描述函数法讲解
描述函数法
系统有发散趋势;
x 1时,阻尼为正,系统输出能量,
系统有收敛趋势;
如果一个周期中,吸收的能量和发散的能量相等,
则系统就产生一个振幅和频率都不变的持续振荡。
2、x频率对振幅的依赖 x
硬••弹簧•
例2 m x f x Kx K' x3 0
式中:m, f , K为正数
0
••
m x
f
•
x
K
t
K
'
非线性系统 1 曲线, N
再利用Nyquist稳定判据。
饱和非线性的描述函数:
N
2k
arcsin
s X
s X
k
1
s
2
X
X s X s
Im
1
N
X
0 X s
1
0 Re
k
两位置继电特性的描述函数为: N 4M
X
Im
1 X
N 4M X 0
X
0 Re
y
死区非线性
x k
y
xt
x yt
饱和环节
当输入正弦信号幅值大于一定值时, 其输出出现切顶,变成与输入同频率的 周期非正弦信号。
y1 t
yt y5 t
0
t
y3 t
可以分解成一系列正弦波的叠加, 其基波的频率与输入正弦的频率相同。
一、描述函数定义:
N
Y1 X
1
式中:N— 描述函数;
X— 正弦输入的振幅;
Y1— 输出的傅氏级数基波分量的振幅;
第九章 控制系统的
概述
严格地讲,所有实际物理系统都是非 线性的,总是存在诸如死区、饱和、间隙 等非线性现象。所谓线性系统只是在一定 的工作范围内,非线性的影响很小,以致 可以忽略而已。对于相当多数的闭环系统, 可采用第二章所述的线性化方程解决非线 性问题;但也有一定数量的非线性问题不 能这样处理,只能采用 其他的方法。
《自动控制原理》描述函数法
y(t)为非正弦的周期信号,因而可以展开成傅里叶级数:
y(t) = A0 + (An cos nwt + Bn sin nwt) = A0 + Yn sin(nwt + n )
n=1
n=1
其中,A0为直流分量, Yn sin(nwt + n ) 为第n次谐波分量,且有
Yn = An2 + Bn2
(8-60)
试计算该非线性特性的描述函数
解
x=Asinwt
(8-62)
一般情况下,描述函数N是输入信号幅值A和频率w的函数。当非线 性环节中部包括储能元件时,其输出的一次谐波分量的幅值和相位
差与w无关,故描述函数只与输入信号幅值A有关。至于直流分量, 若非线性环节响应为关于t的奇对称函数,即
(线性环节可近似认为具有和线性环节相类似的频率响
应形式。为此,定义正弦输入信号作用下,非线性环节的稳态输出
中一次谐波分量和输入信号的复数比为非线性环节的描述函数,用
N(A)表示:
N ( A) = N ( A) e jN (A) = Y1 e j1 = B1 + jA1
A
A
例8—3 设继电特性为
则由式(8-58)
取变换
,有
而当非线性特性为输入x的奇函数时,即f(x)=-f(-x),有
y(t + ) = f [Asin w(t + )] = f [Asin( + wt)] = f [− Asin wt]
w
w
= f (−x) = − f (x) = − y(t)
即y(t)为t的奇对称函数,直流分量为零。 , 按下式计算:
另外,描述函数法只能用来研究系统的频率响应特性,不能给出时 间响应的确切信息。
描述函数法
7.2 描述函数
一、描述函数的定义 1.描述函数法的应用条件
(1)非线性系统的结构图可以简化成只有一个非线性 环节N+一个线性部分G(s)串联的闭环结构。 (2)非线性环节N的输入输出特性曲线奇对称,以保 证非线性元件在正弦信号作用下的输出不包含直 流分量。
(3)线性部分G(s)具有良好的低通特性,使得系统 信号中的高次谐波大大衰减,可以用基波来近似。
7.2 描述函数
描述函数定义为:输出的基波分量与输入正弦函 数的复数比:
B1 ( A) jA1 ( A) Y1 ( A) j1 ( A) N ( A) e A A 显然,描述函数是A的增益与输入正弦函数的幅值有关。如果 非线性特性是单值奇对称的,那么:
1 1
1 1
0 ; | x | a t [(0, 1 ) ( 1, 1 ) (2 1,2 )]
二、描述函数的计算
因为死区特性是单值奇对称的,所以
B1
4
1
2
A1 0, 1 0
0
y (t ) sin td (t ) y (t ) sin td (t )
A1 0, 1 0, N B1 / A
二、 描述函数的计算
1)死区特性
y
1 1
1 2 1
二、 描述函数的计算
-a a
输入:x(t ) A sin t ( A a)
输出:
k ( x a) k ( Asin t a) ; x a t ( , ) y k ( x a) k ( Asin t a) ; x a t ( ,2 )
1 1 1 1
Y1 sin( t 1 ) Y1 A1 B1
第四节 用描述函数法分析非线性系统2003
内容提要 ✓1. 系统的典型结构及前提条件 ✓2. 非线性系统的稳定分析 ✓3. 自振荡分析 ✓4. 非线性系统方框图的简化
1. 系统的典型结构及前提条件
➢ 典型结构
r(t)=0
x
y
c(t)
N
G(s)
非线性系统的分析: 稳定性
自振荡
奈奎斯特判据在非线性
频率特性在非线性系统
当G(j)曲线通过(-0.5, j0)
点时,求kmax
Re[G(
j )]
1
0.05
0.3K
2 0.0004
4
50
0.5
得
kmax 7.5
当K=7.5时,-1/N(x)与G(jω)相交于b1(-0.5, j0) 点,若取K<7.5,则两曲线不再相交,此时系统 是稳定的,不会产生自振荡。
4. 非线性系统方框图的简化
-1/N(X)
30
1(0 22)
4524j(4524)
求G( j)与1/N(X)曲线的交点。
G( j)
令ImG( j) =0,得 =1.414 (rad/s)
