动量定理和动量守恒定律(大学物理)

合集下载

大物 第四章 动量定理与动量守恒定律

大物 第四章 动量定理与动量守恒定律

合外力的冲量
系统末动量 系统初动量
质点系动量定理 作用于质点系的合外力的冲量等于系 统动量的增量.
说明
(1) 内力的作用不改变系统的总动量, 但内力做功却
可以改变系统的总动能. (2) 变质量物体的运动方程:
d(mv)
dm
u
F
dt dt
大学物理学(第三版)电子教案
第四章·动量定理与动量守恒定律
例1 如图用传送带A输送煤粉, 料斗口在A上方高h=0.5m处, 煤粉自料斗口自由落在A上. 设料斗口连续卸煤的流量为 q=40kg/s, A以v = 2.0m/s的水平速度匀速向右移动. 求装煤的 过程中, 煤粉对A的作用力的大小和方向. (不计相对传送带静 止的煤粉质量.)
h A
v
大学物理学(第三版)电子教案
t
I z t0 Fzdt mvz mvz0
大学物理学(第三版)电子教案
第四章·动量定理与动量守恒定律
(3) 在碰撞或冲击问题中, 牛顿定律无法直接应用, 而动 量定理的优点在于避开了细节而只讨论过程的总体效果.
(4) 动量定理仅适用于惯性系, 且与惯性系的选择无关.
例 如图, 一重锤从高度为h =1.5m的地方由 静止下落,锤与被加工的工件的碰撞后的 末速度为零. 若打击时间分别为10-1s, 10-2s, 10-3s, 10-4s,试计算这几种情形下平均冲力 与重力的比值.
定义 系统所受合外力为零时,系统的总动量保持不变.
F (e)
Fi(e) 0
p
pi
恒矢量
说明
i
i
(1) 系统的动量守恒是指系统的总动量不变,系统内
任一物体的动量是可变的, 各物体的动量必须相对于同

大学物理 动量和动量守恒定律

大学物理 动量和动量守恒定律

解得
于是滑槽在水平面上移动的距离 S Vdt
0
t
m R M+m
22
大学 物理学

微分形式

积分形式
t1
•冲量
t2 I = Fdt
•质点的动量定理
dP F dt
I Fdt= P
t1
t2
•质点系的动量定理 F外 d Nhomakorabea dt
I 外= F外dt P
解:取车和人作为系统,该 系统水平方向动量守恒。设 人和车相对于地面的速度分 别为v 和 V,则
0 mv MV
mvdt MVdt mx MX M
0 0
t
t
xX L
L
x
M m
m X L Mm
大学 物理学
例2.13如图所示,在一个水平面上,炮车发射炮弹。 炮身质量为M,仰角为 ,炮弹质量为m。炮弹刚 出口时,相对于炮身的速度为u。不计地面摩擦, 求炮弹刚出口时炮车的速度。 解:取炮车和炮弹为系统。 u 系统所受的外力是重力和 支持力,都沿竖直方向, 所以水平方向动量守恒。 炮弹速度的水平分量为
t1
t2
•动量守恒定律
n 若F外 0, 则P= mi v i 恒 矢 量
i 1
惯性系
若f内 F外 , 则P= mi vi 恒矢量
i 1 n
n
若F外x 0, 则Px= mi vix 恒量
i 1
大学 物理学
§2-3 功 动能 势能 机械能守恒定律
F
大学 物理学
3. 严格不受外力或外力矢量和为零的系统 是很少见的,但 a.当外力<<内力 且作用时间极短时 (如碰撞),

动量定理和动量守恒定律

动量定理和动量守恒定律

动量定理和动量守恒定律
动量定理(或称为莱布尼兹动量定理)是物理学中的一条基本定理,它说明了物体受
力时动量发生变化的定律,即在任何时刻点,物体动量的变化等于向物体施加的力的矢量积。

动量定理的数学公式可以表达为:
$$\vec{P}= \frac{d\vec{p}}{dt} = \sum \vec{F_T}$$
其中,$P$ 代表物体的动量,$F_T$代表施加在物体上的外力,$p$代表物体的线速度,$t$代表时间。

