2019级高一数学必修一综合1(试卷)
【新教材】人教版(2019)高一英语数学必修第一册综合检测卷
1.已知a,b∈R且a<b<0,则下列不等式中一定成立的是()A. 1a <1bB. ba<abC. a2<b2D. ab<b22.不等式2x+1>1的解集是()A. (1,+∞)B. (−1,1)C. (−∞,−1)D. (−∞,−1)∪(1,+∞)3.定义{x}为不小于x的最小整数(例如:{5.5}=6,{−4}=−4),则不等式{x}2−5{x}+ 6≤0的解集为()A. [2,3]B. [2,4)C. (1,3]D. (1,4]4.函数y=1x−3+x(x>3)的最小值为()A. 4B. 3C. 2D. 55设0<m<12,则1m +412−m的最小值为()A. 32B. 910C. 34D. 956.关于x的不等式x2−(a+2)x+a+1<0的解集中,恰有2个整数,则a的取值范围是()A. (2,3]B. (3,4]C. [−3,−2)∪(2,3]D. [−3,−2)∪(3,4]7.下列说法正确的有()A. 不等式2x−13x+1>1的解集是(−2,−13)B. “a>1,b>1”是“ab>1”成立的充分条件C. 命题p:∀x∈R,x2>0,则¬p:∃x∈R,x2<0D. “a<5”是“a<3”的必要条件8.已知x,y是正数,1x +2y=1,则2x+yxy+1的最小值为______.9.已知a,b为正实数,且a+b−3√ab+2=0,则ab的最小值为______.10.已知集合A={x|(x−a)(x−a+1)≤0},B={x|x2+x−2<0}.(1)若x∈A是x∈B的充分不必要条件,求实数a的取值范围;(2)设命题p:∃x∈B,x2+(2m+1)x+m2−m>8,若命题p为假命题,求实数m 的取值范围.11.函数f(x)=x2+ax+3(1)若命题“对∀x∈R,都有f(x)≥a恒成立”是真命题,求a的取值范围;(2)若命题“∃x∈[−2,2],使得f(x)<a成立”是假命题,求a的取值范围.12.(1)解不等式:3≤x2−2x<8;(2)已知a,b,c,d均为实数,求证:(a2+b2)(c2+d2)≥(ac+bd)2.13.已知关于x的方程(1−a)x2+(a+2)x−4=0,a∈R,求:(Ⅰ)方程有两个正根的充要条件(Ⅱ)方程至少有一个正根的充要条件.。
高中数学培优讲义练习(人教A版2019必修一)综合测试卷:必修一全册(提高篇) 含答案解析
高中数学培优讲义练习(人教A 版2019必修一)综合测试卷:必修一全册(提高篇)一.选择题(共8小题,满分40分,每小题5分)1.(5分)已知全集U =R ,集合A ={x |x >1 },B ={x |−2≤x <2 },则如图中阴影部分表示的集合为()A .{x |x ≥−2 }B .{x |x <−2 }C .{x |1<x <2 }D .{x |x ≤1 }【解题思路】用集合表示出韦恩图中的阴影部分,再利用并集、补集运算求解作答。
【解答过程】由韦恩图知,图中阴影部分的集合表示为∁U (A ∪B)。
因集合A ={x |x >1 },B ={x |−2≤x <2 },则A ∪B ={x|x ≥−2},又全集U =R 。
所以∁U (A ∪B)={x|x <−2}。
故选:B 。
2.(5分)(2022·辽宁·高一期中)已知p:|1−2x |≤5,q:x 2−4x +4−9m 2≤0(m >0)若q 是p 的充分不必要条件,则实数m 的取值范围是() A .(0,13)B .(0,13]C .(13,43)D .[13,43]【解题思路】解不等式,求出俩命题的解,然后根据充分不必要条件,得出不等关系,从而求出实数m 的范围。
【解答过程】解:由题意在p:|1−2x |≤5中。
解得:−2≤x ≤3。
在q:x 2−4x +4−9m 2≤0(m >0)中。
解得:−3m +2≤x ≤3m +2。
∵q 是p 的充分不必要条件∴{−3m +2≥−23m +2≤3m >0 ,等号不同时成立。
∴0<m ≤13。
故选:B 。
3.(5分)(2022·山东·高一期中)已知x >0,y >0,且x +y +xy =3,若不等式x +y ≥m 2−m 恒成立,则实数m 的取值范围为() A .−2≤m ≤1 B .−1≤m ≤2 C .m ≤−2或m ≥1D .m ≤−1或m ≥2【解题思路】首先根据基本不等式得到(x +y )min =2,结合题意得到m 2−m ≤(x +y )min ,即m 2−m ≤2,再解不等式即可。
2019学年度高中数学 综合检测试题 新人教A版必修1
综合检测试题(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.全集U={0,-1,-2,-3,-4},M={0,-1,-2},N={0,-3,-4},则(∁U M)∩N等于( B )(A){0} (B){-3,-4}(C){-1,-2} (D)解析:因为∁U M={-3,-4},所以(∁U M)∩N={-3,-4}.故选B.2.函数y=的定义域是( C )(A)[-1,2) (B)(1,2)(C)[-1,1)∪(1,2) (D)(2,+∞)解析:由解得-1≤x<1或1<x<2.所以函数y=的定义域是[-1,1)∪(1,2).故选C.3.若函数f(x)=lg (10x+1)+ax是偶函数,g(x)=是奇函数,则a+b的值是( A )(A)(B)1 (C)- (D)-1解析:因为f(x)是偶函数,所以f(-x)=f(x),即lg (10-x+1)-ax=lg -ax=lg (10x+1)-(a+1)x=lg (10x+1)+ax,所以a=-(a+1),所以a=-,又g(x)是奇函数,所以g(-x)=-g(x),即2-x-=-2x+,所以b=1,所以a+b=.故选A.4.函数f(x-)=x2+,则f(3)等于( C )(A)8 (B)9 (C)11 (D)10解析:因为函数f(x-)=x2+=(x-)2+2,所以f(3)=32+2=11.5.已知a=0.32,b=log20.3,c=20.3,则a,b,c之间的大小关系是( D )(A)a<c<b (B)a<b<c(C)b<c<a (D)b<a<c解析:因为a=0.32∈(0,1),b=log20.3<0,c=20.3>1.所以c>a>b.故选D.6.函数y=的图象是( A )解析:函数y=的定义域为(0,+∞),当0<x<1时,函数y= ===,当x>1时,函数y===x,故选A.7.(log94)(log227)等于( D )(A)1 (B) (C)2 (D)3解析:(log94)(log227)=·=·=3.8.某方程在区间D=(2,4)内有一无理根,若用二分法求此根的近似值,要使所得近似值的精确度达到0.1,则应将D 等分( D )(A)2次(B)3次(C)4次(D)5次解析:等分1次,区间长度为1,等分2次区间长度为0.5,…等分4次,区间长度为0.125,等分5次,区间长度为0.062 5<0.1,符合题意.故选D.9.已知函数f(x)=若f(x)在(-∞,+∞)上是增函数,则实数a的取值范围是( D )(A)(,1] (B)(,+∞)(C)[1,+∞) (D)[1,2]解析:由f(x)在(-∞,1]上单调递增得a≥1.由f(x)在(1,+∞)上单调递增得2a-1>0,解得a>.由f(x)在(-∞,+∞)上单调递增,所以-12+2a×1≤(2a-1)×1-3a+6,即a≤2.综上,a的取值范围为1≤a≤2.故选D.10.若函数y=2-|x|-m的图象与x轴有交点,则m的取值范围为( C )(A)[-1,0) (B)[0,1](C)(0,1] (D)[0,+∞)解析:若函数y=2-|x|-m的图象与x轴有交点,即y=2-|x|-m=()|x|-m=0有解,即m=()|x|有解,因为0<()|x|≤1,所以0<m≤1,故选C.11.已知函数f(x)=若k>0,则函数y=|f(x)|-1的零点个数是( D )(A)1 (B)2 (C)3 (D)4解析:由题意若k>0,函数y=|f(x)|-1的零点个数等价于y=|f(x)|与y=1交点的个数,作出示意图,易知y=|f(x)|与y=1交点的个数为4,故函数y=|f(x)|-1有4个零点.12.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定:①如一次购物不超过200元,不予以折扣;②如一次购物超过200元,但不超过500元,按标价予以九折优惠;③如一次购物超过500元的,其中500元给予九折优惠,超过500元的给予八五折优惠.某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款( C )(A)608元 (B)574.1元(C)582.6元(D)456.8元解析:由题意得购物付款432元,实际标价为432×=480元,如果一次购买标价176+480=656元的商品应付款500×0.9+156×0.85=582.6元.故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.已知甲、乙两地相距150 km,某人开汽车以60 km/h的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h 的速度返回甲地,把汽车离开甲地的距离s表示为时间t的函数,则此函数表达式为.解析:当0≤t≤2.5时s=60t,当2.5<t<3.5时s=150,当3.5≤t≤6.5时s=150-50(t-3.5)=325-50t,综上所述,s=答案:s=14.计算:lg -lg +lg -log89×log278= .解析:lg -lg +lg -log89×log278=lg(××)-×=lg 10-=1-=.答案:15.已知y=f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1) = .解析:因为y=f(x)+x2是奇函数,所以f(-x)+(-x)2=-[f(x)+x2],所以f(x)+f(-x)+2x2=0.所以f(1)+f(-1)+2=0.因为f(1)=1,所以f(-1)=-3.因为g(x)=f(x)+2,所以g(-1)=f(-1)+2=-3+2=-1.答案:-116.若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)在[0,+∞)上是增函数,则a= .解析:g(x)=(1-4m)在[0,+∞)上是增函数,应有1-4m>0,即m<.当a>1时,f(x)=a x为增函数,由题意知⇒m=,与m<矛盾.当0<a<1时,f(x)=a x为减函数,由题意知⇒m=,满足m<.故a=.答案:三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知集合A={x|3≤3x≤27},B={x|log2x>1}.(1)分别求A∩B,(∁R B)∪A;(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.解:(1)A={x|3≤3x≤27}={x|1≤x≤3},B={x|log2x>1}={x|x>2},A∩B={x|2<x≤3}.(∁R B)∪A={x|x≤2}∪{x|1≤x ≤3}={x|x≤3}.(2)①当a≤1时,C= ,此时C⊆A;②当a>1时,C⊆A,则1<a≤3;综合①②,可得a的取值范围是(-∞,3].18.(本小题满分12分)已知a为实数,函数f(x)=1-.(1)若f(-1)=-1,求a的值;(2)是否存在实数a,使得f(x)为奇函数;(3)若函数f(x)在其定义域上存在零点,求实数a的取值范围. 解:(1)因为f(-1)=-1,所以1-=-1,解得a=3.(2)令f(-x)=-f(x),则1-=-1+,得2=+,2=+,得a=2.即存在a=2使得f(x)为奇函数.(3)令f(x)=0,得a=2x+1,函数f(x)在其定义域上存在零点,即方程a=2x+1在R上有解, 所以a∈(1,+∞).19.(本小题满分12分)已知a>0,且a≠1,f(log a x)=·(x-).(1)求f(x);(2)判断f(x)的单调性;(3)求f(x2-3x+2)<0的解集.