弹塑性力学第6章

合集下载

6弹塑性力学基本求解方法

6弹塑性力学基本求解方法

d r
dr
1 r
(2
r
)
0
代入几何方程和物理方程,整理可得
d 2ur 2 dur 2 ur 0 dr 2 r dr r 2
第六章 弹性力学基本求解方法
❖位移法应用——错配球
解此微分方程,其一般解为:
由 r 时 ur 0 C1 0
ur
C1r
C2 r2
由 r r1 时 ur r0 C2 r0 (1 )2 r02 r03
l 2
h/2
x
ydy
0
第六章 弹性力学基本求解方法
❖应力函数——逆解法
于是可求得:
B
r 5h2
,C
l2r 4h2
10r,
D
3 4
r
x
所以 y
xy
第六章 弹性力学基本求解方法
❖应力函数——逆解法 总结:应力函数设计
1.集中载荷——按材料力学方法求解 2.均布载荷—— f (xi2 ) 3.线性分布载荷—— f (xi3 ) 4.非线性分布载荷—— f (xi4 xi8 )
r1
r0
r0
)
—— 错配度
分析:基体变形为球对称变形,则
ur 0 u u 0
边界条件:
r , ur 0 (符合圣维南原理)
第六章 弹性力学基本求解方法
❖位移法应用——错配球
根据应力平衡微分方程
R0

r r
1 r
r
r r sin
1 r
(2
r
r ctg ) 0
r
r
0
r
r
ur
r0
(
r0 r
)2
由几何方程可得

薄圆筒、柱 弹塑性力学详解

薄圆筒、柱 弹塑性力学详解

(6 11)
(6 12)
du i d u i ;
vi)弹塑性交界处的连接条件:如果交界面 的法向为ni ,则在 上有: (a)法向位移连续条件 du i (b)应力连续条件
(E)
ni du i ni ;
( p)
( p)
(6 13)
(6 14)
d ij ni d ij ni ;
无量纲化后得到:
(6-19)
d d d , d d 20)
消去 d 得:
(6 21)
简单的弹塑性问题
2 由(6-18)式知 1 及 d d 0,

d d d / 1 2
塑性力学
第六章 简单的弹塑性问题
§6.1
弹塑性边值问题的提法
§6.2 “薄壁筒”的拉、扭联合变形
§6.5 “柱体”的弹塑性自由扭转
§6.6 受内压的“厚壁圆筒”
简单的弹塑性问题
§6.1 弹塑性边值问题的提法
一、弹塑性全量理论边值问题
设在物体V内给定体力 Fi ,在应力边界 ST 上给定面力Ti ,在位移 边界Su 上给定位移 u i ,要求应力 ij ,应变 ij ,位移 ui ,它们满足 以下方程和边条件:
(E)
上标(E)和(P)分别表示弹性区和塑性区。
简单的弹塑性问题
§6.2 “薄壁筒” 的 拉、扭变形
考察薄壁圆筒承受拉力P 和扭矩T 联合作用的弹塑性变形问题。采用圆柱坐 标,取z 轴与筒轴重合。设壁厚为h ,筒的内外平均半径为R ,则筒内应力 为:
z P / 2Rh , z T / 2R 2 h,
(6-10)
1 2v d kk d kk , E d d ij 0, 0, ij d hd , d d 0, ij ij

塑性力学简单的弹塑性问题优秀课件

塑性力学简单的弹塑性问题优秀课件

一、按增量理论求解
对理想弹塑性材料,增量本构方程是 Prandtl-Reuses 关系,于是:
d z
1 E
d z
d
2 3
z
,
1 2
d z
1 2G
dz
d
z
(6-19)
无量纲化后得到:
消去 d 得:
d d d, d d d,
d d d d
(6-20)
(6 21)
由(6-18)式知 1 2 及 d d 0,
路径①沿OBC。在B点有0 0, 0 0。
A
在BC段上有 1 ln1 , 2 1
D ③
解出 e2y 1 tanh ,
e2y 1
O
在C点
e2 e2
1 1
0.76,
1 2 0.65
(6 30)
C ①
B
类似地,对路径②,即阶梯变形路径OAC可求得 0.76和 0.65
路径③是比例加载路径ODC,其上 d d 。在到达D点时,
Tp 2 A pdxdy
6 100
就是截面的塑性极限扭矩。
仍以半径为a的圆柱体为例,它处于全塑性扭转状态时, p 表面必然是一个
圆锥,既然斜率是 s , 高度就应为 sa,按(6-100)式求出
Tp
2 3
sa3.
6 101
与(6-96)式相比可知对圆柱体
Tp / Te 4 / 3.
6 102
塑性力学简单的弹 塑性问题
塑性力学
第六章 简单的弹塑性问题
§6.1 弹塑性边值问题的提法 §6.2 薄壁筒的拉扭联合变形 §6.5 柱体的弹塑性自由扭转 §6.6 受内压的厚壁圆筒 §6.7 旋转圆盘