从上式可以看出,动量的定义比较宽泛,除了物体的位置和速度外,还包括了力对物
体的作用,也就是动量改变的原因就是因为物体受力,所以又叫做力学定理。

在微分形式中,动量定理也可以写作:
动量定理的重要意义是:动量是物体受力变化的定律,这个定律蕴含着物体受力量变
化的定律,即动量守恒定律。

动量守恒定律是物理学中最基本也是最重要的定律,它非常宽泛地适用于物理学问题,它宣布了外力作用下物体总动量(包括质量和速度)保持不变。

即:
总动量 $$P_1 + P_2 + ...+ P_N = P_1^{'} + P_2^{'} + ...+ P_N^{'}$$
因此,当外力改变物体的总动量时,实际上就是通过物体内部各外力矢量积之和改
变物体的总动量。

动量守恒定律是一个强有力的物理定律,依照这个定律,动量的总和将
始终守恒不变。

大学物理第四章

大学物理第四章

解:利用功能原理:
A=DE
q
kF
m
Fl0tgq
=
1 2
k (l0 setq
- l0 )2

1 2
mv2
F
m
解得:
v=
2 m
Fl0tgq
-
1 m
k (l0 setq
-
l0
)2
[例13] 作业、p-55 功和能 自-20
一质量为m的球,从质量为M的圆弧
形槽中由A位置静止滑下,设圆弧形槽的半
径为R,(如图)。所有摩擦都略,试求:
+12 MV2
l
L
解得:
vr=
2(m +M) gR M
V= m
2gR M(m +M)
(2)小球到最低点B处时,槽滑行的距离。
∵ SFx = 0 ∴ DPx = 0
mvx = MVx
Am
m vxdt = M Vxdt
R
ml=ML
MB
l+L=R
L
=
mR m+M
lL
(3)小球在最低点B处时,槽对球的作用力;
1、动量: P
P = mv 2、第二定律:
F
=
dP dt
= ma
3、冲量: I
I
=
F t 2
t1
dt
4、动量原理
I = DP
5、力矩 M M = r × F
6、动量矩 L
L = r × P = r × mv
7、角动量原理:
t 2 t1
M dt
=
ω ω
2 1
J

= Jω 2

大学物理-第三章三大守恒定律

大学物理-第三章三大守恒定律

i
i
1 若质点系动量守恒,则动量在三个坐标轴上的分量都守恒。
2、在系统内质点间的碰撞,打击,爆炸过程中,内力很大,可 忽略重力、摩擦力等外力,可近似认为动量守恒。
上一页 下一页
3、虽然有时系统总动量不守恒,但只要系统在某个方向受 的合外力为0,则系统在该方向动量守恒。
即 F x 当 F ix 0 时 p x , m iv ix 常量
mv1
得 F (0 .3 )22 0 32 0 2 2 0 3c0o 3 s()0 14 (N )51
0 .01
根据正弦定理
sm i 2 nvsiF n t() 18 ,即力的 v 夹 方 角 1向 6 。 为 2
上一页 下一页
例2-6质量为m=30kg的铁锤(彩电)从1m高处由静止下落,碰撞
Ixt1 t2F xd tpx2px1mx2 vmx1v Iyt1 t2F yd tpy2py1my2v my1v Izt1 t2F zd tpz2pz1mz2 vmz1v
4 . 对于碰撞、打等 击过 、程 爆, 炸物体互 之作 间用 的
称为冲力, 值其 大特 , 点 变 t短是 化 ,峰 大 在, 某

b v2


d v
d(m v )
d p
t 2
Fm am
Fdtdp
dt dt
微分形式
dt
a

v1
I 定义 :t1 t动2F 量 d ptp p 1 m 2d vp p 2 t 1 p 1 P 2m mv( 2v I2 t1t2v F1 d)t
( M d)v M (d v ) d( v M d v u ) Mv

