初中数学公开课概率的意义优秀教学设计及反思
初中数学《概率的意义2》教案
《15.1.2概率的意义二》教学设计及评析活动二诱导尝试,探究新知例:甲、乙两人做如下的游戏:如图是一个均匀的骰子,它的每个面上分别标有数字1,2,3,4,5,6。
任意掷出骰子后,若朝上的数字是6,则甲获胜;若朝上的数字不是6,则乙获胜你认为这个游戏对甲、乙双方公平吗?用下图表示事件发生的可能性:你能在上图中大致表示“朝上的数字是6”和“朝上的数字不是6”的可能性“朝上的数字是6” 的可能性在什么范围内?“朝上的数字不是6” 的可能性在什么范围内?【教师活动】1、出示问题使学生清楚游戏规则2、让学生感知游戏是否公平?3、让学生解释为什么游戏不公平?4、出示图例使学生很直观,形象的看出骰子朝上的数字是6的概率和骰子朝上的数字不是6的概率。
5、要求学生观察图例分别说出其相应的概率。
【学生活动】1、阅读游戏规则2、初步感知游戏是否公平?和其他同学交流。
3、观察图例分别说出其相应的概率。
【媒体使用】【赏析】1、经历将实际问题转化为数学问题的过程,认识数学与实际的密切联系。
2、经历用数学理论解决实际问题的认知过程,帮助学生获得观察类比、归纳猜想的数学活动经验,培养学生清晰而有条理地表达自己的思考过程的思维能力和科学意识。
活动三变式训练,巩固新知习题1.任意抛掷一枚均匀的骰子,骰子停止转动后,朝上的点数可能,有哪些可能.2.必然事件的概率为_____,不可能事件的概率为______,不确定事件的概率范围是______.【教师活动】1、出示题组一,提出答题要求,根据学生回答,适时评价学生的表现,用PPT展示确认。
2、出示题组二,处理同(1)。
3、出示题组三,采取自愿原则,选出4-5名学生登台展示并讲解;关注学困生;引导学生对解答情况进行评价。
4、题组4、5、6处理办法同练习1。
5、出示题组7,引导学生探求解题策略,教师着重强调并板书。
【媒体使用】出示题组一、二、三、四、五、六、七及其部分答案。
【赏析】1、通过练习活动,从不同角度,不同视角进一步加深对概率意义的理解,使学生感悟数学来源于生活并应用生活的道理。
概率的意义教学教案
概率的意义教学教案第一章:概率的引入1.1 现实生活中的概率现象引入彩票中奖、抛硬币、掷骰子等实例,让学生感受概率现象的存在。
引导学生思考:为什么有些事件会发生?为什么有些事件不会发生?1.2 概率的定义与符号解释概率的概念:事件发生的可能性。
介绍概率的符号表示:P(A)。
举例说明如何表示不同事件的概率。
第二章:概率的基本性质2.1 概率的范围强调概率的取值范围:0 ≤P(A) ≤1。
解释概率为0和1的含义。
2.2 概率的加法规则介绍两个互斥事件概率的加法规则:P(A ∪B) = P(A) + P(B)。
举例说明如何应用加法规则计算概率。
第三章:条件概率与独立事件3.1 条件概率的定义解释条件概率的概念:在已知事件B发生的条件下,事件A发生的概率。
介绍条件概率的符号表示:P(A|B)。
3.2 独立事件的概率定义独立事件的概率:事件A与事件B发生的概率等于事件A的概率乘以事件B的概率,即P(A ∩B) = P(A)P(B)。
举例说明如何判断事件是否独立。
第四章:贝叶斯定理4.1 贝叶斯定理的定义解释贝叶斯定理:在已知事件B发生的条件下,事件A发生的概率的计算方法。
给出贝叶斯定理的数学表达式:P(A|B) = (P(B|A)P(A)) / P(B)。
4.2 应用贝叶斯定理解决实际问题通过实例让学生学会使用贝叶斯定理计算概率。
引导学生思考:如何根据观测结果推断未知概率?第五章:概率分布与期望值5.1 概率分布的概念解释离散随机变量的概率分布:随机变量取每个可能值的概率。
介绍连续随机变量的概率密度函数。
5.2 期望值的计算定义期望值:随机变量取值的加权平均。
给出期望值的计算公式:E(X) = Σ[x_i P(X=x_i)]。
举例说明如何计算期望值。
第六章:概率的运算规则6.1 概率的乘法规则介绍两个相互独立事件概率的乘法规则:P(A ∩B) = P(A)P(B)。
解释如何应用乘法规则计算复杂事件的概率。
人教版九年级数学上册教案:25.1.2概率的意义
2.教学难点
-概率的意义:学生可能难以理解概率是一个相对的概念,需要通过实例和练习来强化。
-概率的求法:在实际问题中,如何正确运用列举法、树状图法求解概率,对于学生来说是难点。
-概率的性质:学生可能难以理解为何概率的取值范围在0到1之间,需要通过具体实例解释。
人教版九年级数学上册教案:25.1.2概率的意义
一、教学内容
人教版九年级数学上册教案:25.1.2概率的意义
1.了解概率的定义,理解概率是反映事件发生机会的大小的概念。
2.掌握概率的表示方法,能准确表示事件发生的概率。
3.理解必然事件、不可能事件和随机事件的概念,并能区分实际生活中的这三种事件。
4.通过实例,理解并掌握概率的求法,包括列举法、树状图法等。