Re [G( j)] =1.414= 1.66 1 X 1.66
N(X) 4
X=2.1
Im 0 Re
13
【例8-1】非线性系统如图8-27(a)所示。
-1 c
Re
0
若复平面中-1/N(x)曲线与G(j)曲线有交点, 则交点对应着等幅振荡,这个等幅振荡能否稳定地 存在?也就是说,若系统受到一个瞬时扰动使振荡 的振幅发生变化,系统是否具有恢复到施加扰动之 前的能力?若可以,该等幅振荡可以稳定地存在, 能够被观察到,称之为自持振荡,反之,则振荡不 能稳定地存在,必然转移到其他运动状态。
第七章(非线性系统的描述函数法)
§7.4非线性系统的描述函数分析法一、描述函数法的基本概念假设非线性系统的输入函数为)sin()(t X t x ω=非线性环节Nx (t )n(t )输出n(t)将是非正弦的周期信号。
可以展成傅利叶级数,n(t)是由恒定分量、基波分量、和高次谐波组成。
假设1:如果非线性部分的特性曲线具有中心对称性质,那以输出信号n(t)的波形具有奇次对称性(波形的后半个周期重复前半个周期的变化,但符号相反)输出不含直流分量,输出响应的平均值为零。
假设2:线性部分具有良好的低通滤波性,那么高次谐波的幅值远小于基波。
闭环通道内近似地只有一次谐波信号流通。
对于一般的非线性系统而言这个条件是满足的,线性部分的低通滤波性越好,用描述函数法分析的精度越高。
上述两个假设满足时,非线性环节的输入是一个正弦信号,系统的输出是相同频率的正弦信号,对于非线性环节的输出只研究其基波成分就足够了。
假设系统中非线性环节的输入函数为tX t x ωsin )(=输出信号可以展成傅利叶级数∑∑∞=∞=++=++=1010)sin(2)cos sin (2)(i i i i i i t i Y A t i B t i A A t n ϕωωω⎰=πωωπ20)()cos()(1t d t i t n A i ⎰=πωωπ20)()sin()(1t d t i t n B i 22iii BA Y +=iii B A tg1-=ϕ若非线性部分是齐次对称的,则A 0=0,线性部分又具有低通滤波特性,可以认为非线性环节的输出中只有基波分量能够通过闭环回路反馈到输入端。
输出部分的基波分量为)sin(cos sin )(11111ϕωωω+=+=t Y t B t A t y ⎰=πωωπ201)()cos()(1t d t t n A ⎰=πωωπ201)()sin()(1t d t t n B 21211B A Y +=1111B A tg -=ϕ可以用一个复数来描述非线性环节输入正弦信号和输出信号基波的关系。
8-4描述函数法
式中 A0—直流分量; Yn sin( nt n ) — n次谐波, 且 Yn ( An2 Bn2 )1/ 2, n arctan( An / Bn )。
An 1
1 A0 y (t )d t 2 1 y (t ) cos( n t )d t ;Bn y (t ) sin( n t )d t ;
负倒描述函数曲线上的箭头表示A增大的方向。 ☆非线性系统的稳定性判定规则: (最小相位系统,P = 0 ) (1) G( jω)曲线不包围-1/N(A)曲线,闭环系统稳定; (2) G( jω)曲线包围-1/N(A)曲线,闭环系统不稳定; (3) G( jω)曲线与 -1/N(A) 曲线相交,闭环系统可能 出现自振荡;自振荡的频率为G(jω) 在交点处的 ω值,振幅是N(A)在交点处的A值。 例8-5 非线性系统如图所示,分析系统稳定性。
N
y
例:
x
N ( A) N1 ( A) N2 ( A)
k1
x10 y1
x2
k2
x20
y2
y
k1 ( x x10 ) x x10 0 | x | x10 y1 k1 ( x x10 ) x x10
k2 x20 y2 k2 x2 k2 x20
x2 x20 | x2 | x20 x2 x20
2
Y j B1 jA1 e ; A A
解:该非线性特性关于原点对称,A0=0; y (t ) cos t 是 ( t ) 的奇函数,A1=0;
B1
0
y (t ) sin t d t cos
自控理论 8-4用描述函数法分析非线性系统
(8-26)
非线性特性的负倒描述函数
对于某一个特定的X 对于某一个特定的 0及ω0,式(8-26)或 或 成立, 式(8-27)成立,这相当于线性系统中 G(jω) = -1 成立 ω 的情况,会产生等幅的周期性振荡。式中1/N(X)为描述函数的负倒特性 , 它相当于线性 为描述函数的负倒特性, 为描述函数的负倒特性 系统的临界点( , ) 系统的临界点(-1,j0)。
−
1 N(X )
Re
G ( jω )
− 0.3 K Re[G ( jω )] = 1 + 0.05ω 2 + 0.0004ω 4
− K (1 − 0.02ω 2 ) Im[G ( jω )] = ω (1 + 0.05ω 2 + 0.0004ω 4 )
令 Im[G(jω)]=0,得 Im[G(jω)]=0
因此, 因此,可以认为能够通过线性部分又反馈到非线性 环节输入端的信号只是基波正弦信号,这个结果, 环节输入端的信号只是基波正弦信号,这个结果, 恰与前面的假定相吻合。因此, 恰与前面的假定相吻合。因此,自振荡时可认为系 统各部分的输入输出量均是基波频率的正弦量。 统各部分的输入输出量均是基波频率的正弦量。 在上述的条件下, 在上述的条件下,可以用非线性环节的描述函 数近似表示非线性环节的特性, 数近似表示非线性环节的特性,线性环节的特性可 用频率特性表示,此时非线性系统的方框图如图8用频率特性表示,此时非线性系统的方框图如图 25所示。 所示。 所示
扰动使 X ↑→ a移到c → 进入稳定区 X ↓→ 回到a点 a点 : 扰动使X ↓→ a移到d → 进入不稳定区 ↑→回到a点 X