大学物理-角动量定理和角动量守恒定律

大学物理-角动量定理和角动量守恒定律
当系统所受外力矩为零时,系统内各物体角动量 之和保持不变。
系统内物体之间的相互作用力矩不会改变系统的 总角动量。
角动量守恒的应用举例
天体运动
行星绕太阳公转、卫星绕地球运 行等天体运动中,角动量守恒定
律是重要的理论基础。
陀螺仪
陀螺仪利用角动量守恒原理,通过 高速旋转来保持方向稳定,广泛应 用于导航、制导和控制系统。
机械系统
在机械系统中,如旋转机械、齿轮 传动等,角动量守恒定律用于分析 系统的动态平衡和稳定性。
04 角动量定理与守恒定律的 实际意义
在天文学中的应用
描述行星和卫星的运动
角动量定理和守恒定律在天文学中用于描述行星和卫星围绕中心天体的运动。 这些定律帮助科学家理解天体的旋转和轨道运动,以及它们之间的相互作用。
预测天文现象
通过应用角动量定理和守恒定律,科学家可以预测天文现象,如行星的轨道变 化、卫星的旋转等。这些预测有助于更好地理解宇宙的演化。
在航天工程中的应用
航天器姿态控制
角动量定理和守恒定律在航天工程中用于控制航天器的姿态 。通过合理地布置航天器上的动量轮,可以调整航天器的角 动量,实现姿态的稳定和控制。
L = m × v × r,其中L是 角动量,m是质量,v是 速度,r是转动半径。
角动量单位
在国际单位制中,角动量 的单位是千克·米²/秒 (kg·m²/s)。
角动量定理表述
角动量定理
01
对于一个封闭系统,其总角动量保持不变,即系统内力的力矩
之和为零。
表述形式
02
dL/dt = ΣM = 0,其中dL/dt表示角动量的时间变化率,ΣM表
角动量守恒的应用
角动量守恒定律在许多物理现 象中都有应用,如行星运动、 陀螺仪等。

《大学物理》3.4刚体定轴转动的角动量定理 角动量守恒定律

《大学物理》3.4刚体定轴转动的角动量定理  角动量守恒定律

我国第一颗人造地球卫星沿椭圆轨道绕地球运动, 例:我国第一颗人造地球卫星沿椭圆轨道绕地球运动,地心为该椭圆 的一个焦点。 的一个焦点。已知地球半径 R ,卫星的近地点到地面距离 l ,卫星的远 地点到地面距离 l 。若卫星在近地点速率为 v1 ,求它在远地点速率 v2 。
1 2
卫星在运动过程中,所受力主要是万有引力, 解:卫星在运动过程中,所受力主要是万有引力,其它力忽 略不计,故卫星在运动过程中对地心角动量守恒。 略不计,故卫星在运动过程中对地心角动量守恒。 m
0
r
A
θ = 90
0
mv
质点作圆周运动的角动量
θ
L = rmv = mr ω
2
2.2刚体的角动量 刚体的角动量 刚体对 oz轴的角动量为
z
ω
v
2
i
L = ∑ m r ω = (∑ m r )ω
2 i i i i
o
r
i
m
i
∑ m r 刚体绕 oz 轴的转动惯量
2 i i
L = Jω
L = Jω
刚体对转轴的角动量等于其转动惯量与角速度乘积。 刚体对转轴的角动量等于其转动惯量与角速度乘积。
1 m v 0 a = ( ML2 + ma 2 )ω 3
子弹射入后一起摆动的过程只有重力做功,故系统机 械能守恒。
1 1 L 2 2 2 ( ML + ma )ω = mga (1 cos60°) + Mg (1 cos60°) 2 3 2
ω=
3(2ma + ML)g 2(3ma 2 + ML2 )
二、角动量定理和角动量守恒定理
1× mv 对时间求导 = r × (mv ) + × mv dt dt dt dr d dL ∵ = v , F = (mv ) M = dt dt dt dL 质点所受合外力矩等于质 ∴ = r × F + v × mv dt 点角动量对时间的变化率

动量定理和动量守恒定律(大学物理)

动量定理和动量守恒定律(大学物理)

