑ =34BA ⃑⃑⃑⃑⃑ +14AC ⃑⃑⃑⃑⃑ ,下一步应用相反向量,求得EB ⃑⃑⃑⃑⃑ =34AB ⃑⃑⃑⃑⃑ −14AC ⃑⃑⃑⃑⃑ ,从而求得结果. 详解:根据向量的运算法则,可得BE ⃑⃑⃑⃑⃑ =12BA ⃑⃑⃑⃑⃑ +12BC ⃑⃑⃑⃑⃑ =12BA ⃑⃑⃑⃑⃑ +12(BA ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ ) =12BA ⃑⃑⃑⃑⃑ +14BA ⃑⃑⃑⃑⃑ +14AC ⃑⃑⃑⃑⃑ =34BA ⃑⃑⃑⃑⃑ +14AC ⃑⃑⃑⃑⃑ , 所以EB ⃑⃑⃑⃑⃑ =34AB ⃑⃑⃑⃑⃑ −14AC ⃑⃑⃑⃑⃑ ,故选A. 点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.8. 已知函数f(x)=2cos2x−sin2x+2,则A. f(x)的最小正周期为π,最大值为3B. f(x)的最小正周期为π,最大值为4C. f(x)的最小正周期为2π,最大值为3D. f(x)的最小正周期为2π,最大值为4【答案】B【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为f(x)=2cos2x+2,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.详解:根据题意有f(x)=cos2x+1+cos2x+1=2cos2x+2,=π,所以函数f(x)的最小正周期为T=2π2且最大值为f(x)max=2+2=4,故选B.点睛:该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.9. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A. 2√17B. 2√5C. 3D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为√42+22=2√5,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.10. 在长方体ABCD−A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为A. 8B. 6√2C. 8√2D. 8√3【答案】C【解析】分析:首先画出长方体ABCD−A1B1C1D1,利用题中条件,得到∠AC1B=30°,根据AB=2,求得BC1=2√3,可以确定CC1=2√2,之后利用长方体的体积公式详解:在长方体ABCD−A1B1C1D1中,连接BC1,根据线面角的定义可知∠AC1B=30°,因为AB=2,所以BC1=2√3,从而求得CC1=2√2,所以该长方体的体积为V=2×2×2√2=8√2,故选C.点睛:该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长久显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.11. 已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1 , a),B(2 , b),且cos2α=23,则|a−b|=A. 15B. √55C. 2√55D. 1【答案】B【解析】分析:首先根据两点都在角的终边上,得到b=2a,利用cos2α=23,利用倍角公式以及余弦函数的定义式,求得a 2=15,从而得到|a |=√55,再结合b =2a ,从而得到|a −b |=|a −2a |=√55,从而确定选项.详解:根据题的条件,可知O,A,B 三点共线,从而得到b =2a , 因为cos2α=2cos 2α−1=2⋅(√a 2+1)2−1=23,解得a 2=15,即|a |=√55,所以|a −b |=|a −2a |=√55,故选B.点睛:该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果. 12. 设函数f (x )={2−x , x ≤01 , x >0,则满足f (x +1)<f (2x )的x 的取值范围是A. (−∞ , −1]B. (0 , +∞)C. (−1 , 0)D. (−∞ , 0) 【答案】D【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有f (x +1)<f (2x )成立,一定会有{2x <02x <x +1,从而求得结果.详解:将函数f(x)的图像画出来,观察图像可知会有{2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(−∞ , 0),故选D.点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.二、填空题(本题共4小题,每小题5分,共20分)13. 已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a =________. 【答案】-7【解析】分析:首先利用题的条件f (3)=1,将其代入解析式,得到f(3)=log 2(9+a)=1,从而得到9+a =2,从而求得a =−7,得到答案.详解:根据题意有f(3)=log 2(9+a)=1,可得9+a =2,所以a =−7,故答案是−7.点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.14. 若x , y 满足约束条件{x −2y −2≤0x −y +1≥0y ≤0,则z =3x +2y 的最大值为________.【答案】6【解析】分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式y =−32x +12z ,之后在图中画出直线y =−32x ,在上下移动的过程中,结合12z 的几何意义,可以发现直线y =−32x +12z 过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值. 详解:根据题中所给的约束条件,画出其对应的可行域,如图所示:由z =3x +2y 可得y =−32x +12z , 画出直线y =−32x ,将其上下移动,结合z2的几何意义,可知当直线过点B 时,z 取得最大值, 由{x −2y −2=0y =0,解得B(2,0),此时z max =3×2+0=6,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.15. 直线y =x +1与圆x 2+y 2+2y −3=0交于A , B 两点,则|AB |=________. 【答案】2√2【解析】分析:首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长.详解:根据题意,圆的方程可化为x 2+(y +1)2=4, 所以圆的圆心为(0,−1),且半径是2,根据点到直线的距离公式可以求得d =√12+(−1)2=√2,结合圆中的特殊三角形,可知|AB |=2√4−2=2√2,故答案为2√2.点睛:该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.16. △ABC 的内角A , B , C 的对边分别为a , b , c ,已知bsinC +csinB =4asinBsinC ,b 2+c 2−a 2=8,则△ABC 的面积为________. 【答案】2√33【解析】分析:首先利用正弦定理将题中的式子化为sinBsinC +sinCsinB =4sinAsinBsinC ,化简求得sinA =12,利用余弦定理,结合题中的条件,可以得到2bccosA =8,可以断定A 为锐角,从而求得cosA =√32,进一步求得bc =8√33,利用三角形面积公式求得结果. 详解:根据题意,结合正弦定理可得sinBsinC +sinCsinB =4sinAsinBsinC ,即sinA =12, 结合余弦定理可得2bccosA =8,所以A 为锐角,且cosA =√32,从而求得bc =8√33, 所以△ABC 的面积为S =12bcsinA =12⋅8√33⋅12=2√33,故答案是2√33. 点睛:该题考查的是三角形面积的求解问题,在解题的过程中,注意对正余弦定理的熟练应用,以及通过隐含条件确定角为锐角,借助于余弦定理求得bc=8√33,利用面积公式求得结果.三、解答题:共70分。
