高一数学下学期第一次月考试题1
四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案
![四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案](https://img.taocdn.com/s3/m/db574a3c1fb91a37f111f18583d049649b660e34.png)
武侯高中高2023级2023——2024下期第一次月考试题数学(答案在最后)学校:__________姓名:__________班级:__________考号:__________一、单选题1.如图,四边形ABCD 中,AB DC =,则必有()A.AD CB= B.DO OB= C.AC DB= D.OA OC= 【答案】B 【解析】【分析】根据AB DC =,得出四边形ABCD 是平行四边形,由此判断四个选项是否正确即可.【详解】四边形ABCD 中,AB DC =,则//AB DC 且AB DC =,所以四边形ABCD 是平行四边形;则有AD CB =-,故A 错误;由四边形ABCD 是平行四边形,可知O 是DB 中点,则DO OB =,B 正确;由图可知AC DB≠,C 错误;由四边形ABCD 是平行四边形,可知O 是AC 中点,OA OC =-,D 错误.故选:B .2.下列说法正确的是()A.若a b ∥ ,b c ∥,则a c∥ B.两个有共同起点,且长度相等的向量,它们的终点相同C.两个单位向量的长度相等D.若两个单位向量平行,则这两个单位向量相等【答案】C 【解析】【分析】A.由0b =判断;B.由平面向量的定义判断;C.由单位向量的定义判断; D.由共线向量判断.【详解】A.当0b = 时,满足a b ∥ ,b c ∥,而,a c 不一定平行,故错误;B.两个有共同起点,且长度相等的向量,方向不一定相同,所以它们的终点不一定相同,故错误;C.由单位向量的定义知,两个单位向量的长度相等,故正确;D.若两个单位向量平行,则方向相同或相反,但大小不一定相同,则这两个单位向量不一定相等,故错误;故选:C3.若a b ,是平面内的一组基底,则下列四组向量中能作为平面向量的基底的是()A.,a b b a --B.21,2a b a b++ C.23,64b a a b-- D.,a b a b+- 【答案】D 【解析】【分析】根据基底的知识对选项进行分析,从而确定正确答案.【详解】A 选项,()b a a b -=-- ,所以a b b a -- ,共线,不能作为基底.B 选项,1222a b a b ⎛⎫+=+ ⎪⎝⎭ ,所以12,2a b a b ++ 共线,不能作为基底.C 选项,()64223a b b a -=-- ,所以64,23a b b a --共线,不能作为基底.D 选项,易知a b a b +-,不共线,可以作为基底.故选:D4.将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,再向左平移3π个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.12x π=B.6x π=-C.3x π=-D.12x π=-【答案】B 【解析】【分析】根据图像的伸缩和平移变换得到2cos(2)13y x π=++,再整体代入即可求得对称轴方程.【详解】将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,得到2cos 213y x π⎛⎫=-+ ⎪⎝⎭,再向左平移3π个单位,得到2cos[2()]12cos(2)1333y x x πππ=+-+=++,令23x k π+=π,Z k ∈,则26k x ππ=-,Z k ∈.显然,=0k 时,对称轴方程为6x π=-,其他选项不符合.故选:B5.设a ,b 是非零向量,“a a bb =”是“a b =”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量相等、单位向量判断条件间的推出关系,结合充分、必要性定义即知答案.【详解】由a a b b =表示单位向量相等,则,a b 同向,但不能确定它们模是否相等,即不能推出a b =,由a b =表示,a b 同向且模相等,则a a b b = ,所以“a a bb =”是“a b =”的必要而不充分条件.故选:B6.已知向量,a b ,且2,52,72AB a b BC a b CD a b =+=-+=+,则下列一定共线的三点是()A.,,A B CB.,,B C DC.,,A B DD.,,A C D【答案】C 【解析】【分析】利用向量的共线来证明三点共线的.【详解】2,52,72AB a b BC a b CD a b =+=-+=+,则不存在任何R λ∈,使得AB BC λ=,所以,,A B C 不共线,A 选项错误;则不存在任何R μ∈,使得BC CD μ=,所以,,B C D 不共线,B 选项错误;由向量的加法原理知242BD BC CD a b AB =+=+=.则有//BD AB ,又BD 与AB有公共点B ,所以,,A B D 三点共线,C 选项正确;44AB BC a b AC ==-++,则不存在任何R t ∈,使得AC tCD = ,所以,,A C D 不共线,D 选项错误.故选:C .7.已知sin α=5,且α为锐角,tan β=-3,且β为钝角,则角α+β的值为()A.4π B.34π C.3π D.23π【答案】B 【解析】【分析】先求出tan α12=,再利用两角和的正切公式求出tan(α+β)=-1,判断出角α+β的范围,即可求出α+β的值.【详解】sin α,且α为锐角,则cos α5=,tan αsin 1cos 2αα==.所以tan(α+β)=tan tan 1tan tan αβαβ+-=13211(3)2--⨯-=-1.又α+β∈3(,22ππ,故α+β=34π.故选:B8.筒车亦称“水转筒车”,是一种以水流作动力,取水灌田的工具,唐陈廷章《水轮赋》:“水能利物,轮乃曲成.升降满农夫之用,低徊随匠氏之程.始崩腾以电散,俄宛转以风生.虽破浪于川湄,善行无迹;既斡流于波面,终夜有声.”如图,一个半径为4m 的筒车按逆时针方向每分钟转一圈,筒车的轴心O 距离水面的高度为2m .在筒车转动的一圈内,盛水筒P 距离水面的高度不低于4m 的时间为()A.9秒B.12秒C.15秒D.20秒【答案】D 【解析】【分析】画出示意图,结合题意和三角函数值可解出答案.【详解】假设,,A O B 所在直线垂直于水面,且4AB =米,如下示意图,由已知可得12,4OA OB OP OP ====,所以1111cos 602OB POB POB OP ∠==⇒∠=︒,处在劣弧 11PP 时高度不低于4米,转动的角速度为360660︒=︒/每秒,所以水筒P 距离水面的高度不低于4m 的时间为120206=秒,故选:D.二、多选题9.已知函数()cos f x x x =+,则下列判断正确的是()A.()f x 的图象关于直线π6x =对称 B.()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称C.()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增 D.当π2π,33x ⎛⎫∈-⎪⎝⎭时,()()1,1f x ∈-【答案】BC 【解析】【分析】利用辅助角公式化简函数()f x 的解析式,利用正弦型函数的对称性可判断AB 选项;利用正弦型函数的单调性可判断C 选项;利用正弦型函数的值域可判断D 选项.【详解】因为()πcos 2sin 6f x x x x ⎛⎫=+=+ ⎪⎝⎭,对于A选项,ππ2sin 63f ⎛⎫==⎪⎝⎭,故函数()f x 的图象不关于直线π6x =对称,A 错;对于B 选项,π2sin 006f ⎛⎫-== ⎪⎝⎭,故函数()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称,B 对;对于C 选项,当2π03x -≤≤时,πππ266x -≤+≤,则函数()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增,C 对;对于D 选项,当π2π33x -<<时,ππ5π666x -<+<,则1πsin 126x ⎛⎫-<+≤ ⎪⎝⎭,所以,()(]π2sin 1,26f x x ⎛⎫=+∈- ⎪⎝⎭,D 错.故选:BC.10.下图是函数()sin()(0π)f x A x ωϕϕ=+<<的部分图像,则()A.2πT =B.π3ϕ=C.π,06⎛⎫-⎪⎝⎭是()f x 的一个对称中心 D.()f x 的单调递增区间为5πππ,π1212k k ⎡⎤-++⎢⎥⎣⎦(Z k ∈)【答案】BCD 【解析】【分析】由图象可得πT =,由2πT ω=可求出ω,再将π12⎛⎝代入可求出ϕ可判断A ,B ;由三角函数的性质可判断C ,D .【详解】根据图像象得35ππ3ππ246124T T =-=⇒=⇒=ω,故A 错误;π12x =时,πππ22π2π1223k k ⨯+=+⇒=+ϕϕ,0πϕ<< ,π3ϕ∴=,故()π23f x x ⎛⎫=+ ⎪⎝⎭,故B 正确;因为πππ20663f ⎡⎤⎛⎫⎛⎫-=⋅-+= ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫- ⎪⎝⎭是()f x 的一个对称中心,C 正确;令πππ2π22π232k x k -+≤+≤+,解得5ππππ1212k x k -+≤≤+,Z k ∈.故D 正确.故选:BCD .11.潮汐现象是地球上的海水受月球和太阳的万有引力作用而引起的周期性涨落现象.某观测站通过长时间观察,发现某港口的潮汐涨落规律为πcos 63y A x ω⎛⎫=++ ⎪⎝⎭(其中0A >,0ω>),其中y (单位:m )为港口水深,x (单位:h )为时间()024x ≤≤,该观测站观察到水位最高点和最低点的时间间隔最少为6h ,且中午12点的水深为8m ,为保证安全,当水深超过8m 时,应限制船只出入,则下列说法正确的是()A.π6ω=B.最高水位为12mC.该港口从上午8点开始首次限制船只出入D.一天内限制船只出入的时长为4h 【答案】AC 【解析】【分析】根据题意可求得6π=ω,可知A 正确;由12点时的水位为8m 代入计算可得4A =,即最高水位为10m ,B 选项错误;易知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,解不等式利用三角函数单调性可得从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,即可判断C 正确,D 错误.【详解】对于A ,依题意π62T ω==,所以6π=ω,故A 正确;对于B ,当12x =时,ππcos 126863y A ⎛⎫=⨯++=⎪⎝⎭,解得4A =,所以最高水位为10m ,故B 错误;对于CD ,由上可知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,令8y ≥,解得812x ≤≤或者2024x ≤≤,所以从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,故C 正确,D 错误.故选:AC.三、填空题12.设e为单位向量,2a =r ,当,a e 的夹角为π3时,a 在e 上的投影向量为______.【答案】e【解析】【分析】利用投影向量的定义计算可得结果.【详解】根据题意可得向量a 在e 上的投影向量为22π21cos 31a e e a e e e e ee e⨯⨯⋅⋅⋅=== .故答案为:e13.已知向量a 、b 满足5a = ,4b = ,a 与b 的夹角为120,若()()2ka b a b -⊥+ ,则k =________.【答案】45##0.8【解析】【分析】运用平面向量数量积公式计算即可.【详解】因为5a = ,4b = ,a 与b的夹角为120 ,所以1cos12054102a b a b ⎛⎫⋅==⨯⨯-=- ⎪⎝⎭.因为()2ka b -⊥()a b +r r ,所以()()()()222222521610215120ka b a b kab k a b k k k -⋅+=-+-⋅=-⨯--=-=,解得45k =.故答案为:45.14.已知1tan 3x =,则1sin 2cos 2x x +=______【答案】2【解析】【分析】根据二倍角公式以及齐次式即可求解.【详解】2222222211121sin 2cos sin 2sin cos 1tan 2tan 332cos 2cos sin 1tan 113x x x x x x x x x x x ⎛⎫++⨯ ⎪+++++⎝⎭====--⎛⎫- ⎪⎝⎭.故答案为:2四、解答题15.已知1a b a == ,与b 的夹角为45︒.(1)求()a b a +⋅的值;(2)求2a b -的值【答案】(1)2(2【解析】【分析】(1)先求2,a a b ⋅ ,再根据运算法则展开计算即可;(2)先计算2b,再平方,进而开方即可.【小问1详解】因为22||1,||||cos 451122a a a b a b ==⋅=︒=⨯=所以2()112a b a a a b ++⋅=⋅=+=【小问2详解】因为22||2b b ==,所以2222|2|(2)444242a b a b a b a b -=-=+⋅=+--=所以|2|a b -=16.已知函数()222cos 1f x x x =+-.(1)求函数()f x 的最小正周期;(2)若3π,π4θ⎛⎫∈⎪⎝⎭且()85f θ=-,求cos 2θ的值.【答案】(1)π(2)410-【解析】【分析】(1)利用辅助角公式化简,求出最小正周期;(2)将θ代入可求出πsin 26θ⎛⎫+ ⎪⎝⎭,结合π26+θ的范围,求出πcos 26θ⎛⎫+ ⎪⎝⎭,因为ππ2266θθ=+-,由两角差的余弦公式求出结果.【小问1详解】()2π22cos 12cos 22sin 26f x x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==【小问2详解】()π82sin 265f θθ⎛⎫=+=- ⎪⎝⎭,所以π4sin 265θ⎛⎫+=- ⎪⎝⎭,因为3π,π4θ⎛⎫∈⎪⎝⎭,1π25π3663π,θ⎛⎫∈ ⎪⎝⎭+,所以π3cos 265θ⎛⎫+== ⎪⎝⎭,所以ππππππcos 2cos 2cos 2cos sin 2sin 666666θθθθ⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3414525210-⎛⎫=⨯+-⨯=⎪⎝⎭.17.如图,在ABC 中,6AB =,60ABC ∠=︒,D ,E 分别在边AB ,AC 上,且满足2AD DB = ,3CE EA =,F 为BC 中点.(1)若DE AB AC λμ=+,求实数λ,μ的值;(2)若8AF DE ⋅=-,求边BC 的长.【答案】(1)23λ=-,14μ=.(2)8【解析】【分析】(1)根据向量的线性运算以及平面向量的基本定理求得正确答案.(2)利用转化法化简8AF DE ⋅=-,从而求得BC 的长.【小问1详解】∵2AD DB = ,3CE EA= ,∴23AD AB = ,14AE AC = ∴1243DE AE AD AC AB =-=- ,∴23λ=-,14μ=.【小问2详解】12AF BF BA BC BA =-=- ,()1212154343412DE AC AB BC BA BA BC BA =-=-+=+ ,22115115241282412AF DE BC BA BC BA BC BC BA BA ⎛⎫⎛⎫⋅=-⋅+=-⋅- ⎪ ⎪⎝⎭⎝⎭设BC a = ,∵6AB = ,60ABC ∠=︒,221115668824212AF DE a a ⋅=-⨯⨯-⨯=- ,即2560a a --=,解得7a =-(舍)或8a =,∴BC 长为8.18.设(,)P x y 是角θ的终边上任意一点,其中0x ≠,0y ≠,并记r =cot x y θ=,sec r xθ=,csc r y θ=.(Ⅰ)求证222222sin cos tan cot sec +csc θθθθθθ+--+是一个定值,并求出这个定值;(Ⅱ)求函数()sin cos tan cot sec +csc f θθθθθθθ=++++的最小值.【答案】(Ⅰ)定值为3;(Ⅱ)min ()1f θ=-;【解析】【分析】(Ⅰ)由题可知,分别将6个三角函数分别代入,进行简单的化简,即可得到定值3;(Ⅱ)将()f x 中的未知量均用sin ,cos θθ来表示,得到1sin cos ()sin cos sin cos sin cos g θθθθθθθθθ+=+++,运用换元法设sin cos t θθ+=,化简成2()111g t t θ=-++-,再利用对勾函数的性质即可得到最值.【详解】解:(Ⅰ)222222222222222222sin cos tan cot sec +csc =y x y x r r r x y r y xθθθθθθ+--++--++2222222221113x y r y r x r x y+--⇒++=++=;(Ⅱ)由条件,1cot tan x y θθ==,1sec cos x θ=,1csc sin θθ=令()sin cos tan cot sec +csc g θθθθθθθ=++++sin cos 11sin cos +cos sin cos sin θθθθθθθθ=++++1sin cos sin cos sin cos sin cos θθθθθθθθ+=+++,令sin cos t θθ+=,则sin cos =2sin()4t πθθθ=++[2,2]∈-,1t ≠±,且21sin cos 2t θθ-=,从而2222()11t g y t t t θ==++--22(1)1t t t +=+-221111t t t t =+=-++--,令1u t =-,则21y u u =++,[21,21]u ∈---,且0u ≠,2u ≠-.所以,(,122][322,)y ∈-∞-⋃++∞.从而()221f y θ=≥-,即min ()221f θ=-.19.已知函数()2000ππ2sin sin 2sin 266f x x x x C ωωω⎛⎫⎛⎫=+++-+ ⎪ ⎪⎝⎭⎝⎭(R C ∈)有最大值为2,且相邻的两条对称轴的距离为π2(1)求函数()f x 的解析式,并求其对称轴方程;(2)将()f t 向右平移π6个单位,再将横坐标伸长为原来的24π倍,再将纵坐标扩大为原来的25倍,再将其向上平移60个单位,得到()g t ,则可以用函数()sin()H g t A t B ωϕ==++模型来模拟某摩天轮的座舱距离地面高度H 随时间t (单位:分钟)变化的情况.已知该摩天轮有24个座舱,游客在座舱转到离地面最近的位置进仓,若甲、乙已经坐在a ,b 两个座舱里,且a ,b 中间隔了3个座舱,如图所示,在运行一周的过程中,求两人距离地面高度差h 关于时间t 的函数解析式,并求最大值.【答案】(1)()π2sin 26f x x ⎛⎫=- ⎪⎝⎭,ππ32k x =+,Z k ∈(2)ππ()50sin 126f x t ⎛⎫=-⎪⎝⎭,50【解析】【分析】(1)由二倍角公式与两角和与差的正弦公式化简得()0π2sin 216f x x C ω⎛⎫=-++ ⎪⎝⎭,再结合最值及周期即可得解析式;(2)由正弦型函数的平移变换与伸缩变换得变换后的解析式为ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭,则ππ50sin 126h H H ⎛⎫=-==- ⎪⎝⎭甲乙,再求最值即可.【小问1详解】()00001cos 2π22sin 2cos 2cos 2126x f x x C x x C ωωωω-=⨯++=-++0π2sin 216x C ω⎛⎫=-++ ⎪⎝⎭,所以2121C C ++=⇒=-,因为相邻两条对称轴的距离为π2,所以半周期为ππ22T T =⇒=,故002ππ12=⇒=ωω,()π2sin 26f x x ⎛⎫=- ⎪⎝⎭令ππππ2π6232k x k x -=+⇒=+,Z k ∈【小问2详解】()f t 向右平移π6得到π2sin 22y t ⎛⎫=- ⎪⎝⎭,将横坐标伸长为原来的24π倍,得到ππ2sin 122y t ⎛⎫=- ⎪⎝⎭,将纵坐标扩大为原来的25倍,得到ππ50sin 122y t ⎛⎫=- ⎪⎝⎭,再将其向上平移60个单位,得到ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭游客甲与游客乙中间隔了3个座舱,则相隔了2ππ4243⨯=,令ππ50sin 60122H t ⎛⎫=-+ ⎪⎝⎭甲,则π5π50sin 60126H t ⎛⎫=-+ ⎪⎝⎭乙,则πππ5π50sin sin 122126h H H t t ⎛⎫⎛⎫=-=--- ⎪ ⎪⎝⎭⎝⎭甲乙π1πcos 12212t t =-ππ50sin 126t ⎛⎫=- ⎪⎝⎭,π12ω=,24T =,024t ≤≤,故πππ11π61266t -≤-≤,当πππ1262t -=或3π82t ⇒=或20时,max 50h =。
高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题
![高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题](https://img.taocdn.com/s3/m/bb0c7f11974bcf84b9d528ea81c758f5f61f291a.png)