应用弹塑性力学习题解答

应用弹塑性力学习题解答

应用弹塑性力学习题解答目录第二章习题答案设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。

解该平面的法线方向的方向余弦为而应力矢量的三个分量满足关系而法向分量满足关系最后结果为利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。

解求出后,可求出及,再利用关系可求得。

最终的结果为已知应力分量为,其特征方程为三次多项式,求。

如设法作变换,把该方程变为形式,求以及与的关系。

解求主方向的应力特征方程为式中:是三个应力不变量,并有公式代入已知量得为了使方程变为形式,可令代入,正好项被抵消,并可得关系代入数据得,,已知应力分量中,求三个主应力。

解在时容易求得三个应力不变量为,,特征方程变为求出三个根,如记,则三个主应力为记已知应力分量,是材料的屈服极限,求及主应力。

解先求平均应力,再求应力偏张量,,,,,。

由此求得然后求得,,解出然后按大小次序排列得到,,已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。

解特征方程为记,则其解为,,。

对应于的方向余弦,,应满足下列关系(a)(b)(c)由(a),(b)式,得,,代入(c)式,得,由此求得对,,代入得对,,代入得对,,代入得当时,证明成立。

解由,移项之得证得第三章习题答案取为弹性常数,,是用应变不变量表示应力不变量。

解:由,可得,由,得物体内部的位移场由坐标的函数给出,为,,,求点处微单元的应变张量、转动张量和转动矢量。

解:首先求出点的位移梯度张量将它分解成对称张量和反对称张量之和转动矢量的分量为,,该点处微单元体的转动角度为电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。

如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。

解:根据式先求出剪应变。

考察方向线元的线应变,将,,,,,代入其中,可得则主应变有解得主应变,,。

弹塑性力学第六章

弹塑性力学第六章

26
§6-3 平面问题的基本解法
当体力为常数或体力为零时,两个平面问题 的相容方程一致
2(x+y ) = 0
(x+y )为调合函数,与弹性系数无关,不
管是平面应力(应变)问题,也不管材料如何, 只要方程一致,应力解一致,有利实验。
2019/10/28
27
§6-3 平面问题的基本解法
3.2 应力函数解法 当体力为常量或为零时,按应力法解的
第六章 弹性力学平面问题的直 坐标系解答
§6-1平面问题的分类 §6-2平面问题的基本方程和边界条件 §6-3平面问题的基本解法 §6-4多项式应力函数运用举例
2019/10/28
1
第六章 弹性力学平面问题的直 坐标系解答
在第五章讨论了弹性力学问题的基本解法: 位移法和应力法,并结合简单的三维问题, 根据问题的特点,猜想问题的应力解或位移 解,并验证猜想的解是否满足应力法或位移 法的基本方程和边界条件,满足则为问题真 解。
1.1 平面应力问题
受力和约束特点:沿厚度(x3方向)均匀分
布,体力 f3 = fz = 0 , 面力 X 板表面无面力,坐标系(x1 ,
3 x2
Z ,
0 ,在薄
x3)放在板
厚中间平面——中平面,以z(或x3)轴垂直板
面。满足上述条件的问题称为平面应力问题
2019/10/28
7
§6-1平面问题的分类
最后应力分量解为其特解加通解:
x