(word完整版)2018年高考文科数学(全国I卷)试题及答案,推荐文档
绝密★启用前2018 年普通高等学校招生全国统一考试文科数学注意事项: 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A = {0,2} , B = {- 2,- 1,0,1,2} ,则 A B A. {0, 2}B.{1, 2}2.设 z 1 i 2i ,则| z |1iC. {0}D. {2,1,0,1,2}A. 0B. 1 2C. 1D. 23. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入 变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4. 已知椭圆C:x22 y2 1 的一个焦点为(2, 0) ,则 C 的离心率为a41 A. 3B. 1 2C. 2 2D. 2 2 35. 已知圆柱的上、下底面的中心分别为 O1 , O2 ,过直线 O1O2 的平面截该圆柱所得的截面是面积为8 的正方形,则该圆柱的表面积为A. 12 2πB. 12πC. 8 2πD. 10π6. 设函数 f (x) x3 (a 1)x2 ax . 若 f (x) 为奇函数,则曲线 y f (x) 在点(0, 0) 处的切线方程为A. y 2xB. y xC. y 2xD. yx7. 在 △ABC 中,AD 为 BC 边上的中线,E 为 AD 的中点,则 EB 文科数学试题 第 1 页(共 10 页)A.3 AB1 AC 44C.3 4AB1 4ACB.1 4AB3 4ACD.1 4AB3 4AC8. 已知函数 f (x) 2 cos2 x sin2 x 2 ,则A. f (x) 的最小正周期为π ,最大值为 3B. f (x) 的最小正周期为π ,最大值为 4C. f (x) 的最小正周期为 2π ,最大值为 3D. f (x) 的最小正周期为 2π ,最大值为 49. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 M 在正视图上的对应点为 A,圆 柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为A. 2 17 B .2 5 C. 3 D. 210. 在长方体 ABCD A1B1C1D1 中, AB BC 2 , AC1 与平面 BB1C1C 所成的角为 30 ,则该长方体的体积为A. 8B. 6 2C. 8 2D. 8 311. 已知角 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A(1,a) , B(2,b) , 且cos2 2 ,3则| a b |1A.5B. 5 5C. 2 5 5D. 12x , x ≤ 0, 12. 设函数 f (x) 则满足 f (x 1) f (2x) 的 x的取值范围是1, x 0,A.(, 1]B. (0, )C.(1, 0)D. (, 0)二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2018年全国统一高考数学试题(文)(Word版,含答案解析)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年河南高考数学(文科)高考试题(word版)(附答案)
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}02A =,,{}21012B =--,,,,,则A B =A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A.0B .12C .1D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 8.已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -= A .15B .55C .255D .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.三、解答题:共70分。
2018年高考真题——文科数学(全国卷Ⅰ)+Word版含答案
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B = A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13B .12C .22D .2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A.43AB -41AC B. 41AB -43AC C. 43AB +41AC D. 41AB +43AC 8.已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .210.在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -= A .15B .55C .255D .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题:本题共4小题,每小题5分,共20分。
2018年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)
2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.36.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x7.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.28.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+49.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国1卷-文科数学试卷及答案(清晰word版)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =I A .{0,2} B .{1,2}C .{0}D .{2,1,0,1,2}--2.设1i2i 1iz -=++,则||z = A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为A .13B .12C .2 D .225.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u rA .3144AB AC -u u u r u u u r B .1344AB AC -u u ur u u u rC .3144AB AC +u u u r u u u rD .1344AB AC +u u ur u u u r8.已知函数22()2cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为4 9.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||a b -= A .15B .5 C .25D .112.设函数2,0,()1,0,x x f x x -⎧=⎨>⎩≤ 则满足(1)(2)f x f x +<的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞二、填空题:本题共4小题,每小题5分,共20分。
2018年高考文科数学试卷及详解答案
如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:Zzz6ZB2Ltk
<I)BE=EC;
<II)AD·DE=2PB2。
【解读】
<1)
<2)
(23)<本小题满分10分)选修4-4:坐标系与参数方程
【答案】 3
【解读】
<16)数列 满足 = , =2,则 =_________.