四、动量定理和动量守恒定理的应用:
F
m1
1
m2 2
Fdt
F
t1
F
t2

t2
t1
t 2 t1
t2 t1 p2 p1 p F t 2 t1 t
t
t1 p F t2 t1 t
注意
t2
Fdt
在 p 一定时
2
两边同乘以 y d y 则
d yv yg dt
m2
O
m1 y
y
0
0
1 3 1 2 gy yv 3 2
2 v gy 3
1
2
大球碰撞小球
小球碰撞大球
同样大小的球相碰
如果两球在碰撞前的速度在两球的中心连线上, 那么,碰撞后的速度也都在这一连线上,这种碰撞 称为对心碰撞(或称正碰撞)。
t
N N t N N 1 N dt mi vi mi vi 0 Fi dt f ij t0 t0 i 1 j 1 i 1 i 1 i 1
因为:

i 1 j 1
N
N 1
f ij 0
非对心碰撞
设 v10和v20分别表示两球在碰撞前的速度,v1和 v2 分别表示两球在碰撞后的速度, m1和 m2 分别为两球
的质量。
v10
v1 f1
v20
f2
v2
m2
m1
碰撞前
m2
m1
碰撞时
m2
m1
碰撞后
牛顿的碰撞定律:碰撞后两球的分离速 度 (v2 v1 ),与碰撞前两球的接近速度 (v10 v成正比, 20 ) 比值由两球的材料性质决定。

大学物理动量守恒

大学物理动量守恒

t 0.01s v1 10m/s v2 20m/s m 2.5g
2
2
Fx 6.1N Fy 0.7N F F x F y 6.14N
I x 0.061Ns I y 0.007Ns
I
I
2 x
I
2 y
6.14102 Ns
tg I y I x 0.1148
6.54
为 I 与x方向的夹角。
(2)动量守恒定律是关于自然界一切过程的最基本的 定律之一。
它适用于: 宏观粒子系统;电磁场;微观粒子系统 , 更普遍的动量守恒定律并不依赖牛顿定律。
(3)有时系统所受的合外力虽不为零,但与系统的内 力相比较,外力远小于内力,这时可以略去外力对系统 的作用,近似认为系统的动量是守恒的。像碰撞、打击、 爆炸等这类问题,一般都可以这样来处理。 (4)分动量守恒 若(F )x = 0,则 p末x = p初x,即动量的x方向分量守恒
过程量 状态量
(3)动能、动量都是表征物体运动状态的重要物 理量。

动能定理
反映力的空间累计
冲量 动量定理
反映力的时间累计
•冲量
小结
I=
t2
Fdt
t1
•动量定理 •质点系的动量定理 •动量守恒定律
I Fdt= P
I=P-P0
n
P=
mivi
恒矢量
i 1
作业
习题册: 32-42
F1 m1• f1
m2 • f2 F2
·两式相加有

初(F1+F2)dt = p末- p初

I = P末- P初
系统所受的合外力的冲量等于系统动量的增量!
推广到n个质点有:
t2

动量定理及动量守恒定律

动量定理及动量守恒定律

4、一枚在空中飞行的导弹,质量为m,在某点的速度为 ,方向水平。 、一枚在空中飞行的导弹,质量为 ,在某点的速度为v,方向水平。 导弹在该点突然炸裂成两块,其中质量为 的一块沿着与v相反的 导弹在该点突然炸裂成两块,其中质量为m1的一块沿着与 相反的 方向飞去,速度为v1。求炸裂后另一块的速度 2。 求炸裂后另一块的速度v 方向飞去,速度为
动量守恒定律的理解及应用要点
矢量性:动量守恒定律方程是一个矢量方程。 矢量性:动量守恒定律方程是一个矢量方程。对于作用前后物体的运动方向 都在同一直线上的问题,应选取统一的正方向。若方向未知, 都在同一直线上的问题,应选取统一的正方向。若方向未知,可以 设的正方向为标准列动量守恒方程,通过所得结果的正负, 设的正方向为标准列动量守恒方程,通过所得结果的正负,判定未 知量的方向 瞬时性:动量是一个瞬时量,动量守恒指的是系统任一瞬时的动量和恒定, 瞬时性:动量是一个瞬时量,动量守恒指的是系统任一瞬时的动量和恒定, 不是同一时刻的动量不能相加 相对性: 相对性:应用动量守恒定律时各物体的速度必须是相对同一惯性系的速度 普适性:只要系统所受的合外力为零, 普适性:只要系统所受的合外力为零,不论系统内部物体之间的相互作用力 性质如何,不论系统内各物体是否具有相同运动方向, 性质如何,不论系统内各物体是否具有相同运动方向,不论物体相 互作用时是否直接接触, 互作用时是否直接接触,也不论相互作用后粘合在一起还是分裂成 碎片,动量守恒定律均适用。 碎片,动量守恒定律均适用。动量守恒定律不仅适用于低速宏观物 体,而且适用于接近光速运动的微观粒子。 而且适用于接近光速运动的微观粒子。
A
等于碰撞前的总动能 ③ 碰撞后同向运动时后一
A、 PA=6kg.m/s, PB=6kg.m/s 、 , B、 PA=3kg.m/s, PB=9kg.m/s 、 , C、 PA=-2kg.m/s, PB=14kg.m/s 、 - , D、 PA=-5kg.m/s, PB=17kg.m/s 、 - , 物体速度不大于前一物 体速度