2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.04.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]6.已知,且,则tanφ=()A.B.C.﹣D.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.28.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.14.函数y=2cos(ωx)的最小正周期是4π,则ω=.15.已知tanα=2,则tan2α的值为.16.已知sin(﹣x)=,则cos(﹣x)=.三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.22.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷参考答案与试题解析一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+【考点】诱导公式的作用.【分析】由诱导公式逐步化简可得原式等于﹣tan60°+sin90°,为可求值的特殊角,进而可得答案.【解答】解:由诱导公式可得:tan 300°+sin 450°=tan(360°﹣60°)+sin(360°+90°)=﹣tan60°+sin90°=﹣+1=1﹣,故选B2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β【考点】命题的真假判断与应用.【分析】根据角的X围以及终边相同角的关系分别进行判断即可.【解答】解:A.∵0°角满足小于90°,但0°角不是锐角,故A错误,B.当k=2n时,β=k•90°=n•180°,当k=2n+1时,β=k•90°=k•180°+90°,则A⊆B成立,C.﹣950°12′=﹣4×360°+129°48′,∵129°48′是第二象限角,∴﹣950°12′是第二象限角,故C错误,D.α,β终边相同,则α=β+k•360°,k∈Z,故D错误,故选:B3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.0【考点】命题的真假判断与应用.【分析】根据空间点的对称性分别进行判断即可.【解答】解:①点P(a,b,c)关于横轴(x轴),则x不变,其余相反,即对称点是P1(a,﹣b,﹣c);故①错误,②点P(a,b,c)关于yOz坐标平面的对称,则y,z不变,x相反,即对称点P2(﹣a,b,c);故②错误③点P(a,b,c)关于纵轴(y轴)的对称,则y不变,x,z相反,即对称点是P3(﹣a,b,﹣c);故③错误,④点P(a,b,c)关于坐标原点的对称,则x,y,z都为相反数,即对称点为P4(﹣a,﹣b,﹣c).故④正确,故选:C4.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.【考点】任意角的三角函数的定义.【分析】根据三角函数的大小建立方程求出a的值即可得到结论.【解答】解:∵α是第二象限的角,其终边上一点为P(a,),且cosα=a,∴a<0,且cosα=a=,平方得a=﹣,则sinα===,故选:A.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]【考点】复合三角函数的单调性.【分析】利用正弦函数的单调性,确定单调区间,结合x的X围,可得结论.【解答】解:由正弦函数的单调性可得≤﹣2x≤(k∈Z)∴﹣﹣kπ≤x≤﹣﹣kπk=﹣1,则故选C.6.已知,且,则tanφ=()A.B.C.﹣D.【考点】同角三角函数间的基本关系.【分析】先由诱导公式化简cos(φ)=﹣sinφ=确定sinφ的值,再根据φ的X 围确定cosφ的值,最终得到答案.【解答】解:由,得,又,∴∴tanφ=﹣故选C.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.2【考点】空间中的点的坐标.【分析】求出对称点的坐标,然后求解距离.【解答】解:点A(1,2,﹣1),点C与点A关于平面xoy对称,可得C(1,2,1),点B与点A关于x轴对称,B(1,﹣2,1),∴|BC|==4故选:B.8.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值【考点】三角函数的周期性及其求法.【分析】直线y=a与正切曲线y=tanωx两相邻交点间的距离,便是此正切曲线的最小正周期.【解答】解:因为直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离就是正切函数的周期,∵y=tanωx的周期是:,∴直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离是:.故选:B.9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称【考点】正弦函数的对称性.【分析】将x=0代入函数得到f(0)=2sin(﹣)=﹣1,从而可判断A、B;将代入函数f(x)中得到f()=0,即可判断C、D,从而可得到答案.【解答】解:令x=0代入函数得到f(0)=2sin(﹣)=﹣1,故A、B不对;将代入函数f(x)中得到f()=0,故是函数f(x)的对称中心,故C 对,D不对.故选C.10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.【考点】三角函数的化简求值.【分析】由已知的sinθ<tanθ,移项并利用同角三角函数间的基本关系变形后得到tanθ(1﹣cosθ)大于0,由余弦函数的值域得到1﹣cosθ大于0,从而得到tanθ大于0,可得出θ为第一或第三象限,若θ为第一象限角,得到sinθ和cosθ都大于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围;若θ为第三象限角,得到sinθ和cosθ都小于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围,综上,得到满足题意的θ的X围.【解答】解:∵sinθ<tanθ,即tanθ﹣sinθ>0,∴tanθ(1﹣cosθ)>0,由1﹣cosθ>0,得到tanθ>0,当θ属于第一象限时,sinθ>0,cosθ>0,∴|cosθ|<|sinθ|化为cosθ<sinθ,即tanθ>1,则θ∈(,);当θ属于第三象限时,sinθ<0,cosθ<0,∴|cosθ|<|sinθ|化为﹣cosθ<﹣sinθ,即tanθ>1,则θ∈(,),综上,θ的取值X围是.故选C11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα【考点】三角函数的化简求值.【分析】利用同角三角函数基本关系式、三角函数值在各个象限的符号即可得出.【解答】解:∵π<α<,∴==,同理可得=,∴原式=﹣(1﹣sinα)﹣(1﹣cosα)=﹣2+cosα+sinα.故选:A.12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.【考点】圆的标准方程.【分析】设扇形和内切圆的半径分别为R,r.由弧长公式可得2π=R,解得R.再利用3r=R=6即可求得扇形的内切圆的半径.【解答】解:设扇形和内切圆的半径分别为R,r.由2π=R,解得R=6.由题意可得3r=R=6,即r=2.∴扇形的内切圆的半径为2.故选:A.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.【考点】正切函数的定义域.【分析】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值X围,即可得到函数的定义域.【解答】解:要使函数的解析式有意义自变量x须满足:≠kπ+,k∈Z解得:故函数的定义域为故答案为14.函数y=2cos(ωx)的最小正周期是4π,则ω=±.【考点】三角函数的周期性及其求法.【分析】利用周期公式列出关于ω的方程,求出方程的解即可得到ω的值.【解答】解:∵=4π,∴ω=±.故答案为:±15.已知tanα=2,则tan2α的值为﹣.【考点】二倍角的正切.【分析】由条件利用二倍角的正切公式求得tan2α的值.【解答】解:∵tanα=2,∴tan2α===﹣,故答案为:﹣.16.已知sin(﹣x)=,则cos(﹣x)= ﹣.【考点】运用诱导公式化简求值.【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值.【解答】解:∵sin(﹣x)=,∴cos(﹣x)=cos[+(﹣x)]=﹣sin(﹣x)=﹣.故答案为:﹣三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.【考点】三角函数的化简求值.【分析】把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα﹣cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα﹣cosα的值,联立求出sinα与cosα的值,即可确定出的值.【解答】解:把sinα+cosα=①,两边平方得:(sinα+cosα)2=1+2sinαcosα=,∴2sinαcosα=﹣,∵α∈(0,π),∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则==﹣.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的定义域和值域.【分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函数的解析式.(2)根据x的X围进而可确定当的X围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.【考点】三角函数的化简求值.【分析】利用韦达定理可求得sinθ+cosθ=,sinθ•cosθ=,利用同角三角函数基本关系式即可解得m,将所求的关系式化简为sinθ+cosθ,即可求得答案.【解答】解:∵sinθ和cosθ为方程2x2﹣mx+1=0的两根,∴sinθ+cosθ=,sinθ•cosθ=,∵(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ,∴m2=1+2×,解得:m=±2,∴+=+=sinθ+cosθ=.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.【考点】余弦函数的定义域和值域.【分析】由求出的X围,由余弦函数的性质求出cos(2x﹣)的值域,根据解析式对a分类讨论,由原函数的值域分别列出方程组,求出a、b的值.【解答】解:由得,,∴cos(2x﹣),当a>0时,∵函数的值域是[﹣5,1],∴,解得,当a<0时,∵函数的值域是[﹣5,1],∴,解得,综上可得,或.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域.【分析】(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.【解答】解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣322.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)由函数的解析式求得周期,由求得x的X围,即可得到函数的单调增区间(2)由条件可得,再根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:(1)由函数,可得周期等于 T==π.由求得,故函数的递增区间是.(2)由条件可得.故将y=sin2x的图象向左平移个单位,再向上平移个单位,即可得到f(x)的图象.。
高一下学期第一次月考数学试题(解析版
![高一下学期第一次月考数学试题(解析版](https://img.taocdn.com/s3/m/102a6572e55c3b3567ec102de2bd960590c6d92f.png)
(1)求角 ;
(2)求 的取值范围.
【18题答案】
【答案】(1)条件选择见解析
(2)
【解析】
【分析】(1)若选①由正弦定理得 即可求出 ;若选②由正弦定理得 即可求出 .
(2)用正弦定理得表示出 得到 利用三角函数求出 的取值范围.
【小问1详解】
若选①则由正弦定理得
【解析】
【分析】由题可得 .作差法可判断A;用基本不等式可判断B;分别化简不等式左边和右边可判断C;假设法可判断D.
【详解】如图
易知 .
A: (当 时取等号) 故A正确;
B: (当 时取等号)故B正确;
C:
又 (当 时取等号) 故C正确;
D:假设 成立
则
即
即
当 且 时上式不成立故D错误.
故选:ABC.
同理由 三点共线则存在实数 使得
所以 解得 所以 所以A正确.
又由 且
可得 解得 则
可得 所以B正确;
又由
当且仅当 时等号成立所以C正确.
又由 可得 所以D不正确.
故选:ABC.
12.设 分别为 中ab两边上的高 的面积记为S.当 时下列不等式正确的是( )
A. 【20题答案】
【答案】(1)
(2)
【解析】
【分析】(1)由最大值和最小值求得 的值由 以及 可得 的值再由最高点可求得 的值即可得 的解析式由正弦函数的对称中心可得 对称中心;
(2)由图象的平移变换求得 的解析式由正弦函数的性质可得 的值域令 的取值为 的值域解不等式即可求解.
【小问1详解】
由题意可得: 可得 所以
A. B.
C. D.
高一数学 第一次月考试卷(含答案)
![高一数学 第一次月考试卷(含答案)](https://img.taocdn.com/s3/m/93ace1d39f3143323968011ca300a6c30d22f152.png)
高一数学 第一次月考试卷班级______姓名________ 命题教师——一、选择题(本题12小题,每题5分,共60分)1、函数1y x=+ D ) A. [)4,-+∞ B .()()4,00,-+∞ C .()4,-+∞ D. [)()4,00,-+∞2、若集合{}{}21,02,A x x B x x =-<<=<<则集合A B 等于(D )A 、{}11x x -<<B 、{}21x x -<<C 、{}22x x -<<D 、{}01x x <<3、若集合{}2228x A x Z +=∈<≤,{}220B x R x x =∈->,则()R A C B 所含的元素个数为( C )A 、0B 、1C 、2D 、34、函数1()f x x x=-的图像关于( C )。
A. y 轴对称 B .直线y x =-对称 C .坐标原点对称 D.直线y x =对称5、已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (D) A.2 B.1 C.0 D.-26、若)(x f 是偶函数,其定义域为),(+∞-∞,且在[)+∞,0上是减函数,则)23(-f 与)252(2++a a f 的大小关系是 ( C ) A 、)252()23(2++>-a a f f B 、)252()23(2++<-a a f f C 、)252()23(2++≥-a a f f D 、)252()23(2++≤-a a f f 7、若)(x f ,)(x g 都是奇函数,且2)()()(++=x bg x af x F 在),0(+∞上有最大值8,则)(x F 在)0,(-∞上有 ( D )A 、最小值8-B 、最大值8-C 、最小值6-D 、最小值4-8、设253()5a =,352()5b =,252()5c =,则,,a b c 的大小关系是 ( A ) A 、a c b >> B 、a b c >> C 、c a b >> D 、b c a >>9、函数1()(0,1)x f x a a a +=>≠的值域为[)1,+∞,则(4)f -与(1)f 的关系是( A )A 、(4)(1)f f ->B 、(4)(1)f f -=C 、(4)(1)f f -<D 、不能确定10、若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范( B )A. 3(,3)2 B. 3,32⎡⎤⎢⎥⎣⎦ C. (]0,3 D. 3,32⎡⎫⎪⎢⎣⎭11、已知[]1,1-∈x 时,02)(2>+-=a ax x x f 恒成立,则实数a 的取值范围是( A ) A.(0,2) B.),(∞+2 C. ),(∞+0 D.(0,4) 12、奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += ( D ) A 、2- B 、1- C 、0 D 、1二、填空题(本题共4小题,每题5分,共20分)13、设集合{}{}21,1,3,2,4,A B a a =-=++{}3A B =,则实数a 的值为_1____ 。
高一年级数学第一次月考试题
![高一年级数学第一次月考试题](https://img.taocdn.com/s3/m/9faa8923240c844768eaeec5.png)
高一数学第一次月考试题第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题;每小题5分;共60分.在每小题给出的四个选项中;只有一项是符合题目要求的.(1)已知集合{(,)|2},{(,)|4}M x y x y n x y x y =+==-=;那么集合M N ⋂为(A) x = 3;y = –1 (B) {3;–1} (C) (3;–1) (D) {(3;–1)}(2)不等式23440x x -<-≤的解集为 (A)13{|}22x x x ≤-≥或 (B)13{|}22x x -<< (C){|01}x x x ≤≥或 (D)1301}22{|x x x <≤≤<-或 (3)若p 、q 是两个简单命题;且“p 或q ”的否定是真命题;则必有(A) p 真q 真 (B) p 假q 假 (C) p 真q 假 (D) p 假q 真(4)“1a =”是“函数22cos sin y ax ax =-的最小正周期为π”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既非充分又非必要条件(5)下列各项中能表示同一函数的是 (A)211x y x -=-与1y x =+ (B)lg y x =与21lg 2y x =(C)1y =与1y x =- (D)y x =与log (01)x y a a a a =>≠且(6)已知62()log f x x =;则(8)f = (A)43 (B)8 (C)18 (D)12 (7)若|1|12()x f x +⎛⎫ ⎪⎝⎭=区间(,2)-∞上(A)单调递增 (B)单调递减 (C)先增后减 (D)先减后增(8)设()f x 是(,)-∞+∞上的奇函数;(2)()f x f x +=-;当01x ≤≤时()f x x =;则(7.5)f 等于(9)已知二次函数()y f x =满足(3)(3)f x f x +=-;且有两个实根1x ;2x ;则12x x += (A)0 (B)3 (C)6 (D)不确定(10)函数0.5()log (1)(3)f x x x =+-的增区间是(A)(1,3)- (B)[)1,3 (C)(,1)-∞ (D)(1,)+∞(11)若函数22log (2)y x ax a =-+的值域是R ;则实数a 的取值范围是 (A)01a << (B)01x ≤≤ (C)0a <或1a > (D)0a ≤或1a ≥(12)已知函数1()3x f x -=;则它的反函数1()f x -的图象是012y x012y x 012y x012yx (A) (B) (C) (D)第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题;每小题4分;共16分.把答案填在题中横线上.(13)函数2()1(0)f x x x =+≤的反函数为 .(14)函数f (x) 对任何x ∈R + 恒有f (x 1·x 2) = f (x 1) + f (x 2);已知f (8) = 3;则f (2) =_____.(15)已知函数2()65f x x mx =-+在区间[)2,-+∞上是增函数;则m 的取值范围是 .(16)如果函数22log (2)y x ax a =+++的定义域为R ;则实数a 的范围是 .三.解答题:本大题共6小题;共74分.解答应写出文字说明;证明过程或演算步骤.(17)(本小题满分12分)求不等式25||60x x -+>。
高一数学第一次月考试题含解析
![高一数学第一次月考试题含解析](https://img.taocdn.com/s3/m/796fed44bf1e650e52ea551810a6f524ccbfcb23.png)
一中2021-2021学年下学期第一次月考高一数学一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.在△ABC中,,那么等于〔〕A. B. C. D.【答案】C【解析】设A=k,B=2k,C=3k,由,得6k=180°,k=30°,∴A=30°,B=60° ,C=90°,∴a∶b∶c=sin A∶sin B∶sin C=1∶∶2.应选C.2.是不同的直线,是不重合的平面,假设,,那么A. B. C. D.【答案】A【解析】【分析】根据两平面公一共点必在两平面交线上进展选择.【详解】因为,,所以M为公一共点,而为交线,因此,选A.【点睛】此题考察公理以及符号语言,考察根本分析判断才能,属根底题.中,角的对边分别是,假设,,那么A. 30°B. 60°C. 120°D. 150°【答案】A【解析】试题分析:先利用正弦定理化简得,再由可得,然后利用余弦定理表示出,把表示出的关系式分别代入即可求出的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.由及正弦定理可得,应选A.考点:正弦、余弦定理4.如图,是程度放置的的直观图,那么的面积为A. 6B.C. D. 12【答案】D【解析】△OAB是直角三角形,OA=6,OB=4,∠AOB=90°,∴S△OAB=×6×4=12.应选D中,角的对边分别是,,那么的形状为A. 直角三角形B. 等腰三角形或者直角三角形C. 等腰直角三角形D. 正三角形【答案】A【解析】【分析】先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择.【详解】因为,所以,,因此,选A.【点睛】此题考察二倍角公式以及正弦定理,考察根本分析转化才能,属根底题.的半圆卷成一个圆锥,那么它的体积为A. B. C. D.【答案】B【解析】【分析】根据圆锥侧面展开图求高,再根据体积公式得结果.【详解】设圆锥底面半径为,那么因为圆锥母线长为,所以圆锥高为,因此体积为,选B.【点睛】此题考察圆锥侧面展开图以及圆锥体积,考察根本分析求解才能,属根底题.是互不一样的空间直线,是不重合的平面,以下命题正确的选项是〔〕A. 假设,那么B. 假设,那么C. 假设,那么D. 假设,那么【答案】D【解析】试题分析:选项A中,除平行n外,还有异面的位置关系,那么A不正确.选项B中,与β的位置关系有相交、平行、在β内三种,那么B不正确.选项C中,与m的位置关系还有相交和异面,故C不正确.选项D中,由∥β,设经过的平面与β相交,交线为c,那么∥c,又⊥α,故c⊥α,又c⊂β,所以⊥β,正确.应选D.考点:空间中直线与平面之间的位置关系.点评:此题考察空间直线位置关系问题及断定,及面面垂直、平行的断定与性质,要综合断定定理与性质定理解决问题.中,角所对的边分别为,,,,那么的面积为〔〕A. B. C. D.【答案】A【解析】试题分析:由可得,即,由,据余弦定理,可得.由,那么.故此题答案选A.考点:1.正弦定理;2.余弦定理;3.三角形面积公式..9.如图,正四棱锥的所有棱长都等于,过不相邻的两条棱作截面,那么截面的面积为A. B.C. D.【答案】C【解析】【分析】由题意首先求得截面三角形的边长,然后求解其面积即可.【详解】根据正棱锥的性质,底面ABCD是正方形,∴AC=a.在等腰三角形SAC中,SA=SC=a,又AC=a,∴∠ASC=90°,即S△SAC=a2.此题选择C选项.【点睛】此题主要考察空间几何体的构造特征及其应用,三角形面积公式等知识,意在考察学生的转化才能和计算求解才能.10.如图,在中,,为角的平分线,且,那么等于A. B.C. D. 0【答案】C【解析】【分析】根据正弦定理得等量关系,即可求解.【详解】,由正弦定理得因为为角的平分线,所以选C.【点睛】此题考察正弦定理以及二倍角正弦公式,考察根本分析求解才能,属根底题.11.如图,正方体的棱线长为1,线段上有两个动点E、F,且,那么以下结论中错误的选项是A.B.C. 三棱锥的体积为定值D.【答案】D【解析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,那么AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误。
2023-2024学年安徽省合肥市高一下学期第一次月考质量检测数学试题(含解析)
![2023-2024学年安徽省合肥市高一下学期第一次月考质量检测数学试题(含解析)](https://img.taocdn.com/s3/m/8bc627b4f71fb7360b4c2e3f5727a5e9856a2713.png)