-解决实际问题:将概率知识应用于实际问题时,学生可能不知道如何下手,需要教师引导。
举例:讲解掷骰子的概率问题时,学生可能难以理解为什么每个面朝上的概率都是1/6,这时教师可以通过绘制树状图或列举所有可能的结果来帮助学生突破这个难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《概率的意义》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛硬币或掷骰子的情况?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了概率的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对概率的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
《概率的意义》教案和教后反思
《概率的意义》教案【课题】25.1.2 概率的意义(第一课时)【教学目标】〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.(抓阄、抽签、猜拳、投硬币,……)学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币追问,为什么要用抓阄、投硬币的方法呢?(这样做公平.能保证小强与小明得到球票的可能性一样大)在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图表25-2想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近. n图25.1-1其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率n m 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高.学生练习1.课本练习.1. 巩固用频率估计概率的方法.2.课本练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.教学反思:1.每次投硬币的过程都是一个随机事件,由于众多的偶然的因素的影响,每次测的的结果都具有偶然性。
概率的意义教学设计
概率的意义教学设计介绍本教学设计旨在教授学生有关概率的意义和应用的知识。
概率是数学中一个重要的概念,它涉及到随机事件发生的可能性以及对这些可能性进行量化和计算的方法。
通过本课程的研究,学生将能够理解概率的基本概念和应用。
教学目标本教学设计的主要目标是使学生能够:- 了解概率的概念和意义;- 理解概率的应用场景;- 掌握计算概率的基本方法和技巧。
教学内容本教学设计将重点包括以下内容:1. 概率的基本概念:- 随机事件;- 概率的定义;- 概率的性质。
2. 概率的应用场景:- 游戏和赌博场景;- 概率在统计学中的应用;- 概率在金融和保险中的应用。
3. 计算概率的基本方法:- 频率法;- 古典概型;- 随机变量和概率函数。
教学策略为了达到教学目标,采用以下教学策略:1. 使用案例和实例:通过使用真实生活中的案例和实例,引导学生思考和理解概率的概念和应用。
2. 互动讨论:鼓励学生参与讨论,分享自己的观点和想法,加深对概率概念和意义的理解。
3. 小组活动:组织学生进行小组活动,让他们合作解决一些与概率有关的问题,提高他们的问题解决能力和团队合作精神。
4. 计算练:设计一些概率计算的练题,帮助学生掌握计算概率的基本方法和技巧。
教学评估为了评估学生的研究成果,可以采用以下评估方式:1. 完成作业:布置一些与概率相关的作业,让学生独立完成,并对作业进行评分。
2. 小组讨论报告:要求学生在小组内进行讨论并撰写一份小组讨论报告,评估学生在团队合作和问题解决方面的能力。
3. 客观题测试:设计一些选择题和填空题,测试学生对概率概念和计算方法的理解程度。
总结通过本教学设计,学生将能够全面了解概率的意义和应用。
他们将掌握计算概率的基本方法和技巧,并能够将概率应用于各种实际场景中。
这将为他们未来的研究和职业发展打下坚实的基础。
人教版数学九年级上册25.1.2《概率的意义》教学设计
人教版数学九年级上册25.1.2《概率的意义》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率的意义》是概率统计部分的重要内容。
本节主要介绍概率的定义、表示方法及其在实际问题中的应用。
通过本节课的学习,学生能够理解概率的基本概念,会用概率表示事件发生的可能性,并能运用概率解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有一定的了解。
但是,对于概率这一抽象的概念,学生可能存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出概率的概念,并通过大量的例子让学生加深对概率的理解。