大学物理 动量和动量守恒定律

大学物理 动量和动量守恒定律
t1
t2
•动量守恒定律
n 若F外 0, 则P= mi v i 恒 矢 量
i 1
惯性系
若f内 F外 , 则P= mi vi 恒矢量
i 1 n
n
若F外x 0, 则Px= mi vix 恒量
i 1
大学 物理学
§2-3 功 动能 势能 机械能守恒定律
F
解:
I 垂直 y0 mv2 mv1 m 2 g (m 2 gy0 ) m gy0 (1 2 ) 2
I 水平
v0 1 mv1 m m v0 m v0 mv2 2 2
大学 物理学
三、 质点系动量定理和动量守恒定律
Fi
质点系
· · · · f j · f · ··
m1 v2 v v' 2.17103 m s 1 m1 m2
v1 3. 1710 m s
3 1
y
s v
z'
y'
s' v'
m2
m1
z
o
o'
x x'
大学 物理学
例2.12在光滑的水平面上,有一长为L,质量 为M的小车,车上站一质量为m的人,人和 车原来保持静止。当人从车的一端走到另一 端时,问人和车相对于地面各走了多远?
质点系所受合外力为零时,质点系的总动量
不随时间改变。这就是质点系的动量守恒定律。 即 F外 0 时,P 常矢量 说明:
Fi ,而不 0 2.动量守恒定律的条件是
t2
1
1.动量定理及动量守恒定律只适用于惯性系。
是 t ( Fi )dt 0 。这是因为后者只说明始末 两态的动量相等,不能保证动量始终不变。

大学物理质点和质点系的动量定理 动量守恒定律

大学物理质点和质点系的动量定理 动量守恒定律
I z Fz dt mv2 z mv1z
t1 t2
质点系动量定理 作用于系统的合外力的冲量等于 系统动量的增量.
F2 t1 ( F1 F12 )dt m1v1 m1v10 F21 F12 t2 F1 m2 ( F2 F21 )dt m2 v2 m2 v20 m1 t1 因为内力 F12 F21 0 ,故 t2 ( F1 F2 )dt (m1v1 m2 v2 ) (m1v10 m2 v20 )
注意:
ex ex 若质点系所受的合外力为零 F F 0 i i 则系统的总动量守恒,即 p pi 保持不变 . ex dp i ex 力的瞬时作用规律 F , F 0, P C dt
1)系统的动量守恒是指系统的总动量不变,系统 内任一物体的动量是可变的, 各物体的动量必相对于同 一惯性参考系 .
t0 i i i
可知
ex ex 若质点系所受的合外力为零 F F 0 i i 则系统的总动量守恒,即 p pi 保持不变 .
ex 力的瞬时作用规律 F ex dp , F 0, P C dt
i
2– 1 质点和质点系的动量定理 动量守恒定 律 动量守恒定律
I E
p mv
Fdt dp d (mv)
dp d (mv) F dt dt
t2 冲量 力对时间的积分(矢量) I Fdt
t1