2023-2024学年安徽省合肥市高一下册第一次月考数学试题一、单选题1.下列五个结论:①温度有零上和零下之分,所以温度是向量;②向量a b ≠ ,则a 与b的方向必不相同;③a b > ,则a b > ;④向量a 是单位向量,向量b 也是单位向量,则向量a 与向量b共线;⑤方向为北偏西50︒的向量与方向为东偏南40︒的向量一定是平行向量.其中正确的有()A .①⑤B .④C .⑤D .②④【正确答案】C【分析】根据向量的定义即可判断①;根据不相等向量的定义即可判断②;根据向量不能比较大小即可判断③;根据共线向量的定义即可判断④⑤.【详解】温度虽有大小却无方向,故不是向量,故①错;a b ≠ ,但a 与b的方向可以相同,故②错;向量的长度可以比较大小,但向量不能比较大小,故③错;单位向量只要求长度等于1个单位长度,但方向未确定,故④错;如图,作出这两个向量,则方向为北偏西50︒的向量与方向为东偏南40︒的向量方向相反,所以这两个向量一定是平行向量,故⑤正确.故选:C.2.若在△ABC 中,AB a =,BC b = ,且||||1a b == ,||a b += ABC 的形状是()A .正三角形B .锐角三角形C .斜三角形D .等腰直角三角形【正确答案】D【分析】利用向量加法的几何意义和模长之间的关系即可判定其为等腰直角三角形.【详解】由于||||1AB a == ,||||1BC b == ,||||AC a b =+则222||a b a b +=+ ,即222||||AB BC AC += ,所以△ABC 为等腰直角三角形.故选:D .3.已知a ,b 均为单位向量,(2)(2)2a b a b +⋅-=-,则a 与b 的夹角为()A .30°B .45°C .135°D .150°【正确答案】A【分析】根据(2)(2)2a b a b +⋅-=-,求得a b ⋅=r r ,再利用向量夹角公式即可求解.【详解】因为22(2)(2)232232a b a b a a b b a b +⋅-=-⋅-=-⋅-=-,所以2a b ⋅=r r .设a与b 的夹角为θ,则cos .2||||a b a b θ⋅==又因为0°≤θ≤180°,所以θ=30°.故选:A.4.如果用,i j 分别表示x 轴和y 轴正方向上的单位向量,且()()2,3,4,2A B ,则AB可以表示为()A .23i j+ B .42i j + C .2i j - D .2i j-+ 【正确答案】C【分析】先根据向量的坐标表示求出AB,再根据正交分解即可得解.【详解】因为()()2,3,4,2A B ,所以()2,1AB =-,所以2AB i j =- .故选:C.5.设平面向量()1,2a =r ,()2,b y =- ,若a b∥,则3a b + 等于()A B C D【正确答案】A【分析】由两向量平行得出b坐标中的y ,即可求出3a b + 的值.【详解】由题意,∵()1,2a =r ,()2,b y =- ,a b∥,∴()1220y ⨯⨯--=,解得4y =-,∴()2,4b =--∴()()()33,62,41,2a b +=+--=== 故选:A.6.已知向量(2,3)u x =+ ,(,1)v x = ,当()f x u v =⋅取得最小值时,x 的值为()A .0B .1-C .2D .1【正确答案】B【分析】直接利用向量数量积的坐标化运算得到2()(1)2f x x =++,利用二次函数性质得到其最值.【详解】22()(2)323(1)2f x u v x x x x x =⋅=++=++=++,故当=1x -时,f (x )取得最小值2.故选:B.7.在如图所示的半圆中,AB 为直径,点O 为圆心,C 为半圆上一点,且30OCB ∠=︒,2AB = ,则AC等于()A .1B CD .2【正确答案】A【分析】根据OC OB =,可得30ABC OCB ∠=∠=︒,进一步得出答案.【详解】如图,连接AC ,由OC OB =,得30ABC OCB ∠=∠=︒.因为C 为半圆上的点,所以90ACB ∠=︒,所以112AC AB ==.故选:A.8.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM = ,AC nAN =,则m n +=()A .1B .32C .2D .3【正确答案】C【分析】连接AO ,因为O 为BC 中点,可由平行四边形法则得1()2AO AB AC =+ ,再将其用AM,AN 表示.由M 、O 、N 三点共线可知,其表达式中的系数和122m n+=,即可求出m n +的值.【详解】连接AO ,由O 为BC 中点可得,1()222m n AO AB AC AM AN =+=+ ,M 、O 、N 三点共线,122m n∴+=,2m n ∴+=.故选:C.本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量的共线定理是关键.属于基础题.二、多选题9.在平面直角坐标系中,若点A (2,3),B (-3,4),如图所示,x 轴、y 轴同方向上的两个单位向量分别为i 和j,则下列说法正确的是()A .23OA i j=+ B .34O i j B =+ C .5AB i j =-+ D .5BA i j=+ 【正确答案】AC【分析】根据图象,由平面向量的坐标运算求解.【详解】解:由图知,23OA i j =+ ,34OB i j =-+,故A 正确,B 不正确;5AB OB OA i j =-=-+ ,5A A i j B B =-=-,故C 正确,D 不正确.故选:AC10.在ABC 中,若3330b c B ===︒,,,则a 的值可以为()A 3B .23C .33D .43【正确答案】AB【分析】根据余弦定理,直接计算求值.【详解】根据2222cos b a c ac B =+-,得2339232a a =+-⨯⨯,即23360a a -+=,解得:3a =23a =故选:AB11.如图,在海岸上有两个观测点C ,D ,C 在D 的正西方向,距离为2km ,在某天10:00观察到某航船在A 处,此时测得∠ADC=30°,5分钟后该船行驶至B 处,此时测得∠ACB=60°,∠BCD=45°,∠ADB=60°,则()A .当天10:00时,该船位于观测点C 的北偏西15°方向B .当天10:00时,该船距离观测点2C .当船行驶至B 处时,该船距观测点2D .该船在由A 行驶至B 的这5min 6km【正确答案】ABD【分析】利用方位角的概念判断A ,利用正弦定理、余弦定理求解后判断BCD .【详解】A 选项中,∠ACD=∠ACB+∠BCD=60°+45°=105°,因为C 在D 的正西方向,所以A 在C 的北偏西15°方向,故A 正确.B 选项中,在△ACD 中,∠ACD=105°,∠ADC=30°,则∠CAD=45°.由正弦定理,得AC=sin sin CD ADCCAD∠∠=,故B 正确.C 选项中,在△BCD 中,∠BCD=45°,∠CDB=∠ADC+∠ADB=30°+60°=90°,即∠CBD=45°,则BD=CD=2,于是BC=C 不正确.D 选项中,在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB=2+8-212=6,即,故D 正确.故选:ABD .12.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a c ≠,tan B =ABC 的面积为则2b a c-可能取到的值为()A .B .C .D .【正确答案】AC由tan B =sin 3B =,再利用ABC 的面积为6ac =,再利用余弦定理可得22()8b a c =-+,然后代入2||b ac -中利用基本不等式可求得其最小值.【详解】解:tan B = 1cos 3B ∴=,sin 3B =,又1sin 2==S ac B 6ac ∴=,由余弦定理可得2222222cos 4()8=+-=+-=-+b a c ac B a c a c ,22()88||||||||-+∴==-+≥---b a c a c a c a c a c ,当且仅8||||-=-a c a c 等号成立,故2b a c-的最小值为AC 选项.故选:AC.关键点睛:本题考查余弦定理的应用,考查基本不等式的应用,解题的关键是根据面积得出6ac =,再利用余弦定理得出22()8b a c =-+,结合基本不等式求解.三、填空题13.已知点()1,5A --和向量()2,3a =r,若3AB a =,则点B 的坐标为________.【正确答案】()5,4【分析】根据向量线性运算的坐标表示,由OA AB OB =+求向量OB 的坐标,由此可得点B 的坐标.【详解】设O 为坐标原点,因为()1,5OA =--,()36,9AB a == ,故()5,4O A B OA B =+=,故点B 的坐标为()5,4.故答案为.()5,414.若向量()()(),3,1,4,2,1a k b c === ,已知23a b - 与c的夹角为钝角,则k 的取值范围是________.【正确答案】99,,322⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭ 【分析】根据23a b - 与c 的夹角为钝角,由()230a b c -⋅< ,且23a b - 与c 的不共线求解.【详解】解:由()(),3,1,4a k b == ,得()2323,6a b k -=--.又23a b - 与c的夹角为钝角,∴()22360k --<,得3k <,若()23//a b c - ,则2312k -=-,即92k =-.当92k =-时,23a b - 与c 共线且反向,不合题意.综上,k 的取值范围为99,,322⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭ ,故99,,322⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭ .15.如图,设P 为ABC 内一点,且202PA PB PC ++=,则:ABP ABC S S =△△________.【正确答案】15##0.2【分析】设AB 的中点是D ,连接PD ,根据平面向量线性运算法则,得到14P C D P =-,即可得到面积比.【详解】设AB 的中点是D ,连接PD ,由202PA PB PC ++= ,可得12PA PB PC +=-,因为122PA PB PD PC +==- ,所以14P C D P =- ,所以P 为CD 的五等分点(靠近D 点),即15P D D C =,所以ABP 的面积为ABC 的面积的15.故答案为.1516.在ABC 中,3a =60A = ,求32b c +的最大值_________.【正确答案】219由正弦定理得2sin b B =,2sin c C =.代入,进行三角恒等变换可得326sin 4sin b c B C +=+219)B ϕ=+,由此可求得最大值.【详解】解:由正弦定理32sin sin sin 32ab cA B C ===,得2sin b B =,2sin c C =.326sin 4sin b c B C+=+()316sin 4sin 1206sin 4sin 22B B B B B ⎫=+︒-=++⎪⎪⎝⎭6sin 32sin B B B=++8sin)B B Bϕ=+=+)Bϕ=+,其中tan4ϕ=,所以max(32)b c+=故答案为.本题考查运用正弦定理解三角形,边角互化求关于边的最值,属于较难题.四、解答题17.已知向量12a e e=-,1243b e e=+,其中()()121,0,0,1e e==.(1)试计算a b⋅及a b+的值;(2)求向量a 与b 夹角的余弦值.【正确答案】(1)1a b⋅=,a b+(2)10【分析】(1)利用平面向量的数量积运算求解;(2)利用平面向量的夹角公式求解.【详解】(1)解:()()()1,00,11,1a=-=-,()()()41,030,14,3b=+=,∴()41311a b⋅=⨯+⨯-=,a b+(2)设a b,的夹角为θ,由cosa b a bθ⋅=⋅⋅,cos a ba bθ⋅=⋅.18.有一艘在静水中速度大小为10km/h的船,现船沿与河岸成60︒角的方向向河的上游行驶.由于受水流的影响,结果沿垂直于河岸的方向驶达对岸.设河的两岸平行,河水流速均匀.(1)设船相对于河岸和静水的速度分别为,u v,河水的流速为w,求,,u v w之间的关系式;(2)求这条河河水的流速.【正确答案】(1)u w v=+(2)河水的流速为5km/h,方向顺着河岸向下【分析】(1)根据题意可得v与u的夹角为30︒,则,,u v w三条有向线段构成一个直角三角形,其中,,O O O v u A BC w B C ====,再根据向量的加法法则即可得解;(2)结合图象,求出BC uu u r即可.【详解】(1)如图,u 是垂直到达河对岸方向的速度,v是与河岸成60︒角的静水中的船速,则v 与u的夹角为30︒,由题意知,,,u v w三条有向线段构成一个直角三角形,其中,,O O O v u A BC w B C ==== ,由向量加法的三角形法则知,OC OA OB =+,即u w v =+ ;(2)因为10km /h OB v == ,而1sin 30105km /h 2BC OB =︒=⨯= ,所以这条河河水的流速为5km /h ,方向顺着河岸向下.19.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A cos B .若b =3,sin C =2sin A ,求a ,c 的值.【正确答案】ac =【分析】由b sin Acos B 边化角求得B ,由sin C =2sin A 得c =2a ,再结合余弦定理即可求解.【详解】因为b sin Acos B .所以由正弦定理,得sin sin cos .B A A B =sin 0,sin cos A B B ≠∴ ,即tan B =π0π,=3B B <<∴ ∵sinC =2sin A ,∴由正弦定理,得c =2a ,由余弦定理得b 2=a 2+c 2-2ac cos B ,即9=a 2+4a 2-2a ·2a cosπ3,解得a c =2a =20.如图,在ABC ∆中,点D 在BC 边上,7,,cos 4210CAD AC ADB π∠==∠=-.(1)求sin C ∠的值;(2)若5BD =,求ABD ∆的面积.【正确答案】(1)45;(2)7.【详解】试题分析:(1)先由2cos 10ADB ∠=得出72sin 10ADB ∠=sin sin 4C ADB π⎛⎫∠=∠- ⎪⎝⎭展开,代入求值即可;(2)由正弦定理sin sin AD AC C ADC =∠∠得到AD 的值,再利用三角形面积公式即可.试题解析:(1)因为2cos 10ADB ∠=,所以2sin 10ADB ∠=.又因为4CAD π∠=,所以4C ADB π∠=∠-.所以722224sin sin sin cos cos sin 4441021025C ADB ADB ADB πππ⎛⎫∠=∠-=∠⋅-∠⋅=⨯+⨯= ⎪⎝⎭.(2)在ACD ∆中,由sin sin AD AC C ADC=∠∠,得74sin 2522sin 7102AC C AD ADC ⨯⋅∠==∠所以1172sin 22572210ABD S AD BD ADB ∆=⋅⋅∠=⨯=.1、两角差的正弦余弦公式;2、正弦定理及三角形面积公式.21.设两个向量,a b 满足()132,0,22a b ⎛== ⎝⎭,(1)求a b + 方向的单位向量;(2)若向量27ta b + 与向量a tb + 的夹角为钝角,求实数t 的取值范围.【正确答案】(1)57211414⎛⎫ ⎪ ⎪⎝⎭(2)17,222⎛⎫⎛⎫-⋃-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)根据()12,0,,22a b ⎛== ⎝⎭,求得a b + 的坐标和模后求解;(2)根据向量27ta b + 与向量a tb + 的夹角为钝角,由()()270ta b a tb ++< ,且向量27ta b + 不与向量a tb + 反向共线求解.【详解】(1)由已知()152,0,,2222a b ⎛⎛+=+= ⎪ ⎪⎝⎭⎝⎭,所以a b +=所以14a b +=⎪⎭,即a b +方向的单位向量为1414⎛⎫ ⎪ ⎪⎝⎭;(2)由已知1a b ⋅= ,2,1a b == ,所以()()()22222722772157ta b a tb ta t a b tb t t +⋅+=++⋅+=++ ,因为向量27ta b + 与向量a tb + 的夹角为钝角,所以()()270ta b a tb ++< ,且向量27ta b + 不与向量a tb + 反向共线,设()()270ta b k a tb k +=+< ,则27t k kt =⎧⎨=⎩,解得2t =-,从而2215702t t t ⎧++<⎪⎨≠-⎪⎩,解得17,,222t ⎛⎛⎫∈--⋃-- ⎪ ⎪⎝⎭⎝⎭.22.在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【正确答案】(1)4;(2)存在,且2a =.【分析】(1)由正弦定理可得出23c a =,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果;(2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值.【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c C ab +-==,所以,C 为锐角,则sin 8C ==,因此,11sin 4522ABC S ab C ==⨯⨯△(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故2a =.。
高一数学下学期第一次月考试卷卷一 试题
![高一数学下学期第一次月考试卷卷一 试题](https://img.taocdn.com/s3/m/62960d797ed5360cba1aa8114431b90d6c858911.png)
智才艺州攀枝花市创界学校瑶厦08-09高一下学期第一次月考〔卷一〕〔数学〕一、选择题〔本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一个是符合题目要求的〕1.将-300o化为弧度为〔〕A.-43π;B.-53π;C.-76π;D.-74π;2.函数)421sin(2π+=xy的周期,振幅,初相分别是〔〕A.4,2,4ππB.4,2,4ππ--C.4,2,2ππD.4,2,4ππ3.假设点)cos2,cos(sinθθθP位于第三象限,那么角θ所在象限是〔〕A.第一象限B.第二象限C.第三象限D.第四象限4.假设1弧度的圆心角,所对的弦长等于2,那么这圆心角所对的弧长等于〔〕A.1sin2B.6πC.11sin2D..12sin25.假设角α的终边落在直线y=2x上,那么sinα的值是〔〕A.B.C.15±D.12±6.函数sin()y A x Bωϕ=++的一局部图象如右图所示,假设0,0,||2Aπωϕ>><,那么〔〕A.4=A B.1ω=C.6πϕ=D.4=B7.在ABC∆中,①sin()sinA B C++;②cos()cosB C A++;③2tan2tanCBA+;④cos()sinB C A++,其中恒为定值的是〔〕A.①②B.③④C.②④D.②③8.点O是平行四边形ABCD对角线的交点,那么下面结论正确的选项是()A.AB CB AC+=B.AB AD AC+=C.AD CD BD+≠D.0AO CO OB OD+++=9.函数)sin(φϖ+=xAy在同一周期内,当3π=x时有最大值2,当x=0时有最小值-2,那么函数的解析式为〔〕A.xy23sin2=B.)23sin(2π+=xyC.)23sin(2π-=xyD.xy3sin21=10.假设α角的终边落在第三或者第四象限,那么2α的终边落在〔〕A .第二或者第四象限B .第一或者第三象限C .第一或者第四象限D .第三或者第四象限11.定义新运算“a ※b 〞为a ※b=,,a a b b a b ≤⎧⎨>⎩,例如1※2=1,3※2=2,那么函数 ()sin f x x =※cos x 的值域是()A.[-B.C .[1,1]-D.[ 1021年8月,在召开的国际数学家大会会标如下列图,它是由4个一样的直角三角形与中间的小正方形拼成的一大正方形,假设直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于〔〕A .1B.2524-C .257 D.725-二、填空题〔本大题一一共4小题,每一小题4分,一共16分,请把答案写在题中横线上〕13.函数sin 1y a x =+的最大值是3,那么它的最小值______________________14.向量,8b =,那么a b+的最大值是,a b-的最小值是。
高一数学第一次月考试卷
![高一数学第一次月考试卷](https://img.taocdn.com/s3/m/f1132d704a73f242336c1eb91a37f111f1850d97.png)
高一数学第一次月考试题时量:120分钟 总分:150分 姓名: 班级: 得分:一、 选择题(5×10=50分)1.集合},{b a 的子集有 ( )A .2个B .3个C .4个D .5个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A B = ( )A .(4,3)-B .(4,2]-C .(,2]-∞D .(,3)-∞3. 图中阴影部分所表示的集合是( )A.B ∩[CU(A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(CUB)D.[CU(A ∩C)]∪B4.下列对应关系:( )①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根②,,A R B R ==f :x x →的倒数③,,A R B R ==f :22x x →-④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方其中是A 到B 的映射的是A .①③B .②④C .③④D .②③5. 已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离s 表示为时间t (小时)的函数表达式是( )A .s=60tB .s=60t+50tC .s=D .s= 6. 函数y=xx ++-1912是( ) A . 奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数7.已知函数212x y x ⎧+=⎨-⎩(0)(0)x x ≤>,使函数值为5的x 的值是( ) ⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t ⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tA .-2B .2或52-C . 2或-2D .2或-2或52- 8.下列函数中,定义域为[0,+∞)的函数是 ( )A .x y =B .22x y -=C .13+=x yD .2)1(-=x y9.下列图象中表示函数图象的是 ( )(A ) (B) (C ) (D)10. 若偶函数 f(x)在 上是增函数,则下列关系式中成立的是( )A. B.C. D. 二、填空题(5×5=15分)11.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x 1<0,x 2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .12.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = .13.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .14. 设奇函数f (x )的定义域为[-5,5],若当 时,f(x)的图象如右图,则不等式f(x)<0的解是 .15.已知函数()y f x =是R 上的偶函数,且在(-∞,0]上是减函数,若()(2)f a f ≥,则实数a 的取值范围是 .三、解答题(共75分)16.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(12分) (Ⅰ)若A =B ,求a 的值;(6分)(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值.(6分)x y 0 x y 0 x y 0 x y 0 (]1,-∞-)2()1()23(f f f <-<-)2()23()1(f f f <-<-)23()1()2(-<-<f f f )1()23()2(-<-<f f f [0,5]x ∈17、设U={2,3,a 2+2a-3},A={b,2},U ⊇A ,C U A={5},求实数a 和b 的值。