y2

fx x,

y

x2

fy
y,
xy


2 xy
2019/10/28
35

弹塑性力学第6章—弹塑性力学问题的建立与基本解法

弹塑性力学第6章—弹塑性力学问题的建立与基本解法

6.3 塑性力学基本方程与边界条件
6.3.2 塑性力学问题的基本解法
对应于增量理论和全量理论,塑性力学问题采用不同的解法。
全量理论中塑性力学问题的提法:
已知作用于物体上的体力、边界面力(给定力边界上)、 边界位移增量(给定位移边界上)的加载历史,求解某一时刻 物体的应力场、应变场、位移场。
全量理论对应的解法:
θ = εx + ε y + εz
2 2 2 ∂ ∂ ∂ 2 , ∇ = 2 + 2 + 2 ∂x ∂y ∂z
6.2 弹性力学问题的基本解法
位移法:
上述位移法平衡方程表示为张量形式为
(λ + μ )u j , ji + μui, jj + fi = 0
位移法平衡方程的推导包含了平衡方程、几何方程和本构 方程的信息,求解时只需补充边界条件。 当边界条件为给定位移时,可以直接使用;当边界条件为 给定面力时,则可通过广义胡克定律和几何关系,将其中的 应力用位移来表示。
增量理论
e dε ij = dε ij + dε ijp
e ij
1 dε ij = ( dui , j + du j ,i ) 2
3v 其中弹性应变增量 dε = − dσ mδ ij 2G E
塑性应变增量 dε ijp = dλ
dσ ij
∂ϕ 3dε p , dλ = ∂σ ij 2σ s
6.3 塑性力学基本方程与边界条件
用张量公式表示为
1 ε ij = (ui , j + u j ,i ) 2
此外还可补充6个应变协调方程
6.1 弹性力学基本方程与边界条件
弹性力学基本方程
本构方程:

弹塑性力学习题集

弹塑性力学习题集

第二章应力
第四章本构关系
讨论:
s
σ3
h 3
h s
ε2
时,s 44h 本构方程为:
ε
σE =时,s )
1()
(111E
E
E E s s s -+=-+=σεεεσσs
εs
σ3
h 3
h
P
三杆均处于弹3
h 3h
P
03
h 3h
P
3
h 3
h
P
在弹塑性阶段,1杆虽然进入塑性状态,但由于其余两杆仍处于弹性阶段,1杆的塑性变形受到限制,整个桁架的变形仍限制在弹性变形的量级,这个阶段可称为约束的塑性变形阶段.在塑性阶段,三杆都进入塑性状态,桁架的变形大于弹性变形量
级.一般说来,所有的弹塑性结构在外力的作用下,都会有这样三个变形的阶段.
3
h 3
h
P
扭和内压作用,有应力分量
求:
比例从零开
多大时开始进入屈服?z ϕϕτ3=(2)开始屈服后,继续给以应力增量,满足0
=d γMises :
屈服准则为
21=z f σz z ϕϕτσσ32==代入上式得到屈服后,增量本构关系为:
z
z
z z d E G d d σστσλϕ898=
=
第五章 弹塑性力学问题的提法
第六章弹塑性平面问题
试求其应力分量。

图6.7 局部受均布载荷简支粱
的增大而迅速衰减。

工程弹塑性力学---平面应力应变问题的直角坐标解

工程弹塑性力学---平面应力应变问题的直角坐标解

第六章平面问题的直角坐标解知识点平面应变问题应力表示的变形协调方程应力函数应力函数与双调和方程平面问题应力解法逆解法简支梁问题矩形梁的级数解法平面应力问题平面应力问题的近似性应力分量与应力函数应力函数与面力边界条件应力函数性质悬臂梁问题楔形体问题一、内容介绍对于实际工程结构的某些特殊形式,经过适当的简化和力学模型的抽象处理,就可以归结为弹性力学的平面问题,例如水坝,受拉薄板等。

这些问题的特点是某些基本未知量被限制在平面内发生的,使得数学上成为二维问题,从而简化了这些问题的求解困难。

本章的任务就是讨论弹性力学平面问题:平面应力和平面应变问题。

弹性力学平面问题主要使用应力函数解法,因此本章的工作从推导平面问题的基本方程入手,引入应力函数并且通过例题求解,熟悉和掌握求解平面问题的基本方法和步骤。

本章学习的困难是应力函数的确定。

虽然课程讨论了应力函数的相关性质,但是应力函数的确定仍然没有普遍的意义。

这就是说,应力函数的确定过程往往是根据问题的边界条件和受力等特定条件得到的。

二、重点1、平面应变问题;2、平面应力问题;3、应力函数表达的平面问题基本方程;4、应力函数的性质;5、典型平面问题的求解。

§6.1 平面应变问题学习思路:对于弹性力学问题,如果能够通过简化力学模型,使三维问题转化为二维问题,则可以大幅度降低求解难度。

平面应变问题是指具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束的弹性体。

这种弹性体的位移将发生在横截面内,可以简化为二维问题。

根据平面应变问题定义,可以确定问题的基本未知量和基本方程。

对于应力解法,基本方程简化为平衡微分方程和变形协调方程。

学习要点:1、平面应变问题;2、基本物理量;3、基本方程;4、应力表示的变形协调方程1、平面应变问题部分工程构件,例如压力管道、水坝等,其结构及其承载形式力学模型可以简化为平面应变问题,典型实例就是水坝,如图所示这类弹性体是具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束。