t2
t1
Fdt p2 p1 mv2 mv1
2– 1 质点和质点系的动量定理 动量守恒定 律
mv1
F

大学物理动量定理

大学物理动量定理

子弹穿过两木块所用的时间分别为t1和t2,木块对子 弹的阻力为恒力F,则子弹穿出后,木块A的速度大小

,木块B的速度大小为
.
解:
F t1 m1vA m2vA
vA
F m1
t1 m2
F t2 m2vB m2vA
vB
F t2 m2
vA
F t2 m2
F m1
t1 m2
2-8. 一质量为m的质点在xoy平面上运动,其位置矢量
机械能守恒:
1 2
m2 v02
1 2
(m1
m2 )v2
1 2
kxm2 ax
1 xmax 2 x0
下次课内容:
§3-1 刚体运动的描述 §3-2-1 力矩 §3-2-2 刚体绕定轴转动定律
j
t
i
v bs
a in t
sin j]
t
i
b cost Fx m 2 x
j
dt
m2[x i y j ]
Fy m2 y
A(a,0) B(0, b)
Wx
0
a Fxdx m2
0 xdx 1 ma22
a
2
Wy
b
0 Fydy m 2
bydy 1 mb2 2
0
2
质点动能定理
W

r
a
cos
t
i b sin t j
(SI).
式中a,b, 是正值常
数, 且a > b.
(1)求质点在A点(a,0)和B 点(0,b)的动能; (2)求质点所 受的作用力 F 以及质点从A点运动到B点 的过程中 F 的分力Fx和Fy分别做的功.
解:

大学物理——角动量定理和角动量守恒定律

大学物理——角动量定理和角动量守恒定律

解:把飞船和排出的 废气看作一个系统, 废气质量为m。可以 认为废气质量远小于 飞船的质量,
dm/2
u
Lg
r

L0
u dm/2
上页 下页 返回 退出
所以原来系统对于飞船中心轴的角动量近似地等 于飞船自身的角动量,即
L0=J
在喷气过程中,以dm表示dt时间内喷出的气体
, 这 些 气 体 对 中 心 轴 的 角 动 量 为 dm·r(u+v) , 方 向
量为JB=20kgm2 。开始时A轮的转速为600r/min,B
轮静止。C为摩擦啮合器。求两轮啮合后的转速;在 啮合过程中,两轮的机械能有何变化?
A
B
C
A
B
C
A

上页 下页 返回 退出
解:以飞轮A、B和啮合器C作为一系统来考虑,在
啮合过程中,系统受到轴向的正压力和啮合器间的 切向摩擦力,前者对转轴的力矩为零,后者对转轴 有力矩,但为系统的内力矩。系统没有受到其他外 力矩,所以系统的角动量守恒。按角动量守恒定律 可得
由匀减速直线运动的公式得
0 v2 2as
亦即 v 2 2gs
(3)
(4)
由式(1)、(2)与(4)联合求解,即得

3gl 3 2gs
l
(5)
上页 下页 返回 退出
当’取正值,则棒向左摆,其条件为
3gl 3 2gs 0
亦即l >6s;当’取负值,则棒向右摆,其条件
上页 下页 返回 退出
数为 。相撞后物体沿地面滑行一距离s而停止。
求相撞后棒的质心C 离地面的最大高度h,并说明
棒在碰撞后将向左摆或向右摆的条件。
解:这个问题可分为三个阶段

大学物理第五讲 动量、动量守恒、功、动能和动能定理

大学物理第五讲  动量、动量守恒、功、动能和动能定理


0.3t)dt
0
36.45 (J)
24
二、质点的动能和动能定理
动能定理的推导
dA

r F
drr

F ds

ma
ds

m
dv dt
ds

mvdv
质点由a到b,力做总功为
Ek

1 mv2 2
r
r Fn
a• r
r F

•dsr
r F
• vb
b
va
Aab
b
dA
a
vb mvdv
M
LL
所以:
vr人车

vr人

m M
vr人

M M
m
vr人
12
t
M m t
0 v人车dt M 0 v人dt
vr人车

M M
m
vr人
L M mx x M L
M
M m
vr车


m M
vr人
v车
v人
m
x
M
X v车dt M v人dt
o
m x m L
M

(mvr )
1
r mv1
x
1
mvr2
7
二、质点系的动量定理
rr 设质点系中第 i 个质点受内力和外力分别为 fi 和Fi ,
应用质点动量定理
r ( Fi