解:(1)令t=log a x(t∈R),则x=a t,且f(t)=(a t-).所以f(x)=(a x-a-x)(x∈R).(2)当a>1时,a x-a-x为增函数,又>0,所以f(x)为增函数;当0<a<1时,a x-a-x为减函数,又<0,所以f(x)为增函数.所以函数f(x)在R上为增函数.(3)因为f(0)=(a0-a0)=0,所以f(x2-3x+2)<0=f(0).由(2)知,x2-3x+2<0,所以1<x<2.所以不等式的解集为{x|1<x<2}.20.(本小题满分12分)已知函数f(x)=log a(x+1),g(x)=log a(4-2x)(a>0,且a≠1).(1)求函数f(x)-g(x)的定义域;(2)求使函数f(x)-g(x)的值为正数的x的取值范围.解:(1)由题意可知,f(x)-g(x)=log a(x+1)-log a(4-2x).由解得所以-1<x<2.所以函数f(x)-g(x)的定义域是(-1,2).(2)由f(x)-g(x)>0,得f(x)>g(x),即log a(x+1)>log a(4-2x),①当a>1时,由①可得x+1>4-2x,解得x>1,又-1<x<2,所以1<x<2;当0<a<1时,由①可得x+1<4-2x,解得x<1,又-1<x<2,所以-1<x<1.综上所述:当a>1时,x的取值范围是(1,2);当0<a<1时,x的取值范围是(-1,1).21.(本小题满分12分)某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元.某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x吨、3x吨.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.解:(1)当甲的用水量不超过4吨时,即5x≤4,乙的用水量也不超过4吨,y=1.8(5x+3x)=14.4x;当甲的用水量超过4吨时,乙的用水量不超过4吨,即3x≤4,且5x>4时,y=4×1.8+3x×1.8+3(5x-4)=20.4x-4.8.当乙的用水量超过4吨,即3x>4时,y=2×4×1.8+3×[(3x-4)+(5x-4)]=24x-9.6.所以y=(2)由于y=f(x)在各段区间上均单调递增;当x∈[0,]时,y≤f()<26.4;当x∈(,]时,y≤f()<26.4;当x∈(,+∞)时,令24x-9.6=26.4,解得x=1.5.所以甲户用水量为5x=5×1.5=7.5(吨);付费S甲=4×1.8+3.5×3=17.70(元);乙户用水量为3x=4.5(吨),付费S乙=4×1.8+0.5×3=8.70(元).22.(本小题满分12分)已知定义在R上的函数f(x)=(a∈R)是奇函数,函数g(x)=的定义域为(-1,+∞).(1)求a的值;(2)若g(x)=在(-1,+∞)上递减,根据单调性的定义求实数m的取值范围;(3)在(2)的条件下,若函数h(x)=f(x)+g(x)在区间(-1,1)上有且仅有两个不同的零点,求实数m的取值范围.解:(1)因为函数f(x)=是奇函数,所以f(-x)=-f(x),即=-,得a=0.(2)因为g(x)=在(-1,+∞)上递减,所以任给实数x1,x2,当-1<x1<x2时,g(x1)>g(x2),所以g(x1)-g(x2)=-=>0,所以m<0.即实数m的取值范围为(-∞,0).(3)由a=0得f(x)=,令h(x)=0,即+=0,化简得x(mx2+x+m+1)=0,所以x=0或mx2+x+m+1=0,若0是方程mx2+x+m+1=0的根,则m=-1,此时方程mx2+x+m+1=0的另一根为1,不符合题意,所以函数h(x)=f(x)+g(x)在区间(-1,1)上有且仅有两个不同的零点,等价于方程mx2+x+m+1=0(※)在区间(-1,1)上有且仅有一个非零的实根.①当Δ=12-4m(m+1)=0时,得m=,若m=,则方程(※)的根为x=-=-=-1∈(-1,1),符合题意;若m=,则与(2)条件下m<0矛盾,不符合题意,所以m=.②当Δ>0时,令 (x)=mx2+x+m+1,由得-1<m<0,综上所述,所求实数m的取值范围是(-1,0)∪{}.。
2019-2020学年新教材人教A版数学必修第一册综合质量检测 Word版含解析
综合质量检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.全集U =R ,A ={x |x <-3,或x ≥2},B ={x |-1<x <5},则集合{x |-1<x <2}是( )A .(∁U A )∪(∁UB ) B .∁U (A ∪B )C .(∁U A )∩BD .A ∩B[解析] 由题意知,∁U A =[-3,2),又因为B =(-1,5),所以(∁U A )∩B =(-1,2).故选C.[答案] C2.函数f (x )=x 2x 2-1+lg(10-x )的定义域为( )A .RB .[1,10]C .(-∞,-1)∪(1,10)D .(1,10)[解析]要使函数f (x )有意义,需使⎩⎨⎧x 2-1>0,10-x >0,解得x <-1或1<x <10.故选C.[答案] C3.已知f (x )=x 2-ax 在[0,1]上是单调函数,则实数a 的取值范围是( )A .(-∞,0]B .[1,+∞)C .[2,+∞)D .(-∞,0]∪[2,+∞)[解析] 函数f (x )=x 2-ax 图象的对称轴为直线x =a2,根据二次函数的性质可知a 2≤0或a2≥1,解得a ≤0或a ≥2.故选D.[答案] D4.下列函数是偶函数且值域为[0,+∞)的是( ) ①y =|x |;②y =x 3;③y =2|x |;④y =x 2+|x |. A .①② B .②③ C .①④ D .③④[解析] 对于①,y =|x |是偶函数,且值域为[0,+∞);对于②,y =x 3是奇函数;对于③,y =2|x |是偶函数,但值域为[1,+∞);对于④,y =x 2+|x |是偶函数,且值域为[0,+∞),所以符合题意的有①④,故选C.[答案] C5.已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <bD .b <c <a[解析] a =log 20.2<log 21=0,b =20.2>20=1,0<c =0.20.3<0.20=1,即0<c <1,则a <c <b .故选B.[答案] B6.若sin α>0且tan α<0,则α2的终边在( ) A .第一象限 B .第二象限C .第一象限或第三象限D .第三象限或第四象限 [解析] 因为sin α>0且tan α<0, 所以α位于第二象限. 所以π2+2k π<α<2k π+π,k ∈Z ,则π4+k π<α2<k π+π2,k ∈Z .当k 为奇数时α2是第三象限的角,当k 为偶数时α2是第一象限的角, 所以角α2的终边在第一象限或第三象限.选C. [答案] C7.函数y =sin(ωx +φ)(x ∈R ,且ω>0,0≤φ<2π)的部分图象如右图所示,则( )A .ω=π2,φ=π4 B .ω=π3,φ=π6 C .ω=π4,φ=π4 D .ω=π4,φ=5π4[解析] ∵T =4×2=8,∴ω=π4. 又∵π4×1+φ=π2,∴φ=π4. [答案] C8.函数f (x )=2sin x -sin2x 在[0,2π]的零点个数为( ) A .2 B .3 C .4 D .5[解析] 由f (x )=2sin x -sin2x =2sin x -2sin x cos x =2sin x (1-cos x )=0,得sin x =0或cos x =1,∵x ∈[0,2π],∴x =0、π或2π,∴f (x )在[0,2π]的零点个数是3.[答案] B9.已知lg a +lg b =0,函数f (x )=a x 与函数g (x )=-log b x 的图象可能是( )[解析] ∵lg a +lg b =0,∴ab =1,则b =1a ,从而g (x )=-logb x =log a x ,故g (x )与f (x )=a x 互为反函数,图象关于直线y =x 对称.故选B.[答案] B10.若α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=45,则sin ⎝ ⎛⎭⎪⎫α+π4-22cos(π-α)等于( )A.225 B .-25 C.25 D .-225 [解析] sin ⎝⎛⎭⎪⎫α+π4-22cos(π-α) =22sin α+22cos α+22cos α=22sin α+2cos α.∵sin α=45,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25. [答案] B11.设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝⎛⎭⎪⎫0,π2单调递减 B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增[解析] y =sin(ωx +φ)+cos(ωx +φ)=2sin ⎝⎛⎭⎪⎫ωx +φ+π4,由最小正周期为π得ω=2,又由f (-x )=f (x )可知f (x )为偶函数,由|φ|<π2可得φ=π4,所以y =2cos2x 在⎝ ⎛⎭⎪⎫0,π2单调递减. [答案] A12.将函数f (x )=23cos 2x -2sin x cos x -3的图象向左平移t (t >0)个单位,所得图象对应的函数为奇函数,则t 的最小值为( )A.2π3B.π3C.π2D.π6[解析] 将函数f (x )=23cos 2x -2sin x cos x -3=3cos2x -sin2x =2cos ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移t (t >0)个单位,可得y =2cos ⎝ ⎛⎭⎪⎫2x +2t +π6的图象.由于所得图象对应的函数为奇函数,则2t +π6=k π+π2,k ∈Z ,则t 的最小值为π6.故选D.[答案] D第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)14.函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≤0,x -2+ln x ,x >0的零点个数为________.[解析]令f (x )=0,得到⎩⎨⎧x 2-1=0,x ≤0,解得x =-1;或⎩⎨⎧x -2+ln x =0,x >0,在同一个直角坐标系中画出y =2-x 和y =ln x 的图象,观察交点个数,如图所示.函数y =2-x 和y =ln x ,x >0在同一个直角坐标系中交点个数是1,所以函数f (x )在x <0时的零点有一个,在x >0时零点有一个,所以f (x )的零点个数为2.[答案] 215.若函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,-2-x,x >0,则函数y =f [f (x )]的值域是________.[解析] 当x ≤0时,f (x )=3x ∈(0,1],∴y =f [f (x )]=f (3x )=-2-3x∈⎝⎛⎦⎥⎤-1,-12;当x >0时,f (x )=-2-x ∈(-1,0),y =f [f (x )] =f (-2-x )=3-2-x ∈⎝⎛⎭⎪⎫13,1. 综上所述,y =f [f (x )]的值域是 ⎝ ⎛⎦⎥⎤-1,-12∪⎝ ⎛⎭⎪⎫13,1.[答案] ⎝ ⎛⎦⎥⎤-1,-12∪⎝ ⎛⎭⎪⎫13,116.关于函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π6,给出下列命题:①f (x )的最大值为2; ②f (x )的最小正周期是π;③f (x )在区间⎣⎢⎡⎦⎥⎤π24,13π24上是减函数;④将函数y =2cos2x 的图象向右平移π24个单位长度后,与函数y =f (x )的图象重合.其中正确命题的序号是________.