第7章_3_描述函数法介绍
描述函数法也称为谐波线性化法 谐波线性化法,或称为谐波 谐波线性化法 谐波 平衡法。这是一种工程近似方法。 主要分析非线性 平衡法 系统极限环的稳定性,以及确定非线性闭环系统在 正弦函数作用下的输出特性。 应用描述函数法分析非线性系统时, 系统的阶次 不受限制。
3
7.5.1 描述函数的基本概念
A 的变化而变化的。
1 非线性系统负倒描述函数曲线 − 是临界 N ( A)
稳定点的轨迹。
22
在线性部分为稳定环节的前提下,给出Nyquist图 稳定性判据: 中的非线性系统稳定性判据 稳定性判据 (1) 如果线性部分频率特性 G ( jω ) 由 ω )
=0向
1 ω → ∞ 变化时,非线性系统负倒描述特性 − N ( A) 始终位于曲线 G ( jω ) 的左侧,即曲线 G ( jω )不包围临界 1 点轨迹线 − ,则非线性系统稳定,不可能产生 N ( A)
A 其中: n =
n =1 ∞ n =1
∞
1 2π A0 = ∫0 x(t )dωt 2π 1 2π Bn = ∫ x(t ) sin nωtdωt
∫ π
π
1
2π
0
x(t ) cos nωtdωt
0
Xn = A + B
2 n
2 n
An φn = arctan Bn
12
图像关于原点中心对称, 当非线性特性是奇函数时, 则有:A0
N ( A) =
从而有:
A +B e A
2 1 2 1
A1 j arctan B1
当非线性输出为单值奇函数时,有: 1 A
=0
A1 φ1 = arctan = arctan 0 = 0 B1
描述函数法
描述函数法是达尼尔(P.J.Daniel)于1940年提 出的, 它是线性系统频域法在非线性系统中的推广, 是非线性系统稳定性的近似判别法,它要求系统具 有良好的低通特性并且非线性较弱。描述函数法的 优点是能用于高阶系统。描述函数法本质上是一种 谐波线性化方法,其基本思想是:当系统满足一定 的假设条件时,系统中非线性环节在正弦信号作用 下的输出可用一次谐波分量来近似。
n 1
A0 Yn sin( nt n )
n 1
式中
Yn
2 2 An Bn
An n arctan( ) Bn An Bn
1
1
2
0 2
y (t ) cos ntd (t ) y (t ) sin ntd (t )
0
如果非线性特性是奇对称的,那么直流分量A0=0, 这时输出的基波分量是:
1
2 Mh ( m 1) A
2 B1 y ( t ) sin td ( t ) 0 2 2 M sin td (t )
1
2 2 2M mh h 1 1 ) A A N ( A) ( A1 jB1 ) / A 2 2 2M mh h 2 Mh 1 ( m 1) 1 ) j 2 A A A A
(2)极限环的稳定性
正如相平面法中所讨论的,极限环本身存在一 个稳定性问题,极限环的稳定性也可以用描述函数 来分析。参见附图11
附图11
极限环的稳定性
图中 A 、 B 两点都出现极限环,先看 A 点:如果 因某种干扰使振荡幅值略有减小,比如工作点移到
第4.5 描述函数法
(4.86b)
式中 (4.86c)
(3) 饱和特性的描述函数
饱和特性在正弦输入下的输出波形如图4.21所示。
图4.21 饱和特性正弦输入下的输出波形
其中A1=0
4 B1 π
x(t ) sinω td(ω t )
e(t )
N
x(t ) G(s)
c(t )
图4.17 非线性系统
当输入正弦函数时,其输出x(t)中含有与输入信号频 率相同的基波分量,还有其它高频分量,但没有常值 分量。线性部分在x(t)作用下产生的响应c(t)中,也 会包含这些高频分量。但很多线性系统具有低通滤波 特性,c(t)中的高频分量相对于基波分量要小得多。在 这种情况下,可以只考虑x(t)中基波分量的作用,用 来近似分析非线性系统的特性,这就是描述函数法的 基本思想。
1.描述函数的定义 对于很多非线性环节,当输入信号为正弦函数 e(t ) A sinω t 时,输 出量x(t)一般都不是同频率的正弦波,而是一个非正弦的周期函 数,其周期与输入信号的周期相同,一般可以展开为傅里叶级数 A0 (4.80) x(t ) ( Ai cos iω t Bi siniω t )
(4)死区特性的描述函数 死区特性在正弦输入下的输出波形如图4.24所示。
图4.24 死区特性正弦输入下的输出波形
可见,是单值奇函数,具有半周期的对称性,所以 A1=0
42 B1 x (t ) sin ω td (ω t ) π 0
在1/4周期内,x(t)的数学表达式为
0, 0 ωt α 1 x(t ) k ( A sin ω t a ), α ω t 1 2
沪教版 八年级(上)数学 秋季课程 第10讲 函数的概念及表示法
函数是描述变化过程中的数量关系的工具,我们本章将以研究数量问题为起点,以正比例函数和反比例函数为载体,学习函数的初步知识.本节课的主要内容是对函数和正比例函数的概念进行讲解,重点是函数及正比例的概念理解,难点是正比例函数的图象和性质.1、函数的概念(1)在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量;(2)在某个变化过程中有两个变量,设为x和y,如果在变量x允许的取值范围内,变量y随着x变化而变化,他们之间存在确定的依赖关系,那么变量y叫做变量x的函数,x叫做自变量.函数用记号()y f x=表示,()f a表示x a=时的函数值;(3)表示两个变量之间依赖关系的数学式子称为函数解析式.函数的概念正比例函数知识结构模块一:函数的概念知识精讲内容分析2.函数的定义域和函数值(1)函数自变量允许取值的范围,叫做这个函数的定义域.(2)函数自变量取遍定义中的所有值,对应的函数值的全体叫做这个函数的值域.