弹塑性力学第6章—弹塑性力学问题的建立与基本解法

弹塑性力学第6章—弹塑性力学问题的建立与基本解法
#43; v ε ij = σ ij − δ ijσ kk E E
6.1 弹性力学基本方程与边界条件
弹性力学边界条件
应力边界条件 :
p x = σ x nx + τ yx n y + τ zx nz ⎫ ⎪ p y = τ xy nx + σ y n y + τ zy nz ⎬ ⎪ pz = τ xz nx + τ yz n y + σ z nz ⎭
⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭
因此,应力法求解弹性力学问题,归结为求满足3个平衡 方程,6个应变协调方程以及边界条件的6个应力分量。
6.3 塑性力学基本方程与求解方法
6.3.1 基本方程
塑性力学可采用增量理论或全量理论求解,相应的基本 方程与边界条件有所不同。
6.3 塑性力学基本方程与边界条件
6.3.2 塑性力学问题的基本解法
对应于增量理论和全量理论,塑性力学问题采用不同的解法。
全量理论中塑性力学问题的提法:
已知作用于物体上的体力、边界面力(给定力边界上)、 边界位移增量(给定位移边界上)的加载历史,求解某一时刻 物体的应力场、应变场、位移场。
全量理论对应的解法:
增量理论对应的解法:
根据增量理论的平衡方程、几何方 σ ij = σ ij + dσ ij ⎫ t +Δt t ⎪ 程、本构方程、屈服条件、边界条件, ⎪ 求出 t + Δ t时刻的应力增量、应变增量、 ε ij t +Δt = ε ij t + d ε ij ⎬ ⎪ 位移增量,从而获得此时的应力、应变 ui t +Δt = ui t + dui ⎪ ⎭ 和位移场。

弹塑性力学课件第六章

弹塑性力学课件第六章
时,各横截面除了在自身平面内绕轴线转动外,还发生了垂直于 截面的翘曲变形。因此,平面假定不再成立。由此可见,非圆形 截面杆的扭转问题比圆轴杆的扭转问题要复杂得多。
图 6.2 非圆形截面等直杆的扭转实验
2018/10/31
8
第六章 柱体扭转问题
柱体扭转问题的实验研究
为了简化问题,圣维南( Saint Venant)由实验观察中假定,任
意截面形状的柱体在发生自由扭转变形时,各个横截面的翘曲程度都
相同。这就是圣维南等翘曲假定。如果我们把轴取在柱体的轴线上, 根据等翘曲假定,就有
w w( x, y) ( x, y)
u zy v xz
刚性转动假定
u zy
v xz w ( x, y )
2 2
MT KT

MT KT
KT G ( x 2 y 2 x
A
y )dxdy y x y )dxdy y x
截面翘曲影响项
扭转刚度
G r 2 dxdy G ( x
第六章 柱体扭转问题
福州大学土木工程学院 卓卫东 教授
1
第六章 柱体扭转问题


柱体扭转问题的实验研究 基本方程
几个典型例子
柱体扭转问题的实验比拟方法
薄壁杆件的扭转问题
其他说明
2018/10/31
2
第六章 柱体扭转问题
引 言
柱体扭转问题在土木、机械等工程中是常见的一类问题。 所谓柱体扭转,是指圆柱体和棱柱体仅在端部受到扭矩的作 用,而且扭矩矢量与柱体的轴线方向重合。 本章将专门分析柱体扭转问题中较为简单的一类问题: 任意截面形状柱体的 自由扭转问题 ,即允许柱体在受扭变形 后的横截面自由翘曲的情形。关于柱体的 约束扭转问题 ,即 横截面的翘曲受到约束的情形,这里不进行讨论 。