[解析] f (x )=cos ⎝⎛⎭⎪⎫2x -π3+cos ⎝⎛⎭⎪⎫2x +π6=cos ⎝⎛⎭⎪⎫2x -π3+sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x +π6=cos ⎝ ⎛⎭⎪⎫2x -π3-sin ⎝ ⎛⎭⎪⎫2x -π3=2 ⎣⎢⎡⎦⎥⎤22cos ⎝ ⎛⎭⎪⎫2x -π3-22sin ⎝ ⎛⎭⎪⎫2x -π3=2cos ⎝ ⎛⎭⎪⎫2x -π3+π4=2cos ⎝ ⎛⎭⎪⎫2x -π12,∴函数f (x )的最大值为2,最小正周期为π,故①②正确;又当x ∈⎣⎢⎡⎦⎥⎤π24,13π24时,2x -π12∈[0,π],∴函数f (x )在⎣⎢⎡⎦⎥⎤π24,13π24上是减函数,故③正确;由④得y =2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π24=2cos ⎝ ⎛⎭⎪⎫2x -π12,故④正确.[答案] ①②③④三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)18.(本小题满分12分)已知函数f (x )=2cos x ·sin ⎝ ⎛⎭⎪⎫x +π3-3sin 2x+sin x cos x .(1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求f (x )的值域;(2)用“五点法”在下图中作出y =f (x )在闭区间⎣⎢⎡⎦⎥⎤-π6,5π6上的简图.[解] f (x )=2cos x ·sin ⎝ ⎛⎭⎪⎫x +π3-3sin 2x +sin x cos x=2cos x ⎝ ⎛⎭⎪⎫sin x cos π3+cos x sin π3-3sin 2x +sin x cos x =sin2x +3cos2x =2sin ⎝⎛⎭⎪⎫2x +π3.(1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴π3≤2x +π3≤4π3, ∴-32≤sin ⎝ ⎛⎭⎪⎫2x +π3≤1,∴当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的值域为[-3,2]. (2)由T =2π2,得最小正周期T =π,列表:x -π6 π12 π3 7π12 5π6 2x +π3 0 π2 π 3π2 2π 2sin ⎝ ⎛⎭⎪⎫2x +π32-2图象如图所示.19.(本小题满分12分) 已知A (cos α,sin α),B (cos β,sin β),其中α,β为锐角,且|AB |=105.(1)求cos(α-β)的值; (2)若cos α=35,求cos β的值. [解] (1)由|AB |=105, 得(cos α-cos β)2+(sin α-sin β)2=105,∴2-2(cos αcos β+sin αsin β)=25, ∴cos(α-β)=45.(2)∵cos α=35,cos(α-β)=45,α,β为锐角, ∴sin α=45,sin(α-β)=±35. 当sin(α-β)=35时,cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=2425. 当sin(α-β)=-35时, cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=0. ∵β为锐角,∴cos β=2425.20.(本小题满分12分)已知函数f (x )是定义在区间[-1,1]上的奇函数,对于任意的m ,n ∈[-1,1]有f (m )+f (n )m +n>0(m +n ≠0).(1)判断函数f (x )的单调性; (2)解不等式f ⎝ ⎛⎭⎪⎫x +12<f (1-x ).[解] (1)设x 1=m ,x 2=-n ,由已知可得f (x 1)-f (x 2)x 1-x 2>0,不妨设x 1<x 2,则f (x 1)<f (x 2),由函数单调性的定义可得函数f (x )在区间[-1,1]上是增函数.(2)由(1)知函数在区间[-1,1]上是增函数.又由f ⎝ ⎛⎭⎪⎫x +12<f (1-x ),得⎩⎪⎨⎪⎧-1≤x +12≤1,-1≤1-x ≤1,x +12<1-x ,解得0≤x <14.所以不等式f ⎝ ⎛⎭⎪⎫x +12<f (1-x )的解集为⎩⎨⎧⎭⎬⎫x |0≤x <14.21.(本小题满分12分)某村电费收取有以下两种方案供用户选择:方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元,超过30度时,超过部分按每度0.6元收取.方案二:不收管理费,每度0.58元.(1)求方案一收费L (x )(单位:元)与用电量x (单位:度)间的函数关系;(2)老王家九月份按方案一交费35元,问老王家该月用电多少度?(3)老王家月用电量在什么范围时,选择方案一比选择方案二更好?[解] (1)当0≤x ≤30时,L (x )=2+0.5x ;当x >30时,L (x )=2+30×0.5+(x -30)×0.6=0.6x -1,∴L (x )=⎩⎨⎧2+0.5x ,0≤x ≤30,0.6x -1,x >30.(注:x 也可不取0)(2)当0≤x ≤30时,令L (x )=2+0.5x =35得x =66,舍去; 当x >30时,由L (x )=0.6x -1=35得x =60,∴老王家该月用电60度.(3)设按方案二收费为F (x )元,则F (x )=0.58x . 当0≤x ≤30时,由L (x )<F (x ),得2+0.5x <0.58x , 解得x >25,∴25<x ≤30;当x >30时,由L (x )<F (x ),得0.6x -1<0.58x , 解得x <50,∴30<x <50. 综上,25<x <50.故老王家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.22.(本小题满分12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如表:(1)(2)根据(1)的结果,若函数y =f (kx )(k >0)的周期为2π3,当x ∈⎣⎢⎡⎦⎥⎤0,π3时,方程f (kx )=m 恰有两个不同的解,求实数m 的取值范围.[解] (1)设f (x )的最小正周期为T ,则T =11π6-⎝ ⎛⎭⎪⎫-π6=2π,由T =2πω,得ω=1,又⎩⎨⎧B +A =3,B -A =-1,解得⎩⎨⎧A =2,B =1,令ω·5π6+φ=π2+2k π,k ∈Z ,即5π6+φ=π2+2k π,k ∈Z ,取φ=-π3, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫x -π3+1. (2)因为函数y =f (kx )=2sin ⎝ ⎛⎭⎪⎫kx -π3+1的周期为2π3,又k >0,所以k =3.令t =3x -π3,因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以t ∈⎣⎢⎡⎦⎥⎤-π3,2π3,如图,sin t =s 在⎣⎢⎡⎦⎥⎤-π3,2π3上有两个不同的解,则s ∈⎣⎢⎡⎭⎪⎫32,1,所以方程f (kx )=m 在x ∈⎣⎢⎡⎦⎥⎤0,π3时恰好有两个不同的解,则m ∈[3+1,3),即实数m 的取值范围是[3+1,3).。
最新高一数学必修1综合测试题3套(附答案)
高一数学必修1综合测试题3套(附答案)高一数学综合检测题(1)一、选择题:(每小题5分,共60分,请将所选答案填在括号内) 1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( )(A)3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则 ( ) (A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T 3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等( )(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2}(D){}|2y y ≤4.不等式042<-+ax ax 的解集为R ,则a 的取值范围是 ( )(A)016<≤-a (B)16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B)5 (C)4 ( D)3 6.函数243,[0,3]y x x x =-+∈的值域为 ( )(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2] 7.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 ( )(A)k>12 (B)k<12 (C)k>12- (D).k<12-8.若函数f(x)=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤-3 (B)a ≥-3 (C)a ≤5 (D)a ≥3 9.函数2(232)x y a a a =-+是指数函数,则a 的取值范围是( )(A) 0,1a a >≠ (B) 1a = (C) 12a = ( D)121a a ==或10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11.函数y =( )(A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D)(23,1]12.设a,b,c 都是正数,且346a b c ==,则下列正确的是( )(A) 111c a b =+ (B) 221C a b =+ (C) 122C a b =+ (D)212ca b =+二、填空题:(每小题4分,共16分,答案填在横线上)13.已知(x,y )在映射 f 下的象是(x-y,x+y),则(3,5)在f 下的象是 ,原象是 。
高中数学人教A版(2019)必修一综合测试卷
高中数学人教A版(2019)必修一综合测试卷一、单选题(共12题;共24分)1.(2分)已知集合A={x|x2<1},集合B={x|log2x<0},则A∩B=()A.(0,1)B.(−1,0)C.(−1,1)D.(−∞,1) 2.(2分)已知角α的终边经过点P(−1,√3),则sin2α=()A.√32B.−√32C.−12D.−√343.(2分)已知幂函数y=f(x)的图象过点(12,√22),则log4f(2)的值为()A.−14B.14C.−2D.24.(2分)由y=2sin(6x−16π)的图象向左平移π3个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为()A.y=2sin(3x−16π)B.y=2sin(3x+16π)C.y=2sin(3x−112π)D.y=2sin(12x−16π)5.(2分)若sin(π3−α)=14,则cos(π3+2α)=().A.−78B.−14C.14D.786.(2分)已知函数f(x)={2x−1x>0−x2−2x x≤0,若函数g(x)=f(x)−m有3个零点,则实数m 的取值范围()A.(0, 12)B.(12,1]C.(0,1]D.(0,1)7.(2分)对于函数f(x)=x3cos3(x+ π6),下列说法正确的是()A.f(x)是奇函数且在(﹣π6,π6)上递增B.f(x)是奇函数且在(﹣π6,π6)上递减C.f(x)是偶函数且在(0,π6)上递增D.f(x)是偶函数且在(0,π6)上递减8.(2分)若函数f(x)为偶函数,且在(0,+∞)上是减函数,又f(﹣3)=0,则f(x)+f(−x)2x<0的解集为()A.(-3,3)B.(-∞,-3)∪(3,+∞) C.(-3,0)∪(3,+∞)D.(-∞,-3)∪(0,3).9.(2分)已知函数f(x)={x2,x≤0lg(x+1),x>0,若f(x0)>1,则x0的取值范围为()A.(-1,1)B.(-1,+∞)C.(−∞,9)D.(−∞,−1)∪(9,+∞)10.