高一下学期数学第一次月考试卷附带答案
![高一下学期数学第一次月考试卷附带答案](https://img.taocdn.com/s3/m/8fa2da1cbc64783e0912a21614791711cc797967.png)
高一下学期数学第一次月考试卷附带答案(满分150分 时间:120分钟)一.单选题。
(共8小题,每小题5分,共40分) 1.已知(1+i )z=3-i ,其中i 为虚数单位,则|z |=( ) A.5 B.√5 C.2 D.√22.已知复数z=1+2i1+i (i 为虚数单位),则z 的共轭复数z ̅在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,正方形O’A’B’C’的边长为1,它是一个水平放置的平面图形的直观图,则原图形的周长是( )A.4B.6C.8D.2+2√2(第3题图) (第4题图)4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC=2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为( ) A.2√33B.23C.√24D.135.设b ,c 表示两条直线,α,β表示两个平面,下列命题正确的是( ) A.若b ∥α,c ⊂α,则b ∥c B.若b ⊂α,b ∥c ,则c ⊂α C.若c ∥α,α⊥β,则c ⊥β D.若c ∥α,c ⊥β,则α⊥β6.已知圆锥的顶点为P ,底面圆心为O ,若过直线OP 的平面截圆锥所得的截面是面积为4的等腰直角三角形,则该圆锥的侧面积为( )A.4√2πB.2√2πC.4πD.(4√2+4)π7.已知圆锥的母线长为10,侧面展开图的圆心角为4π5,则该圆锥的体积为( ) A.62√213π B.32√6π C.16√6π D.32√213π8.已知在正方体中,AD 1,A 1D 交于点O ,则( )A.OB⊥平面ACC1A1B.OB⊥平面A1B1CDC.OB∥平面CD1B1D.OB⊥BC1二.多选题.(共4小题,每小题5分,共20分)9.已知复数z=3+4i,下列说法正确的是()A.复数z的实部为3B.复数z的共轭复数为3-4iC.复数z的虚部为4iD.复数z的模为510.如图,点A,B,C,M,N是正方体的顶点或所在棱的中点,则满足MN∥平面ABC的有()A. B. C. D.11.如图,一个圆柱盒一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A.圆锥的侧面积为2πR2B.圆柱与球的表面积比为32C.圆柱的侧面积与球的表面积相等D.圆柱与球的体积比为32(第11题图)(第12题图)12.如图,在正方形ABCD中,E、F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF 以及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,下列说法正确的是()A.AG⊥平面EFHB.AH⊥平面EFHC.HF⊥平面AEHD.HG⊥平面AEF二.填空题。
2023-2024学年湖南高一下册第一次月考数学试卷(含解析)
![2023-2024学年湖南高一下册第一次月考数学试卷(含解析)](https://img.taocdn.com/s3/m/67f871ca7d1cfad6195f312b3169a4517723e51c.png)
2023-2024学年湖南高一下册第一次月考数学试卷一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,下列说法正确的是()A.若210x +=,则i x =B.实部为零的复数是纯虚数C.()21i z x =+可能是实数D.复数2i z =+的虚部是i2.设集合(){}1lg 1,24xA xy x B x ⎧⎫==-=>⎨⎬⎩⎭∣∣,则()A B ⋂=R ð()A.()1,∞+B.(]2,1-C.()2,1-D.[)1,∞+3.若命题“2,40x x x a ∀∈-+≠R ”为假命题,则实数a 的取值范围是()A.(],4∞- B.(),4∞- C.(),4∞-- D.[)4,∞-+4.下列说法正确的是()A.“ac bc =”是“a b =”的充分条件B.“1x ”是“21x ”的必要条件C.“()cos y x ϕ=+的一个对称中心是原点”是“2,2k k πϕπ=-∈Z ”的充分不必要条件D.“0a b ⋅< ”的充分不必要条件是“a 与b的夹角为钝角”5.设1535212log 2,log 2,23a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A.a b c <<B.b a c <<C.b c a<< D.a c b<<6.已知不等式20ax bx c ++>的解集为{23}xx -<<∣,且对于[]1,5x ∀∈,不等式220bx amx c ++>恒成立,则m 的取值范围为()A.(,∞-B.(,∞-C.[)13,∞+ D.(),13∞-7.若向量()()(),2,2,3,2,4a x b c ===- ,且a c ∥,则a 在b上的投影向量为()A.812,1313⎛⎫⎪⎝⎭ B.812,1313⎛⎫-⎪⎝⎭ C.()8,12 D.413138.已知函数()sin f x x =,若存在12,,,m x x x 满足1204m x x x π<<< ,且()()()()()()()*1223182,m m f x f x f x f x f x f x m m --+-++-=∈N ,则m 的最小值为()A.5B.6C.7D.8二、多选题:本大题共4个小题,每小题5分,满分20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中错误的是()A.向量AB 与CD是共线向量,则,,,A B C D 四点必在一条直线上B.零向量与零向量共线C.若,a b b c == ,则a c= D.温度含零上温度和零下温度,所以温度是向量10.下列说法正确的是()A.若α为第一象限角,则2α为第一或第三象限角B.函数()sin 4f x x πϕ⎛⎫=++ ⎪⎝⎭是偶函数,则ϕ的一个可能值为34πC.3x π=是函数()2cos 23f x x π⎛⎫=+ ⎪⎝⎭的一条对称轴D.若扇形的圆心角为60 ,半径为1cm ,则该扇形的弧长为60cm 11.已知0,0a b c >>>,则下列结论一定正确的是()A.b b ca a c+<+ B.3322a b a b ab ->-C.22b a a b a b+<+ D.2()a b a ba b ab +>12.已知函数()f x 的定义域为(),1f x -R 为奇函数,()1f x +为偶函数,当()1,1x ∈-时,()21f x x =-,则下列结论正确的是()A.()f x 为周期函数且最小正周期为8B.7324f ⎛⎫=⎪⎝⎭C.()f x 在()6,8上为增函数D.方程()lg 0f x x +=有且仅有7个实数解三、填空题:本大题共4小题,每小题5分,共20分.13.已知函数23(0x y a a -=+>,且1)a ≠的图象恒过定点P ,若点P 也在函数()32log 1y x b =++的图象上,则b =__________.14.化简:()2tan1234cos 122sin12-=-__________.15.已知函数()2log ,02,sin ,210,4x x f x x x π⎧<<⎪=⎨⎛⎫ ⎪⎪⎝⎭⎩若存在1234,,,x x x x ,满足1234x x x x <<<,且()()()()1234f x f x f x f x ===,则1234x x x x 的取值范围为__________.16.在ABC 中,内角,,A B C 所对的边分别为,,a b c .已知,a b c ≠=2233sin ,cos cos cos 52A AB A A B =-=-,则ABC 的面积是__________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且22232b c bc a +-=.(1)求cos A 的值;(2)若2,3B A b ==,求a 的值.18.(本小题满分12分)如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P .(1)若8AP AC ⋅=,求AP 的长;(2)设||6,||8,,3AB AC BAC AP xAB y AC π∠====+,求y x -的值.19.(本小题满分12分)有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速度可以表示为函数501log lg 210xv x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,0x 代表测量过程中某类候鸟每分钟的耗氧量偏差(参考数据:1.4lg20.30,59.52≈≈).(1)当05x =,候鸟停下休息时,它每分钟的耗氧量约为多少单位?(2)若雄鸟的飞行速度为1.75km /min ,同类雌鸟的飞行速度为1.5km /min ,则此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?20.(本小题满分12分)已知函数()f x 对任意实数x y 、恒有()()()f x y f x f y +=+,当0x >时()0f x <,且()12f -=.(1)求()f x 在区间[]2,4-上的最小值;(2)若()222f x m am <-+对所有的][1,1,1,1x a ⎡⎤∈-∈-⎣⎦恒成立,求实数m 的取值范围.21.(本小题满分12分)如图,在海岸线EF 一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC ,该曲线段是函数()()[]sin (0,0,0,),4,0y A x A x ωϕωϕπ=+>>∈∈-的图象,图象的最高点为()1,2B -.边界的中间部分为长1千米的直线段CD ,且CD EF ∥.游乐场的后一部分边界是以O 为圆心的一段圆弧 DE.(1)曲线段FGBC 上的入口G 距海岸线EF 的距离为1千米,现准备从入口G 修一条笔直的景观路到O ,求景观路GO 长;(2)如图,在扇形ODE 区域内建一个平行四边形休闲区OMPQ ,平行四边形的一边在海岸线EF 上,一边在半径OD 上,另外一个顶点P 在圆弧 DE上,且POE ∠θ=,求平行四边形休闲区OMPQ 面积的最大值及此时θ的值.22.(本小题满分12分)已知函数()()2ee ,ln xx f x a g x x =-=.(1)求函数()26g x x --的单调递减区间;(2)若对任意21,e ex ⎡⎤∈⎢⎥⎣⎦,存在()()()112,0,x f x g x ∞∈-≠,求实数a 的取值范围;(3)若函数()()()F x f x f x =+-,求函数()F x 零点的个数.数学答案一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号12345678答案CBADBBAB1.C A.i x =±,说法不正确;B.实部为零的复数可能虚部也为零,从而是实数,说法不正确;C.当i x =时,()21i z x =+是实数,说法正确;D.复数2i z =+的虚部是1,说法不正确.故选C .2.B 由题知()()1,,2,A B ∞∞=+=-+,从而得到()(]R 2,1A B ⋂=-ð.故选B .3.A 命题“2,40x x x a ∀∈-+≠R ”为假命题,2“,40x x x a ∴∃∈-+=R ”是真命题,∴方程240x x a -+=有实数根,则2Δ(4)40a =--,解得4a ,故选A.4.D对于A ,当0c =时,满足ac bc =,此时可能有,A a b ≠错误;对于2B,1x 等价于1x 或1x -,故“1x ”是“21x ”的充分不必要条件,B 错误;对于C ,“()cos y x ϕ=+的一个对称中心是原点”等价于()2k k πϕπ=+∈Z ,故“()cos y x ϕ=+的一个对称中心是原点”是“2k ϕπ=,2k π-∈Z 的必要不充分条件,C 错误;对于D ,0a b ⋅< 等价于a 与b的夹角,2πθπ⎛⎤∈⎥⎝⎦,故“0a b⋅< ”的充分不必要条件是“a 与b的夹角为钝角”,D 正确.故选D.5.B 因为33322213log 2log log 122a ==<=且153355221131122log 2log ,log 2log ,12222233a b c -⎛⎫⎛⎫=>==<=>= ⎪ ⎪⎝⎭⎝⎭,故b a c <<.故选B.6.B 由不等式20ax bx c ++>的解集为{23}xx -<<∣,可知2,3-为方程20ax bx c ++=的两个根,故0a <且()231,236b ca a-=-+==-⨯=-,即,6b a c a =-=-,则不等式220bx amx c ++>变为2120ax amx a -+->,由于[]0,1,5a x <∈,则上式可转化为12m x x <+在[]1,5恒成立,又12x x +=,当且仅当x =m <.故选B.7.A 因为a c∥,所以44x -=,得1x =-,所以()1,2a =- ,又()2,3b =,所以,cos ,b a b a b b a b⋅===所以a 在b上的投影向量为:812cos ,,1313b a a b b ⎛⎫⋅==⎪⎝⎭,故选A.8.B 因为()sin f x x =对任意(),,1,2,3,,i j x x i j m = ,都有()()max min ()()2i j f x f x f x f x --=,要使m 取得最小值,应尽可能多让()1,2,3,,i x i m = 取得最值点,考虑1204m x x x π<<< ,且()()()()()()()*1223182,m m f x f x f x f x f x f x m m --+-++-=∈N ,则m 的最小值为6,故选B.二、多选题:本大题共4个小题,每小题5分,满分20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.题号9101112答案ADACABDABD9.AD向量AB 与CD是共线向量,则,,,A B C D 四点不一定在一条直线上,故A 错误;零向量与任一向量共线,故B 正确;若,a b b c == ,则a c =,故C 正确;温度是数量,只有正负,没有方向,故D 错误.故选A D.10.AC 对于A :若α为第一象限角,则22,2k k k ππαπ<<+∈Z ,则:,24k k k απππ<<+∈Z ,所以2α为第一或第三象限角,故A 正确;对于B :函数()sin 4f x x πϕ⎛⎫=++ ⎪⎝⎭是偶函数,若ϕ的一个可能值为34π,当34πϕ=时,()()sin sin f x x x π=+=-,函数为奇函数,故B 错误;对于C :2cos 23f ππ⎛⎫==- ⎪⎝⎭,所以3x π=是函数()2cos 23f x x π⎛⎫=+ ⎪⎝⎭的一条对称轴,故C 正确;对于D :扇形圆心角为3π,半径为1cm ,则该扇形的弧长为cm 3π,故D 错误.故选AC.11.ABD 对于()()A,c b a b b c a a c a a c -+-=++,由a b >,得0b a -<,所以()()0c b a a a c -<+,所以b b ca a c+<+,故A 正确;对于B ,()()()()()332222220a b a b ab a b a ab b ab a b a b ---=-++-=-+>,故B 正确;对于()()()()22222222222()11C,0b a b a b a b a b a b a a b a b b a a b a b a b ab ab --+---⎛⎫+--=+=--==> ⎪⎝⎭,故C 错误;对于D ,2()a b a ba b ab +>等价于()ln ln ln ln 2a ba ab b a b ++>+,等价于ln ln ln ln 0a a b b b a a b +-->,即()()ln ln 0a b a b -->,故D 正确.故选ABD.12.ABD 因为()1f x -为奇函数,所以()()11f x f x --=--,即()f x 关于点()1,0-对称;因为()1f x +为偶函数,所以()()11f x f x -+=+,即()f x 关于直线1x =对称;则()()()()()()()112314f x fx f x f x f x =-+=-+=---=--,所以()()8f x f x =-,故()f x 的最小正周期为8,A 正确;275531111311111,B 222222224f f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=-=--=--=--=---=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦正确;由于()f x 在()1,0-上单调递减,且()f x 关于点()1,0-对称,故()f x 在()2,0-上单调递减,又()f x 的周期为8,则()f x 在()6,8上也为减函数,C 错误;作出函数()f x 的图象可知,函数()y f x =的图象与函数lg y x =-的图象恰有7个交点,D 正确,故选ABD.三、填空题:本大题共4小题,每小题5分,共20分.13.2由题意可知,函数23(0x y a a -=+>,且1)a ≠的图象恒过定点()2,4,则有()32log 214b ++=,解得2b =.14.-4原式()()()222sin123tan123sin123cos12cos124cos 122sin1222cos 121sin1222cos 121sin12co s12-===---()()2132sin122sin 48222sin4841cos24sin242cos 121sin24sin482⎛⎫ ⎪--⎝⎭====--.15.(20,32)作出函数()2log ,02,sin ,2104x x f x x x π⎧<<⎪=⎨⎛⎫⎪⎪⎝⎭⎩的图象,如图所示,因为()()()()12341234,f x f x f x f x x x x x ===<<<,所以,由图象可知,212234log log ,2612x x x x -=+=⨯=,且()32,4x ∈,则()2123433331,1212x x x x x x x x ==-=-+,由于23312y x x =-+在()2,4上单调递增,故2032y <<,所以1234x x x x 的取值范围为()20,32.16.369350+由题意得1cos21cos233sin22222A B A B ++-=-,即3131sin2cos2cos22222A AB B -=-,所以sin 2sin 266A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.由a b ≠得A B ≠,又()0,A B π+∈,得2266A B πππ-+-=,即23A B π+=,所以3C π=.由3,5sin sin a c c A A C ===,得65a =.由a c <,得A C <,从而4cos 5A =,故()343sin sin sin cos cos sin 10B AC A C A C +=+=+=,所以ABC的面积为1163433693sin 2251050S ac B ++==⨯⨯=.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1)在ABC 中,2223,2b c a bc +-=.由余弦定理222cos 2b c a A bc +-=,332cos 24bcA bc ∴==.(2)由(1)知,70,sin 24A A π<<∴==.32,sin sin22sin cos 2448B A B A A A =∴===⨯⨯=,又73sin 43,,2sin sin sin 378a b b A b a A B B ⨯==∴== ..18.(1) 在平行四边形ABCD 中,AP BD ⊥,垂足为P ,()22208AP AC AP AO AP AP PO AP AP ∴⋅=⋅=⋅+=⋅+=,22||4AP AP ∴== ,解得2AP = ,故AP 长为2.(2)2AP x AB y AC x AB y AO =+=+ ,且,,B P O 三点共线,21x y ∴+=①,又6,8,3AB AC BAC π∠=== ,则1cos 122AB AO AB AC BAC ∠⋅=⋅= ,由AP BD ⊥可知()()20AP BO x AB y AO AO AB ⋅=+⋅-= ,展开()22220y AO x AB x y AB AO -+-⋅= ,化简得到3y x =②联立①②解得13,77x y ==,故27y x -=.19.(1)由题意得,当候鸟停下休息时,它的速度是0,将05x =和0v =代入题目所给的公式,可得510log lg5210x =-,.即()5log 2lg521lg2 1.410x ==-≈,从而 1.410595.2x ≈⨯≈,故候鸟停下休息时,它每分钟的耗氧量约为95.2个单位.(2)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,由题意得:15025011.75log lg ,21011.5log lg ,210x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩两式相减可得15211log 42x x ⎛⎫= ⎪⎝⎭,解得:12x x =,倍.20.(1)取0x y ==,则()()()0020,00f f f +=∴=,取y x =-,则()()()()00f x x f x f x f -=+-==,()()f x f x ∴-=-对任意x ∈R 恒成立,()f x ∴为奇函数;任取()12,,x x ∞∞∈-+且12x x <,则()()()2121210,0x x f x f x f x x ->+-=-<,()()21f x f x ∴<--,又()f x 为奇函数,()()12f x f x ∴>.故()f x 为R 上的减函数.[]()()2,4,4x f x f ∈-∴ ,()()()()()42241418f f f f ===⨯--=- ,故()f x 在[]2,4-上的最小值为-8.(2)()f x 在[]1,1-上是减函数,()()12f x f ∴-=,()222f x m am <-+ 对所有][1,1,1,1x a ⎡⎤∈-∈-⎣⎦恒成立.2222m am ∴-+>对[]1,1a ∀∈-恒成立;即220m am ->对[]1,1a ∀∈-恒成立,令()22g a am m =-+,则()()10,10,g g ⎧->⎪⎨>⎪⎩即2220,20,m m m m ⎧+>⎨-+>⎩解得:2m >或2m <-.∴实数m 的取值范围为()(),22,∞∞--⋃+.21.(1)由已知条件,得2A =,又23,12,46T T ππωω===∴= ,又当1x =-时,有2sin 26y πϕ⎛⎫=-+= ⎪⎝⎭,且()20,,3πϕπϕ∈∴=,∴曲线段FGBC 的解析式为[]22sin ,4,063y x x ππ⎛⎫=+∈- ⎪⎝⎭.由22sin 163y x ππ⎛⎫=+= ⎪⎝⎭,根据图象得到()22636x k k ππππ+=+∈Z ,解得()312x k k =-+∈Z ,又[]()4,0,0, 3.3,1x k x G ∈-∴==-∴-.OG ∴=.∴千米.(2)如图,1OC CD ==,2,6OD COD π∠∴==,作1PP x ⊥轴于1P 点,在Rt 1OPP 中,1sin 2sin PP OP θθ==,在OMP 中,2sin sin 33OP OM ππθ=⎛⎫- ⎪⎝⎭,sin 2332cos sin 23sin 3OP OM πθθθπ⎛⎫- ⎪⎝⎭∴==-,12cos 2sin 3QMPQ S OM PP θθθ⎛⎫=⋅=-⨯ ⎪ ⎪⎝⎭.24323234sin cos 2sin2333θθθθθ=-=+-sin 2,0,3633ππθθ⎛⎫⎛⎫=+-∈ ⎪ ⎪⎝⎭⎝⎭.当262ππθ+=,即6πθ=时,平行四边形面积有最大值为233平方千米.22.(1)由260x x -->得:2x <-或3x >,即()26g x x --的定义域为{2x x <-∣或3}x >,令26,ln m x x y m =--=在()0,m ∞∈+内单调递增,而(),2x ∞∈--时,26m x x =--为减函数,()3,x ∞∈+时,26m x x =--为增函数,故函数()26g x x --的单调递减区间是(),2∞--(2)由21,e e x ⎡⎤∈⎢⎥⎣⎦与()1,0x ∞∈-可知()[]()121,1,e 0,1x g x ∈-∈,所以112e e 1x x a ->或112e e 1x x a -<-,分离参数得11211e e x x a >+,或11211e e x x a <-有解,令11ex n =,则21,n a n n >>+或2a n n <-有解,得2a >或0a <.(3)依题意()()()222e e e e e e e e 2x x x x x xx x F x a a a a ----=-+-=+-+-,令e e x x t -=+,则函数()F x 转化为()()222h t at t a t =--,此时只需讨论方程220at t a --=大于等于2的解的个数,①当0a =时,()0h t t =-=没有大于等于2的解,此时()F x 没有零点;②当0a >时,()020h a =-<,当()20h >时,1a >,方程没有大于等于2的解,此时()F x 没有零点;当()20h =时,1a =,方程有一个等于2的解,函数()F x 有一个零点;当()20h <时,01a <<,方程有一个大于2的解,函数()F x 有两个零点.③当0a <时,()()020,2220h a h a =->=-<恒成立,即方程不存在大于等于2的解,此时函数()F x 没有零点;·综上所述,当1a =时,()F x 有一个零点;当01a <<时,()F x 有两个零点;当0a 或1a >时,()F x 没有零点.。