三. 教学目标1.理解概率的定义,掌握概率的表示方法。
2.能够运用概率解决一些实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.概率的定义和表示方法。
2.运用概率解决实际问题。
五. 教学方法1.讲授法:讲解概率的基本概念和表示方法。
2.案例分析法:通过具体的例子让学生理解概率的应用。
3.小组讨论法:让学生在小组内讨论概率问题,培养学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的案例和实际问题。
2.准备课件和教学素材。
七. 教学过程1.导入(5分钟)通过一个简单的游戏引出概率的概念,让学生感受到概率在日常生活中的应用。
2.呈现(10分钟)讲解概率的定义和表示方法,让学生明确概率的基本概念。
3.操练(10分钟)让学生通过计算一些简单的概率问题,加深对概率的理解。
4.巩固(10分钟)让学生解决一些实际的概率问题,巩固所学知识。
5.拓展(10分钟)让学生讨论一些与概率相关的实际问题,培养学生的解决问题的能力。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确所学知识。
7.家庭作业(5分钟)布置一些有关的练习题,让学生巩固所学知识。
8.板书(5分钟)对本节课的主要内容进行板书,方便学生复习。
通过本节课的教学,学生应该能够理解概率的基本概念和表示方法,并能够运用概率解决一些实际问题。
概率的意义 说课稿 教案 教学设计
概率的意义一.教学任务分析:1.在概率定义的基础上,通过具体试验进一步解释概率的含义,理解概率和频率的区别.2. 通过概率解释游戏规则的公平性,概率与决策的关系,概率与预报的关系,了解概率在实际问题中的应用.3.进一步理解概率统计中随机性与规律性的关系.二.教学重点与难点:教学重点:概率的正确理解及其在实际生活中的应用.教学难点:概率和频率的区别和联系,随机试验的随机性与规律性的关系. 三.教学基本流程:↓↓↓↓四.教学情境设计:1.创设情景,揭示课题通过下列问题复习回顾随机事件概率有关的概念:(1)指出下列事件是必然事件、不可能事件,还是随机事件:①某地明年1月1日刮西北风;②当x R ∈时,20x ≥;③手电筒的电池没电,灯泡发亮; ④一个电影院某天的上座率超过50%; ⑤明天坐公交车比较拥挤;⑥将一枚硬币抛掷4次出现两次正面和两次反面;答案:②是必然事件,③是不可能事件,①④⑤⑥是随机事件. (2)下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;②做n 次随机试验,事件A 发生的mn频率就是事件的概率;③百分率是频率,但不是概率;④频率是不能脱离具体的n 次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的是 . 解:(1)(4)(5). 2.概率的正确理解思考1:既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?教师引导学生做实验:每个同学连续两次抛掷一枚质地均匀的硬币,统计全班同学的实验结果:思考2:如果某种彩票的中奖概率为1000,那么买1000张这种彩票一定能中奖吗?3. 概率与公平性问题1:在乒乓球、排球等比赛中,裁判通过让运动员猜上抛均匀塑料圆板着地是正面还是反面来决定哪一方先发球,这样做是否公平?这个规则是公平的,因为抽签上抛后,正面朝上与反面朝上的概率均是0.5,因此任何一名运动员猜中的概率都是0.5,也就是每个运动员取得先发球权的概率都是0.5.问题2::课本第120页“探究”栏中的游戏规则公平吗?要求学生讨论,交流,作出判断.4. 概率与决策思考3.连续掷硬币100次,结果100次全部是正面向上,出现这样的结果,你会怎么想?如果出现了51次正面向上,你又会怎么想?2.如果一个袋中装有99个红色乒乓球,1个白色乒乓球,或1个红色乒乓球,99个白色乒乓球,在事先不知道是哪种情况下,一个人从袋中随机摸出1乒乓球,结果发现是红色乒乓球.你认为这个袋中是有99个红色乒乓球,1个白色乒乓球,还是1个红色乒乓球,99个白色乒乓球?3.如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为什么?如果我们面临的是从多个可选答案中挑选正确答案的决策任务,“使样本出现的可能性最大”可以作出决策的准则,这种判断问题的方法称为极大似然法. 极大似然法是统计中最重要的的统计思想方法之一.5. 概率与预报思考4:某地气象局预报说,明天本地降水概率是70%,你认为下面两个解释中哪个能代表气象局的观点?(1)明天本地有70%的区域下雨,30%的区域不下雨; (2)明天本地下雨的机会是70%.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了”,学了概率后,你能给出解释吗?