弹塑性力学部分习题

弹塑性力学部分习题
2018/10/7 7
第六章 弹性力学平面问题的直 坐标系解答
§6-1平面问题的分类
§6-2平面问题的基本方程和边界条件
§6-3平面问题的基本解法
§6-4多项式应力函数运用举例
2018/10/7
8
第七章弹性力学平面问题的极坐 标系解答
§7-1平面极坐标下的基本公式 §7-2轴对称问题 §7-3轴对称应力问题——曲梁 的纯弯曲 §7-4圆孔的孔边应力集中问题 §7-5曲梁的一般弯曲 §7-6楔形体在楔顶或楔面受力
弹塑性力学
第 六 章 弹性力学平面问题的直角坐标系解答 第 七 章 弹性力学平面问题的极坐标系解答 第 八 章 等截面直杆的扭转 第 九 章 空间轴对称问题 第 十 章 弹性力学问题的能量原理 第 十一 章 塑性力学基础知识
2018/10/7
1
参考书目
1.徐芝纶, 弹性力学:上册 .第三版,高等教育
w k x, y
其中 k 为待定常数,(x‚y)为待定函数, 试写出应力分量的表达式和位移法方程。
2018/10/7
18
题1-6 半空间体在自重 g 和表面均布压力 q 作用下的位移解为 u = v = 0,
1 g 2 2 w q h z h z 2G 2
2018/10/7
在 V上
16
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
z l y
Fbz g
x
x
2018/10/7
17
题1-5 等截面直杆(无体力作用),杆轴 方向为 z 轴,已知直杆的位移解为
u kyz
v kxz

最新弹塑性力学第六章PPT课件

最新弹塑性力学第六章PPT课件

25.07.2024
21
§6-3 平面问题的基本解法
其中
2
2 x2
2 y2
平面应变问题:
G 2uG 1 12u, f0
25.07.2024
22
§6-3 平面问题的基本解法
边界条件:位移边界
u u , v v 在Su上
力的边界
X lx myx
Y lxymy (在S 上)
(应力需要用位移微分表示)
19
§6-2平面问题的基本方程和边界条件
力的边界条件: X n
Xlx myx
Ylxymy (在S上)
25.07.2024
20
§6-3 平面问题的基本解法
3.1 位移法 基本未知函数:u(x,y) , v(x,y)
基本方程两个:用 u , v 表示的平衡微分方程。 平面应力问题:
G 2uG 1 1 u, f0
2. 无体力作用时,应力函数及其一阶偏导数 的边界值可分别由边界的面力的主矩和主矢 量来确定。
25.07.2024
37
§6-3 平面问题的基本解法
( x)B ( x )A A B F y d S A B Y d S R y
B
B
( y)B( y)AAF xd SAX d SR x
y
x
c3
1
25.07.2024
48
§6-4 多项式应力函数运用举例
3. 取为三次项: (x,y)d1x3d2 x2yd3x2y d4y3
62 2 6
代入 4 =0, 满足。
将 代入应力分量与应力函数的关系式,得
25.07.2024
49
§6-4 多项式应力函数运用举例
x 2y2 d3xd4y

弹塑性力学-06旋转圆盘

弹塑性力学-06旋转圆盘

弹性区内的应力分量: 弹性区内的应力分量:
3 + µ 1 + 3µ rp 4 1 + 3µ rp 2 ( ) − ( ) + σ r = σ s − ρω p r [ 8 24 r 12 r
2 2
1 + 3µ 1 + 3µ r p 4 1 + 3µ r p 2 ( ) − ( ) σ θ = σ s − ρω p r [ − 8 24 r 12 r
σ θ = C1 −
C 2 1 + 3µ ρω 2 r 2 − 8 r2
σ r = C1 +
3. 实心圆盘: 实心圆盘:
C2 3 + µ − ρω 2 r 2 8 r2 C 2 1 + 3µ σ θ = C1 − 2 − ρω 2 r 2 8 r
半径为 b ,厚度为 h(h 远小于 b )的实心圆盘 ( 设外边界为自由边界。 设外边界为自由边界。 r=0 处,σr 与 σθ 为有限值:C2 = 0 为有限值: r=b 处,无面力: 无面力:
ω
r
σ θ σr
o h b
σθ
r b
r = 0 : σ r = σθ =
3+ µ ρω 2b 2 8
1− µ ρω 2 [(3 + µ )b 2 − 3(1 + µ )r 2 ] 应变分量: 应变分量: ε r = 8E 1− µ εθ = ρω 2 [(3 + µ )b 2 − (1 + µ )r 2 ] 8E
σθ
r o h b
ω
r
σ θ
σr
3+ µ r = 0 : σ r = σθ = ρω 2b 2 8
b