【例1】 (1)在正方形的周长公式4l a =中,a 是自变量,_______是_________的函数,______是常量;(2)面积是2()S cm 的正方形地砖边长为a (cm ),S 与a 之间的函数关系式是_________, 其中自变量是____________.(3)圆的周长C 与半径r 之间的函数关系是______________,其中常量是__________,变量是____________.【例2】 在匀速运动中,若用s 表示路程,v 表示速度,t 表示时间,那么式子s vt =,下列说法中正确的是( )A .s 、v 、t 三个量都是变量B .s 与v 是变量,t 是常量C .v 与t 是变量,s 是常量D .s 与t 是变量,v 是常量【例3】 下列各式中,x 是自变量,y 表示对应的值,判断y 是否是x 的函数?为什么? (1)2y x =; (2)|3|y x =;(3) (4) (5)【例4】 下列各式中,不是函数关系式的是( )A .y x =B .y x =-例题解析x 1 2 3 4y1122y 1 2 3 4 x1122C .y =D .y【例5】 判断下列变量之间是不是函数关系,如果是,写出函数关系式,如果不是,说明理由:(1) 长方形的宽a (cm )固定,其面积S 与长b ; (2) 长方形的长a 固定,面积S 与周长c ;(3) 三角形一边上的高为4,三角形的面积y 与这边长x ; (4) 等腰三角形顶角的度数x 与底角的度数y .【例6】 填空:(1) 函数232y x =-+,当x =___________,函数y 的值等于0; (2) 若函数y =x 的取值范围是一切实数,则c 的取值范围是________.【例7】 求下列函数的定义域:(1)1||4y x =-(2)22x y x=;(3)y ; (4)y =【例8】 将2132y x y -=+写成()y f x =的形式,并求13(0)(3)()(0)2f f f a a a -≠≠,,,, 1(1)3f a a +≠-()的值. 【难度】★★【例9】 A 、B 两地路程为160千米,若汽车以50千米/小时的速度从A 地驶向B 地,写出汽车距离B 地的路程S (千米)与行驶的时间t (小时)之间的函数关系式. 【难度】★★【例10】 已知水池的容量为1003m ,每小时灌水量为Q 3m ,灌满水池所需时间t 小时,求t 关于Q 的函数关系式,当每小时的灌水量为53m 时,灌满水池需多少时间?【例11】 如图,△ABC 与正方形BDEF ,其中∠C =90°,AC=BC =BD =8,且BC 与BD 均在直线L 上,将△ABC 沿直线以2个单位/秒向右平移,设移动的时间为t ,△ABC 与正方形BDEF 在移动的过程中重叠部分的面积为s ,求s 与t 的函数关系式,并写出定义域?【例12】 已知等腰三角形周长为24cm ,(1) 若腰长为x ,底边长为y ,求y 关于x 的函数关系式及定义域; (2) 若底边长为x ,腰长为y ,求y 关于x 的函数关系式及定义域.ACBDEF【例13】 如图,在△ABC 中,BC = AC = 12,∠C = 90°,D 、E 分别是边BC 、BA 上的动点(不与端点重合),且DE ⊥BC ,设BD x =,将△BDE 沿DE 进行折叠后与梯形ACDE 重叠部分的面积是y :(1) 求y 和x 的函数关系式,并写出定义域;(2) 当x 为何值时,重叠部分的面积是△ABC 面积的14.1.正比例函数的概念(1)如果两个变量的每一组对应值的比值是一个常数(这个常数不等于零),那么就说这两个变量成正比例,用数学式子表示两个变量x 、y 成正比例,就是yk x =,或表示为y kx=(x 不等于0),k 是不等于零的常数.(2)解析式形如y kx =(k 是不等于零的常数)的函数叫做正比例函数,其中常数k 叫做比例系数.正比例函数y kx =的定义域是一切实数.确定了比例系数,就可以确定一个正比例函数的解析式知识精讲模块二 正比例函数ABCDEABC备用图A BC备用图A BC备用图2.正比例函数的图象(1)一般地,正比例函数y kx =(k 是常数, 0k ≠)的图象是经过(00),,(1)k ,这两点的一条直线,我们把正比例函数y kx =的图象叫做直线y kx =;(2)图像画法:列表、描点、连线. 3.正比例函数的性质(1)当0k >时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值也随着逐渐增大.(2)当0k <时,正比例函数的图像经过第二、四象限;自变量x 的值逐渐增大时,y 的 值则随着逐渐减小.【例14】 下列各变量成正比例函数关系的是( )A .圆的面积与它的半径B .长方形的面积一定时,长与宽C .正方形的周长与边长D .三角形面积和高【例15】 下列函数中,是正比例函数的是( )A .3(0)y k k=≠ B .(2)(2)y k x k =+≠-C .1(0)y k kx=≠D .2(0)y kx k =≠【例16】 (1)已知函数23(2)my m x -=-是正比例函数,则m =_________;(2)当a _________时,函数(1)y a x =+是正比例函数.例题解析【例17】 (1)已知函数y 与x 成正比例关系,且当122x y =-=时,,当3x y ==时,_________;(2)已知13y x -与成正比例,且当14x y =-=时,,则y 与x 之间的函数关系式是__________.【例18】 (1)若点B (b ,-9)在函数 3y x =的图像上,则b = _________;(2)若将点P (5,3)向下平移1个单位后,落在直线(0)y kx k =≠的图像上, 则k =_________.