(2分)已知奇函数f(x)的定义域为(−∞,0)∪(0,+∞),且对任意正实数x1,x2(x1≠x2),恒有f(x1)−f(x2)x1−x2﹥0 ,则一定有()A.f(3)>f(−5)B.f(−3)<f(−5)C.f(−5)>f(3)D.f(−3)>f(−5)11.(2分)已知函数f(x)是定义在R上的偶函数,且在(−∞,0)上单调递减,若a=f(log215),b=f(log24.1),c=f(20.8),则a,b,c的大小关系是()A.a<b<c B.b<a<c C.c<a<b D.c<b<a12.(2分)将函数y=sin2x的图象向右平移φ(0<φ<π2)个单位长度得到f(x)的图象,若函数f(x)在区间[0,π3]上单调递增,且f(x)的最大负零点在区间(−5π12,−π6)上,则φ的取值范围是()A.(π6,π4]B.(π12,π4]C.(π6,π2)D.(π12,π2)二、填空题(共4题;共4分)13.(1分)若a>0,b>0,a+2b=1,则1a+a+1b的最小值为.14.(1分)若函数f(x)={log2x,x>0−2x−a,x≤0有且只有一个零点,则a的取值范围是.15.(1分)设f(x)是定义在[−2b,3+b]上的偶函数,且在[−2b,0]上为增函数,则f(x−1)≥f(3)的解集为.16.(1分)下列命题中:①已知函数y=f(2x+1)的定义域为[0,1],则函数y=f(x)的定义域为[1,3];②若集合A={x|x2+kx+4=0}中只有一个元素,则k=±4;③函数y=11−2x在(−∞,0)上是增函数;④方程2|x|=log2(x+2)+1的实根的个数是1.所有正确命题的序号是(请将所有正确命题的序号都填上).三、解答题(共6题;共65分)17.(10分)若集合A={x ∈R| x2−x−12≤0}和B={ x ∈R|2m-1≤x≤m+1}.(1)(5分)当m=−3时,求集合A∪B.(2)(5分)当B∩A=B时,求实数m的取值范围.18.(10分)(1)(5分)计算(lg14−lg25)÷10012的值;(2)(5分)已知tanα=2,求2sinα−3cosα4sinα−9cosα和sinαcosα的值.19.(10分)已知函数f(x)=a(sin2x−π6)−a+b(a,b∈R,且a<0).(1)(5分)若当x∈[0,π2]时,函数f(x)的值域为[−5,1],求实数a,b的值;(2)(5分)在(1)条件下,求函数f(x)图像的对称中心.20.(15分)已知二次函数f(x)=ax2+bx+c的图象过点(0,3),且不等式ax2+bx+c≤0的解集为{x|1≤x≤3}.(1)(5分)求f(x)的解析式;(2)(5分)若g(x)=f(x)−(2t−4)x在区间[−1,2]上有最小值2,求实数t的值;(3)(5分)设ℎ(x)=mx2−4x+m,若当x∈[−1,2]时,函数y=ℎ(x)的图象恒在y= f(x)图象的上方,求实数m的取值范围.21.(10分)已知m∈R,命题p:对任意x∈[0 , 8],不等式log13(x+1)≥m2−3m恒成立,命题q:存在x∈(0 , 2π3),使不等式2sin2x+2sinxcosx≤√2m(sinx+cosx)成立.(1)(5分)若p为真命题,求m的取值范围;(2)(5分)若p∧q为假,p∨q为真,求m的取值范围.22.(10分)已知奇函数f(x)与偶函数g(x)均为定义在R上的函数,并满足f(x)+g(x)=2x (1)(5分)求f(x)的解析式;(2)(5分)设函数ℎ(x)=f(x)+x①判断ℎ(x)的单调性,并用定义证明;②若f(log2m)+f(2log2m−1)≤1−3log2m,求实数m的取值范围答案解析部分1.【答案】A【解析】【解答】根据题意:集合 A ={x|−1<x <1} ,集合 B ={x|0<x <1} , ∴A ∩B =(0,1)故答案为: A .【分析】先解不等式得集合A 与B ,再根据交集定义得结果.2.【答案】B【解析】【解答】角 α 的终边经过点p (﹣1, √3 ),其到原点的距离r =√1+3= 2Cos α=−12 ,sin α=√32∴sin2α=2 sin α cos α=2×(−12)×√32=−√32.故答案为:B .【分析】先求出点P 到原点的距离,再用三角函数的定义依次算出正、余弦值,利用二倍角公式计算结果即可.3.【答案】B【解析】【解答】设幂函数的表达式为 f(x)=xn,则 (12)n =√22,解得 n =12 ,所以 f(x)=x 12 ,则 log 4f(2)=log 4212=12log 2212=12×12=14.故答案为:B.【分析】利用幂函数图象过点 (12,√22) 可以求出函数解析式,然后求出 log 4f(2) 即可。
高一数学必修1综合测试题3套(附答案)
高一数学综合检测题(1)一、选择题:(每小题5分,共60分,请将所选答案填在括号内) 1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( )(A)3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则 ( ) (A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T 3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么PQ 等( )(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R ,则a 的取值范围是 ( ) (A)016<≤-a (B)16->a (C)016≤<-a (D)0<a 5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B)5 (C)4 ( D)36.函数243,[0,3]y x x x =-+∈的值域为 ( )(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2] 7.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 ( )(A)k>12 (B)k<12 (C)k>12- (D).k<12- 8.若函数f(x)=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤-3 (B)a ≥-3 (C)a ≤5 (D)a ≥39.函数2(232)xy a a a =-+是指数函数,则a 的取值范围是 ( )(A) 0,1a a >≠ (B) 1a = (C) 12a =( D)121a a ==或10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11.函数y =的定义域是 ( )(A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D) (23,1]12.设a,b,c都是正数,且346a b c==,则下列正确的是( )(A) 111c ab =+ (B) 221C a b =+ (C) 122C a b =+ (D) 212c a b =+二、填空题:(每小题4分,共16分,答案填在横线上)13.已知(x,y )在映射 f 下的象是(x-y,x+y),则(3,5)在f 下的象是 ,原象是 。
人教版2019学年高一数学考试试卷和答案(10套 )
人教版2019学年高一数学考试试题(一)一、选择题(每小题5分,共60分,请将正确答案填在题后的括号内) 1.函数)4sin(π+=x y 在闭区间( )上为增函数.( )A .]4,43[ππ-B .]0,[π-C .]43,4[ππ-D .]2,2[ππ- 2.函数)42sin(log 21π+=x y 的单调减区间为( )A .)(],4(Z k k k ∈-πππB .)(]8,8(Z k k k ∈+-ππππC .)(]8,83(Z k k k ∈+-ππππD .)(]83,8(Z k k k ∈++ππππ 3.设a 为常数,且π20,1≤≤>x a ,则函数1sin 2cos )(2-+=x a x x f 的最大值为( )A .12+aB .12-aC .12--aD .2a 4.函数)252sin(π+=x y 的图象的一条对称轴方程是( )A .2π-=xB .4π-=xC .8π=xD .π45=x 5.方程x x lg sin =的实根有( )A .1个B .2个C .3个D .无数个6.下列函数中,以π为周期的偶函数是( )A .|sin |x y =B .||sin x y =C .)32sin(π+=x y D .)2sin(π+=x y7.已知)20(cos π≤≤=x x y 的图象和直线y=1围成一个封闭的平面图形,该图形的面积 是( ) A .4π B .2π C .8 D .4 8.下列四个函数中为周期函数的是( )A .y =3B .x y 3=C .R x x y ∈=||sinD .01sin≠∈=x R x xy 且9.如果函数)0(cos sin >⋅=ωωωx x y 的最小正周期为4π,那么常数ω为 ( )A .41B .2C .21 D .410.函数x x y cot cos +-=的定义域是( )A .]23,[ππππ++k k B .]232,2[ππππ++k kC .22]232,2(ππππππ+=++k x k k 或D .]232,2(ππππ++k k11.下列不等式中,正确的是( )A .ππ76sin 72sin < B .ππ76csc 72csc<C .ππ76cos 72cos <D .ππ76cot 72cot <+12.函数],[)0)(sin()(b a x M x f 在区间>+=ωϕω上为减函数,则函数],[)cos()(b a x M x g 在ϕω+=上( )A .可以取得最大值MB .是减函数C .是增函数D .可以取得最小值-M 二、填空题(每小题4分,共16分,答案填在横线上)13.)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 . 14.若)101()5(),3(),1(,6sin )(f f f f n n f 则π== .15.已知方程0sin 4cos 2=-+a x x 有解,那么a 的取值范围是 . 16.函数216sin lg x x y -+=的定义域为 .三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.已知x a x y x cos 2cos ,202-=≤≤求函数π的最大值M (a )与最小值m (a ).18.如图,某地一天从6时到11时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω ①求这段时间最大温差②写出这段曲线的函数解析式19.已知)(|cos ||sin |)(+∈+=N k kx kx x f①求f (x )的最小正周期 ②求f (x )的最值③试求最小正整数k ,使自变量x 在任意两个整数间(包括整数本身)变化时,函数 f (x )至少有一个最大值,一个最小值.20.已知函数b x a y +=cos 的最大值为1,最小值为-3,试确定)3sin()(π+=ax b x f 的单调区间.21.设)0(cos sin 2sin πθθθθ≤≤-+=P (1)令t t 用,cos sin θθ-=表示P(2)求t 的取值范围,并分别求出P 的最大值、最小值.22.求函数)]32sin(21[log 2.0π+-=x y 的定义域、值域、单调性、周期性、最值.人教版2019学年高一数学考试试题(二)一、填空题(每小题5分,共70分)1.已知集合[)()12,,4,1-∞-==a B A ,若B A ⊆,则a 的取值范围是 。
2019-2020学年新版高中数学必修第一册综合测试题及答案