弹塑性力学-第6章 弹塑性平面问题

弹塑性力学-第6章 弹塑性平面问题

第六章 弹塑性平面问题任何一个弹塑性体实际上都是空间(三维)物体,且一般的载荷严格说来也是空间力系。

因此,所有弹塑性力学问题实际上都是空间问题,即所有的力学量都是坐标),,(z y x 的函数.但是,当所考察的物体(结构)及其所承受的载荷具有某些特点时,则可将它们近似地看作平面(二维)问题,即所有的力学量都是两个坐标(如y x ,)的函数,从而使问题得简化,且所得解答又具有工程所要求的精度.由第二章知,弹塑性力学平面问题可分为平面应力问题和平面应变问题两种,本章主要讨论弹塑性平面问题求解的一般方法。

6.1 弹性平面问题的基本方程由第二章己经知道,两类平面问题的基本未知量虽然是完全相同的,但非零的应力分量、应变分量和位移分量不是完全相同的。

1.1平衡方程无论是平面应力问题还是平面应变问题,由于在z 方向自成平衡,因此,两类问题的平衡方程均为⎪⎪⎭⎪⎪⎬⎫=+∂∂+∂∂=+∂∂+∂∂00Y y x X y x yxy xyx σττσ (6。

1—1)1。

2几何方程由于只需要考虑面内的几何关系,因此,对于两类平面向题均有 xvy u ,yv ,xuxy y x ∂∂+∂∂=∂∂=∂∂=γεε (6.1—2) 由式(6。

1—2)可得到平面问题的变形协调方程为y x xy xyy x ∂∂∂=∂∂+∂∂γεε22222 (6.1—3) 1。

3本构关系两类平面问题的非零应力分量和应变分量不相同,因此,由广义虎克定律所得本构方程也必然不尽相同.(1)平面应力问题对于平面应力问题,因,0=z σ 0==zx yz ττ,根据广义虎克定律显然有0==zx yz γγ。

因此本构方程为⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫+=+-=-=-=xy xy y x z x y y y x x E EE Eτνγσσνενσσενσσε)1(2)()(1)(1 (6。

1—4a ) 或⎪⎪⎪⎭⎪⎪⎪⎬⎫+=+-=+-=xyxy x y y y x x E E E γντνεενσνεενσ)1(2)(1)(122(6。

弹塑性力学 第六章 塑性力学基本概念

弹塑性力学   第六章 塑性力学基本概念

理想刚塑形模型???
2、线性硬化模型:硬化阶段曲线为线性
将硬化阶段的曲线简化为一条直线,即连续的应力-应 变关系曲线OAA’C简化为两条直线组成的折线OAC。 第一条直线OA代表线 弹性变形性质,其斜 率为E ;第二条直线 AC代表强化性质 ,其 斜率为Et。

b B
s
C
s,
s,
• 影响材料性质的其它几个因素: 1. 温度。当温度上升,材料屈服应力降低、塑性变形 能力提高。高温下,会有蠕变、应力松弛现象。 2. 应变速率。如果在实验时加载速度提高几个数量级, 则屈服应力会相应地提高,塑性变形能力会降低。一 般加载速度不考虑这个因素。高速撞击载荷或爆炸载 荷需要考虑。
§6.3 单轴应力-应变关系的简化模型
屈服条件(加载条件)
s
p
A
*
将累积塑性变形量作为内变量
H O E
k ( dε ) 0
p
*
k函数称为硬化函数,初值:
k (0) s
B‘

• (2)随动硬化模型: • 对一些材料有包辛 格效应的材料,应 变硬化提高了材料 的拉伸屈服应力, 在反向加载(压缩) 时,压缩屈服应力 降低。 • 这种硬化特征称为 随动硬化。
6.2 材料实验结果
一、单轴拉伸实验 • 材料塑形变形性质通过试验研究获得。
• 最简单实验是室温单轴拉压实验: •材料:金属多晶体材料 •试件如图
•名义应力和名义应变定义为
P / A0
A0
l l0 / l0
l0
--材料的单轴拉伸实验曲线有如图所示两种形态。
conditional yield limit 条件屈服极限