解:天气预报的“降水”是一个随机事件,概率为90%指明了“降水”这个随机事件发生的概率,我们知道:在一次试验中,概率为90%的事件也可能不出现,因此,“昨天没有下雨”并不说明“昨天的降水概率为90%”的天气预报是错误的.6.试验与发现奥地利遗传学家孟得儿(G.Mendel,1822~1884)用豌豆进行杂交试验,下表为试验结果(其中1F为第一子代,2F为第二子代):孟德尔发现第一子代对于一种性状为必然事件,其可能性为100%,另一种性状的可能性为0,而第二子代对于前一种性状的可能性约为75%,后一种性状的可能性约为25%,通过进一步研究,他发现了生物遗传的基本规律. 7.遗传机理中的统计规律孟德尔通过豌豆进行杂交试验的进一步研究发现了生物遗传的基本规律.下面给出简单的解释:每个豌豆均有两个特征因子组成,下一代是从父母辈中各随机地选取一个特征组成自己的两个特征.每个结果都是随机事件.显性因子和隐性因子是有区别的.用符号YY 代表纯黄色豌豆的两个特征因子,用符号yy 代表纯绿色豌豆的两个特征因子纯黄色豌豆 YY 纯绿色豌豆 yy由于下一代是从父母辈中各随机地选取一个特征组成自己的两个特征,因此在第二代中YY ,yy 出现的概率是1/4,Yy 出现的概率是1/2.所以黄色豌豆(YY ,Yy):绿色豌豆(yy)约等于3:1.实际上, 遗传机理中的统计规律问题可以化归为同时抛掷两枚硬币的试验问题,把正面看成显性因子,反面看成隐性因子.。
初中概率的意义教案
初中概率的意义教案教学目标:1. 理解概率的定义和意义;2. 学会计算简单事件的概率;3. 能够运用概率解决实际问题。
教学重点:1. 概率的定义和计算方法;2. 运用概率解决实际问题。
教学难点:1. 概率的计算方法;2. 理解概率的意义和应用。
教学准备:1. 教学课件或黑板;2. 教学卡片或练习题。
教学过程:一、导入(5分钟)1. 引入概率的概念,让学生思考在日常生活中遇到的一些不确定事件,如抛硬币、抽奖等;2. 提问:什么是概率?为什么学习概率?二、新课讲解(15分钟)1. 讲解概率的定义:概率是指一个事件在所有可能事件中发生的可能性;2. 讲解概率的计算方法:用一个数(0到1之间)表示概率,数值越大,事件发生的可能性越大;3. 举例说明如何计算简单事件的概率,如抛硬币、掷骰子等;4. 让学生通过练习题实际计算一些简单事件的概率。
三、课堂练习(15分钟)1. 分发练习题,让学生独立完成;2. 讲解练习题的答案,让学生理解概率的计算方法和意义;3. 让学生分享自己在日常生活中运用概率的经历。
四、应用拓展(15分钟)1. 讲解如何运用概率解决实际问题,如天气预报、保险等;2. 让学生通过小组讨论,探讨概率在实际生活中的应用;3. 让学生展示自己的成果,并进行评价。
五、总结(5分钟)1. 让学生总结本节课的学习内容,回答问题:什么是概率?如何计算概率?概率的意义和应用是什么?;2. 教师进行点评,强调概率在实际生活中的重要性。
教学反思:本节课通过讲解概率的定义和计算方法,让学生理解概率的意义和应用。
在教学过程中,注意引导学生思考日常生活中的不确定事件,让学生通过实际计算和讨论,加深对概率的理解。
同时,通过练习题和小组讨论,培养学生的动手能力和合作精神。
在今后的教学中,可以结合更多实际例子,让学生更好地理解和运用概率。
概率的意义教学教案
概率的意义教学教案第一章:概率的初步概念1.1 教学目标1. 了解概率的定义和基本性质。
2. 掌握随机事件和必然事件的概念。
3. 学会使用概率公式计算简单事件的概率。
1.2 教学内容1. 概率的定义:概率是描述随机事件发生可能性大小的数值。
2. 随机事件和必然事件:随机事件是指在相同条件下可能发生也可能不发生的事件,必然事件是指在相同条件下一定发生的事件。
3. 概率公式:P(A) = 事件A发生的次数/ 所有可能发生的次数。
1.3 教学活动1. 引入话题:通过抛硬币、掷骰子等实例,引导学生思考事件发生的可能性。
2. 讲解概念:讲解概率的定义、随机事件和必然事件的区别。
3. 练习计算:让学生运用概率公式计算简单事件的概率,如抛硬币两次正面朝上的概率。
1.4 教学评价1. 通过小组讨论,让学生解释概率的定义和基本性质。
2. 布置练习题,让学生计算不同事件的概率。
第二章:条件概率2.1 教学目标1. 理解条件概率的概念。
2. 学会使用条件概率公式计算事件A在事件B发生的条件下发生的概率。
2.2 教学内容1. 条件概率的定义:事件A在事件B发生的条件下发生的概率称为条件概率,记作P(A|B)。
2. 条件概率公式:P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示事件A和事件B 发生的概率。
2.3 教学活动1. 引入话题:通过抛硬币和抽球的实例,引导学生思考事件发生的条件概率。
2. 讲解概念:讲解条件概率的定义和条件概率公式。