2019-2020学年新版高中数学必修第一册综合测试题(时间:120分钟满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目的要求)1.已知集合A={x∣(2+x)(a-2x)>0},Z为整数集,若A∩Z={-1,0,1,2},则实数a的取值范围是( ).A.{a∣a≥4}B.{a∣a>4}C.{a∣4<a≤6}D.{a∣4<a<6}2.已知α为第二象限角,sin α+cos α,则cos 2α=( ).A B C D3.已知函数f(x)=x2+bx+c(b,c R),则“xR,使f(x0)<0”是“c<0”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.下列不等式一定成立的是( ).A.lg(x2+14)>lg x(x>0)B.sin x+1sin x≥2(x≠πk,k Z)C.x2+1≥2∣x∣(x R)D.21 1x+>1(x R)5.已知x=lnπ,y=log52,z=12e-,则( ).A.x<y<z B.z<x<y C.z<y<x D.y<z<x6.已知函数f(x)=sin22x xx--,g(x)=cos22x xx--,则f(x) g(x)( ).A.是奇函数且在[3π2,7π4]上单调递增B.是偶函数且在[5π4,7π4]上单调递增C.是奇函数且在[5π4,3π2]上单调递减D.是偶函数且在[5π4,3π2]上单调递减7.已知函数⎩⎨⎧>--≤-=,1,32,1,44)(x x x x x f g (x )=tan π2x ,则函数h (x )=f (x )-g (x )在区间 (-1,5)内的零点个数为( ). A .2B .3C .4D .58.函数y =a x -1a(a >0,且a ≠1)的图象可能是( ).A B C D9.已知a >1,若函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为12,则a 的值为( ).AB .2C .D .410.已知函数f (x )=2sin (13x -π6),x ∈R .设α,β [0,π2],f (3α+π2)=1013,f (3β+2π)=65,则cos (α+β)的值为( ). A .5665B .1665C .6365D .336511.已知函数21,(,1],12()1e ,(1,).x x x f x x x ⎧∈-⎪+=⎨-⎪∈+∞⎩g (x )=-x 2+4x -3.若有实数a ,b 满足f (a )=g (b ),则b 的取值范围是( ).A .(-∞,2(2) B .(1,3)C .(22D .(-∞,1)∪(3, +∞)12.已知两条平行直线l 1:y =m 和l 2:y =821m +(m >0),l 1与函数y =∣log 2x ∣的图象从左至右相交于A ,B 两点,l 2与函数y =∣log 2x ∣的图象从左至右相交于C ,D 两点.设A ,B ,C ,D 四点的横坐标分别为a ,b ,c ,d ,,当m 变化时,∣b da c --∣的最小值为( ).A .B .C .16D .8。
人教版2019学年高一数学考试试卷含答案(10套 )
人教版2019学年高一数学考试试卷(一)一.选择题1、(江苏省启东中学高三综合测试二)在抛物线y 2=2px 上,横坐标为4的点到焦点的距离为5,则p 的值为A.0.5B.1C. 2D. 42、(江苏省启东中学高三综合测试三)已知椭圆E 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆E 的离心率等于A .B .C .D .3、(江苏省启东中学高三综合测试四)设F 1,F 2是椭圆的两个焦点,P 是椭圆上的点,且,则的面积为 ( ) A .4 B .6 C . D .4、(安徽省皖南八校2008届高三第一次联考)已知倾斜角的直线过椭圆的右焦点F交椭圆于A、B两点,P为右准线上任意一点,则为 ( )A.钝角; B.直角; C.锐角; D.都有可能; 5、(江西省五校2008届高三开学联考)从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b 2,4b 2],则这一椭圆离心率e 的取值范围是 A . B . C . D . 6、(安徽省淮南市2008届高三第一次模拟考试)已知点A, F 分别是椭圆(a >b >0)的右顶点和左焦点,点B 为椭圆短轴的一个端点,若=0,则椭圆的离心率e 为( )535413513121649422=+y x 3:4:21=PF PF 21F PF ∆22240≠αl 12222=+b y a x )0(>>b a APB ∠]23,35[]22,33[]22,35[]23,33[12222=+by a x ⋅A.(-1) B.(-1) C.D.7、(安徽省巢湖市2008届高三第二次教学质量检测)以椭圆的右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为的两段弧,那么该椭圆的离心率等于( )A.C.8、(北京市朝阳区2008年高三数学一模)已知双曲线的左、右焦点分别为、,抛物线的顶点在原点,它的准线与双曲线的左准线重合,若双曲线与抛物线的交点满足,则双曲线的离心率为 A . 2B . 3C .233D .2 29、(北京市崇文区2008年高三统一练习一)椭圆的中心、右焦点、右顶点、右准线与x 轴的交点依次为O 、F 、A 、H ,则的最大值为( )A .12B .13C .14D .110、(北京市海淀区2008年高三统一练习一)直线l 过抛物线的焦点F ,交抛物线于A ,B 两点,且点A 在x 轴上方,若直线l 的倾斜角,则|FA |的取值范围是( )(A ) (B )(C ) (D ) 11、(北京市十一学校2008届高三数学练习题)已知双曲线(a >0,b >0)的两个焦点为、,点A 在双曲线第一象限的图象上,若△的面积为1,且215213252222221(0)x y a b a b+=>>2:1234922122:1(0,0)x y C a b a b-=>>1F 2F 2C 1C 1C 2C P 212PF F F ⊥1C )0(12222>>=+b a by a x ||||OH FA x y =24πθ (23)41[13(,]44]23,41(]221,41(+12222=-by a x 1F 2F 21F AF,,则双曲线方程为( ) A .B .C .D . 12、(北京市西城区2008年4月高三抽样测试)若双曲线的离心率是,则实数的值是( )A. B. C. D. 二、填空题13、(北京市宣武区2008年高三综合练习一)长为3的线段AB 的端点A 、B 分别在x 、y 轴上移动,动点C (x ,y )满足,则动点C 的轨迹方程是 .14、(北京市宣武区2008年高三综合练习二)设抛物线的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A 、B 两点,又知点P 恰为AB 的中点,则.15、(四川省成都市2008届高中毕业班摸底测试)与双曲线有共同的渐近线,且焦点在y 轴上的双曲线的离心率为16、(东北区三省四市2008年第一次联合考试)过抛物线的焦点F 的直线交抛物线于A 、B 两点,则= 。
人教版2019学年高一数学考试试卷与答案(10套 )
人教版2019学年高一数学考试试题(一)一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称2.要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位3.如图,曲线对应的函数是( )A .y=|sin x |B .y=sin|x |C .y=-sin|x |D .y=-|sin x |4.已知f (1+cos x )=cos 2x ,则f (x )的图象是下图中的( )5.如果函数y=sin2x +αcos2x 的图象关于直线x=-8π对称,那么α的值为 ( )A .2B .-2C .1D .-16.已知函数)sin(ϕω+=x A y 在同一周期内,9π=x 时取得最大值21,π94=x 时取得最小值-21,则该函数解析式为( )A .)63sin(2π-=x yB .)63sin(21π+=x yC .)63sin(21π-=x y D .)63sin(21π-=x y 7.方程)4cos(lg π-=x x 的解的个数为( )A .0B .无数个C .不超过3D .大于38.已知函数)32sin(4)32sin(321ππ+=-=x y x y 那么函数y=y 1+y 2振幅的值为 ( )A .5B .7C .13D .139.已知)()0(cos )(,cos )(221x f x x f x x f 且>==ωω的图象可以看做是把)(1x f 的图象上所有点的横坐标压缩到原来的1/3倍 (纵坐标不变)得到的,则ω= ( )A .21B .2C .3D .31 10.函数y=-x ·cos x 的部分图象是( )11.函数)42sin(log 21π+=x y 的单调减区间是( )A .)](,4(Z k k k ∈-πππB .)](8,8(Z k k k ∈+-ππππC .)](8,83(Z k k k ∈+-ππππD .)](83,8(Z k k k ∈++ππππ12.函数|)32sin(5|π+=x y 的最小正周期为( )A .πB .2πC .2πD .4π二、填空题(每小题4分,共16分,答案填在横线上) 13.若函数)43sin(2)(π+=x k x f 的周期在)43,32(内,则k 的一切可取的正整数值 是 .14.函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 15.振动量)0)(sin(2>+=ωϕωx y 的初相和频率分别为23和π-,则它的相位是 . 16.函数)40).(62cos(2cos ππ≤≤+⋅=x x x y 的最大值为 .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.已知函数)(325cos 35cos sin 5)(2R x x x x x f ∈+-⋅= (1)求)(x f 的最小正周期; (2)求)(x f 的单调区间;(3)求)(x f 图象的对称轴,对称中心.18.函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 的最小值为-2,其图象相邻的最高点与最低点横坐标差是3π,又图象过点(0,1)求这个函数的解析式.19.已知函数)(x f =sin2x +a cos2x 在下列条件下分别求a 的值.(1)函数图象关于原点对称; (2)函数图象关于8π-=x 对称.20.已知函数b a x x a x a x f ++⋅--=2cos sin 322cos )(的定义域为]2,0[π,值域为[-5,1]求常数a 、b 的值.21.如图,表示电流强度I 与时间t 的关系式),0,0)(sin(>>+=ωϕωA t A I 在一个周期内的图象.(1)试根据图象写出)sin(ϕω+=t A I 的解析式;(2)为了使)sin(ϕω+=t A I 中t 在任意一段1001 秒的时间内I 能同时取最大值|A|和最小值-|A|,那么正整数ω的最小值为多少?22.已知α、β为关于x 的二次方程0sin )1(sin 222=+++θθx x 的实根,且22||≤-βα,求θ的范围.人教版2019学年高一数学考试试题(二)一、选择题:1.有穷数列1, 23, 26, 29, (23)+6的项数是 ( )A .3n +7B .3n +6C .n +3D .n +22.已知数列的首项,且,则为 ( )A .7B .15C .30D .313.某数列第一项为1,并且对所有n ≥2,n ∈N *,数列的前n 项之积n 2,则这个数列的通项公式是 ( )A .a n =2n -1B .a n =n 2C .a n =D .a n =4.若{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( )A .39B .20C .19.5D .335.若等差数列{a n }的前三项为x -1,x +1,2x +3,则这数列的通项公式为( )A .a n =2n -5B . a n =2n -3C . a n =2n -1D .a n =2n +16.