【例19】 (1)如果正比例函数21xy m =-的图像经过第二、四象限,那么m 的取值范围是_________;(2)函数(1)y k x =-的图像经过第一、三象限,那么k 的取值范围_________.【例20】 (1)已知y 与x 之间的函数关系式是21y x =-,那么y 与x___________(填“是”或“不是”)正比例关系;(2)已知39y x =-,y 与_____________成正比例关系,k =___________.【例21】 (1)已知2345y x -+与 成正比例,且当115x y ==时,,求y 与x 的函数关系式; (2)已知2(2)6y k x k k =-++-为正比例函数,求k 的值及函数解析式.【例22】 若431(23)t y t x +=-是正比例函数,又2712y x =-,当x 取何值时12y y >.【例23】 已知y 是x 的正比例函数,且当3x =时,1y =-:(1) 求出这个函数的解析式;(2) 在直角坐标平面内,画出这个函数的图像; (3) 如果点P (a ,4)在这个函数图像上,求a 的值; (4) 试问:点(62)A -,关于原点对称的点B 是否在这个图像上?【例24】 已知正比例函数的图像过第四象限且过(23)a -,和(6)a -,两点,求此正比例函数的解析式.【例25】 点燃的蜡烛,缩短的长度按照与时间成正比例缩短,一支长15cm 的蜡烛,点燃3分钟后,缩短1.2cm ,设蜡烛点燃x 分钟后,剩余长度ycm ,求y 与x 的函数解析式及x 的取值范围 .【例26】 已知三角形ABC 的底边AB 的长为3,AB 边上的高为x ,面积为y ,(1) 写出y 和x 之间的函数关系式; (2) 画出函数的图像.【例27】 (1)已知直线y ax =在实数范围内有意义,求a 的取值范围;(2)已知函数(21)y m x =+的值随x 的增大而减小,且函数(13)y m x =-的值随着x 的增大而增大,求m 的取值范围.【例28】 正比例函数的解析式为2(1)y k x =-,(1) 当11k -<<时,y 的值随x 值的增大是增大还是减小? (2) 若正比例函数的图像经过第一、三象限,k 的取值范围是什么?【例29】 已知正比例函数的自变量增加4时,对应的函数值增加6,(1) 求这个函数解析式; (2) 当6x =时,求y 的值; (3) 当4y =时,求x 的值;(4) 当24x -≤≤时,求y 的取值范围; (5) 当66y -≤≤时,求x 的取值范围.【例30】 m 取何值时,y 关于x 的函数21(3)4m y m x x +=++是正比例函数.【例31】 已知直角三角形ABC 中,∠C =90°AC =6,AB =12,点D 、E 、F 分别在边BC 、AC 、AB 上(点E 、F 与三角形ABC 顶点不重合),AD 平分∠CAB ,EF ⊥AD ,垂足为点H ,设CE=x ,BF=y ,求y 与x 之间的函数关系式.【例32】 已知一正比例函数y mx =图像上的一点P 的纵坐标是3,作PQ ⊥y 轴,垂足为点Q ,三角形OPQ 的面积是12,求此正比例函数的解析式.x【例33】 如图,在直角坐标系中,OA = 6,OB =8,直线OP 与线段AB 相交于点P , (1) 若直线OP 将△ABO 的面积等分,求直线OP 的解析式;(2)若点P 是直线OP 与线段AB 的交点,是否存在点P ,使△AOP 与△BOP 中,一个面 积是另一个面积的3倍?若存在,求直线OP 的解析式;若不存在,请说明理由.【习题1】 下列图像中,是函数图像的是().【习题2】 在函数y x x =+-中,自变量x 的取值范围是().A .0x ≥B .0x ≤C .0x =D .任意实数【习题3】 下列各点,不在函数23y x =-图像上的是().A .(1,23-)B .(3,-2)C .(23-,13)D .(-6,4)【习题4】 (1)若函数22()m y m m x =-是正比例函数,则m 的值是_________________;(2)已知y kx =是正比例函数,且当x =2时y =3,则比例系数是_____________.随堂检测A B C D【习题5】 求下列函数的定义域:(1)23xy x =-;(2)y =(3)12y x =+(4)y =.【习题6】 若211y x y +=-,用含x 的式子表示y ;若()y f x =,试求(1)f ,(0)f ,(1)(3)f a a -≠,()(2)f x x -≠-的值.【习题7】 已知正比例函数23(1)ky k x -=-的值随自变量x 的增大而减小,求k 的值及函数解析式.【习题8】 (1)已知32y x -+与成正比例,当x =3时,y =7,求y =9时,x 的值;(2)正比例函数(0)y kx k =≠的图像过A (1,a )、B (a +1,6),求函数的解析式.【习题9】 已知122y y y =-,21y x 与成正比例,231y x +与成正比例.且当15x y ==时,当13x y =-=时,求y 关于x 的函数关系式.【习题10】 已知正比例函数的图像过点(323)-,. (1) 若点(2)a ,-,(3)b ,在图像上,求a 、b 的值;(2) 过图像上一点P 作y 轴 的垂线,垂足为Q (015),-,试求三角形OPQ 的面积.【习题11】 在直角三角形ABC 中,AC =12,BC =16,AB =20,∠ACB =90°,CD ⊥AB 于D ,在CD 上取一点P (不与C 、D 重合),设三角形APB 的面积是y ,CP 的长为x ,求y 和x 的函数关系式,并写出函数的定义域.PABCD【习题12】 如图,梯形ABCD 中,AD ∥BC ,CD =5,AD =7,BC =13,40ABCD S =梯,P 是一动点,沿AD 、DC 由A 经D 点向C 点移动,设P 点移动的路程是x .