3. 练习计算:让学生运用条件概率公式计算事件A在事件B发生的条件下发生的概率。
2.4 教学评价1. 通过小组讨论,让学生解释条件概率的概念和条件概率公式。
2. 布置练习题,让学生计算不同事件的条件概率。
第三章:独立事件的概率3.1 教学目标1. 理解独立事件的定义。
2. 学会使用独立事件的概率公式计算两个独立事件发生的概率。
3.2 教学内容1. 独立事件的定义:两个事件A和B相互独立,是指事件A的发生不影响事件B的发生概率,反之亦然。
新人教版《概率的意义》教学设计
新人教版《概率的意义》教学设计
引言
《概率的意义》是新人教版数学教材中的一本重要教材。
本教学设计旨在帮助学生深入理解概率的概念和意义,同时培养学生的数学思维和解决问题的能力。
教学目标
本教学设计的主要目标包括:
1. 理解概率的概念和基本性质;
2. 掌握计算概率的方法,并能运用于实际问题;
3. 培养学生的逻辑思维、抽象思维和解决问题的能力。
教学内容和方法
第一节:概率的基本概念
1. 学生通过讨论和探究的方式,了解概率的基本概念;
2. 教师以简单直观的例子解释概率的概念,引导学生进行思考和讨论。
第二节:计算概率的方法
1. 介绍基本概率公式,并通过一些例题进行讲解;
2. 给予学生一定的练机会,巩固计算概率的方法。
第三节:概率在实际问题中的应用
1. 通过实际问题的讨论,引导学生将概率的概念和方法应用于实际情境;
2. 学生需要在小组或个人完成一定数量的应用题。
教学评价与反馈
1. 在课堂上设置小组讨论和个人练的环节,观察学生的参与程度和解题能力;
2. 教师针对学生的表现给予及时的反馈和指导;
3. 定期进行学生的知识检测和综合评价。
参考资源
- 新人教版《概率的意义》教材
- 相关题和练册
结束语
本教学设计通过理论与实践相结合的方式,旨在帮助学生全面理解和应用概率的概念与方法。
同时,培养学生的数学思维和解决问题的能力。
希望通过这份教学设计,能够提高学生的学习兴趣和成绩。
《概率的意义》教案设计
2011年全国中小学“教学中的互联网搜索”优秀教学案例评选《概率的意义》教案设计一、教案背景1、面向学生:中学2、学科:数学3、课时:1 4、学生课前准备:①预习本课学习内容。
②提出预习中遇到的问题。
③利用网络搜索与本课相关的资料。
二、教学课题人教版九年级上《25.1.2 概率的意义》(第一课时)知识目标:了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念。
能力目标:能从数量上刻画一个随机事件发生的可能性大小。
情感目标:经历试验,整理,分析,归纳,确认等数学活动后,感受数学活动充满探索性与创造性,体会概率的精准、新颖、独特的思维方式。
三、教材分析本节内容是从频率的角度来解释概率,其核心内容是介绍实验概率的意义。
学生在前两个学段,对事件发生的可能性大小已经有了初步的认识,并且,刚学了随机事件及其发生的可能性,才进入本节学习。
通过这节课的学习,将为今后继续学习概率相关知识打下基础。
教学重点:对概率意义的正确理解。
教学难点:1、辨证理解频率和概率的关系;2、对随机现象的统计规律性的深刻认识。
教学之前用百度搜索引擎在网络上搜索与本课相关的基本材料;找教案,确定课堂教学的形式和方法。
四、教学方法与教学手段教学方法:采用“主动探究、合作交流”的数学活动模式。
教学手段:为了使学生的活动更加充分有效,增强教学直观性,利用网络视频、图片、表格等辅助教学,以期达到教学效果的优化。
五、教学过程第一环节:创设情境复习引入问题1:下面两个随机事件发生的可能性一样吗?(1)掷一枚均匀的骰子,结果向上一面的点数是“3”(2)掷一枚均匀的骰子,结果向上一面的点数是奇数问题2:在一定条件下,这些随机事件发生的可能性有多大?活动方式:学生独立思考,回答问题。
设计意图:问题1的设计在于让学生感受不同的随机事件发生的可能性不一样,引出本节课的中心问题;问题2的设计起到承上启下的作用,旨在引导学生进入随机事件的概率探究过程,导入新课。
概率的意义教学教案
概率的意义教学教案第一章:概率的引入1.1 现实生活中的概率现象讨论抽奖、掷骰子、抛硬币等现实生活中的概率事件。
引导学生理解概率是在一定条件下可能发生的事件的频率。
1.2 概率的定义与符号介绍概率的定义:概率是指某个事件在所有可能事件中发生的可能性。
讲解概率的符号表示:P(A)表示事件A的概率。
第二章:概率的基本性质2.1 概率的范围强调概率的取值范围:概率介于0和1之间,包括0和1。
解释概率为0意味着事件不可能发生,概率为1意味着事件一定会发生。
2.2 概率的加法规则介绍概率的加法规则:对于两个互斥的事件A和B,有P(A∪B) = P(A) + P(B)。
通过实例解释并引导学生理解互斥事件的概率加法规则。
第三章:条件概率3.1 条件概率的定义讲解条件概率的定义:给定事件B已经发生的条件下,事件A发生的概率称为A在B发生的条件下发生的条件概率,记为P(A|B)。