2022-2023学年河北省石家庄市高一下学期第一次月考数学试题1【含答案】
![2022-2023学年河北省石家庄市高一下学期第一次月考数学试题1【含答案】](https://img.taocdn.com/s3/m/8da57735a7c30c22590102020740be1e650eccbe.png)
2022-2023学年河北省石家庄市高一下学期第一次月考数学试题一、单选题1.( )PA BC BA +-=A .B .C .D .PB CP AC PC【答案】D【分析】根据平面向量的线性运算法则,即可求解.【详解】根据向量的线性运算法则,可得.PA BC BA PA AC PC +-=+=故选:D.2.已知向量,不共线,向量,,且,则的值为( )1e 2e 12m e e λ=+ 12n e e λ=+ m n ∥λA .1B .C .1或D .21-1-【答案】C【分析】根据向量平行的定理可知,,即可列式求解.m n μ=【详解】因为,所以,//m n m n μ= ,所以,得,或,()121212e e e e e e λμλμλμ+=+=+1λμλμ=⎧⎨=⎩1λμ==1λμ==-故选:C3.在中,角A 、B 、C 的对边分别为a 、b 、c ,若,,则( )ABC a =12b =60B =︒A =A .B .或C .D .或30︒30︒150︒60︒60︒120︒【答案】A【分析】运用正弦定理求出,从而得到或,结合三角形大边对大角的性质即可得sin A 30A =︒150︒到.30A =︒【详解】因为,,,a =12b =60B =︒所以由正弦定理可得,sin 1sin 2a BA b===因为在中,,所以或.ABC 0180A <<︒︒30A =︒150︒又因为,所以,所以.b a >B A >30A =︒故选:A4.复数在复平面内对应的点关于虚轴对称,若,i 为虚数单位,则( )12,z z 132i z =-2z =A .B .C .D .32i +32i--32i-+23i+【答案】B 【分析】根据在复平面内对应的点写出对应的点的坐标,求出答案.1z 2z 【详解】对应的点的坐标为,132i z =-()3,2-因为在复平面内对应的点关于虚轴对称,12,z z 所以对应的点的坐标为,2z ()3,2--故.23i2z =--故选:B.5.在中,已知向量与满足且为ABC AB AC 0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭ ||||BA BC BABC ⋅=ABC ( )A .三边均不相等的三角形B .直角三角形C .等腰直角三角形D .等边三角形【答案】C【分析】根据表示方向上的单位向量,由条件得出的角平分线与BC 垂直,再根据向a aaBAC ∠量的数量积公式得.cos ABC ∠=【详解】因为,故的角平分线与BC 垂直,||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭BAC ∠即为以A 为顶点的等腰三角形,ABC 又B 为三角形内角,底角,cos ||||BA BC ABC BA BC ⋅=∠=45ABC ∠= 故为等腰直角三角形.ABC 故选:C6.在中,角A ,B ,C 所对的边分别为a ,b ,c ,且,则下列结论ABC sin :sin :sin 3:4:5A B C =错误的是( )A .B .为直角三角形::3:4:5a b c =ABCC .若,则外接圆半径为5D .若P 为内一点,满足,4b =ABC ABC 20PA PB PC ++=则与的面积相等APB △BPC △【答案】C【分析】AB 选项,由正弦定理得到,并判断出三角形为直角三角形;C 选项,由正::3:4:5a b c =弦定理求解外接圆半径;D 选项,经过分析得到点在三角形的中线上,得到答案.P AC 【详解】A 选项,由正弦定理得,A 正确;sin :sin :sin ::3:4:5A B C a b c ==B 选项,由A 知,故,故为直角三角形,B 正确;::3:4:5a b c =222+=a b c ABC C 选项,由B 知,,因为,由正弦定理得,4sin 5B =4b =4254sin 5b R B ===故外接圆半径为,C 错误;ABC 52R =D 选项,取的中点,则,AC E 2PA PC PE +=因为,所以,20PA PB PC ++= PE PB =-即点在三角形的中线上,故与的面积相等,D 正确.P AC APB △BPC △故选:C 7.若向量,,则向量在向量上的投影向量为( )()1,2a =()2,6b =-a bA .B .C .D .14b - 14b 12b - 12b 【答案】A【分析】利用投影向量公式进行计算.【详解】向量在向量上的投影向量为.a b()()()()2221,22,61426a b b b b b⋅⋅-==-+-故选:A8.已知锐角中,角A ,B ,C 的对边分别为a ,b ,c .若,ABC ()2cos coscos A B C B+=,则( )a =6bc =b c +=A .9B .8C .5D .4【答案】C【分析】利用诱导公式、两角和的余弦公式化简已知条件,求得,利用余弦定理求得.A b c +【详解】∵,,()2cos cos cos A B C B+=πA B C ++=∴,,()2cos cos 2cos πA B A B B+--=()2cos cos 2cos A B A B B-+=∴.2sin sin A B B =∵为锐角三角形,∴,∴,∴.ABC sin 0B ≠sin A π0,2A ⎛⎫∈ ⎪⎝⎭π3A =由余弦定理可得,∴,∴,222π2cos3ab c bc =+-2276b c =+-2213b c +=则.5b c +====故选:C二、多选题9.已知复数,则下列命题正确的是()()1i 2iz -=A .B .复数的虚部为i1i z =+z C .D .复数z 的共轭复数在复平面上对应的点为||z =()1,1--【答案】CD【分析】AB 选项,根据复数的除法法则计算出,判断出AB 错误;C 选项,根据模长公1i z =-+式求出答案;D 选项,根据共轭复数的概念求解.【详解】A 选项,,故A 错误;()()()()2i 1i 2i i 1i 1i 1i 1i 1i z ⋅+===⋅+=-+--+B 选项,复数的虚部为,B 错误;z 1C ,C 正确;=D 选项,,故数z 的共轭复数在复平面上对应的点为,D 正确.1i z =--()1,1--故选:CD10.下列说法错误的是( )A .若与是共线向量,则点A ,B ,C ,D 必在同一条直线上ABCD B .若,则一定有使得a b ∥R λ∈a bλ=C .若,且,则和在上的投影向量相等a b a c ⋅=⋅ 0a ≠b c a D .若,则与的夹角为||||2||0a b a b a +=-=≠ a b + a b - 60︒【答案】ABD【分析】根据向量共线,数量积的几何意义,以及向量夹角和模的公式,即可判断选项.【详解】A. 若与是共线向量,则与方向相同或相反,点A ,B ,C ,D 不一定在同一AB CD AB CD 条直线上,故A 错误;B. 若,,时,不存在使得,故B 错误;a b ∥0b = 0a ≠ R λ∈a b λ=C.根据投影向量的定义和公式,可知C 正确;D.由,两边平方后得,且,两边平方后得,||||a b a b +=- 0a b ⋅= ||2||0a b a -=≠ ,,223b a =()()2222221cos ,244a b a b a b a a b a b a b a b a a+⋅---+-====-+-所以与的夹角为,故D 错误.a b + a b - 120故选:ABD11.如下图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,则以下说法正确的有( )A .恒有成立()22222AC BD AB AD +=+B .若,,则平行四边形ABCD 的面积为3AB=AO =4=AD C .恒有成立22||||AB AD AO BO ⋅=- D .若,,则3DO =10AC =16AB BC ⋅=-【答案】ABC【分析】利用向量的数量积公式可判定A 、C 、D 选项,结合三角形面积公式可判定B 项.【详解】设,以其为基底,,,AB a AD b == ,AC a b DB a b =+=-则,()()()22222222222AC BD a b A a b bB A a D ++=+=+-+= 故A 正确;由,22223716cos ,24242a b a b a b AO a b a b ⎛⎫++⋅==+=⇒⋅=⇒= ⎪⎝⎭所以,,60BAD ∠=2sin ABCD ABD S S AB AD BAD ==⋅⋅∠=故B 正确;,()()222222,422AC BD ab AB AD AO B a O a b b+⎛⎫⎛⎫=⋅∴-=⋅=- +-⎪ ⎪⎝⎭⎝⎭故C 正确;由C 项可得,2222162AC AO DO AB AD DO AB BC ⎛⎫-=⋅=-==⋅ ⎪⎝⎭ 故D 错误.故选:ABC12.已知中,角A 、B 、C 的对边分别为a 、b 、c ,且,则下ABC (sin sin )sin sin a A B c C b B -=-列说法正确的是( )A .π6C =B .若c 的最小值为2ABC C .若,则的周长的最大值为62c =ABCD .若,有且仅有一个3b =c =ABC 【答案】BC【分析】由正、余弦定理及已知得,再根据选项综合应用正、余弦定理和三角形面积公式求π3C =解.【详解】∵,()sin sin sin sin a A B c C b B-=-∴由正弦定理可得,即,22()a a b c b -=-222a b c ab +-=对于A 选项,由余弦定理可得,2221cos 22a b c C ab +-==∵,∴,故A 错误;0πC <<π3C =对于B 选项,由题可知∴,1sin 2ab C ==4ab =由余弦定理可得,222222cos 24c a b ab C a b ab ab ab ab =+-=+-≥-==∴,当且仅当时等号成立,故c 的最小值为2,故B 正确;2c ≥2a b ==对于C 选项,,()2222222cos 34c a b ab C a b ab a b ab =+-=+-=+-=因为,所以,所以,当时等号成立,()24a b ab +≤()244a b +≤4a b +≤a b =因为,所以,则的周长的最大值为6,故C 正确;2c =26a b c <++≤ABC 对于D 选项,由余弦定理可得,即,,2222cos c a b ab C =+-2893a a =+-2310a a -+=解得,则满足条件的有2个,故D错误.a =ABC 故选:BC .三、填空题13.已知点,,则与向量同方向的单位向量为_______.()1,1M -()3,2N -MN 【答案】43,55⎛⎫- ⎪⎝⎭【分析】计算出,求出即为答案.()4,3MN =-MN MN【详解】,()()()3,21,14,3MN =---=-5=则与向量同方向的单位向量为.MN 43,55MN MN⎛⎫=- ⎪⎝⎭故答案为:.43,55⎛⎫- ⎪⎝⎭14.如图,在矩形ABCD 中,,E 为AB的中点,F 是BC 边上靠近点B 的三等分点,36BC AB ==AF 与DE 于点G ,则的余弦值为_______.EGF ∠【答案】【分析】建立平面直角坐标系,写出点的坐标,为的夹角,利用向量夹角的余弦公EGF ∠,AF DE式求出答案.【详解】以为坐标原点,,所在直线分别为轴,建立平面直角坐标系,A AB AD ,x y则,()()()()()0,0,2,0,1,0,2,2,0,6A B E F D ,,,()2,2AF =()1,6DE =-()()2,21,621210AF DE ⋅=⋅-=-=-为的夹角,EGF ∠,AF DE,==cosAF DE EGF AF DE ⋅∠===⋅ 故答案为:15.如图,照片中的建筑是某校的学生新宿舍楼,学生李明想要测量宿舍楼的高度.为此他进行MN 了如下测量:首先选定观测点A 和B ,测得A,B 两点之间的距离为33米,然后在观测点A处测得仰角,进而测得,.根据李明同学测得的数据,该宿舍楼30MAN ∠=︒105MAB ∠=︒45MBA ∠=︒的高度为___________米.【答案】【分析】先在中利用正弦定理求出,再在中求解即可.ABM AM =Rt AMN 【详解】在中,因为,,ABM 105MAB ∠=︒45MBA ∠=︒所以,又,所以,30AMB ∠=︒33AB =sin sin AB AMAMB MBA ∠∠=即,解得;sin30sin4533AM=AM =在中,因为,,Rt AMN 30MAN ∠=︒AM =所以,tan30MN AM =⋅=即该宿舍楼的高度为米.故答案为:.16.点P 是正方形外接圆圆O 上的动点,正方形的边长为2,则的取值ABCD 2OP OB OP OC ⋅+⋅范围是________.【答案】[-【分析】根据题意求出圆的半径,建立如图平面直角坐标系,设,xOy )P θθ,利用平面向量线性运算和数量积的坐标表示可得,[]0,2πθ∈2OP OB OP OC ⋅+⋅=)ϕθ-结合三角函数的有界性即可求解.【详解】由题意知,圆O =建立如图平面直角坐标系,,xOy (1,1),(1,1)C B -得,(1,1),(1,1)OC OB ==-设,,则,)P θθ[]0,2πθ∈)OP θθ=所以2)OP OB OP OC θθθθ⋅+⋅=,其中,)θθϕθ==-tan 3ϕ=又,所以,02πϕθ≤-≤1sin()1ϕθ-≤-≤则,2OP OB OP OC ⋅+⋅=)[ϕθ-∈-即的取值范围为.2OP OB OP OC ⋅+⋅ [-故答案为:.[-四、解答题17.当实数m 取什么值时,复平面内表示复数的点分别满足下列条()()225632iz m m m m =-++-+件:(1)是纯虚数;(2)位于直线上;2y x =【答案】(1)3m =(2)或2m =5m =【分析】(1)根据复数的特征,列方程组求解;(2)根据点在直线列方程求解;2y x =【详解】(1)由已知得,解得,22560320m m m m ⎧-+=⎨-+≠⎩3m =即时,复平面内表示复数是纯虚数;3m =z (2)由已知得,()2232256m m m m -+=-+解得或,2m =5m =即或时,复平面内表示复数的点位于直线上;2m =5m =z 2y x =18.已知,为单位向量,且,的夹角为120°,向量,.1e 2e 1e 2e 122a e e =+ 21b e e =- (1)求;a b ⋅ (2)求与的夹角.a b【答案】(1)32-(2)23π【分析】(1)利用平面向量的数量积的运算律求解;(2)先求得,再利用夹角公式求解.a b ,cos a b a b θ⋅=⋅ 【详解】(1)解:∵,为单位向量,且,的夹角为120°,1e 2e 1e 2e ∴.12111cos1202e e ⋅=⨯⨯︒=- ∴.()()1221122113222112122a b e e e e e e e e ⋅=+⋅-=⋅-+-⋅=--++=- (2)设与的夹角为.a b θ∵a ====b ====∴.31cos 22a b a b θ⋅==-=-⋅ 又∵,[]0,θπ∈∴,23πθ=∴与的夹角为.a b 23π19.已知a,b ,c 分别为三个内角A ,B ,C 的对边,.ABC cos sin 0a C C b c --=(1)求角A ;(2)若为锐角三角形,求的取值范围.ABC cos cos B C +【答案】(1)π3(2)⎤⎥⎦【分析】(1)由正弦定理及,利用辅助角公式sin sin cos cos sin B A C A C =+cos 1A A -=得到,结合求出答案;π1sin 62A ⎛⎫-= ⎪⎝⎭()0,πA ∈(2)利用及化简得到,根据三角形为锐角三角()cos cos B A C =-+π3A =πcos cos sin 6B C C ⎛⎫+=+ ⎪⎝⎭形得到,从而得到的取值范围.π2π,63C ⎛⎫∈ ⎪⎝⎭cos cos B C +【详解】(1)由正弦定理得,sin cos sin sin sin 0A C A C B C --=因为,()sin sin sin cos cos sin B A C A C A C =+=+,sin cos sin sin 0A C A C C --=因为,所以,()0,πC ∈sin 0C ≠,即,,cos 1A A -=π2sin 16A ⎛⎫-= ⎪⎝⎭π1sin 62A ⎛⎫-= ⎪⎝⎭因为,所以,()0,πA ∈ππ5π,666A ⎛⎫-∈- ⎪⎝⎭故,解得;ππ66A -=π3A =(2),()1cos cos sin sin cos cos cos2B A C A C A C C C =-+=-=-故,1πcos cos cos sin 26B C C C C ⎛⎫+=+=+ ⎪⎝⎭因为为锐角三角形,所以,且,ABC π0,2C ⎛⎫∈ ⎪⎝⎭π0,2B ⎛⎫∈ ⎪⎝⎭因为,即,解得,π2ππ33B C C =--=-2ππ0,32C ⎛⎫-∈ ⎪⎝⎭π2π,63C ⎛⎫∈ ⎪⎝⎭所以,,,ππ,62C ⎛⎫∈ ⎪⎝⎭ππ2π,633C ⎛⎫+∈ ⎪⎝⎭πsin 6C ⎤⎛⎫+∈⎥ ⎪⎝⎭⎦故.πcos cos sin 6B C C ⎤⎛⎫+=+∈⎥ ⎪⎝⎭⎦20.如图,在平行四边形中,,,.ABCD 60BAD ∠=︒12BE BC = 2CF FD = (1)若,求的值;EF xAB y AD =+ 32x y +(2)若,,求边的长.6AB = 18AC EF ⋅=- AD【答案】(1)321x y +=-(2)4【分析】(1)根据平面向量线性运算法则及平面向量基本定理求出,,即可得解;x y (2)设长为,根据数量积的运算律得到方程,解得即可.AD x 【详解】(1)在平行四边形中,,,ABCD 12BE BC = 2CF FD = 所以,1121()3232EF AF AE AD AB AB AD AB AD =-=+-+=-+ 又,,,.EF xAB y AD =+ 23x ∴=-12y =321x y ∴+=-(2)设长为,AD x ()2132AC EF AB AD AB AD ⎛⎫⋅=+⋅-+ ⎪⎝⎭ 22211326AB AD AB AD =-+-⋅ 222c 1os 2136BAD AB AD AB AD =⋅∠-+- ,211241822x x =--=-,或(舍去),即.2120x x ∴--=4x ∴=3-4=AD 21.课本第46页上在用向量方法推导正弦定理采取如下操作:如图1,在锐角中,过点AABC 作与垂直的单位向量,因为,所以由分配律,得AC j AC C AB B += ()j AC CB j AB ⋅+=⋅ ,即,也即j AC j CB j AB ⋅+⋅=⋅ πππ||||cos ||||cos ||cos 222j AC j CB C j AB A ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭ .请用上述向量方法探究,如图2直线l 与的边AB ,AC 分别相交于点sin sin a C c A =ABC D ,E .设,,,.则θ与的边和角之间的等量关系下列哪个AB c =BC a ==CA b ADE θ∠=ABC正确,并说明理由.①;②.cos()cos()cos a B b A c θθθ++-=cos()cos()cos a B b A c θθθ-++=【答案】①错误,②正确【分析】设则,然后可得再根据向量的数量积的运算性质||DE m DE = ||1m = m AC m CB m AB ⋅+⋅=⋅ 化简即可.【详解】设则,||DE m DE = ||1m = 因为, 所以,AC CB AB →→→+=m AC m CB m AB ⋅+⋅=⋅ 即,||||cos(π())||||cos(π())||||cos(π)m AC A m CB B m AB θθθ-++--=- 所以,cos()cos()cos b A a B c θθθ-+--=-即,()()cos cos cos a B b A c θθθ-++=所以①错误,②正确.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.22.如图,已知中,角A ,B ,C 的对边分别为a ,b ,c ,ABC.222sin sin sin sin sin A C B A B C +-=⋅(1)求B ;(2)若,,点D 在边AC 上,且在和上的投影向量的模相等,2223a c c b ++=152BA BC ⋅=- BD BC BA 求线段BD 的长.【答案】(1)2π3B =(2)158【分析】(1)综合运用正、余弦定理即可求解;(2)由(1)及已知可求得,,又由在和上的投影向量的模相等,知BD 为5c =7b =BD BC BA 的平分线,由角平分线定理得,再在和中应用正弦定理求解即可.ABC ∠358AD =ABC ABD △【详解】(1)∵,222sin sin sin sin sin A B C A C B +-=∴由正弦定理可,222sin a c b B =+-由余弦定理可得,222cos 2a c b B ac +-=∴即2cos s ac B inB =tan B =∵,∴.()0,πB ∈2π3B =(2)由(1)知,2π3ABC ∠=∴又,2222cos ac ABC ac a c b ∠=-=+-2223a c c b ++=∴,解得.∵,2222(3)ac a c a c c -=+-++3a =152BA BC ⋅=- ∴,可得,15cos 22ac ac ABC ∠=-=-5c =由可得,解得.2223a c c b ++=292515b ++=212559b ++=7b =∵在和上的投影向量的模相等,BD BC BA ∴BD 为的平分线,ABC ∠由角平分线的性质知,即,解得,AD c b AD a =-573AD AD =-358AD =在中,由正弦定理可得,∴,ABCsin sin a b A ABC==∠sin A 在中,,ABD △π3ABD ∠=由正弦定理可得.sin sin BD AD A ABD =∠158BD =。