【答案】
【解读】
(7)解答题:解答应写出文字说明过程或演算步骤。
(15)<本小题满分12分)
四边形ABCD的内角A与C互补,AB=1,BC=3, CD=DA=2.
(I>求C和BD;
(II>求四边形ABCD的面积。
【答案】 (1> (2>
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
<1)已知集合A=﹛-2,0,2﹜,B=﹛ | - - ﹜,则A B=
(A> <B) <C) (D>
【答案】B
所以,市民对甲、乙部门的评分大于90的概率分别为0.1,0.16
(20)<本小题满分12分)
设F1 ,F2分别是椭圆C: <a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N。LDAYtRyKfE
<I)若直线MN的斜率为 ,求C的离心率;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
河南省2018年普通高等学校招生全国统一考试
文科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需
改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={0,2},B={ -2,-1,0,1,2},则A∩B=
A. {0,2}
B. {1,2}
C. {0}
D. {-2,-1,0,1,2}
2,设z=,则∣z∣=
A. 0
B.
C. 1
D.
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论中不正确的是
A. 新农村建设后,种植收入减少
B. 新农村建设后,其他收入增加了一倍以上
C. 新农村建设后,养殖收入增加了一倍
D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为
A.
B.
C.
D.
5.已知椭圆的上、下底面的中心分别为O₁,O₂,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为
A. 12π
B. 12π
C. 8π
D. 10π
6.设函数f(x)=x ³+(a-1)x ²+ax。
若f(x)为奇函数,则曲线y= f(x)在点(0,0)处的切线方程为
A. y=-2x
B. y=-x
C. y=2x
7.在∆ABC中,AD为BC边上的中线,E为AD的中点,则=
A. -
B. -
C. +
D. +
8.已知函数f(x)=2cos ²x-sin ²x+2,则
A. f(x)的最小正周期为π,最大值为3
B. 不f(x)的最小正周期为π,最大值为4
C. f(x)的最小正周期为2π,最大值为3
D. D. f(x)的最小正周期为2π,最大值为4
9.某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为
A.
B.
C. 3
D. 2
10.在长方体ABCD-A₁B₁C₁D₁中,AB=BC=2,AC ₁与平面BB1C1C所成的角为30°,则该长方体的体积为
B.
C.
D.
11.已知角a的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2a=,则=
A.
B.
C.
D. 1
12.设函数f(x)=则满足f(x+1)< f(2x)的x的取值范围是
A. (-∞,-1]
B. (0,+∞)
C. (-1,0)
D. (-∞,0)
填空题(本大题共4小题,每小题____分,共____分。
)
13.已知函数f(x)=(x²+a),若f(3)=1,则a=____。
14.若x,y满足约束条件则z=3x+2y的最大值为____。
15.直线y=x+1与圆x²+y²+2y-3=0交于A,B两点,则∣AB∣=____。
16. △ABC的内角A,B,C的对边分别为a,b,c,已知bsinC+csinB=4asinBsinC,b²+c²-a²=8,则△ABC的面积为____。
简答题(综合题)(本大题共7小题,每小题____分,共____分。
)
17.(12分)已知数列{}满足a₁=1,n=2(n+1),设。
(1)求b₁,b₂,b₃;
(2)判断数列{}是否为等比数列,并说明理由。
(3)求{}的通项公式。
18.(12分)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M 到达点D的位置,且AB⊥DA。
(1)证明:平面ACD⊥平面ABC;
(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q-ABP的体积。
19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m³)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
使用了节水龙头50天的日用水量频数分布表
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图;
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m³的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数
据以这组数据所在区间中点的值作代表)
20.(12分)
设抛物线C:y ²=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点,
(1)当l与x轴垂直时,求直线BM的方程;
(2)证明:∠ABM=∠ABM。
21.(12分)
已知函数f(x)=aex--1。
(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;
(2)证明:当时,f(x)≥0。
22.选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C ₁的方程为y=k+2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C ₂的极坐标方程为p ²+2pcos θ-3=0。
(1)求C₂的直角坐标方程;
(2)若C₁与C₂有且仅有三个公共点,求C₁的方程。
23.选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
[选修4-5:不等式选讲](10分)
已知f(x)=∣x+1∣-∣ax-1∣。
(1)当a=1时,求不等式f(x)>1的解集;
(2)若x∈(0,1)时不等式是f(x)>x成立,求a的取得范围。
答案
单选题
1. A
2. C
3. A
4. C
5. B
6. D
7. A
8. B
9. B 10. C 11. B 12. D 填空题
13.
-7
14.
6
15.
16.
简答题
17.
18.
19.
20.
21.
22.
23.
解析
单选题
略略略略略略略略略略略略填空题
略略略略
简答题
略略略略略略略。