强调条件概率是在特定条件下的事件发生的可能性。
3.2 条件概率的计算公式介绍条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。
通过实例解释并引导学生理解条件概率的计算方法。
第四章:独立事件的概率4.1 独立事件的定义讲解独立事件的定义:两个事件A和B相互独立,指的是事件A的发生不影响事件B的发生概率,反之亦然。
强调独立事件的概率乘法规则。
4.2 独立事件的概率乘法规则介绍独立事件的概率乘法规则:如果事件A和B是相互独立的,P(A∩B) = P(A) ×P(B)。
通过实例解释并引导学生理解独立事件的概率乘法规则。
第五章:概率的计算与应用5.1 概率的计算方法总结本章所学的内容,强调概率的计算方法:互斥事件的概率加法规则、条件概率的计算公式和独立事件的概率乘法规则。
引导学生运用这些方法解决实际问题。
5.2 概率在现实生活中的应用通过实际案例讨论概率在科学研究、决策制定、风险评估等方面的应用。
强调学习概率的意义和价值,激发学生对概率学科的兴趣。
概率的意义和计算方法教学设计与反思
教
学
目
的
知识目标:
通过摸球游戏,帮助学生了解计算一类事件发生可能性的方法,体会概率的意义。
能力目标:
通过活动,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的能力,培养学生实事求是的态度及合作交流的能力。
情感目标:
通过学生对数据的收集、整理、描述和分析活动的创设,鼓励学生积极参与,培养学生自主、合作、探究的学习方式,培养学生的学习情趣。
师:任意摸出一球,你能说出所有可能出现的结果吗?(举手回答)
生:所有可能出现的结果有:1号球、2号球、3号球、4号球,摸到红球的可能出现的结果有:1号球、2号球、3号球。
师:摸到红球的概率是多少?(可提问学生到黑板书写,其他学生在练习本上书写)
p(摸到红球)=
师:你能写出摸到白球的概率吗?(学生写在练习本上,教师巡视,对写错的同学给予纠正)
通过这一问一答的教学设计,看似简单实际在引导学生回忆昨天掷硬币的游戏中,出现正面朝上和反面朝上的可能性各占一半。用这种经验来指导今天的摸球游戏同学们就很容易理解摸到红球的可能性是了。这样就大大降低了难度,为后面的学习奠定了基础。
通过摸球游戏的设计帮助学生了解计算一类事件发生的可能性的方法,体会概率的意义。
师:若把摸球游戏换成4个红球,那么摸到红球、白球的概率分别是多少?
生:p(摸到红球)=1;p(摸到白球)=0
师:为什么摸到红球的概率是1,而摸到白球的概率为0呢?(小组讨论,教师巡视并积极参与小组讨论)
生:因为摸到红球这一事件是必然事件,而摸到白球这一事件是不可能事件。
师:在你的练习本上写出必然事件和不可能事件的概率。
生:
师:就表示摸到红球的可能性,我们把就叫做摸到红球的概率(教师边说边把“概率”两个字写到黑板上,从而完成了本节课的课题“摸到红球的概率”)。概率用英文probability的第一个字母p来表示,如刚才游戏中摸到红球的概率就可以表示为p(摸到红球的概率)=
概率的意义-教案及教学反思
本节课我是用了EEPO的教学方法来进行教学的。
目标是通过问题吸引学生的兴趣,帮助学生体会概率的意义,了解计算一类事件发生可能性的方法,本着这一目标设计教案,启发、引导、点拨学生,使学生在自主、合作、探究的环境中进行本节课的学习,通过实际情境,让学生主动地在活动中理解概率的意义,并通过学生自己讨论,得到了求不确定事件发生的概率的方法,这是我这节课最满意之处。
让学生分组讨论,能让他们自主的投入到学习中,这可以使学生以极大的兴趣投入数学学习。
本节课中,我首先创设了一个问题,让学生对问题产生疑问,进而想去解决问题,再让他们个个小组自己讨论研究,进行小组之间的小竞赛,大大激起了学生解决问题的兴趣。
在上节课中有意识的留了个问题没有解决,在这节课中又将这个问题提出来,在学生了解并能简单计算事件的概率情况下,学生能又快又好的解决这个问题,提高学生的自信心。
通过各个小组内部和小组间讨论交流得出研究成果,激发学生学习的兴趣。
本节课中还与实际生活相联系,使学生体会数学与实际生活是息息相关的。
但是一节课不能只是小组交流学习,还要有自己独立学习的时间。
在大部分学生基本都能掌握本节课知识的前提下,让学生独立解决课后的练习,培养学生独立思考和解决问题的能力。
最后让小组讨论本节课学了那些知识,派代表将本节课所学的知识点一一列举出来。
在本节课中将EEPO的五要素——听、看、想、讲、做、动静有效的结合到本节课的学习中,的确通过分组讨论和让各个小组来展示自己的研究成果,让每个人都有展示自己的机会,大大提高了学生的学习的兴趣和学习的自主性。
不仅形成和构建了学生自己的知识系统,而且增强了学生学好数学的愿望和信心。
其次,利用问题串构建课堂教学中师生互动、生生互动的主线,激起学生的好奇心和求知欲,使学生积极主动地构筑探究思路、追求问题的解决,这样的教与学的方式正是EEPO所大力倡导的。