首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A .d >B .d <3C .≤d <3 D . <d ≤37.等差数列{a n }的前n 项和S n =2n 2+n ,那么它的通项公式是( )A .a n =2n -1B .a n =2n +1C .a n =4n -1D .a n =4n +18.中,则值最小的项是( )A .第4项B .第5项C .第6项D .第4项或第5项{}n a 11a =()1212n n a a n -=+≥5a 22)1(-n n 22)1(n n +383838{}n a 29100n a n n =--9.已知,则的值为( )A .B .C .D .10.在等差数列{a n }中,若a 3+a 9+a 15+a 21=8,则a 12等于( )A .1B .-1C .2D .-211.在等差数列{a n }中,a 3+a 7-a 10=8,a 1-a 4=4,则S 13等于( )A .168B .156C .78D .15212.数列{a n }的通项a n =2n +1,则由b n =(n ∈N *),所确定的数列{b n }的前n 项和是( )A .n (n +1)B .C .D .二、填空题:13.数列1,0,-1,0,1,0,-1,0,…的通项公式的为a n = .14.在-1,7之间插入三个数,使它们顺次成等差数列,则这三个数分别是_ ______.15.数列{ a n }为等差数列,a 2与a 6的等差中项为5,a 3与a 7的等差中项为7,则数列的通项a n 等于__ _.16、数列{a n }为等差数列,S 100=145,d =,则a 1+a 3+a 5+…+a 99的值为___ __.三、解答题:17.已知关于x 的方程x 2-3x +a =0和x 2-3x +b =0(a ≠b )的四个根组成首项为的等差数列,求a +b 的值.18.在数列{a n }中,a 1=2,a 17=66,通项公式是项数n 的一次函数.(1)求数列{a n }的通项公式; (2)88是否是数列{a n }中的项.()*1n a n N n n=∈++1210a a a +++101-111-121-2na a a n+++ 212)1(+n n 2)5(+n n 2)7(+n n 214319.数列{a n }是首项为23,公差为整数的等差数列,且第六项为正,第七项为负.(1)求数列的公差;(2)求前n 项和S n 的最大值;(3)当S n >0时,求n 的最大值.20.设函数,数列的通项满足.(1)求数列的通项公式; (2)判定数列{a n }的单调性.21.已知数列{a n }满足a 1=4,a n =4-(n ≥2),令b n =.(1)求证数列{b n }是等差数列; (2)求数列{a n }的通项公式.22.某公司决定给员工增加工资,提出了两个方案,让每位员工自由选择其中一种.甲方案2()log log 4(01)x f x x x =-<<{}n a n a )(2)2(*N n n f n a ∈={}n a 14-n a 21-n a是:公司在每年年末给每位员工增资1000元;乙方案是每半年末给每位员工增资300元.某员工分别依两种方案计算增资总额后得到下表:(说明:①方案的选择应以让自己获得更多增资为准. ②假定员工工作年限均为整数.) (1)他这样计算增资总额,结果对吗?如果让你选择,你会怎样选择增资方案?说明你的理由;(2)若保持方案甲不变,而方案乙中每半年末的增资数改为a元,问:a为何值时,方案乙总比方案甲多增资?人教版2019学年高一数学考试试题(三)一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.若βαππβα22tan tan ),23,(,>∈且,则( )A .α<βB .α>βC .α+β>3πD .α+β<2π 2.下列函数中,周期是π,且在(0,2π)上为增函数的是( )A .y=tan|x |B .y=cot|x |C .y=|tan x |D .y=|cot x |3.已知)cot lg(cos ,21cos x x x ⋅-=则使有意义的角x 等于 ( )A .)(322Z k k ∈±ππB .)(312Z k k ∈±ππC .)(322Z k k ∈-ππD .)(322Z k k ∈+ππ4.下列各式中,正确的是( )A .3)3sin(arcsin ππ= B .ππ52))52(sin(arcsin -=-C .ππ3)3sin(arcsin=D .ππ4)4sin(arcsin=5. 直线y=a (a 为常数)与y=tan ωx (ω>0)的相邻两支的交点距离为 ( )A .πB .ωπC .ωπ2 D .与a 有关的值 6.函数]23,2[,sin )(ππ∈=x x x f 的反函数)(1x f -=( )A .-arcsin x ,x ∈[-1,1]B .-π-arcsin x ,x ∈[-1,1]C .π+arcsin x ,x ∈[-1,1]D .π-arcsin x ,x ∈[-1,1]7.在区间(-π23,π23)内,函数y=tan x 与函数y=sin x 图象交点的个数为 ( )A .1B .2C .3D .48.正切曲线y=tan ωx (ω>0)的相邻两支截直线y=1和y=2所得线段长分别为m 、n ,则m 、 n 的大小关系为( )A .m>nB .m<nC .m=nD .不确定 9.在△ABC 中,A>B 是tanA>tanB 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知),23(42sin ππ--∈=x x 且的x 的值为 ( )A .42arcsin+-π B .42arcsin--πC .42arcsin23+-π D .42arcsin2+-π 11.方程)(3tan ππ<<--=x x 的解集为( )A .}65,6{ππ-B .}32,32{ππ-C .}32,3{ππ-D .}35,32{ππ12.已知22ππθ-<<,且sin cos ,a θθ+=其中()0,1a ∈,则关于tan θ的值,在以下四个答案中,可能正确的是 ( )A. 3-B. 3 或13C. 13-D.3-或13- 二、填空题(每小题4分,共16分,答案填在横线上) 13.=+31arctan 21arctan. 14.a =tan1 , b=tan2 , c=tan3 , 则a 、b 、c 大小关系为 . 15.函数y=2arccos (x -2)的反函数是 . 16.函数y=lg (1-tan x )的定义域为 .三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.求函数],2[2sin 2ππ--∈=x xy 在上的反函数.18.已知5cot 2cot ,1)]6cos(9211lg[2+-=≤+-x x y x 求函数π的值域.19.已知,2tan 12tan 4),2sin(sin 3),4,0(,2ααβαβπβα-=+=∈且求βα+的值.20.若]4,3[ππ-∈x ,求函数1tan 2sec 2++=x x y 的最值及相应的x 值.21.设函数+∈⋅-=N k x k y ],5)12tan[(10当x 在任意两个连续整数间(包括整数本身)变化时至少有两次失去意义,求k 的最小正整数值.22.已知b 、c 为实数R c bx x x f ∈++=βα,)(2对任意有①0)(sin ≥αf ;②0)cos 2(≤+βf . (1)求f (1)的值;(2)证明c ≥3;(3)设)(sin αf 的最大值为10,求)(x f .人教版2019学年高一数学考试试题(四)1.已知全集}7,6,5,4,3,2,1{=U ,集合}5,4,3{=A ,}6,3,1{=B ,则)(B C A U =( )(A ) }5,4{ (B ) }7,5,4,2{ (C ) }6,1{ (D ) }3{2.设A 、B 是非空集合,定义:{}B A x B A x x B A ∉∈=⨯且|,已知 {}22|x x y x A -==,{}0,2|>==x y y B x ,则B A ⨯等于( )(A )[]()+∞,21,0 (B )[)()+∞,21,0 (C )[]1,0 (D )[]2,03.若函数ax x f x -=2)(在区间()01,-内有一个零点,则a 的取值可以是( ) (A )41 (B )0 (C )41- (D )1- 4.设)(x f 是),(+∞-∞上的奇函数,且)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则)5.7(f =( )(A )0.5 (B )—0.5 (C )1.5 (D )—1.55.设log a 2< log b 2<0,则()(A )0<a<b<1 (B )0<b<a<1(C )a>b>1(D )b>a>16.已知函数)(x f 在()∞+,0上是减函数,则)1(2+-a a f 与)43(f 的大小关系为( ) (A ))43()1(2f a a f ≥+- (B ))43()1(2f a a f >+- (C ))43()1(2f a a f ≤+- (D )无法比较大小 7.函数)2(log 221++-=x x y 的递增区间是( )(A ) )21,1(-- (B ) (]1,-∞- (C ) [)+∞,2 (D ) )2,21( 86点, (3甲 乙 丙① 0点到3点只进水不出水;② 3点到4点不进水只出水;③ 4点到6点不进水不 出水。
2018-2019学年高一数学人教A版必修一必修一综合测试卷1含答案
试题考查必修一所学内容,考查集合的运算,考查初等函数的性质与图像,考查函数的定义域值域等,考查新定义新运算,考查学生的创新能力。
能够体现必修一的重难点。
是一套比较新颖的试题。
必修一综合测试题(1)一.选择题(本题共计60分,每小题5分)1. 若集合{|20},A x x =-<集合{|21},x B x =>, 则AB =(A )R (B )(,2)-∞ (C )(0,2) (D )(2)+∞, 1.C 解析:{|2},A x x =<{|0},B x x =>所以AB =(0,2)。
2.下列函数中,既是偶函数又在(0)+∞,上单调递增的是 (A )2()f x x =- (B )()2x f x -= (C )()ln ||f x x = (D )()||f x x =-3. 函数()lg(3)f x x =++的定义域为( ) A. (]3,2-B. []3,2-C. ()3,2-D. (),3-∞-3.C 解析:根据函数有意义的条件可得2030x x ->⎧⎨+>⎩,解得23x >>-。
4. 设0.2611log 7,,24a b c ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系是( )A.a b c >>B. b c a <<C.b c a >>D. a b c <<4.A 解析:因为,661log 6log 7=<所以1a >;0.212b ⎛⎫= ⎪⎝⎭所以0.222,2,b c --==利用指数函数的单调性可以判断,0.2222,b c --=>=并且1b <,所以a b c >>。
5. 设a 为常数,函数2()43f x x x =-+.若()f x a +为偶函数,则a 等于( )A .-2B . 2C .-1D .16. 若已知函数f (x )=ln ,091,x x x x -⎧⎨⎩>+≤0,则f (f (1))+f (-32log )的值是A .2B .3C .5D .7 6.D 解析:31log 2233((1))(log 2)(0)(log )2912417f f f f f +-=+=++=++=7. 一种放射性元素的质量按每年10%衰减,这种放射性元素的半衰期(剩留量为最初质量的一半所需的时间叫做半衰期)是( )年(精确到0.1,已知lg2=0.301,lg3=0.477). A .5.2 B .6.6 C .7.1 D .8.37.B 解:设这种放射性元素的半衰期是x 年,则1(110%)2x-=,化简得10.92x=即 0.91lg1lg 20.30102log 6.62lg 0.92lg 3120.47711x --====≈-⨯-(年).故选:B . 8. 函数21x y x-=的图象是( )8:D 解析:先判断函数21x y x-=是奇函数,再利用特殊值判断,如当x=0.1时,函数y=9,所以选择D 。