弹塑性力学第6章

弹塑性力学第6章

he
he
h
he M 2 b ydy 2 b ydy
y
0
he
弹性区:0 y he
y he
s
塑性区:he y h s
①弹塑性状态弹塑性弯矩
M= 2
h02e b3he2hybe2ss
dy
h
b2s
he
bh2
sydhye2
bh2
s
1
1 3
he h
2
he
h 弹性极限状态
M=Me
梁弹塑性弯曲的基本假定条件:
①平断面假定条件;
②不考虑纤维层之间的挤压应力;
③在弹性区: x x 呈线性关系;
在塑性区: 仅考虑应力
x 对屈服条件的影响
对于理想弹塑性材料
x
x
E
x e
x s x e
6.2 梁的弹塑性纯弯曲问题
截面具有两个对称面的梁在理想弹塑性材料时, 截面上的应力随着进入塑性阶段不同可能会出现 三种情况:(具有两对对称轴三个阶段中性层位置不变)
x s
s
s
Me
x s
弹性极限状态
弹塑性状态
he
Mp
he
塑性极限状态
(1)弹性极限状态
①弹性极限状态下弯矩值——弹性极限弯矩
Me
2 3
h2b s
We s
We
We
2 3
bh2
②弹性极限状态下梁曲率——ke
s
h
e
1 Eh
Me We
h
s
We
bH 6
2
e
2 s
EH
(2)塑性极限状态
①塑性极限状态下弯矩值——塑性极限弯矩 M p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=EI x
y

y
梁进入到弹塑性状态时,M= EI 不成立 如何求解此时的曲率? ①利用平断面假定
x y x
x
E
y
he he
②弹性核内虎克定律仍然成立: ③在h=he高度上的曲率就是弹塑性梁 在该点的曲率 s s
E
he
Ehe
弹塑性状态梁曲率
线性强化材料的应力应变曲线: h
M
he 2
2 b ydy 2 b ydy
0
he
E1 y =2 b s dy 2 by E1 s 1 dy E he he 0

h
he


1
y
2 E ss 2h E11 b s EE dy 22bby dy 1y sy 1y s 1 3 Eh E Eh E e h
利用以上公式已知弹塑性梁截面的弯矩就
可确定梁在该截面的弯曲曲率
2、理想弹塑性材料非矩形断面在各种阶段中性层求解
具有一个对称轴截面求解的基本思想 截面上力的平衡条件

A
x
dA 0
例题 等腰三角形截面截面中性层位置求解. 顶部、底部、全部达到屈服时中心轴y距底边 的高度
线性强化材料:
y g g s e E1 s E1 s E1 E1 s 1 E E

s
Ehe
Eh e he 弹塑性状态梁曲率与弹性极限状态下梁曲率的比: k h
得出梁在弹塑性状态下曲率与弯矩的关系:

e 已知弹性极限状态下梁曲率:
s
he M = 3-2 h Me
e
M = 3-2 k Me
2 M 1 e 3 Me 2 k
具有该类求解特点的问题有:
①圆形截面杆的弹塑性扭转问题; ②轴对称和球对称的问题; ③简单桁架问题。
简单梁的弹塑性弯曲问题的特点: 在平衡方程中和屈服函数条件中,未知函 数和方程式的数目相等。 求解的特点: 结合边界条件及力的平衡条件可直接 求出应力分布;
应变和位移则根据物理关系和几何的 连续方程求出。
2 d v 得: 2 dx
s
M Eh 3-2 Me
d 2v 2 dx
s
M Eh 3 1 M p
得弹塑性区挠度函数: v x (
s
M x Eh 3 1 M p
dx )dx ax b
悬臂梁固定端达到塑性极限弯曲最大挠度位移
4、矩形截面弹塑性梁的挠度位移求解 求解基本思想: ①找到梁上完全弹性区与弹塑性区的分界点 ②根据M分布——求解完全弹性区内挠度 弯曲分布已知时,可直接通过 在弹性区:
M>or<Me
判断
M=EIv"
成立
M v x = dx dx cx d EI ③根据M分布——求解弹塑性区内挠度
④根据弹塑性区与完全弹性区交点上变形连续条件 求得待定参数
思路: A)利用在弹塑性区域弹性核高与弯曲分布的关系
M he =h 3-2 Me
M he =h 3 1 M p
B)弹性核高位置应力已知得到曲率与弯曲分布的关系 d 2v s he s he 1 s 弹塑性区: s 2 E Ehe dx Ehe
得弹性核高度与弹塑性弯矩间的关系
he M = 3-2 h Me
该公式的用途之一: 已知梁截面上的弹塑性弯矩数据
——可直接确定截面上的弹性区与塑
性区的交线,进而求得截面上的应力分布
得弹性核高度与弹塑性弯矩间的关系
②梁的曲率与弯矩的关系 梁在弹性状态下,梁的曲率与弯矩具有下面的关
d 2v 1 M= EI 2 = EI 系: d x
bH We 6
2
h
s
2 s e EH
(2)塑性极限状态 ①塑性极限状态下弯矩值——塑性极限弯矩 M p 2 M p bh s Wp s W p 塑性断面剖面模数
s
Wp bh
2
②塑性极限状态下梁曲率ຫໍສະໝຸດ h 0 p e
s
Eh
梁的曲率可以无限增长。可将截面视为一个“铰” 塑性铰 与通常铰的区别: *塑性铰上作用有大小保持为 M p 的弯矩; *塑性铰转动角度的方向必须与作用的弯矩方向一致。
第六章 梁的弹塑性弯曲
6.1 简单梁弹塑性弯曲问题
一个实际的弹塑性力学问题与弹性力学问题一样 在数学上总能归结为, 一个偏微分方程组的边值 问题。因此需要在严格的边界条件下求解复杂的 偏微分方程组。由于往往难以克服数学上的困难, 所以在一般情况下很难求得问题的解析解或精确 解,而只有一些简单的问题,才存在解析解。
梁弹塑性弯曲的基本假定条件: ①平断面假定条件; ②不考虑纤维层之间的挤压应力; ③在弹性区: x 在塑性区:
x
呈线性关系;
仅考虑应力
x 对屈服条件的影响
x x e
对于理想弹塑性材料 x E
x s x e
6.2 梁的弹塑性纯弯曲问题 截面具有两个对称面的梁在理想弹塑性材料时, 截面上的应力随着进入塑性阶段不同可能会出现 三种情况: (具有两对对称轴三个阶段中性层位置不变)
2 e
he