r fi )dt

d
(mi
r vi
)
对整个系统求和
r r (Fi fi )dt d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全非弹性碰撞。
e,分离1 速度等于接近速度,称为完全弹性碰撞。
0 e,机 1械能有损失的碰撞叫做非弹性碰撞。
e v2 v1 v10 v20
可以证明恢复系数等于恢复过程和压缩过程的冲量之比。
e 2 1 I2 10 20 I1
v10
v20
f1 m碰1 撞前 m2
f2 m碰1 撞时m2
v1
t 0.1s F 1.9104 N
t 0.01s F 1.7105 N
例题、如图所示,沙子从h=0.8m高处下落到以3m/s的速率水平 向右运动的传送带上,取g=10m/s2,则传送带给予沙子的作用 力的方向为:: (A)与水平夹角530向下;(B)与水平夹角530向上; (C)与水平夹角370向下;(D)与水平夹角370向上。
O
m1
y
y
1 gy3 1 yv2
32
v
2
gy
1 2
3
大球碰撞小球
小球碰撞大球
同样大小的球相碰
如果两球在碰撞前的速度在两球的中心连线上, 那么,碰撞后的速度也都在这一连线上,这种碰撞 称为对心碰撞(或称正碰撞)。
非对心碰撞

和v10
分v别20 表示两球在碰撞前的速度,

v1
分v2
别表示两球在碰撞后的速度, 和m1 分m别2为两球的质
量。
v10
v20
f1 m碰1 撞前 m2
f2 m碰1 撞时m2
v1
v2
m1
m2
碰撞后
牛顿的碰撞定律:碰撞后两球的分离速度 ,与
碰撞(v2前两v1)球的接近速度 料性质决定。
成正比,比(v值10 由 v两20) 球的材
恢复 系数
e v2 v1
v10 v20
e,碰 0撞后两球以同一速度运动,并不分开,称为
水中航行,在船尾以相对于船为u的速度
抛出质量为m的小物体,设v、u在同一直
线上,求抛出物体后,小船的速度变为多
少?假设水平方向船受的阻力可以忽略不
计。
vu
v
X
例题、如图所示,设炮车以仰角发射一炮弹,炮车和
炮弹的质量分别为M和m,炮弹的出口速度为u,求:
(1)炮车的反冲速度V;
(2)若炮筒的长度为l,则在炮弹的发射过程中,炮 车反冲的距离。
后 t 到 t d t 时间内,火箭喷
v
出了质量为 d m 的气体,d m是
v
dv
质量m 在d t 时间内的增量,
喷度了d为出v喷喷所的。u气 喷气气,前 出后体使总 燃火相火动 气箭对箭量 的的于的为 动动火速:量量箭度为为m的增::v速加(m(td时dm刻m))((vvudu)vt+)dt时dm刻
m 0
M
m0 (M m)
am
mg
m
g
aM
mg
M
Sm
2 02
2am
2
SM 2aM
S Sm SM
例题、质量为M的物体有一四分之一圆弧形滑槽,静 止在光滑水平面上,另一质量为m的物体自其顶部由 静止开始下滑,求当m滑至滑槽的底部时,M移动的 距离。
m
x V
M
MV mx
Sm
t
0xdt
f2N
...
f N 1N )dt
mNN
mNN 0
t N
t0
i 1
Fi
dt
t t0
N i 1
N 1 j 1
fij
dt
N
mivi
N
mi vi 0
i 1
i 1
N N 1
因为:
fij 0
i1 j 1
t
t0
N i 1
Fi dt
N i 1
mivi
N i 1
t0 (F1
f21
f31 ...
f N1)dt
m11 m110
t
t0 (F2
f12
f32
...
f N 2 )dt
m22 m220
t
f ji ...
f N1)dt
mii mii0
............
t
t0
(FN
f1N
则 F ex m1g yg
由质点系动量定理得
F exdt dp
又 dp d( yv)
ygdt d( yv)
m2
O
m1
y
y
yg dyv
dt
yg dyv
dt
两边同乘以 y d y 则
y2gdy ydy dyv yv dyv
dt