(1) 当P 在AD 上运动的时候,设PAB S y ∆=,求y 与x 之间的函数关系式及定义域,并画出函数图像;(2) 当点P 继续沿DC 向C 移动时,设PAB S y ∆=,求y 与x 之间的函数关系式.ABCDP【作业1】 三角形ABC 中∠A=90°,AB =4,BC =5,P 是AC 边上一动点,点P 不与A 、C重合,则该图中线段____________是常量,线段_______________是变量;若AP=x ,设BPC S y ∆=,写出y 关于x 的函数关系式______________,自变量x 的取值范围是______________.【作业2】 下列变量之间的变化是函数关系的是______________(只填序号).(1) 正方形的面积和它的周长; (2)长方形的面积和它的周长; (3)(0)y x x =±≥;(4)||y x =;(5)(0)y x x =<【作业3】 (1)已知()2(2)6f x x f a =-=,,则a 的值是_____________;(2)已知2231()21()2(1)()()42f x xg x x f g =-=-+-+=,,则___________.【作业4】 (1)函数|3|y x =+的定义域为______________;(2) 函数011x y x =--的定义域为______________;课后作业(3) 函数0(3)2x x y x --=-的定义域为________________.【作业5】 23y x -与成正比例,当x =2时,y =11,求y 与x 之间的函数关系.【作业6】 (1)已知直线22(3)9k y m x m =++-是正比例函数,求mk 的值;(2)已知2215(4)my m m x -=-是正比例函数,求m 的值;(3)已知直线2(2)5y k x k k =-+-经过原点,且y 的值随x 的值的增大而减小,求k 的值.【作业7】 等腰钝角三角形ABC 中,底边长为8,面积是S ,底边上高AD 为h ,试求出S与h 的函数关系式及函数的定义域,并画出函数的图像.ABCD【作业8】 (1)某同学用20元钱买水笔,其单价为3.5元,求买水笔余下的钱y 与买水笔的数量x 之间的函数关系式;(2)靠墙(墙长为18cm )的地方围成一个矩形的养鸡场,另三边用篱笆围成,如果竹篱笆总长为35cm ,求养鸡场的一边长为y (cm )与另一边长x (cm )之间的函数关系式,并写出函数的定义域.【作业9】 已知直线y kx =过点(12- ,3),A 为y kx =图像上的一点,过点A 向x 轴引垂线,垂足为点B ,5AOB S ∆= (1) 求函数的解析式;(2) 在平面直角坐标系内画出函数的图像; (3) 求点A 、B 的坐标.【作业10】 过正比例函数图像上的一点Q (35)a a --,在第二象限,(1)化简22441025a a a a -++-+的值;(2)若a 的值是整数,求正比例函数的解析式,并判断点()k k -,在不在函数图像上.xy墙【作业11】 已知正比例函数过点A (4,-2),点P 在正比例函数图像上,B (0,4)且10ABP S ∆=,求点P 的坐标.。
描述函数
a点为不稳定自振交点。 点为不稳定自振交点。 点为不稳定自振交点
考察b点的振荡情况 考察 点的振荡情况
当微小扰动使振幅A增大到 点时 当微小扰动使振幅 增大到e点时, 增大到 点时, e点“(-1,j0) 未被 1,j0)”未被 未被G(j ω)轨迹包围, 轨迹包围, 点 轨迹包围 系统稳定; 系统稳定; 振幅A减小 减小; 振幅 减小; 返回到b。 返回到 。 当微小扰动使振幅A减小到 点 当微小扰动使振幅 减小到f点, 减小到 f点“(-1,j0) 被G(j ω)轨迹包围, 1,j0)” 轨迹包围, 点 轨迹包围 系统不稳定; 系统不稳定; 振幅A增大 增大; 振幅 增大; 返回到b。 返回到 。
b点为稳定自振交点。 点为稳定自振交点
a点:不稳定自振交点 b点:稳定自振交点 c点:不稳定自振交点
典型非线性系统的稳定性
具有饱和特性的非线性系统 具有死区特性的非线性系统 具有间隙特性的非线性系统 具有理想继电器特性的非线性系统 具有滞环继电器特性的非线性系统
具有饱和特性的非线性系统
−1 = N ( A) −π a a a 1 − ( )2 + A A A ( A ≥ a)
傅氏展开
y(t) = A0 + ∑(An cosnωt + Bn sinnωt)
n=1
∞
斜对称、 斜对称、奇函数 A0=An=0
输出的基 y ( t ) = B sin ω t 1 1 波分量
Y1 o 4M 描述函数 N(A) = ∠0 = A πA
B = 1 = = 2
1
2π
π
∫ y(t) sin ωtd(ωt)
0
a a a 2 2k π N ( A) = [sin 1− ( ) ] = + 2 + 0 = k a a a π π 2k
西工大、西交大自动控制原理 第八章 非线性系统_03_描述函数法_1描述函数
A3
[例1] 故:该非线性元件的描述函数为
N ( A) B1 jA1 1 3 A2 A 2 16
y
6
3
123 x
N ( A)
4 2
12345 A
二、应用描述函数法的基本假设条件
基本条件: 非线性环节正弦输入的响应输出高次谐波可忽略
基本条件成立的条件:
A 经结构图等效变换,非线性系统可简化成如下典型结构
在线性环节和非线性环节两种情况下的输出。
1、描述函数定义
设其输入为正弦函数,即:x(t) Asint
则其输出 y(t) 为非正弦周期函数,
对非正弦周期函数 y(t) ,可以展开成傅立叶级数:
y(t) A0 ( An cos nt Bn sin nt) A0 Yn sin(nt n )
1
arcsin
h A
,
2
arcsin mh , A
y(t) 为奇对称函数,但非奇函数,有 A0 0
因其在一个周期内对称:
A1
2
2 M costdt 2Mh (m 1)
1
A
2
B1
2
M
sintdt
2M
Hale Waihona Puke 11 mh2
A
1
h
2
A
五、典型非线性特性的描述函数
死区滞环继电非线性环节特性的描述函数
)2
1
五、典型非线性特性的描述函数
死区(不灵敏区)特性的描述函数
负倒特性
1 N ( A)
2K
2
sin1(
a ) A
a A
1
(
a A
)2
1
当 A a时
7-1描述函数法
相平面法是求解一、二阶常微分方程的图解法。通过在相
平面上绘制相轨迹,可以求出微分方程在任何初始条件下的解。 这是一种时域分析法,但仅适用于一阶和二阶系统。
(4)计算机求解法
用模拟计算机或数字计算机直接求解非线性微分方程,对于12 分析和设计复杂的非线性系统是非常有效的方法。
1
第七章 非线性系统
内容提要 7.1 典型非线性特性 7.2 描述函数法 7.3 相平面法 学习指导与小结
2
※7.1 典型非线性特性
前面各章研究的都是线性系统,或者虽然是非线 性系统,仍可进行线性化处理,从而可视为线性系统。 事实上,几乎所有的实际控制系统,都不可避免地带 有某种程度的非线性、系统中只要具有一个非线性环 节,就称为非线性系统。因此实际的控制系统大都是 非线性系统。本章将主要讨论关于非线性系统的基本 概念,以及两种基本分析方法:描述函数法和相平面 法。
0
14
由于在傅氏级数中n越大,谐波分量的频率越高,An, Bn越小。此时若系统又满足第三个条件,则高次谐波 分量又进一步被充分衰减,故可认为非线性环节的稳
态输出只含基波分量,即
y(t) y1(t) A1 cost B1 sin t Y1 sin(t 1)
式中
A1
1
x 2(1 x 2 )x x 0 >0
该方程描述具有非线性阻尼的非线性二阶系统。
当扰动使x<1时,因为(1x2 )<0,系统具有负阻
尼,此时系统从外部获得能量,x(t)的运动呈发散形式;
当x>1时,因为(1x2 )>0,系统具有正阻尼,此
时系统消耗能量,x(t)的运动呈收敛形式;而当x=1时, 系统为零阻尼,系统运动呈等幅振荡形式。上述分析表 明,系统能克服扰动对x的影响,保持幅值为1的等幅振 荡。
集合的表示方法描述法
集合的表示方法描述法集合是数学中的一个概念,用于表示一组元素的整体。
在集合的表示方法中,描述法是一种常见且简洁的方式。
描述法可以通过描述元素的特点或满足某种条件来定义一个集合。
描述法的基本形式是:{ x | P(x) }。
其中,x是集合中的元素,P(x)是描述这些元素的条件或性质。
下面我们来详细讨论描述法的几种常见形式。
1.列举法描述法的一种直观而简单的形式是使用列举法。
这种方法通过列举集合中的元素来定义集合。
例如,{ 1, 2, 3, 4, 5 }表示一个包含数字1到5的集合。
2.区间法描述法的另一种常见形式是使用区间法。
这种方法适用于描述集合中的一系列连续的元素。
例如,{ x | a ≤ x ≤ b }表示一个包含从a到b之间所有整数的集合。
3.条件法描述法的一种较为抽象的形式是使用条件法。
这种方法通过描述元素必须满足的条件来定义集合。
例如,{ x | x > 0 }表示一个包含所有大于零的实数的集合。
4.函数法描述法的另一种常见形式是使用函数法。
这种方法通过使用函数来描述元素的性质或运算来定义集合。
例如,{ x | f(x) > 0 }表示一个包含使得函数f(x)大于零的所有值x的集合。
需要注意的是,描述法并非是集合论中唯一的表示方法。
集合还可以使用其他方式表示,例如集合的列表法、集合的运算法等。
但是描述法是一种通用且简洁的表达方式,能够清晰地描述集合中的元素所满足的条件。
在描述法中,我们可以使用逻辑符号和运算符来进行集合的定义。
常见的逻辑符号包括“∈”表示属于关系、“∉”表示不属于关系,以及常见的运算符包括并集“∪”、交集“∩”、差集“-”、补集“′”等。
总结起来,描述法是一种常见且简洁的集合表示方法。
通过描述元素的条件或特点,我们可以明确地定义一个集合。
描述法可以使用列举法、区间法、条件法、函数法等多种形式。
对于集合的描述法,我们还可以使用逻辑符号和运算符进行集合的定义和操作。
解 理想继电特性描述函数为
4 5 2 4 ( arctan
代入 M 1,
2 2 ) 3
A 4, 1 并比较模和相角,得
K 10 arctan 1 3
解出 K 10 9.93, arctan(1 3) 0.322 。即当参数 K =9.93, =0.322 时,系统 可以产生振幅 A 4 ,频率 1的自振运动。 例 7-9 已知非线性系统结构图如图 7-32( a )所示(图中 M h 1 ) 。
7.4.2 改变非线性特性
系统部件中固有的非线性特性,一般是不易改变的,要消除或减小其对系统的影响,可 以引入新的非线性特性。举一个例子说明。设 N 1 为饱和特性,若选择 N 2 为死区特性,并
使死区范围 等于饱和特性的线性段范围, 且保持二者线性段斜率相同, 则并联后总的输入、 输出特性为线性特性, 。如图 7-35 所示。
非线性因素的存在,往往给系统带来不利的影响,如静差增大、响应迟钝或发生自振 等等。 一方面, 消除或减小非线性因素的影响, 是非线性系统研究中一个有实际意义的课题, 另一方面,恰当地利用非线性特性,常常又可以非常有效地改善系统的性能。非线性特性类 型很多,在系统中接入的方式也各不相同,所以非线性系统的校正没有通用的方法,需要根 据具体问题灵活采取适宜的措施。
变量代换