当然,这节课中也有做得不好的方面:由于EEPO的教学方式不是很熟悉,所以在小组讨论时有的学生浑水摸鱼,并没有真正参与到学习中来,还有当分组讨论时学生情绪激动,场面差点控制不下来,耽误了不少时间。
概率的意义教学教案
概率的意义教学教案第一章:概率的引入1.1 现实生活中的概率现象引入生活中的随机事件,如抛硬币、抽奖、掷骰子等。
引导学生观察和思考这些事件的随机性和可能性。
1.2 概率的定义与符号表示解释概率的概念,即某事件发生的可能性。
介绍概率的符号表示,如P(A)表示事件A的概率。
1.3 概率的范围与性质讨论概率的取值范围,即0到1之间。
引导学生理解概率的性质,如总概率为1,互斥事件的概率相加等。
第二章:概率的计算2.1 简单事件的概率计算引导学生运用概率的定义计算简单事件的概率,如抛硬币两次得到正面的概率。
2.2 组合事件的概率计算引入组合概念,引导学生计算多个独立事件的组合概率,如抛硬币两次都得到正面的概率。
2.3 分步事件的概率计算引导学生理解分步事件的概率计算方法,即各步骤概率的乘积,如抛硬币三次都得到正面的概率。
第三章:条件概率与独立性3.1 条件概率的定义与计算引入条件概率的概念,即在已知某个事件发生的条件下,另一个事件发生的可能性。
引导学生运用条件概率的定义和公式计算条件概率。
3.2 独立事件的概率计算解释独立事件的含义,即两个事件的发生互不影响。
引导学生运用独立事件的性质计算概率,如抛硬币两次得到正面的概率与第一次得到正面的概率的乘积。
3.3 贝叶斯定理的应用引入贝叶斯定理,引导学生理解其在条件概率估计中的应用。
给出简单的例子,让学生练习运用贝叶斯定理计算条件概率。
第四章:概率分布与期望值4.1 随机变量的概念引入随机变量的概念,即可能取不同值的变量。
引导学生理解随机变量的概率分布。
4.2 离散型随机变量的概率分布介绍离散型随机变量的概率分布,如二项分布、泊松分布等。
引导学生计算随机变量的概率分布。
4.3 连续型随机变量的概率密度函数引入连续型随机变量的概念,即可能取任意值的变量。
引导学生理解概率密度函数的概念和计算方法。
4.4 随机变量的期望值解释期望值的概念,即随机变量的平均值。
引导学生计算随机变量的期望值,如二项分布的期望值。
八年级数学《概率的意义1》教案
《25.1.2概率的意义》教学设计及评析币50次,记录好“正面向上”的次数,计算出“正面向上”的频率.例3:全班分成八组,每组同学掷一枚硬币100次,记录好“正面向上”的次数,计算出“正面向上”的频率.对比交流:对比两次实验,相同点有哪些?不同点呢?投掷次数的增加,对正面向上的频率有无影响?请同学们根据实验所得数据想一想:正面向上的频率有什么规律?可以发现,在重复抛掷一枚硬币时,“正面向上”的频率在0.5的左右摆动。
随着抛掷次数的增加,一般地,频率就呈现出一定的稳定性:在0.5的左右摆动的幅度会越来越小。
由于“正面向上”的频率呈现出上述稳定性,我们就用0.5这个常数表示“正面向上”发生的可能性的大小。
列出表一表二从上面可知,概率是通过大量重复试验中频率的稳定性得到的一个0-1的常数,它反映了事件发生的可能性的大小.需要注意,概率是针对大量试验而言的,大量试验反映的规律并非在每次试验中一定存在.概率的定义:一般地,在大量重复进行同一试验时,事件A发生的频率m/n稳定在某个常数p的附近,那么这个常数就叫做事件A 的概率,记作P(A)=P.事件一般用大写英文字母A,B,C,D...表示例:某射手进行射击,结果如下表所示:(2)这个射手射击一次,击中靶心的概率是多少?(3)这射手射击1600次,击中靶心的次数组,出实验要求:每组同学掷一枚硬币50次,记录好“正面向上”的次数;计算“正面向上”的频率。
2、把实验得到的数据在频率分布表中描画出来。
3、把以上实验再重复做一次,所不同的是每组同学掷一枚硬币100次。
4、对比两次实验,相同点有哪些?不同点呢?投掷次数的增加,对正面向上的频率有无影响?请同学们根据实验所得数据想一想:正面向上的频率有什么规律?5、找一名学生口述,其他学生补充。
6、参照历史上的数学家所做的实验对比得出概率的意义。
【学生活动】按照教师所提要求做实验,统计,计算,绘图找出频率与概率之间的内在联系。
初中数学公布课概率的意义优秀教学设计及反思
初中数学公布课概率的意义优秀教学设计及反思教材分析1.从稳固性的角度,了解概率的意义2.如何从数量上刻画一个随机事件发生的可能性大小学情分析1.学生从实验,整理,分析,归纳等数学活动,感受数学的探讨性和制造性2.学生的基础差,对频率估量概率上明白得有点难度3.学生可能对量变与质变的对立统一规律的明白得有点难度教学目标1.从稳固性的角度,了解概率的意义2.如何从数量上刻画一个随机事件发生的可能性大小教学重点和难点重点:对概率意义的正确明白得难点:对随机事件的统计规律怀的深刻熟悉教学进程学生经历实验,统计,整理,分析,归纳,总结,进而了解概率的概念进程,引导学生从数学视角,用数学的思维,观看客观世界,数学的语言,描述客观世界。