(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)
第一章综合测试第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}12323A B ==,,,,,则( ) A .A B =B .AB =∅C .AB D .B A2.已知全集U =R ,集合{}{}010M x x N x x ==<≤,≤,则()U M N =( )A .{}01x x ≤<B .{}01x x <≤C .{}01x x ≤≤D .{}1x x <3.已知集合{}{}211M a P a ==--,,,,若MP 有三个元素,则MP =( )A .{}01,B .{}01-,C .{}0D .{}1-4.命题“200x x x ∀+≥,≥”的否定是( ) A .200x x x ∃+<,<B .200x x x ∃+≥,≤C .200x x x ∃+≥,<D .200x x x ∃+<,≥ 5.已知010a b -<,<<,则( ) A .0a ab -<<B .0a ab ->>C .2a ab ab >>D .2ab a ab >>6.已知集合{}212002x A x x x B xx ⎧⎫+=+-=⎨⎬-⎩⎭≤,≥,则()A B =R ( )A .()12-,B .()11-,C .(]12-,D .(]11-,7.“关于x 的不等式220x ax a -+>的解集为R ”的一个必要不充分条件是( )A .01a <<B .103a << C .01a ≤≤D .103a a <或>8.若正数a b ,满足121a b +=,则2b a+的最小值为( )A .B .C .8D .9二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得3分,有选错的得0分) 9.有下列命题中,真命题有( ) A .*x ∃∈N ,使x 为29的约数 B .220x x x ∀∈++R ,> C .存在锐角sin 1.5a α=,D .已知{}{}23A a a n B b b m ====,,则对于任意的*n m ∈N ,,都有AB =∅10.已知110a b<<,下列结论中正确的是 ( )A .a b <B .a b ab +<C .a b >D .2ab b <11.如下图,二次函数()20y ax bx c a =++≠的图像与x 轴交于A B ,两点,与y 轴交于C 点,且对称轴为1x =,点B 坐标为()10-,,则下面结论中正确的是( )A .20a b +=B .420a b c -+<C .240b ac ->D .当0y <时,1x -<或4x >12.设P 是一个数集,且至少含有两个元素.若对任意的a b P ∈,,都有aa b a b ab P b+-∈,,,(除数0b ≠),则称P 是一个数域.则关于数域的理解正确的是( ) A .有理数集Q 是一个数域 B .整数集是数域C .若有理数集M ⊆Q ,则数集M 必为数域D .数域必为无限集第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.不等式2680x x -+->的解集为________.14.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()*0100x x x ∈N <<,人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2%x .若要保证产品A 的年产值不减少,则最多能分流的人数是________. 15.若()11102a b a b +=>,>,则41a b ++的最小值为________. 16.已知非空集合A B ,满足下列四个条件: ①{}1234567A B =,,,,,,; ②AB =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)若集合A 中只有1个元素,则A =________;(2)若两个集合A 和B 按顺序组成的集合对()A B ,叫作有序集合对,则有序集合对()A B ,的个数是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知全集为实数集R ,集合{}{}1721A x x B x m x m ==-+≤≤,<<. (1)若5m =,求()A B A B R ,;(2)若A B A =,求m 的取值范围.18.(本小题满分12分)已知不等式()21460a x x --+>的解集为{}31x x -<<.(1)求a 的值;(2)若不等式230ax mx ++≥的解集为R ,求实数m 的取值范围.19.(本小题满分12分)已知2340P x x --:≤;2269q x x m -+-:≤0,若p 是q 的充分条件,求m 的取值范围.20.(本小题满分12分)为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为[]24016003050y x x x =-+∈,,,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.(本小题满分12分)若集合{}2280A x x x =+-<,{}13B x x =+>,{}22210C x x mx m m =-+-∈R <,.(1)若A C =∅,求实数m 的取值范围.(2)若()A B C ⊆,求实数m 的取值范围.22.(本小题满分12分)已知正实数a b ,满足1a b +=,求2211a b a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值.第一章综合测试答案解析一、 1.【答案】D【解析】由真子集的概念,知B A ,故选D .2.【答案】B【解析】{}(){}001U U N x x M N x x ==∵>,∴<≤.故选B .3.【答案】C【解析】由题意知2a a =-,解得0a =或1a =-.①当0a =时,{}{}{}1010101M P M P ==-=-,,,,,,,满足条件,此时{}0M P =;②当1a =-时,21a =,与集合M 中元素的互异性矛盾,舍去,故选C .4.【答案】C【解析】“200x x x ∀+≥,≥”的否定是“200x x x ∃+≥,<”. 5.【答案】B【解析】201000a b ab a ab -∵<,<<,∴>,<<,故A ,C ,D 都不正确,正确答案为B . 6.【答案】D【解析】由220x x +-≤,得[]2121x A -=-≤≤,∴,.由102x x +-≥,得1x -≤或2x >,(]()12B =-∞-+∞∴,,.则(]12B =-R,,()(]11A B =-R ∴,.故选D . 7.【答案】C【解析】因为关于x 的不等式220x ax a -+>的解集为R ,所以函数()22f x x ax a =-+的图象始终落在x轴的上方,即2440a a ∆=-<,解得01a <<,因为要找其必要不充分条件,从而得到()01,是对应集合的真子集,故选C . 8.【答案】D【解析】00a b ∵>,>,且121b b +=,则2212252549b b a ab a a b ab ⎛⎫⎛⎫+=++=+++= ⎪⎪⎝⎭⎝⎭≥,当且仅当22ab ab =即133a b ==,时取等号,故选D . 二、9.【答案】AB【解析】A 中命题为真命题.当1x =时,x 为29的约数成立;B 中命题是真命题.22172024x x x ⎛⎫++=++ ⎪⎝⎭>恒成立;C 中命题为假命题.根据锐角三角函数的定义可知,对于锐角α,总有0sin 1a <<;D 中命题为假命题.易知66A B ∈∈,,故A B ≠∅.10.【答案】BD【解析】因为110a b<<,所以0b a <<,故A 错误;因为0b a <<,所以00a b ab +<,>,所以a b ab +<,故B 正确;因为0b a <<,所以a b >不成立,故C 错误;()2ab b b a b -=-,因为0b a <<,所以0a b ->,即()20ab b b a b -=-<,所以2ab b <成立,故D 正确.故选BD .11.【答案】ABC【解析】∵二次函数()20y ax bx c a =++≠图象的对称轴为112bx a==,∴-,得20a b +=,故A 正确;当2x =-时,420y a b c =-+<,故B 正确;该函数图象与x 轴有两个交点,则240b ac ->,故C 正确;∵二次函数()20y ax bx c c =++≠的图象的对称轴为1x =,点B 的坐标为()10-,,∴点A 的坐标为()30,,∴当0y <时,1x -<或3x >,故D 错误,故选ABC.12.【答案】AD【解析】若a b ∈Q ,,则a b +∈Q ,a b -∈Q ,ab ∈Q ,()0ab b∈≠Q ,所以有理数Q 是一个数域,故A正确;因为1122∈∈∉Z Z Z ,,,所以整数集不是数域,B 不正确;令数集{}2M =Q,则1M M ∈,但1M ,所以C 不正确;根据定义,如果()0a b b ≠,在数域中,那么2a b a b a kb +++,,…,(k k 为整数),…都在数域中,故数域必为无限集,D 正确.故选AD . 三、13.【答案】()24,(或写成{}24x x <<) 【解析】原不等式等价于2680x x -+<,即()()240x x --<,得24x <<. 14.【答案】16【解析】由题意,分流前每年创造的产值为100t (万元),分流x 人后,每年创造的产值为()()1001 1.2%x x t -+,由()()01001001 1.2%100x x x t t ⎧⎪⎨-+⎪⎩<<≥,解得5003x <≤.因为*x ∈N ,所以x 的最大值为16.15.【答案】19 【解析】由1112a b +=,得221a b+=, ()228241418211119a b a b a b a b b a a ⎛⎫++=+++=+++++= ⎪⎝⎭≥.当且仅当82a bb a=,即36a b ==,时,41a b ++取得最小值19. 16.【答案】(1){}6 (2)32【解析】(1)若集合A 中只有1个元素,则集合B 中有6个元素,所以6B ∉,故{}6A =.(2)当集合A 中有1个元素时,{}6A =,{}123457B =,,,,,,此时有序集合对()A B ,有1个;当集合A 中有2个元素时,5B ∉,2A ∉,此时有序集合对()A B ,有5个;当集合A 中有3个元素时,4B ∉,3A ∉,此时有序集合对()A B ,有10个;当集合A 中有4个元素时,3A ∉,4A ∉,此时有序集合对()A B ,有10个;当集合A 中有5个元素时,2B ∉,5A ∉,此时有序集合对()A B ,有5个;当集合A 中有6个元素时,{}123457A =,,,,,,{}6B =,此时有序集合对()A B ,有1个.综上,可知有序集合对()A B ,的个数是1510105132+++++=.四、17.【答案】解:(1){}595m B x x ==-∵,∴<<,又{}17A x x =≤≤,{}97A B x x =-∴<≤.又{}17A x x x =R<,或>,(){}91A B x x =-R ∴<<.(2)AB A A B =⊆∵,∴,2117m m -+⎧⎨⎩<∴>,即07m m ⎧⎨⎩>>,解得7m >.m ∴的取值范围是{}7m m >.18.【答案】解(1)由已知,10a -<,且方程()21460a x x --+=的两根为31-,, 有4311631aa⎧=-+⎪⎪-⎨⎪=-⎪-⎩,解得3a =.