系统微分方程 系统分析
绘制相轨迹
解析法 等倾斜线法 线性二阶奇点类型
动态特性 性能分析
描述函数法
结构图 (化为典型形式)
定性分析:
1 N ( A) G ( j )
无交点 有交点
分析稳定性 确定自振点
自振参数计算
A N (A ) G(j ) 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ka sintd(t)
KA s in2
td(t
)
2
KAsin1
a
a
1
a
2
AA
A
则饱和特性的描述函数为:
N ( A)
B1
2
K sin1
a
a
1
a
2
A
AA
A
式中,
Asin
a,
sin1
a
A
x(t) k
由于输出波形为奇函数,
A1=0,(单值奇对称)
1
tg1
A1 B1
0
a
t
x(t)
e(t)
e(t)
10
B1
2
x(t)sint d(t)
0
2
KAsin2 td(t)
N ( A)
A12 B12
j arctg A1
e
B1
B1
j
A1
A
AA
用N(A)代替非线性环节,建立起非线性系统的数学描述,可
以将线性系统频率法扩展到非线性系统中,用来分析非线性
系统。
7
说明:
一般情况下,描述函数 N 是输入正弦振幅A和振荡频率的
函数,应表示成 N ( A,) 。
但实际大多数非线性环节中不包含储能元件,它们的输出 与输入信号的频率无关,因此常见NL的描述函数 N 仅是输 入信号幅值A的函数,表示成 N(A)。
若N (NAL的) 特B1性A是,单即值描奇述对函称数的是,输则入x正(t弦)是信奇号函幅数值,A的则实A函1 数0;
若NL的特性是非单值奇对称的,则x(t)既非奇函数也非偶
函数,则 A1 0, B1 0 ,描述函数是输入正弦信号幅值的
复函数。
8
8.3.2 典型非线性特性的描述函数
1. 饱和特性
饱和特性输入 e(t) Ak
a e(t)
t
e(t)
t
图8-10 饱和特性及输入输出波形
9
当A a 时,饱和特性输出x(t)为
KA s in t ,
x(t
)
Ka,
KA s in t ,
0 t t t
2
8.3.1 描述函数的概念
描述函数适用于具有以下特点(限制条件)的非线性系统:
1、系统线性部分和非线性环节可以分离。
如图1所示,NL为非线性环节,G为线性部分的传递函数。
r
e
x
-
NL
G
y
图8-9 非线性系统典型结构
3
2、非线性特性具奇对称特性,且输入输出关系为 静特性(不含储能元件)。
如此,非线性环节输入为正弦量时,其输出为周期函数, 可展开成傅立叶级数,且其直流分量为零。
f(x)=-f(-x)
3、线性部分应具良好的低通滤波特性。
可以认为高次谐波完全滤掉,输出仅存在基波分量。
若满足以上条件,描述函数可定义为非线性环节输出基波分量 与输入正弦量的复数比,记为N(A)。
设非线性环节的输入为正弦量 e(t) Asint
4
一般情况下,其输出为周期函数,可展开成傅立叶级数
0,
0 t
x(t
)
K
(
A s in t
a),
t
0,
t
式中, Asin a, sin1 a
A
输出亦为奇函数,故A1=0,1 0
B1
2
x(t ) sin td (t )
0
2 K Asint asintd(t)
0
1
B1
2
x(t)sint d(t)
0
则基波分量为
x1(t) A1 cost B1 sint x1 sin(t 1)
式中
x1 A12 B12
1
arctg
A1 B1
6
则描述函数为
N ( A) x1 e j1 A
由式可知,描述函数是输入振幅A的函数,是一个可变增益的 放大系数。
1
描述函数法将一个非线性装置或环节用一个可变增益的环 节来代替。这个可变增益是输入正弦振幅A和振荡频率的 函数。
求法:给非线性环节作用一个正弦输入,在非线性环节满 足一定条件下,其输出为一周期函数,且可展开成傅立叶 级数;取输出基波分量与输入正弦量的复数比,即可求得 该非线性环节的描述函数(或可变放大系数);用这个可 变放大系数代替非线性环节,即可用线性系统中频率法分 析系统。
§8.3 描述函数法
• 描述函数法是P.J. Daniel在1940年首先提出的, 其基本思想是:在一定的假设条件下,将非线性 环节在正弦信号作用下的输出用一次谐波分量来 近似,并导出非线性环节的等效近似频率特性, 即描述函数。
• 描述函数法主要用来分析在无外作用下的情况, 非线性系统的稳定性和自振荡问题。这种方法不 受系统阶次的限制,对系统的初步分析和设计十 分方便,因而获得了广泛的应用。但它是一种近 似分析方法,其应用有一定的限制条件;而且只 能用来研究系统的频率响应特性,不能给出时间 响应的确切信息。
当
a A
变大,N(A)随着减小;
a
当 A 趋近于1时,N(A)趋近于零。
x(t )
A0 2
An cos nt
n1
Bn sin nt
式中,由于非线性为奇对称特性,所以A0=0。
而
1
An
2
x(t)cos nt d(t)
0
Bn
1
2
x(t)sin nt d(t)
0
5
取基波分量,有
1
A1
2
x(t)cost d(t)
N(A)是输入振幅A的实函数,而且是非线性关系。 因此,可将描述函数看作为一可变放大系数的放大器。11
2. 死区特性
当输入 e(t) Asint 时,死区特性输入输出波形如下:
x(t)
x(t)
k
a
a
e(t)
.
t
e(t)
t
图8-11 死区特性及输入输出波形
12
由图可知,当 e(t) Asint ,且 A a时,死区输出为
13
解得
B1
2
KA
2
sin1
a A
a A
1
a
2
A
则死区特性的描述函数为:
N ( A) B1 2 K sin1 a a
1
a
2
A 2
A A A
a
由式可知,当 A 很小,即不灵敏区小,N(A)趋近于K;