h h

e

e

E1 2 h3 he 2 he2 2 h b s h b s E 3 he 3 3
2

s
Ehe
y
s
Ehe
3、理想弹塑性材料矩形截面梁塑性区的判断
矩形截面在理想弹塑性状态梁弹性核与弯矩的 关系
2 1 he 2 M bh s 1 3 h
he =0
he =h
x=0
l x= 3
当x=l/3时截面完全处于 弹性工作状态
M Mp

2 x 1
l2

Mp
M he =h 3 1 M p
x=0.577l x=0.577l
he =0
he =h
x he = 3h l
x=0
x= l 3
此时截面完全处于 弹性工作状态
he M = 3-2 h Me
M he = 3 1 M h p
当梁的弯矩分布已知时, 可通过上式求出核高沿杆件的分布
简支梁 极限情况:
M Mp 1 x
Mp

l

x= l 3 x= l 3
M he =h 3 1 M p
x he =h 3 l
x s
s
he he
s
Mp
Me
x s
弹性极限状态 弹塑性状态
塑性极限状态
(1)弹性极限状态
2 2 M e h b s We s 3
s
①弹性极限状态下弯矩值——弹性极限弯矩
We
2 2 We bh 3
②弹性极限状态下梁曲率——ke
h
1 Me e Eh We
2 1 he 2 bh s 1 3 h
he
2 2 e
h


he h
2 2 弹性极限状态 M=M e bh s 3
he 0 塑性极限状态 M=M p bh2 s
3M e b s h = 2
2
he M = 3-2 h Me
例题 已知理想弹塑性材料制成的悬臂梁(如图),设集中载荷 作用于梁的自由端处,而梁的截面是矩形。若杆件处于极 限工作状态,而弯矩小于 M e的线段长度为 xe ,试求自由 端处的挠度值 P h
弹性极限弯矩、塑性极限弯矩的特点 矩形截面
是矩形截面形状固有的性质 定义:
2 2 2 M e bh s M p bh s 3
Mp Me

Wp We
——截面形状系数
它表达了按塑性极限弯矩设计与弹性极限弯矩设 计时梁截面的强度比。 显然:矩形截面的形状系数=1.5 形状系数仅与截面形状相关。
其他截面形状系数
s
(3)梁弹塑性状态分析
he he
y
弹性核的高度he
M 2 b ydy 2 b ydy
0
he
h
he
弹性区:0
y he
yh
塑性区:he
s
y s he
①弹塑性状态弹塑性弯矩
2h y 2 2 2 b ydy b s h s he ss dy M= 2 b hb he 0 3 e
相关文档
最新文档