教材分析1.从稳固性的角度,了解概率的意义2.如何从数量上刻画一个随机事件发生的可能性大小学情分析1.学生从实验,整理,分析,归纳等数学活动,感受数学的探讨性和制造性2.学生的基础差,对频率估量概率上明白得有点难度3.学生可能对量变与质变的对立统一规律的明白得有点难度教学目标1.从稳固性的角度,了解概率的意义2.如何从数量上刻画一个随机事件发生的可能性大小教学重点和难点重点:对概率意义的正确明白得难点:对随机事件的统计规律怀的深刻熟悉教学进程学生经历实验,统计,整理,分析,归纳,总结,进而了解概率的概念进程,引导学生从数学视角,用数学的思维,观看客观世界,数学的语言,描述客观世界。
教材分析1.从稳固性的角度,了解概率的意义2.如何从数量上刻画一个随机事件发生的可能性大小学情分析1.学生从实验,整理,分析,归纳等数学活动,感受数学的探讨性和制造性2.学生的基础差,对频率估量概率上明白得有点难度3.学生可能对量变与质变的对立统一规律的明白得有点难度教学目标1.从稳固性的角度,了解概率的意义2.如何从数量上刻画一个随机事件发生的可能性大小教学重点和难点重点:对概率意义的正确明白得难点:对随机事件的统计规律怀的深刻熟悉教学进程学生经历实验,统计,整理,分析,归纳,总结,进而了解概率的概念进程,引导学生从数学视角,用数学的思维,观看客观世界,数学的语言,描述客观世界。
《概率的意义》教学反思
《概率的意义》教学反思这节课是在学习了随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义。
1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程,这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念。
贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益。
2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础。
3.在教学中,力求向学生提供数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励。
总之本节课教学内容是完成了,重难点出突出了,但仍有许多地方不够完美,或者说还存在问题,是以后需要努力探索和改进的,争取在课堂教学中,我们针对一个问题,讲解透彻,训练到位,而非法泛泛而讲,力争做到节节课能解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学公开课概率的意义优秀教学
设计及反思
教材分析
1.从稳定性的角度,了解概率的意义
2.怎样从数量上刻画一个随机事件发生的可能性大小
学情分析
1.学生从试验,整理,分析,归纳等数学活动,感受数学的探索性和创造性
2.学生的基础差,对频率估计概率上理解有点难度
3.学生可能对量变与质变的对立统一规律的理解有点难度
教学目标
1.从稳定性的角度,了解概率的意义
2.怎样从数量上刻画一个随机事件发生的可能
性大小
教学重点和难点
重点:对概率意义的正确理解
难点:对随机事件的统计规律怀的深刻认识
教学过程
学生经历试验,统计,整理,分析,归纳,总结,进而了解概率的定义过程,引导学生从数学视角,用数学的思维,观察客观世界,数学的语言,描述客观世界。
教材分析
1.从稳定性的角度,了解概率的意义
2.怎样从数量上刻画一个随机事件发生的可能性大小
学情分析
1.学生从试验,整理,分析,归纳等数学活动,感受数学的探索性和创造性
2.学生的基础差,对频率估计概率上理解有点难度
3.学生可能对量变与质变的对立统一规律的理解有点难度
教学目标
1.从稳定性的角度,了解概率的意义
2.怎样从数量上刻画一个随机事件发生的可能性大小
教学重点和难点
重点:对概率意义的正确理解
难点:对随机事件的统计规律怀的深刻认识
教学过程
学生经历试验,统计,整理,分析,归纳,总结,进而了解概率的定义过程,引导学生从数学视角,用数学的思维,观察客观世界,数学的语言,描述客观世界。
教材分析
1.从稳定性的角度,了解概率的意义
2.怎样从数量上刻画一个随机事件发生的可能性大小
学情分析
1.学生从试验,整理,分析,归纳等数学活动,感受数学的探索性和创造性
2.学生的基础差,对频率估计概率上理解有点难度
3.学生可能对量变与质变的对立统一规律的理解有点难度
教学目标
1.从稳定性的角度,了解概率的意义
2.怎样从数量上刻画一个随机事件发生的可能性大小
教学重点和难点
重点:对概率意义的正确理解
难点:对随机事件的统计规律怀的深刻认识
教学过程
学生经历试验,统计,整理,分析,归纳,总结,进而了解概率的定义过程,引导学生从数学视角,用数学的思维,观察客观世界,数学的语言,描述客观世界。