广东省2023-2024学年高一下学期第一次月考试题 数学含答案
![广东省2023-2024学年高一下学期第一次月考试题 数学含答案](https://img.taocdn.com/s3/m/db2ffe9f48649b6648d7c1c708a1284ac85005a8.png)
2023-2024学年第二学期高一教学质量检测数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()2,1a =- ,()1,1b =- ,则()()23a b a b +⋅-等于()A.10B.-10C.3D.-32.函数()2cos 2f x x x =是()A.周期为2π的奇函数 B.周期为2π的偶函数C.周期为4π的奇函数 D.周期为4π的偶函数3.将向量()1,1OA = 绕坐标原点O 逆时针旋转60°得到OB ,则OA AB ⋅=()A.-2B.2C.-1D.14.一个质点受到平面上的三个力1F ,2F ,3F (单位:牛顿)的作用而处于平衡状态,已知1F ,2F成60°角且12F = ,24F = ,则3F =()A.6B.2C. D.5.在ABC △中,若sin cos a B A =,且sin 2sin cos C A B =,那么ABC △一定是()A.等腰直角三角形B.直角三角形C.锐角三角形D.等边三角形6.请运用所学三角恒等变换公式,化简计算tan102sin102︒+︒,并从以下选项中选择该式子正确的值()A.12C.2D.17.在ABC △中,D 是AB 的中点,E 是CD 的中点,若AE CA CB λμ=+,则λμ+=()A.34-B.12-C.34D.18.已知菱形ABCD 的边长为1,60ABC ∠=︒,点E 是AB 边上的动点,则DE DC ⋅的最大值为().A.1B.32C.12D.32二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求的.全部选对的得6分,部分选对的得部分,有选错的得0分.9.下列关于平面向量的命题正确的是()A.若a b ∥ ,b c ∥ ,则a c∥ B.两个非零向量a ,b 垂直的充要条件是:0a b ⋅=C.若向量AB CD =,则A ,B ,C ,D ,四点必在一条直线上D.向量()0a a ≠ 与向量b 共线的充要条件是:存在唯一一个实数λ,使b aλ= 10.如图,函数()()2tan 04f x x πωω⎛⎫=+> ⎪⎝⎭的图象与x 轴相交于A ,B 两点,与y 轴相交于点C ,且满足ABC △的面积为2π,则下列结论不正确的是()A.4ω=B.函数()f x 的图象对称中心为,082k ππ⎛⎫-+ ⎪⎝⎭,k ∈Z C.()f x 的单调增区间是5,8282k k ππππ⎛⎫++⎪⎝⎭,k ∈Z D.将函数()f x 的图象向右平移4π个单位长度后可以得到函数2tan y x ω=的图象11.如图,弹簧挂着的小球做上下运动,它在s t 时相对于平衡位置的高度h (单位:cm )由关系式()sin h A t ωϕ=+,[)0,t ∈+∞确定,其中0A >,0ω>,(]0,ϕπ∈.小球从最高点出发,经过2s 后,第一次回到最高点,则()A.4πϕ=B.ωπ=C. 3.75s t =与10s t =时的相对于平衡位置的高度h 之比为22D. 3.75s t =与10s t =时的相对于平衡位置的高度h 之比为12三、填空题:本题共3小题,每小题5分,共15分.12.如图,在正六边形ABCDEF 中,2AF ED EF AB -++=__________.13.已知(2a = ,若向量b 满足()a b a +⊥ ,则b 在a方向上的投影向量的坐标为__________.14.已知ABC △的内角A ,B ,C 的对边为a ,b ,c ,ABC △3,且2cos 2b A c a =-,4a c +=,则ABC △的周长为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知α,β为锐角,1tan 2α=,()5cos 13αβ+=.(1)求cos 2$α的值;(2)求()tan αβ-的值.16.(15分)已知4a = ,2b = ,且a 与b的夹角为120°,求:(1)2a b -;(2)a 与a b +的夹角;(3)若向量2a b λ- 与3a b λ-平行,求实数λ的值.17.(15分)如图,四边形ABCD 中,1AB =,3BC =,2CD DA ==,60DCB ∠=︒.(1)求对角线BD 的长:(2)设DAB θ∠=,求cos θ的值,并求四边形ABCD 的面积.18.(17分)如图,某公园摩天轮的半径为40m ,圆心距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在最低点处.(1)已知在时刻t (单位:min )时点P 距离地面的高度()()sin f t A t h ωϕ=++(其中0A >,0ω>,ϕπ<,求函数()f t 解析式及2023min 时点P 距离地面的高度;(2)当点P距离地面(50m +及以上时,可以看到公园的全貌,求转一圈中有多少时间可以看到公园的全貌?19.(17分)设向量()12,a a a = ,()12,b b b = ,定义一种向量()()()12121122,,,a b a a b b a b a b ⊗=⨯=.已知向量12,2m ⎛⎫= ⎪⎝⎭ ,,03n π⎛⎫= ⎪⎝⎭,点()00,P x y 为函数sin y x =图象上的点,点(),Q x y 为()y f x =的图象上的动点,且满足OQ m OP n =⊗+(其中O 为坐标原点).(1)求()y f x =的表达式并求它的周期;(2)把函数()y f x =图象上各点的横坐标缩小为原来的14倍(纵坐标不变),得到函数()y g x =的图象.设函数()()()h x g x t t =-∈R ,试讨论函数()h x 在区间0,2π⎡⎤⎢⎥⎣⎦内的零点个数.2023-2024学年第二学期高一教学质量检测数学答案1.B 【详解】由向量()2,1a =- ,()1,1b =- ,可得()24,3a b +=- ,()31,2a b -=-,所以()()()()23413210a b a b +⋅-=⨯-+-⨯=-.2.A 【详解】由题意得()2cos 2sin 42f x x x x ==,所以()()()4sin 422f x x x f x -=-=-=-,故()f x 为奇函数,周期242T ππ==.3.C 【详解】因为OA == OB = ,()21212OA AB OA OB OA OA OB OA ⋅=⋅-=⋅-=-=- .4.D 【详解】∵物体处于平衡状态,∴1230F F F ++=,即()312F F F =-+ ,∴312F F F =+===5.D 【详解】因为sin cos a B A =,则sin sin cos A B B A =,因为(),0,A B π∈,则sin 0B >,所以tan A =,则3A π=,又因为sin 2sin cos C A B =,A B C π++=,则()sin 2sin cos A B A B +=,则sin cos cos sin 2sin cos A B A B A B +=,即sin cos cos sin 0A B A B -=,即()sin 0A B -=,又因为(),0,A B π∈,则A B ππ-<-<,所以3A B π==,即3A B C π===.即ABC △一定是等边三角形,故D 正确.6.A 【详解】2sin102cos10tan102sin102sin1022cos102cos10︒︒+︒⨯︒︒+︒=+︒=︒︒()2sin 30102sin 202cos102cos10︒+︒-︒︒+︒==︒︒()2sin 30cos10cos30sin102cos10︒+︒︒-︒︒=︒cos10cos1012cos102cos102︒+︒︒︒===︒︒7.B 【详解】ABC △中,D 是AB 的中点,E 是CD 的中点,则()1111113122222244AE AC AD AC AB AC AC CB CA CB ⎛⎫⎛⎫=+=+=++=-+ ⎪ ⎪⎝⎭⎝⎭,所以34λ=-,14μ=,所以12λμ+=-.8.D 【详解】设AE x =,[]0,1x ∈,()DE DC DA AE DC DA DC AE DC⋅=+⋅=⋅+⋅113cos cos0,222DA DC ADC AE DC x ⎡⎤=⋅∠+︒=+∈⎢⎥⎣⎦ ,∴DE DC ⋅ 的最大值为32.故选:D.9.BD 【详解】对于A ,当0b =时,不一定成立,A 错误;对于B ,两个非零向量a ,b ,当向量a ,b 垂直可得0a b ⋅= ,反之0a b ⋅= 也一定有向量a ,b垂直,∴B 正确;对于C ,若向量AB CD = ,AB 与CD方向和大小都相同,但A ,B ,C ,D 四点不一定在一条直线上,∴C 错误;对于D ,由向量共线定理可得向量()0a a ≠ 与向量b 共线的充要条件是:存在唯一一个实数λ,使b a λ=,∴D 正确.10.ABD 【详解】A :当0x =时,()02tan 24OC f π===,又2ABC S π=△,所以112222ABCS AB OC AB π==⨯=△,得2AB π=,即函数()f x 的最小正周期为2π,由T πω=得2ω=,故A 不正确;B :由选项A 可知()2tan 24f x x π⎛⎫=+⎪⎝⎭,令242k x ππ+=,k Z ∈,解得48k x ππ=-,k Z ∈,即函数()f x 的对称中心为,048k ππ⎛⎫-⎪⎝⎭,k Z ∈,故B 错误;C :由32242k x k πππππ+<+<+,k Z ∈,得58282k k x ππππ+<<+,k Z ∈,故C 正确;D :将函数()f x 图象向右平移8π个长度单位,得函数2tan 2y x =的图象,故D 不正确.11.BC 【详解】对于AB ,由题可知小球运动的周期2s T =,又0ω>,所以22πω=,解得ωπ=,当0s t =时,sin A A ϕ=,又(]0,ϕπ∈,所以2πϕ=,故A 错误,B 正确;对于CD ,则sin cos 2h A t A t πππ⎛⎫=+= ⎪⎝⎭,所以 3.75s t =与10s t =时的相对于平衡位置的高度之比为()()15cos coscos 3.75244cos 10cos10cos 02A A πππππ⎛⎫- ⎪⨯⎝⎭===⨯,故C 正确D 错误.故选:BC.12.0【详解】由题意,根据正六边形的性质()222AF ED EF AB AF ED EF AB AF DF AB-++=--+=++ 22220AF CA AB CF AB BA AB =++=+=+= .故答案为:0.13.(1,-【详解】由题意知()a b a +⊥ ,故()0a b a +⋅= ,所以20a a b +⋅=,而(a =,则a ==23a b a ⋅=-=- ,则b 在a方向上的投影向量为(1,a a aab ⋅⋅==- ,即b在a方向上的投影向量的坐标为(1,-,故答案为:(1,-.14.6【详解】∵2cos 2b A c a =-,∴222222b c a b c a bc+-⋅=-,∴22222b c a c ac +-=-,∴222a cb ac+-=∴2221cos 22a cb B ac +-==∵0B π<<,∴3B π=,∵1sin 24ABC S ac B ac ===△∴4ac =,∵4a c +=,∴2a c ==,又3B π=,∴ABC △是边长为2的等边三角形,∴ABC △的周长为6.15.【详解】(1)22222211cos sin 1tan 34cos 21cos sin 1tan 514ααααααα---====+++;(2)由1tan 2α=,得22tan 14tan 211tan 314ααα===--,因为α,β为锐角,所以,0,2παβ⎛⎫∈ ⎪⎝⎭,则()0,αβπ+∈,又因()5cos 13αβ+=,所以0,2παβ⎛⎫+∈ ⎪⎝⎭,所以()12sin 13αβ+==,所以()()()sin 12tan cos 5αβαβαβ++==+,则()()()()412tan 2tan 1635tan tan 24121tan 2tan 63135ααβαβααβααβ--+-=-+==-⎡⎤⎣⎦+++⨯.16.【详解】(1)2a b -====(2)因为()2222168412a ba ab b +=+⋅+=-+=,所以a b += ,又()216412a a b a a b ⋅+=+⋅=-=,所以()3cos ,2a a b a a b a a b⋅++===+ ,又[],0,a a b π+∈ 所以a 与a b + 的夹角为6π;(3)因为向量2a b λ- 与3a b λ-平行,所以存在实数k 使()233a b k a b ka kb λλλ-=-=- ,所以23kkλλ=⎧⎨-=-⎩,解得λ=17.【详解】(1)解:连接BD ,在BCD △中,3BC =,2CD =,60DCB ∠=︒得:22212cos 9423272BD CD BC CD BC DCB =+-⨯⨯∠=+-⨯⨯⨯=∴BD =(2)在ABD △中,由DAB θ∠=,1AB =,2DA =,7BD =2221471cos 22122AB DA BD AB DA θ+-+-===-⨯⨯⨯,∴120θ=,四边形ABCD 的面积:11sin sin 22BCD ABC S S S BC CD BCD AB AD θ=+=⨯⨯⨯∠+⨯⨯⨯△△∴13133212232222S =⨯⨯⨯+⨯⨯⨯=.18.【详解】(1)依题意,40A =,50h =,3T =,则23πω=,所以()240sin 503f t t πϕ⎛⎫=++⎪⎝⎭,由()010f =可得,40sin 5010ϕ+=,sin 1ϕ=-,因为ϕπ<,所以2πϕ=-.故在时刻t 时点P 距离地面的离度()()240sin 50032f t t t ππ⎛⎫=-+≥⎪⎝⎭.因此()2202340sin 2023507032f ππ⎛⎫=⨯-+=⎪⎝⎭,故2023min 时点P 距离地面的高度为70m.(2)由(1)知()2240sin 505040cos 323f t t t πππ⎛⎫⎛⎫=-+=-⎪ ⎪⎝⎭⎝⎭,其中0t ≥.依题意,令()503f t ≥+240cos 33t π⎛⎫-≥ ⎪⎝⎭23cos 32t π⎛⎫≤- ⎪⎝⎭,解得52722636k t k πππππ+≤≤+,k ∈Z .则573344k t k +≤≤+,k ∈Z .由75330.544k k ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,可知转一圈中有0.5min 时间可以看到公园全貌.19.【详解】(1)因为12,2m ⎛⎫= ⎪⎝⎭,()00,OP x y =,因为点()00,P x y 为sin y x =的图象上的动点,所以00sin y x =,0000112,2,sin 22m OP x y x x ⎛⎫⎛⎫⊗== ⎪ ⎪⎝⎭⎝⎭;因为OQ m OP n =⊗+ ,所以()000011,2,sin ,02,sin 2332x y x x x x ππ⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以00231sin 2x x y x π⎧=+⎪⎪⎨⎪=⎪⎩,即0032sin 2x x x y π⎧-⎪⎪=⎨⎪=⎪⎩,所以()11sin 226y f x x π⎛⎫==- ⎪⎝⎭,它的周期为4T π=;(2)由(1)知()1sin 226g x x π⎛⎫=- ⎪⎝⎭,52,666x πππ⎡⎤-∈-⎢⎣⎦,当262x ππ-=时,3x π=所以()1sin 226g x x π⎛⎫=- ⎪⎝⎭在0,3π⎡⎤⎢⎥⎣⎦上单调递增,在,32ππ⎡⎤⎢⎥⎣⎦上单调递减,其函数图象如下图所示:由图可知,当12t=或1144t-≤<时,函数()h x在区间0,2π⎡⎤⎢⎣⎦内只有一个零点,当1142t≤<时,函数()h x在区间0,2π⎡⎤⎢⎥⎣⎦内有两个零点,当14t<-或12t>时,函数()h x在区间0,2π⎡⎤⎢⎥⎣⎦内没有零点.。
高一数学第一次月考试卷(必修1)
![高一数学第一次月考试卷(必修1)](https://img.taocdn.com/s3/m/a2d3ba7a01f69e31433294da.png)
高一数学第一次月考试卷(必修一)一.选择题:本大题共12小题;每小题5分,共60分.1. 若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A.3.14B. -5C. 372.集合﹛0,2,3﹜ 的所有子集个数是 ( )A.7B.8C.6D.53. 设f(x)=(2a-1)x+b 在R 上是增函数,则有( )A.a≥12 B. a ≤12 C. .a ﹥12 D. .a ﹤124.设集合A={x ︱-1≤x ﹤2},B={x ︱x ﹤a },若A∩B≠∅,则a 的取值范围是( )A.a ﹤2B.a ﹥-2C.a ﹥-1D.-1﹤a ≤2 5.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6}则)(T S C U ⋃等于( )A. ∅B. {2,4,7,8}C. {1,3,5,6}D. {2,4,6,8}6.A={x ︱x 2+x-6=0},B={x ︱mx+1=0},且A ∪B=A,则m 的取值范围为( )A. {13, 12} B. {0,-13, -12} C. { 0,13, -12} D. {-13,-12} 7.如图:A.8.函数 f(x)=2x 1+ 的值域是( ) A.(0,1) B.[0,1) C.(0,1] D.[0,1]9.函数x113y --=的定义域是( ) A.(-∞,1) B.( -∞,0)∪(0, 1] C.(-∞,0)∪(0,1) D.[1,+∞)10.函数y=x 2+2x+1,x ∈[-2,2] ,则( )A.函数有最小值0,最大值9B. 函数有最小值2,最大值5C.函数有最小值2,最大值9D. 函数有最小值1,最大值511.函数f(x)是定义在区间[-6,6]上的偶函数,且f(3) ﹥f(1)则下列各式一定成立的是( )A.f(0) ﹤f(6)B.f(3)﹥f(2)C.f(-1) ﹤f(3)D.f(2) ﹥f(0)12.若 f(x)=-x 2+2ax 与g(x)= 1a x + 在区间[1,2]上都是减函数,则a 的取值范围是( ) A.(-1,0)∪(0,1) B.(-1,0)∪(0,1] C.(0,1) D.(0,1]二.填空题(本大题共5个小题,共20分)13.函数y =的定义域为14. 已知集合A={a 2,a+1,-3},B={a-3,2a-1,a 2+1},若A∩B ={-3},则实数a 的值为_____15.已知函数f(x)=4x 2-4mx+1,在(-∞,-2)上递减,在(-2,+∞)上递增.则f(x)在[1,2]上的值域为________16.若函数()1,(0)()(2),0x x f x f x x +≥⎧=⎨+<⎩,则)3(-f _________ 三.解答题(将答案写在答题卡中相应题号的方框内,只有结果没有步骤不给分)17.(本小题满分10分)已知集合{}36A x x =≤<,{}29B x x =<<.(1)分别求()B A C R ⋂,()R C B A ;(5分)(2)已知{}1+<<=a x a x C ,若B C ⊆,求实数a 的取值集合.(5分)18.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(Ⅰ)若A =B,求a 的值;(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值.19.已知)(x f 是二次函数,且1)()1(,0)0(++=+=x x f x f f ,(1)求)(x f 的表达式;(2)若a x f >)(在[]1,1-∈x 上恒成立,求实数a 的取值范围;20. (本小题满分12分) 已知函数1()f x x x =+(I)判断函数的奇偶性,并加以证明;(II)用定义证明()f x 在()0,1上是减函数;(III)函数()f x 在()1,0-上是单调增函数还是单调减函数?21.已知函数)0(1)(2≠-+=a xb ax x f ,为奇函数。
高一3月第一次月考数学试题(解析版)
![高一3月第一次月考数学试题(解析版)](https://img.taocdn.com/s3/m/599f61d318e8b8f67c1cfad6195f312b3169eb03.png)
【答案】(1) 或 (2) 的最大值为 此时
【解析】
【分析】(1)利用向量共线得到三角方程转化为三角函数求值问题易解;
(2)把数量积转化为三角函数利用角的范围结合单调性即可得到最大值.
【详解】解:(1)∵
∴
∴
∴cosx=0或
即cosx=0 或tanx
对于D选项:
所以点 满足方程 如下图所示:点
设 的方程为: 所以 与 夹角即为射线 与 的夹角
当 分别 相切时得到夹角的最小值和最大值即夹角的范围.
则 可得 设 与 夹角为
则 解得
所以 的取值范围为 故D不正确.
故选:AC.
第Ⅱ卷非选择题
三填空题(本题共5小题共20分)
13.在 中若 则 ______________
【答案】(1) ;(2) .
【解析】
【分析】(1)先表示出 和 用分离参数法把m分离出来利用函数求最值求出m的范围;
(2)先把 表示出来利用换元法转化为 在 上有解利用分离参数法求出t的范围.
【详解】解:
.
设
.
即实数 的取值范围是
设
.
取
设 易知 在 上单增
∴实数 的取值范围 .
【点睛】(1)分离参数法是求参数范围的常用方法之一;
小问2详解】
解:由(1)得 又
所以 所以
因为 所以 所以 .
因为 所以
所以
.
21. 的角ABC的对边分别为abc已知 .
(1)求角A;
(2)从三个条件:① ;② ;③ 的面积为 中任选一个作为已知条件求 周长的取值范围.
【答案】(1) ;(2)答案不唯一具体见解析.