g y y2 d y yv yvdyv
0
0
m2
内力必定是成对出现的, 每对内力都是一对作用力 F1
和反作用力。
质点系之外的物体对 质点系内部质点所施加的 作用力,称为外力。
F2
f 21 f12
m1
m2
F1
f 21
dp1 dt
F2
f12
dp2 dt
t
t0
t
(F1
f21)dt
m11
m110
t0 (F2 f12 )dt m22 m220
mi vi 0
三、动量守恒定律
若 Fi 0 则有
N N
mivi mivi0
i 1
i1
一个孤立的力学系统(系统不受外力作用)或合外
力为零的系统,系统内各质点间动量可以交换,但是,
系统的总动量保持不变,即:系统的总动量守恒。
注意
➢区分外力和内力 ➢内力仅能改变系统内某个物体的 动量,但不能改变系统的总动量.
F
Fx
2mv cos
t
14.1 N
方向与Ox 轴正向相同.
F' F
例、质量为m=300kg的重锤从高度为h=1.5m处自由下落到受锻 压的锻件上,如图所示,工件发生变形。如果作用时间(1) t=0.1s;(2)t=0.01s,求锤对工件的平均冲力。
(F mg)t 0 (m) m 2gh
F m 2gh mg t
t 0
M m
Vdt
M m
SM
M Sm SM m SM SM R
例题、在光滑的水平桌面上,光滑小球m1的直径为d, 以初速度10运动与另一直径相同的静止小球m2发生碰 撞,两求球心之间的距离为b,恢复系数为e,求碰撞
后两小球的速度各为多少?
m1
10
b
y
b 10
m2
d
x
m y 1
b
d m x 2
注意: (1)动量定理和动量守恒定律只适用于惯性系,在非惯性系需 要考虑惯性力的影响; (2)除了系统所受合外力等于零时,系统动量守恒,当系统所 受合外力在某一方向上为零,则在该方向上动量守恒。 (3)系统内力远大于所受外力,可近似认为系统的动量守恒。 (4)对于质点系运用动量定理和动量守恒定理时,所有的质点的 物理量都必须是相对于同一参考系而言的。
例题、如图所示,A、B 和C三物体的质量均为M,BC之间有 一长度为l0的细绳相连,放在光滑的水平桌面上,t=0时,BC 距离为零,求:
(1)AB开始运动后,经过多长的时间C开始运动?
(2)C刚开始运动时的速度。
C
B
A
T
A
Mg
(Mg T )t M 0
T
B
Tt M 0
t
dt l0
0
例、 一颗子弹在枪筒里前进时所受的合力大小为
求 链条下落在地面上的长度为 l ( l<L )时,地面
所受链条的作用力?
解设
ml
l
ml L
链条在此时的速度 v 2g(l h)
dm
根据动量定理 fdt 0 (vdt)v
f vdtv v 2 2m(l h)g f '
dt
L
地面受力
F
f ' ml g
m (3l 2h)g L
Lm h
F1
F2
1
2
f21
m1 m2
f12
t
t0 (F1
F2
f21
f12 )dt
(m11
m22 ) (m110
m2 20 )
f12 f21
t
t0
(F1
F2
)dt
(m11
m22
)
(m110
m220 )
F1
F2
1
2
f21
m1 m2
f12
mi
m6
mN
m3
m5
m4
m1
m2
t
四、动量定理和动量守恒定理的应用:
F
m1 1 2m2
F
t2
Fdt
t1
t2 t1
F
t1
t2 t
F
p2t2 pt11
p
t2 t1 t
F
t2 t1
Fdt
p
t2 t1 t
注意
在 p一定时
t越小,则 F 越大
mv1
F
mv2
例1 一质量为0.05 kg、 速率为10 m·s-1的刚球,以与
dm
dp
dm0
dI
Fdt
dp
dm dm0
例、将一空盒放在秤盘上,并将秤的读数调整到零,然后从高 出盒底h=5m处将小石子流以每秒n=100个的速率注入盒中,假 设每个小石子的质量为m=0.02kg,都从同一高度下落且落到盒 内后就停止运动,求从石子开始注入到t=10秒是秤的读数。
取g=10m/s2
相关文档
最新文档