高一数学学期第一次月考试卷(附答案)
![高一数学学期第一次月考试卷(附答案)](https://img.taocdn.com/s3/m/b409ac9077eeaeaad1f34693daef5ef7bb0d1266.png)
高一数学学期第一次月考试卷(附答案)选择题1. 下列哪一个选项不是数学中常用的数集?A. 自然数集B. 实数集C. 正整数集D. 有理数集答案:C2. 若集合A = {1, 2, 3},集合B = {2, 3, 4},则A ∩ B = ?A. {2, 3}B. {1, 2, 3}C. {2, 3, 4}D. {4}答案:A3. 简化:$3 \times a \times 5$答案:$15a$填空题1. 若 $\frac{5}{6} x - \frac{1}{4} = \frac{3}{5} x - \frac{1}{2}$,则x = ?答案:$\frac{9}{20}$2. 若函数 $f(x) = ax^2 + bx - c$ 的图像开口朝上,且在x = 2处有最小值-3,则a = ?, b = ?, c = ?答案:a = 1, b = -8, c = -13解答题1. 解方程 $\frac{3}{5} (2x - 1) = \frac{1}{3} (4 - x)$解答:首先两边同时乘以15消去分数,得到:$9(2x - 1) = 5(4 - x)$ 进行分配和合并:$18x - 9 = 20 - 5x$移项:$23x = 29$最后得到解答:$x = \frac{29}{23}$2. 若正方形ABCD的边长为3cm,点E为AB边的中点,连线DE与BC交于点F,求线段DF的长度。
解答:由于ABCD是正方形,所以AD平行于BC。
由于E是AB边上的中点,所以AE = EB = 1.5cm。
由三角形相似性质可知,$\frac{AE}{AD} = \frac{DF}{DC}$。
将已知值代入,得到:$\frac{1.5}{3} = \frac{DF}{3}$化简得到:$DF = 1.5$cm以上为高一数学学期第一次月考试卷及答案。
人教版高一下学期数学第一次月考试题及答案解析
![人教版高一下学期数学第一次月考试题及答案解析](https://img.taocdn.com/s3/m/ffba580e5fbfc77da369b11b.png)
九江一中-下学期第一次月考数学试卷考试时间:120分钟 总分:150分 出卷人:高一数学备课组一、选择题(5×12=60分)1.已知集合{}0,1,2A =,={0,1}B ,则A B =( )A .{}0,1,2B .{}1,2C .{}0,1D .{}02.下列说法正确的是( )A .小于︒90的角是锐角B .钝角是第二象限的角C .第二象限的角大于第一象限的角D .若角α与角β的终边相同,那么βα=3.若直线210ax y ++=与直线20x y +-=互相垂直,则a 为( )A .1-B .1C .-2 D4.从件产品中选取50件,若采用下面的方法选取:先用简单随机抽样从件产品中剔除3件,剩下的件再按系统抽样的方法抽取,则每件产品被选中的概率( )A .不都相等B .都不相等 C5.已知α是第二象限角,那么 ( )A.第一象限角B.第二象限角C.第二或第四象限角D.第一或第三象限角6.一名小学生的年龄和身高(单位:cm )的数据如下表:由散点图可知,身高与年龄之间的线性回归方程为8.8y x a =+,则a 的值为( )A .65B .74C .56D .477.向顶角为0120的等腰三角形ABC (其中BC AC =)内任意投一点M ,则AM 小于AC 的概率为( )A A .60.50.7(0.7)(log 6)(6)f f f <<B .60.50.7(0.7)(6)(log 6)f f f <<C .60.50.7(log 6)(0.7)(6)f f f <<D .0.560.7(log 6)(6)(0.7)f f f <<9 )y xA .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCEDC .三棱锥EFD A -'的体积有最大值11.已知函数是定义在上的增函数,函数的图象关于点)0,1(对称. 若对任意的,不等式恒成立,则当3x >时,的取值范围是( )12.已知函若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则 ) A .(1,)-+∞ B .(]1,1- C .(,1)-∞ D .[)1,1-二、填空题(5×4=20分)13.数据 平均数为6,方差为2,则数据的平均数为 ,方差为 ;14.某校共有教师200人,男学生800人,女学生600人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从男学生中抽取的人数为10015. 执行如图的程序框图,如果输入的N 的值是6,那么输出的p 的值是 .16.若圆0104422=---+y x y x 上至少有三个不同点到直线0:=+by ax l 的距离为则直线l 的斜率的取值区间为 .三、解答题17.(10分)对某校高二年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)若已知M=40,求出表中m 、n 、p 中及图中a 的值; ()x f y =R ()1-=x f y R y x ∈,()()0821622<-++-y y f x x f 22y x +128,,,x x x 12826,26,,26x x x ---(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间)15,10[内的人数;18.(12分)已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小;(2)求该扇形的面积取得最大时,圆心角的大小.19.(12分)设关于x 的方程2220x ax b ++=.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.20. (12分)下图是一几何体的直观图、主视图、俯视图、左视图.(1)若F 为PD 的中点,求证:AF⊥面PCD ;(2)证明:BD∥面PEC ;(3)求该几何体的体积.21.(12分)已知A ,B 为圆O :224x y +=与y 轴的交点(A 在B 上),过点(0,4)P 的直线l 交圆O 于,M N 两点(点M 在上、点N 在下).(1)若弦MN 的长等于23,求直线l 的方程;(2)若,M N 都不与A ,B 重合,直线AN 与BM 的交点为C.证明:点C 在直线y=1.22. (12分)已知定义在区间(0+)∞,上的函数()4()5f x t x x=+-,其中常数0t >.(1)若函数()f x 分别在区间(0,2),(2,)+∞上单调,试求t 的取值范围;(2)当1t =时,是否存在实数,a b ,使得函数()f x 在区间[,]a b 上单调、且()f x 的取值范围为[,]ma mb ,若存在,求出m的取值范围;若不存在,请说明理由.高一第一次月考试卷一、选择题CBCCD ABCDD CB二、填空题 13. 6 , 8 ; 14.200; 15.105; 16. ]32,32[+-三、解答题17.对某校高二年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)若已知M=40,求出表中m 、n 、p 中及图中a 的值;(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间)15,10[内的人数;解:(1)因为频数之和为40,所以424240,10m m +++==.100.2540m p M ===,0.6n =因为a 是对应分组)20,15[的频率与组距的商,所以0.60.125a ==.因为该校高二学生有240人,分组)15,10[内的频率是25.0, 所以估计该校高二学生参加社区服务的次数在此区间内的人数为60人.18.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小;(2)求该扇形的面积取得最大时,圆心角的大小.(1)解:设扇形半径为R ,扇形弧长为l ,周长为C ,解得⎩⎨⎧==16R l 或⎩⎨⎧==32R l ,圆心角19.设关于x 的方程2220x ax b ++=.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率. 解:设事件A 为“方程有实根”.当a >0,b >0时,方程有实根的充要条件为a≥b(1)由题意知本题是一个古典概型,试验发生包含的基本事件共12个:(0,0)(0,1)(0,2)(1,0)(1,1)(1,2)(2,0)(2,1)(2,2)(3,0)(3,1)(3,2) 其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,∴事件A 发生的概率为P==(2)由题意知本题是一个几何概型,试验的全部结束所构成的区域为{(a ,b )|0≤a≤3,0≤b≤2}满足条件的构成事件A 的区域为{(a ,b )|0≤a≤3,0≤b≤2,a≥b}∴所求的概率是20.下图是一几何体的直观图、主视图、俯视图、左视图.(1)若F 为PD 的中点,求证:AF⊥面PCD ;(2)证明:BD∥面PEC ;(3)求该几何体的体积.解:(1)由几何体的三视图可知,底面ABCD 是边长为4的正方形, 而且PA ABCD ⊥面,PA ∥EB ,4,2PA AD EB ===. 取PD 的中点F ,如图所示. ∵PA AD =,∴AF PD ⊥, 又∵,,CD DA CD PA PADA A ⊥⊥=,∴CD ⊥面ADP , ∴CD AF ⊥.又CD DP D =,∴AF ⊥面PCD .(2)如图,取PC 的中点M ,AC 与BD 的交点为N ,连结MN 、ME ,如图所示.∴12MN PA =,MN ∥PA ,∴MN EB =,MN ∥EB , ∴四边形BEMN 为平行四边形,∴EM ∥BN ,又EM 面PEC ,∴BN ∥面PEC ,∴面.(3)380442213144431=⋅⋅⋅⋅+⋅⋅⋅=+=--BCE P ABCD P V V V . 21.已知A ,B 为圆O :224x y +=与y 轴的交点(A 在B 上),过点(0,4)P 的直线l 交圆O 于,M N 两点.(1)若弦MN 的长等于23,求直线l 的方程;(2)若,M N 都不与A ,B 重合,直线AN 与BM 的交点为C.证明:点C 在直线y=1.解:(Ⅰ)①当k 不存在时,4==AB MN 不符合题意②当k 存在时,设直线l :4y kx =+||23MN =∴圆心O 到直线l 的距离2231d =-=2|4|11k ∴=+,解得15k =±综上所述,满足题意的直线l 方程为(Ⅱ)设直线MN 的方程为:4y kx =+,1122(,y )(,y )N x x 、M联立2244y kx x y =+⎧⎨+=⎩得:22(1)8120k x kx +++= 直线AN :,直线BM :消去x 得:要证:C 落在定直线1y =上,只需证:即证:121122636kx x x kx x x --=+即证:121246()0kx x x x ++=显然成立. 所以直线AN 与BM 的交点在一条定直线上.22.已知定义在区间(0+)∞,上的函数()4()5f x t x x=+-,其中常数0t >.(1)若函数()f x 分别在区间(0,2),(2,)+∞上单调,试求t 的取值范围;(2)当1t =时,是否存在实数,a b ,使得函数()f x 在区间[,]a b 单调,且()f x 的取值范围为[,]ma mb ,若存在,求出m 的取值范围;若不存在,请说明理由.试题解析:(1x ∵0t > ∴函数()h x 分别在区间(0,2),(2,)+∞上单调 且()4h x t ≥ 要使函数()f x 分别在区间(0,2),(2,)+∞上单调则只需54504t t -≥⇒≥ (2)当1t =时, 如图,可知01m <<,()f x 在(0,1)、(1,2)、(2,4)、(4,)+∞均为单调函数(Ⅰ)当[](],0,1a b ⊆时,()f x 在[],a b 上单调递减则()()f a mb f b ma =⎧⎨=⎩两式相除整理得()(5)0a b a b -+-= ∵(],0,1a b ∈ ∴上式不成立 即,a b 无解,m 无取值 10分(Ⅱ)当[](],1,2a b ⊆时,()f x 在[],a b 上单调递增 则()()f a ma f b mb=⎧⎨=⎩ 在(]1,2a ∈有两个不等实根作()t ϕ在分 (Ⅲ)当[](],2,4a b ⊆时,()f x 在[],a b 上单调递减 则()()f a mb f b ma =⎧⎨=⎩两式相除整理得()(5)0a b a b -+-=∴5a b += ∴5b a a =->则m 关于a的函数是单调的,而∴此种情况无解(Ⅳ)当[][),4,a b⊆+∞时,同(Ⅰ)可以解得m无取值综上,m的取值范围为第11页共11页。
天津市重点高一下学期第一次月考数学试题(解析版)
![天津市重点高一下学期第一次月考数学试题(解析版)](https://img.taocdn.com/s3/m/2a095e30f68a6529647d27284b73f242326c317c.png)
一、单选题1.若角的终边上一点的坐标为,则( ) α(11)-,cos α=A .B .CD .1-1【答案】C【分析】根据任意角三角函数的定义即可求解.【详解】∵角的终边上一点的坐标为,它与原点的距离 α(11)-,r ==∴ cos x r α===故选:C.2.下列说法正确的是( ) A .第二象限角比第一象限角大 B .角与角是终边相同角60︒600︒C .三角形的内角是第一象限角或第二象限角D .将表的分针拨慢分钟,则分针转过的角的弧度数为 10π3【答案】D【分析】举反例说明A 错误;由终边相同角的概念说明B 错误;由三角形的内角的范围说明C 错误;求出分针转过的角的弧度数说明D 正确.【详解】对于,是第二象限角,是第一象限角,,故A 错误; A 120︒420︒120420︒<︒对于B ,,与终边不同,故B 错误;600360240︒=︒+︒60︒对于C ,三角形的内角是第一象限角或第二象限角或轴正半轴上的角,故C 错误; y 对于D ,分针转一周为分钟,转过的角度为,将分针拨慢是逆时针旋转, 602π钟表拨慢分钟,则分针所转过的弧度数为,故D 正确.∴101π2π63⨯=故选:D .3.下列叙述中正确的个数是:( )①若,则;②若,则或;③若,则④若a b = 32a b >a b = a b = a b =- ma mb = a b = ,则⑤若,则,a b b c ∥∥a c ∥a b = a bA A .0B .1C .2D .3【答案】B【分析】由向量不能比较大小判断①;举例判断②;由时判断③;由时判断④;由相0m =0b =等向量和平行向量的关系判断⑤.【详解】解:因为向量不能比较大小,所以①错误, 如单位向量模都为1,方向任意,所以②错误,当时,,但是与不一定相等,所以③错误, 0m =0ma mb ==r r ra b 当时,和可能不平行,所以④错误, 0b = a c两个向量相等则它们一定平行,所以⑤正确, 故选:B4.若,则( ) sin cos θθ-=44sin cos +=θθA .B .C .D .34567889【答案】C【分析】根据同角三角函数的基本关系和二倍角的正弦公式可得,结合 1sin 22θ=计算即可.44sin cos +=θθ211sin 22θ=-【详解】 sin cos θθ-=得,即,221sin 2sin cos cos 2θθθθ-+=11sin 22θ-=所以, 1sin 22θ=所以 4422222sin cos (sin cos )2sin cos θθθθθθ+=+-.2211171sin 21()2228θ=-=-⨯=故选:C5.已知,则( ) 1sin()3πα+=3cos 2πα⎛⎫-=⎪⎝⎭A .B .C .D 13-13【答案】B【分析】已知等式左边利用诱导公式化简求出的值,原式利用诱导公式化简后将的值代sin a sin a 入计算即可求出值.【详解】()1sin sin ,3παα+=-= 31cos()sin .23παα∴-=-=故选:B【点睛】诱导公式可以将任意角的三角函数转化为锐角三角函数,因此常用于化简求值,一般步骤:任意负角的三角函数→任意正角的三角函数→的三角函数→锐角的三角函数.[0,2)π6.已知,的值为0,2πθ⎛⎫∈ ⎪⎝⎭sin 4πθ⎛⎫-= ⎪⎝⎭sin 23πθ⎛⎫+ ⎪⎝⎭A B C D 【答案】D【详解】sin 4πθ⎛⎫-= ⎪⎝⎭3sin )sin 2,cos sin 5θθθθθ⇒-=⇒=>πππ4(0,(0,),2(0,22425θθθθ∈∴∈∈=所以,选D. sin 23πθ⎛⎫+ ⎪⎝⎭314525=⨯+=7.在中,,则是 ABC ∆AB BC AB BC ==+ ABC ∆A .直角三角形 B .等边三角形 C .钝角三角形 D .等腰直角三角形【答案】B【解析】根据向量的线性运算化简判定即可.【详解】,则,故是等边三角形.AB BC AC +=||||||AB BC AC == ABC ∆故选:B【点睛】本题主要考查了利用向量判定三角形形状的方法,属于基础题型.8.定义为中较大的数,已知函数,给出下列命题: {}max ,a b ,a b (){}max sin ,cos f x x x =①为非奇非偶函数; ()f x ②的值域为;()f x []1,1-③是以为最小正周期的周期函数; ()f x π④当时,. ()π2π2ππZ 2k x k k -+<<+∈()0f x >其中正确的为( ) A .②④ B .①③C .③④D .①④【答案】D【分析】作出函数的图象,利用图象确定出奇偶性,值域,周期,单调区间,即可求解. ()f x 【详解】解:作出函数的图象,如下:()f x令,则,,解得,,sin cos x x =π04x ⎛⎫-= ⎪⎝⎭ππ4x k -=Z k ∈ππ4x k =+Z k ∈当,时 5π2π4x k =+Z k ∈()f x =由图可知,是非奇非偶函数,值域为,故①正确,②错误; ()f x ⎡⎤⎢⎥⎣⎦因为是以为最小正周期的周期函数,故③错误; ()f x 2π由图可知,时,,故④正确. ()π2π2ππZ 2k x k k -+<<+∈()0f x >故选:D.9.的值为( ) sin 45cos15cos 225sin15⋅+⋅A .B .C .D 1212-【答案】A【分析】利用差的正弦公式化简计算.【详解】sin 45cos15cos 225sin15sin 45cos15cos 45sin15︒︒︒︒=︒︒︒︒⋅+⋅⋅-⋅. ()1sin 4515sin 302=︒-︒=︒=故选:A.10.已知函数是奇函数,且的最小正周期为,将()()()sin 0,0,f x A x A ωϕωϕπ=+>><()f x π的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),所得图象对应的函数为()y f x =2()g x.若( ) 4g π⎛⎫= ⎪⎝⎭38f π⎛⎫=⎪⎝⎭A .B . 2-C D .2【答案】C【分析】先根据原函数的奇偶性及周期性确定的值,然后得到的解析式,再根据,ωϕ()g x,最后求解的值. 4g π⎛⎫⎪⎝⎭A 38f π⎛⎫ ⎪⎝⎭【详解】因为函数是奇函数,且其最小正周期为,()()()sin 0,0,f x A x A ωϕωϕπ=+>><π所以,则,得.0,2ϕω==()sin 2f x A x =()sin g x A x =又,故,sin 44g A ππ⎛⎫== ⎪⎝⎭2A =()2sin 2f x x =所以,332sin84f ππ⎛⎫== ⎪⎝⎭故选:C.【点睛】本题考查型函数的图象及性质,难度一般.解答时先要()()()sin +0,0f x A x b A ωϕω=+>>根据题目条件确定出、及的值,然后解答所给问题. A ωϕ11.函数(其中,)的图象如下图所示,为了得到的图象,()sin()f x x ωϕ=+0ω>02πϕ<≤sin y x =则需将的图象( )()y f x =A .横坐标缩短到原来的,再向右平移个单位 124πB .横坐标缩短到原来的,再向左平移个单位128πC .横坐标伸长到原来的2倍,再向右平移个单位 4πD .横坐标伸长到原来的2倍,再向左平移个单位8π【答案】C【解析】先根据图象的特点可求出,然后再根据周期变换与相位变换即可得出()sin 24f x x π⎛⎫=+ ⎪⎝⎭答案.【详解】由图可知,,所以,故, 1732882T πππ=-=T π=22T πω==故函数,()()sin 2f x x ϕ=+又函数图象经过点,故有,即, 3,08π⎛⎫ ⎪⎝⎭3sin 208πϕ⎛⎫⨯+= ⎪⎝⎭328k πϕπ⨯+=所以(), 34πφk π=-Z k ∈又,所以,02πϕ<≤4πϕ=所以,()sin 24f x x π⎛⎫=+ ⎪⎝⎭故将函数图象的横坐标伸长到原来的2倍得到的图象,然后再向()sin 24f x x π⎛⎫=+ ⎪⎝⎭4y sin x π⎛⎫=+ ⎪⎝⎭右平移个单位即可得到的图象.4πsin y x =故选:C .【点睛】本题考查由三角函数图象确定解析式,考查三角函数图象的平移伸缩变换,考查逻辑思维能力和运算求解能力,考查数形结合思想,属于常考题.12.已知函数,给出以下四个命题:①的最小正周期为;②()sin (sin cos )f x x x x =⋅+()f x π()f x 在上的值域为;③的图像关于点中心对称;④的图像关于直线0,4⎡⎤⎢⎣⎦π[]0,1()f x 51,82π⎛⎫⎪⎝⎭()f x 对称.其中正确命题的个数是( )118x π=A . B .C .D .1234【答案】D【解析】化简,根据函数的周期,值域,对称性逐项验证,即可求得结()sin (sin cos )f x x x x =⋅+论.【详解】2()sin (sin cos )sin cos sin 1111sin 2cos 2,22242f x x x x x x xx x x π=⋅+=⋅+=-+=-+周期为,①正确;()f x π110,,2[,[,4444422x x x πππππ⎡⎤∈-∈--∈-⎢⎥⎣⎦的值域为,②正确;()f x []0,1,③正确; 511(822f ππ=+=为的最大值,11511()8222f ππ=+=()f x ④正确. 故选:D【点睛】本题考查三角函数的化简,以及三角函数的性质,属于中档题.二、填空题13.若,则_______. 2sin 3α=sin()πα-=【答案】23【解析】直接利用诱导公式得到答案. 【详解】 2sin()sin 3παα-==故答案为:23【点睛】本题考查了诱导公式,属于简单题.14.向量_________AB MB BO BC OM +=+++【答案】##ACCA - 【分析】利用向量加法的三角形法则及向量加法的运算律即可求解.【详解】()()AB MB BO BC OM AB BO MB BC OM +++=+++++ .()AO MC OM AO OM MC AM MC AC +=+=+=++=故答案为:.AC15.函数________.y =【答案】 72,2,66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【分析】根据使函数有意义必须满足,再由正弦函数的性质得到的范围. 12sin 0x -≥x 【详解】由题意得:12sin 0x -≥ 1sin 2x ∴≤ 722,66k x k k ππππ∴-≤≤+∈Z 即 72,2,66x k k k ππππ⎡⎤∈-+∈⎢⎥⎣⎦Z 故答案为 72,2,66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【点睛】本题考查关于三角函数的定义域问题,属于基础题.16.若方程在上有解,则实数m 的取值范围是________.sin 41x m =+[]0,2x π∈【答案】1,02⎡⎤-⎢⎥⎣⎦【解析】先求出的范围,将代入,解不等式即可得m 的取值范围. sin x sin 41x m =+【详解】解:, [][]0,2,sin 1,1x y x π∈∴=∈- ,[]1sin 114,x m ∈-+∴=,1,02m ⎡⎤∈-⎢⎥⎣⎦故答案为:1,02⎡⎤-⎢⎥⎣⎦【点睛】本题考查方程有解问题,可转化为函数的值域问题,是基础题. 17.下列五个命题:①终边在轴上的角的集合是; y π,2k k αα⎧⎫=∈⎨⎬⎩⎭Z ∣②在同一坐标系中,函数的图象和函数的图象有三个公共点; sin y x =y x =③把函数的图象向右平移个单位长度得到的图象;π3sin 23y x ⎛⎫=+ ⎪⎝⎭π63sin2y x =④函数在上是单调递减的;πsin 2y x ⎛⎫=- ⎪⎝⎭[]0,π⑤函数的图象关于点成中心对称图形.πtan 23y x ⎛⎫=+ ⎪⎝⎭π,06⎛⎫- ⎪⎝⎭其中真命题的序号是__________. 【答案】③⑤【分析】①终边在y 轴上的角的集合为;②根据的大小关系判断;③ππ,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z sin ,x x 根据三角函数的图象的平移变换规律判断;④根据正弦函数的单调性判断;⑤根据正切函数的对称性判断.【详解】①终边在y 轴上的角的集合为,故①错误;ππ,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z ②在同一直角坐标系中,函数的图象和函数的图象有一个公共点,为原点,当sin y x =y x =0x =时,;当时,;sin x x =1x ≥sin x x <当时,如图,在单位圆中,轴,,弧的长度为,则;所以01x <<PM Ox ⊥=sin PM x PA x sin x x <当时,.0x >sin x x <同理当时,,所以函数的图象和函数的图象有一个公共点,0x <sin x x >sin y x =y x =故②错误;③的图象向右平移得到的图象,故③正确;π3sin 23y x ⎛⎫=+ ⎪⎝⎭π6ππ3sin 23sin263y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦④,在上是增函数,故④错误;πsin cos 2y x x ⎛⎫=-=- ⎪⎝⎭()0,π⑤当时,代入函数中可得,,则可知是对称中心,π6x =-ππtan 2tan0063y ⎡⎤⎛⎫=⨯-+== ⎪⎢⎥⎝⎭⎣⎦π,06⎛⎫- ⎪⎝⎭故⑤正确. 故答案为:③⑤.18.函数的部分图象如图所示.若方程()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭有实数解,则的取值范围为__________.()π2cos 43f x x a ⎛⎫++= ⎪⎝⎭a【答案】94,4⎡⎤-⎢⎥⎣⎦【分析】根据图象求出函数的解析式为,求出()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,令()2ππππ2sin 22cos 42sin 2212sin 26366g x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=++-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,根据二次函数的性质,即可求出结果.[]πsin 2,1,16t x t ⎛⎫=+∈- ⎪⎝⎭【详解】解:由图可知,, 2A =2πππ2362T =-=所以,即,πT =2ππω=⇒2ω=当时,,可得,π6x =()2f x =πππ2sin 222π632k ϕϕ⎛⎫⨯+=⇒+=+ ⎪⎝⎭即,因为,所以,π2π,6k k ϕ=+∈Z π2ϕ<π6ϕ=所以函数的解析式为,()f x ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭设,()()π2cos 43g x f x x ⎛⎫=++ ⎪⎝⎭则,()ππ2sin 22cos 463g x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭2ππ2sin 2212sin 266x x ⎡⎤⎛⎫⎛⎫=++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令,[]πsin 2,1,16t x t ⎛⎫=+∈- ⎪⎝⎭记,()2219422444h t t t t ⎛⎫=-++=--+ ⎪⎝⎭因为,所以,[]1,1t ∈-()94,4h t ⎡⎤∈-⎢⎥⎣⎦即,故,()94,4g x ⎡⎤∈-⎢⎥⎣⎦94,4a ⎡⎤∈-⎢⎥⎣⎦故的取值范围为.a 94,4⎡⎤-⎢⎥⎣⎦故答案为:.94,4⎡⎤-⎢⎥⎣⎦19.如图,四边形是平行四边形,点P 在上,判断下列各式是否正确(正确的在括号内ABCD CD 打“√",错误的打“×”)(1).() DA DP PA +=(2).() DA AB BP DP ++=(3).()AB BC CP PA ++=【答案】 × √ ×【解析】(1)由图形得;(2)、(3)利用向量加法几何意义;DA DP PA -=【详解】对(1),因为,故(1)错误;DA DP PA -=对(2),利用向量加法三角形首尾相接知,(2)正确;DA AB BP DP ++=对(3),,故(3)错误.AB BC CP AP ++= 故答案为:(1) ×;(2) √;(3) ×【点睛】本题考查平面向量加法的几何意义,考查数形结合思想,求解时注意三角形法则的运用.三、解答题20.已知函数. 2()cos cos f x x x x =-(1)求的最小正周期;()f x (2)当时,讨论的单调性并求其值域.ππ[,]62x ∈-()f x 【答案】(1)π(2)时,单调递增,时,单调递减,值域为ππ,63x ⎡⎤∈-⎢⎥⎣⎦()f x ππ,32x ⎡⎤∈⎢⎣⎦()f x 31,22⎡⎤-⎢⎥⎣⎦【分析】(1)对化简后得到,利用求最小正周期;(2)整体法()f x ()π1sin 262f x x ⎛⎫=-- ⎪⎝⎭2πT ω=求解函数单调性及其值域.【详解】(1) 1cos 2ππ1π1()2sin 2cos cos 2sin sin 2266262x f x x x x x +⎛⎫=-=--=-- ⎪⎝⎭所以的最小正周期为. ()f x 2ππ2=(2)当时,.ππ,62x ⎡⎤∈-⎢⎥⎣⎦52,πππ626x ⎡⎤-∈-⎢⎥⎣⎦故当,即时,单调递增,πππ2262x --……ππ63x -……()f x 当,即时,单调递减. ππ5π2266x -……ππ32x ……()f x 当时,,52,πππ626x ⎡⎤-∈-⎢⎥⎣⎦π1sin 216x ⎛⎫-- ⎪⎝⎭……所以,即的值域为31()22f x -……()f x 31,22⎡⎤-⎢⎥⎣⎦21.设,是两个不共线的向量,已知,,. 1e 2e 1228AB e e =- 123CB e e =+ 122CD e e =-(1)求证:,,三点共线;A B D (2)若,且,求实数的值.123BF e ke =-u r u u u r u r //B B F Dk 【答案】(1)证明见解析 (2) 12【分析】(1)由题意证明向量与共线,再根据二者有公共点,证明三点共线;AB BDB (2)根据与共线,设由(1)的结论及题意代入整理,结合,是两BF BD() R BF BD λλ∈= 1e 2e 个不共线的向量,构造方程解实数的值.k【详解】(1)由已知得, 121212))(2(34BD CD CB e e e e e e =-+=-=--因为,所以,1228AB e e =- 2AB BD = 又与有公共点,所以,,三点共线;AB BDB A B D (2)由(1)知,若,且,124BD e e =- 123BF e ke =-u r u u u r u r //B B F D可设,() R BF BD λλ∈=所以,即,121234e ke e e λλ-=-12(3)(4)e k e λλ-=- 又,是两个不共线的向量,1e 2e所以解.3040k λλ-=⎧⎨-=⎩12k =22.已知函数,且的最小正周期为. 2()cos 2cos (0)f x x x x ωωωω=+>()f x π(1)求ω的值及函数f (x )的单调递减区间; (2)将函数f (x )的图象向右平移个单位长度后得到函数g (x )的图象,求当时,函数6π0,2x π⎡⎤∈⎢⎥⎣⎦g (x )的最大值.【答案】(1)ω=1,单调递减区间为;(2)3. 2[,],63k k k ππ+π+π∈Z 【分析】(1)利用三角函数恒等变换的应用化简函数解析式可得,利用周()2sin(2)16f x x πω=++期公式即可解得的值,利用正弦函数的图象和性质,令,即可解得ω3222262k x k πππππ+++……的单调减区间.()f x (2)根据函数的图象变换可求,由的范围,可求sin()y A x ωϕ=+()2sin(2)16g x x π=-+x ,由正弦函数的图象和性质即可得解. 52666x πππ--……【详解】解:(1),()21cos 22sin(2)16f x x x x πωωω++=++,, 22T πππω=⇒=1ω∴=从而:,令, ()2sin(2)16f x x π=++3222262k x k πππππ+++……得, 263k x k ππππ++……的单调减区间为.()f x ∴2[,],63k k k ππ+π+π∈Z(2),()2sin[2()]12sin(21666g x x x πππ=-++=-+,, [0,2x π∈∴52666x πππ--……当,即时,. ∴226x ππ-=3x π=()2113max g x =⨯+=【点睛】本题主要考查了函数的图象变换,三角函数恒等变换的应用,正弦函数的sin()y A x ωϕ=+图象和性质,考查了转化思想和数形结合思想的应用,属于中档题.23.已知数的相邻两对称轴间的距离为. 2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪⎪⎝⎭⎝⎭2π(1)求的解析式; ()f x (2)将函数的图象向右平移个单位长度,再把各点的横坐标缩小为原来的(纵坐标不变),()f x 6π12得到函数的图象,当时,求函数的值域;()y g x =,126x ππ⎡⎤∈-⎢⎥⎣⎦()g x (3)对于第(2)问中的函数,记方程在上的根从小到大依次为()g x 4()3g x =4,63x ππ⎡⎤∈⎢⎥⎣⎦12,,nx x x ,若,试求与的值. m =1231222n n x x x x x -+++++ n m 【答案】(1) ()2sin 2f x x =(2) [-(3) 205,3n m π==【分析】(1)先整理化简得,利用周期求得,即可得到; ()2sin f x x ω=2ω=()2sin 2f x x =(2)利用图像变换得到,用换元法求出函数的值域;()sin()243g x x π=-()g x (3)由方程,得到,借助于正弦函数的图象,求出与的值.4()3g x =2sin(4)33x π-=sin y x =n m【详解】(1)由题意,函数21())2sin ()1626f x x x ππωω⎡⎤=+++-⎢⎥⎣⎦cos()2sin()2sin 6666x x x x ππππωωωω=+-+=+-=因为函数图象的相邻两对称轴间的距离为,所以,可得.()f x 2πT π=2ω=故()2sin 2f x x =(2)将函数的图象向右平移个单位长度,可得的图象.()f x 6π2sin(2)3y x π=-再把横坐标缩小为原来的,得到函数的图象.12()2sin(4)3y g x x π==-当时,,,126x ππ⎡⎤∈-⎢⎥⎣⎦24,333x πππ⎡⎤-∈-⎢⎣⎦当时,函数取得最小值,最小值为,432x ππ-=-()g x 2-当时,函数433x ππ-=()g x故函数的值域. ()g x ⎡-⎣(3)由方程,即,即,4()3g x =42sin(4)33x π-=2sin(4)33x π-=因为,可得,4,63x ππ⎡⎤∈⎢⎥⎣⎦4,533x πππ⎡⎤-∈⎢⎥⎣⎦设,其中,即,结合正弦函数的图象, 43x πθ=-,53πθπ⎡⎤∈⎢⎥⎣⎦2sin 3θ=sin y x =可得方程在区间有5个解,即, 2sin 3θ=,53ππ⎡⎤⎢⎥⎣⎦5n =其中, 122334453,5,7,9θθπθθπθθπθθπ+=+=+=+=即 12233445443,445,447,44933333333x x x x x x x x ππππππππππππ-+-=-+-=-+-=-+-=解得 1223344511172329,,,12121212x x x x x x x x ππππ+=+=+=+=所以. m =()()()()1212345233445223220x x x x x x x x x x x x x π=++++++++++++= 综上, 2053n m π==,【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于或sin y x =cos y x =的性质解题;(2)求y =A sin(ωx +φ)+B 的值域通常用换元法;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁夏石嘴山市2016-2017学年高一数学下学期第一次月考试题第I 卷(选择题)一、选择题(每题5分,共60分)1.用秦九韶算法计算多项式()234561235879653f x x x x x x x =+-++++在4x =-时的值时,3V 的值为 ( )A. -845B. 220C. -57D. 34 2.执行如图所示的程序框图,则输出s 的值为( )第2题 第3题 (A )34 (B )56 (C )1112 (D )25243.执行图所示的程序框图,若输入2x =,则输出y 的值为( ) A.2 B.5 C.11 D.23 4.下列各组数据中最小的数是( )A 、()985B 、()6210C 、()41000D 、()2111111 5.如图,给出的是计算29151311+⋯+++的值的一个程序框图,则图中执行框内①处和判断框中的②处应填的语句是( )A. n=n+2, i>15?B. n=n+1, i>15?C. n=n+2, i>14?D. n=n+1, i>14 ? 6.由一组样本数据1122(,),(,),,(,)n n x y x y x y ,得到回归直线方程ˆybx a =+,那么下面说法不正确的是( )A .直线ˆybx a =+必经过(,)x y ; B .直线ˆybx a =+至少经过1122(,),(,),,(,)n n x y x y x y 中的一个点;C .直线ˆybx a =+的斜率为22i iix y nx y x nx-⋅-∑∑; D .直线ˆybx a =+的纵截距为.y bx - 7.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:x3 4 5 6 y 2.5t44.5根据上表提供的数据,若求出y 关于x 的线性回归方程为ˆ0.70.35y x =+,那么表中t 的值为( )A .3B .3.15C .3.5D .4.5 8.下列叙述错误的是( ).A .若事件A 发生的概率为()P A ,则()01P A ≤≤B .互斥事件不一定是对立事件,但是对立事件一定是互斥事件C .5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同D .某事件发生的概率是随着试验次数的变化而变化的9.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13 B .12 C.23 D .3410.一个袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和小于15的概率为( ) (A)(B)(C)(D)11.如下图,矩形ABCD 中,点E 为边CD 上任意一点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )(A )14 (B )13(C )12 (D )2312.假设小明订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到,小明离家的时间在早上7:00—8:00之间,则他在离开家之前能拿到报纸的概率() A.13 B.18 C.23 D. 78第II 卷(非选择题)二、填空题(每题5分,共20分)13.用辗转相除法求240和288的最大公约数时,需要做____次除法;利用更相减损术求36和48的最大公约数时,需要进行______次减法。
14.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋牛奶进行检验,利用随机数表抽样时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列开始向右读,请你写出抽取检测的第5袋牛奶的编号_________.(下面摘取了随机数表第7行至第9行)8442 1753 3157 2455 0688 7704 7447 6721 7633 5025 8392 1206 76 6301 6378 5916 9556 6719 9810 5071 7512 8673 5807 4439 5238 79 3321 1234 2978 6456 0782 5242 0744 3815 5100 1342 9966 0279 5415.图2-1是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到12次的考试成绩依次记为A1,A2,…,A12.图2-2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是 .第15题16.连续掷两次骰子,以先后得到的点数n m ,作为点),(n m P 的坐标,那么点P 落在圆1722=+y x 外部的概率为三、解答题(共70分)17(本小题满分10分)某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[)13,14,第二组[)14,15,,第五组[]17,18,下图是按上述分组方法得到的频率分布直方图.(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数; (2)请估计学校1800名学生中,成绩属于第四组的人数;(3)请根据频率分布直方图,求样本数据的众数、中位数、平均数和方差.18.(本小题满分12分)为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了n 人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表. 组号分组回答正确 的人数回答正确的人数占本组的频率第1组 [15,25) a 0.5第2组 [25,35) 18 x第3组 [35,45) b 0.9 第4组 [45,55) 9 0.36第5组 [55,65] 3y(1)分别求出y x b a ,,,的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.19.(本小题满分12分)某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:i x (月) 1 2 3 4 5iy (千克) 0.5 0.9 1.7 2.1 2.8(1)在给出的坐标系中,画出关于x 、y 两个相关变量的散点图.0.0100.030 0.025 0.020 0.015组距频率(2)请根据上表提供的数据,用最小二乘法求出变量y 关于变量x 的线性回归直线方程ˆˆya bx =+. (3)预测饲养满12个月时,这种鱼的平均体重(单位:千克).(参考公式:1221()ni ii nii x y b nx yxn x ==--=∑∑,ˆay bx =-)20(本小题满分12分)某校高二某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的损坏,可见部分如下:试着根据表中的信息解答下列问题:(Ⅰ)求全班的学生人数及分数在[70,80)之间的频数;(Ⅱ)为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80)和[80,90)分数段的试卷中抽取7份进行分析,再从中任选2人进行交流,求交流的学生中,成绩位于[70,80)分数的人恰有一人被抽到的概率.21(本小题满分12分)做投掷2颗骰子试验,用(x ,y )表示点P 的坐标,其中x 表示第1颗 骰子出现的点数,y 表示第2颗骰子出现的点数. (I )求点P 在直线y = x 上的概率;(II)求点P满足x+y 10的概率.22(本小题满分12分)某班甲、乙两名同学参加100米达标训练,在相同的条件下两人10次训练的成绩(单位:秒)如下:12345678910甲11.612.213.213.914.011.513.114.511.714.3乙12.313.314.311.712.012.813.213.814.112. 5(1)请画出茎中图。
如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(需计算);(2)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率.(3)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8的概率。
2016-2017-2市三中高一3月份考卷参考答案及评分标准一.选择题(每小题5分,共12分). 1 2 3 4 5 6 7 8 9 10 11 12 CDDDABADADCD二、填空题(每小题5分,共12分) 13. 2,3 14. 175 15. 9 16.13/18 三、解答题17. 解:(1)样本在这次百米测试中成绩优秀的人数0.22×50=11(人) …(1分) (2)学校1800名学生中,成绩属于第四组的人数0.32×1800=576(人) …(2分) (3)由图可知众数落在第三组[15,16),是15+162=15.5 …(3分)因为数据落在第一、二组的频率=1×0.06+1×0.16=0.22<0.5 …(4分) 数据落在第一、二、三组的频率=1×0.06+1×0.16+1×0.38=0.6>0.5 …(5分) 所以中位数一定落在第三组[15,16)中. …(6分)假设中位数是x ,所以1×0.06+1×0.16+(x-15)×0.38=0.5 …(7分) 解得中位数x =29919≈15.7368≈15.74 …(8分)平均数13.50.0614.50.1615.50.3816.50.3217.50.0815.7⨯+⨯+⨯+⨯+⨯= …(9分)22222(13.515.7)0.06(14.515.7)0.16(15.515.7)0.38(16.515.7)0.32(17.515.7)0.081-⨯+-⨯+-⨯+-⨯+-⨯=…(10) 18. 解:(1)由频率表中第4组数据可知,第4组总人数为2536.09=, …(1分) 再结合频率分布直方图可知=n 10010025.025=⨯,∴ 1000.01100.55a =⨯⨯⨯=279.01003.0100=⨯⨯⨯=b ,2.0153,9.02018====y x…(4) (2)因为第2,3,4组回答正确的人数共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:265418=⨯人;第3组:365427=⨯人; 第4组:16549=⨯人 …(8分) (3)设第2组2人为:A 1,A 2;第3组3人为:B 1,B 2,B 3;第4组1人为:C 1.则从6人中随机抽取2人的所有可能的结果为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 2,B 1),(A 2, B 2),(A 2,B 3),(A 2,C 1),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 2,B 3),(B 2,C 1),(B 3,C 1)共15个基本事件,其中恰好没有第3组人共3个基本事件, …(10分) ∴所抽取的人中恰好没有第3组人的概率是:51153==P . …(12分) 19.解: (1)散点图如图所示…(4分)(2)由题设 3x =, 1.6y =, …(5分)2()45n x =,24nx y =,5129.8i i i x y ==∑,52155i i x ==∑ …(6分)故51522129.8240.585545()i ii ii x y nx yxn x b ==--===--∑∑ …(7分)1.60.5830.14ˆay bx =-⨯=-=- …(8分) 故回归直线方程为ˆˆ0.580.14yx b a x =+=- …(9分) (3)当12x =时,ˆ0.58120.14 6.82y=⨯-= …(11分)∴饲养满12个月时,这种鱼的平均体重约为6.82千克.…(12分)20解:(Ⅰ)由茎叶图可知,分数在[50,60)上的频数为4人,频率为0.008×10=0.08,参赛人数为=50人,…(2分)分数在[70,80)上的频数等于50﹣(4+14+8+4)=20人.…(4分)(Ⅱ)按分层抽样的原理,三个分数段抽样数之比等于相应频率之比.又[70,80),[80,90)分数段频率之比等于5:2,且按分层抽样的方法从位于[70,80)和[80,90)分数段的试卷中抽取7份,由此可抽出样本中分数在[70,80)的有5人,编为a,b,c,d,e,分数在[80,90)的有2人,编为1,2。