(2)不等式2330x mx ++≥的解集为R , 则24330m ∆=-⨯⨯≤,解得66m -≤≤,实数m 的取值范围为[]66-,. 19.【答案】解:由2340x x --≤,解得14x -≤≤, 由22690x x m -+-≤,可得()()330x m x m ⎡-+⎤⎡--⎤⎣⎦⎣⎦≤,① 当0m =时,①式的解集为{}3x x =;当0m <时,①式的解集为{}33x m x m +-≤≤; 当0m >时,①式的解集为{}33x m x m -+≤≤;当p 是q 的充分条件,则集合{}14x x -≤≤是①式解集在的子集.可得03134m m m ⎧⎪+-⎨⎪-⎩<≤≥或03134m m m ⎧⎪--⎨⎪+⎩>≤≥, 解得4m -≤或4m ≥.故m 的取值范围是(][)44-∞-+∞,,. 20.【答案】解:(1)当[]3050x ∈,时,设该工厂获利为S 万元, 则()()222040160030700S x x x x =--+=---,所以当[]3050x ∈,时,S 的最大值为700-,因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损. (2)由题知,二氧化碳的平均处理成本[]1600403050x P x x y x=+-∈,,,当[]3050x ∈,时,1600404040P x x x x=+--=≥, 当且仅当1600x x=,即40x =时等号成立,所以当处理最为40吨时,每吨的平均处理成本最少. 21.【答案】解:(1)由已知可得{}42A x x =-<<,{}51B x x x =-<或>,{}11C x m x m =-+<<.若A C =∅,则12m -≥或14m +-≤, 解得3m ≥或5m -≤.所以实数m 的取值范围为{}53m m m -≤或≥. (2)结合(1)可得{}12A B x x =<<.若()AB C ⊆,即{}{}1211x x x m x m ⊆-+<<<<,则1112m m -⎧⎨+⎩≤≥, 解得12m ≤≤.所以实数m 的取值范围为{}12m m ≤≤.22.【答案】解:()()()22222222222222211114111421411214a b a b a b a b a b a b ab a b a b ab a b ⎛⎫⎛⎫+++=++++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎡⎤=+++=+-++ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎛⎫=-++ ⎪⎝⎭,由1a b +=,得2124a b ab +⎛⎫= ⎪⎝⎭≤(当且仅当12a b ==时等号成立), 所以1112122ab --=≥,且22116a b≥,所以()2211125116422a b a b ⎛⎫⎛⎫+++⨯++= ⎪ ⎪⎝⎭⎝⎭≥,所以2211a b a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值为252.。
综合试卷一-【新教材】人教A版(2019)高中数学必修第一册
综合试卷一一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={(x,y)|2x﹣y=0},B={(x,y)|3x+y=0},则集合A∩B的子集个数为()A.0B.1C.2D.42.(5分)已知幂函数y=f(x)的图象过点,则下列结论正确的是()A.y=f(x)的定义域为[0,+∞)B.y=f(x)在其定义域上为减函数C.y=f(x)是偶函数D.y=f(x)是奇函数3.(5分)命题p:三角形是等边三角形;命题q:三角形是等腰三角形.则p是q()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)下列结论正确的是()A.若a>b>c>0,则B.若a>b>0,则b2<ab<a2C.若a>b>0,则ac2>bc2D.若a<b<0,则5.(5分)已知,则()A.b>a>c B.a>b>c C.b>c>a D.a>c>b6.(5分)设命题p:所有的矩形都是平行四边形,则¬p为()A.所有的矩形都不是平行四边形B.存在一个平行四边形不是矩形C.存在一个矩形不是平行四边形D.不是矩形的四边形不是平行四边形7.(5分)已知函数,若函数y=f(x)﹣k有三个零点,则实数k的取值范围为()A.(﹣2,﹣1]B.[﹣2,﹣1]C.[1,2]D.[1,2)8.(5分)已知函数f(x)的定义域为R,图象恒过(1,1)点,对任意x1<x2,都有则不等式的解集为()A.(0,+∞)B.(﹣∞,log23)C.(﹣∞,0)∪(0,log23)D.(0,log23)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(5分)下列结论正确的是()A.是第三象限角高一年级数学学科假期作业使用日期:寒假编辑:校对:审核:B .若圆心角为的扇形的弧长为π,则该扇形面积为C.若角α的终边过点P(﹣3,4),则D.若角α为锐角,则角2α为钝角10.(5分)已知函数其中a>0且a≠1,则下列结论正确的是()A.函数f(x)是奇函数B.函数f(x)在其定义域上有零点C.函数f(x)的图象过定点(0,1)D.当a>1时,函数f(x)在其定义域上为单调递增函数11.(5分)已知函数,则下列结论正确的是()A.函数f(x)的最小正周期为πB.函数f(x)在[0,π]上有三个零点C .当时,函数f(x)取得最大值D.为了得到函数f(x )的图象,只要把函数图象上所有点的横坐标变为原来的2倍(纵坐标不变)12.(5分)已知函数f(x)=x2﹣2x﹣3,则下列结论正确的是()A.函数f(x)的最小值为﹣4B.函数f(x)在(0,+∞)上单调递增C.函数f(|x|)为偶函数D.若方程f(|x﹣1|)=a在R上有4个不等实根x1,x2,x3,x4,则x1+x2+x3+x4=4三、填空题:本题共4小题,每小题5分,共20分.13.(5分)=.14.(5分)已知tan(α﹣)=2,则tanα=.15.(5分)已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x(x﹣1),则当x >0时,f(x)=.16.(5分)已知[x]表示不超过x的最大整数,如[﹣1.2]=﹣2,[1.5]=1,[3]=3.若f(x)=2x,g(x)=f(x﹣[x]),则=,函数g(x)的值域为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在①tanα=4,②7sin2α=2sinα,③cos这三个条件中任选一个,补充在下面问题中,并解决问题.已知,,cos(α+β)=﹣,,求cosβ.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知函数f(x)=x2+2(k﹣1)x+4.(1)若函数f(x)在区间[2,4]上具有单调性,求实数k的取值范围;(2)若f(x)>0对一切实数x都成立,求实数k的取值范围.19.(12分)已知函数f(x)=log a(3﹣x)+log a(x+3)(a>0,且a≠1).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由;(3)当a=3时,求函数f(x)的最大值.20.(12分)物联网(InternetofThings,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络.其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费y1(单位:万元),仓库到车站的距离x(单位:千米,x>0),其中y1与x+1成反比,每月库存货物费y2(单位:万元)与x成正比;若在距离车站9千米处建仓库,则y1和y2分别为2万元和7.2万元.这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?21.(12分)已知函数f(x)=a﹣(a∈R).(1)当a=时,求函数g(x)=的定义域;(2)判断函数f(x)的单调性,并用单调性的定义证明你的结论.22.(12分)已知函数f(x)=sin(x﹣)+cos(﹣x)+cos x+a的最大值为1.(1)求常数a的值;(2)求函数f(x)的单调递增区间;(3)求使f(x)<0成立的实数x的取值集合.期末综合一答案1.解:∵集合A={(x,y)|2x﹣y=0},B={(x,y)|3x+y=0},∴集合A∩B={(x,y)|}={(0,0)}.∴集合A∩B的子集个数为2.故选:C.2.解:设幂函数f(x)=xα,∵幂函数y=f(x )的图象过点,∴,∴,∴y=f(x)的定义域为(0,+∞),且在其定义域上是减函数,故选项A错误,选项B 正确,∵函数定义域为(0,+∞),不关于原点对称,所以不具有奇偶性,故选项C,D错误,故选:B.3.解:∵等边三角形一定是等腰三角形,反之不成立,∴p是q的充分不必要条件.故选:A.4.解:A.∵a>b>c>0,∴ab>0,∴,∴,∴,故A不正确;B.∵a>b>0,∴a(a﹣b)>0,b(a﹣b)>0,∴a2>ab>b2,故B正确;C.由a>b>0,取c=0,则ac2>bc2,故C错误;D.∵a<b<0,∴,故D错误.故选:B.5.解:∵a=tan=tan (+)==2+>2,b=cos=cos (+)=﹣sin<0,c=cos (﹣)=cos =<1,∴a>c>b.故选:D.6.解:因为全称命题的否定是特称命题,所以:命题p:所有的矩形都是平行四边形,则¬p为:存在一个矩形不是平行四边形.故选:C.7.选:A.8.解:由题意可得f(1)=1,对任意x1<x2,都有,则f(x1)﹣f(x2)<x2﹣x1即f(x1)+x1<f(x2)+x2,令g(x)=f(x)+x,则可得g(x)在R单调递增,且g(1)=2,由可得,g[log2(2x﹣1)]<g(1),故,解可得,0<x<log23.故选:D.9.解:对于A :是第而二象限角,所以A不正确;对于B :若圆心角为的扇形的弧长为π,则该扇形面积为:=.所以B正确;对于C:若角α的终边过点P(﹣3,4),则,所以C正确;对于D:若角α为锐角,则角2α为钝角,反例α=1°,则2α=2°是锐角,所以D不正确;故选:BC.10.解:函数其中a>0且a≠1,由于f(﹣x)=﹣f(x),且x∈R,所以函数为奇函数.当x =0时,f(0)=0,所以函数在其定义域上有零点,当当a>1时,函数中都为整函数,故在其定义域上为单调递增函数.故选:ABD.11.解:T ===π,故A正确;令f(x)=0,2x +=kπ,当x∈[0,π]时,x =,,故B不正确;当x =时,f(x )=取得最大值,故C正确;为了得到函数f(x )的图象,只要把函数图象上所有点的横坐标变为原来的倍(纵坐标不变),故D错误;故选:AC.12.解:二次函数f(x)在对称轴x=1处取得最小值,且最小值f(1)=﹣4,故选项A正确;二次函数f(x)的对称轴为x=1,其在(0,+∞)上有增有减,故选项B错误;由f(x)得,f(|x|)=|x|2﹣2|x|﹣3,显然f(|x|)为偶函数,故选项C正确;令h(x)=f(|x﹣1|)=|x﹣1|2﹣2|x﹣1|﹣3,方程f(|x﹣1|)=a 的零点转化为y=h(x)与y=a的交点,作出h(x)图象如右图所示:图象关于x=1 对称,当y=h(x)与y=a有四个交点时,两两分别关于x=1对称,所以x1+x2+x3+x4=4,故选项D正确.故选:ACD.13.解:原式=.故答案为:.14.解:∵tan(α﹣)=tan(α﹣)==2,则tanα=﹣3,故答案为:﹣3.15.解:∵f(x)是定义在R上的奇函数,且x≤0时,f(x)=x(x﹣1),设x>0,﹣x<0,则:f(﹣x)=﹣x(﹣x﹣1)=﹣f(x),∴f(x)=﹣x(x+1).故答案为:﹣x(x+1).16 .f(x)=2x,g(x)=f(x﹣[x]),g ()=f (﹣[])=f ()=f ()=2,由g(x)=2x﹣[x],[x]∈(x﹣1,x],x﹣[x]∈[0,1),所以g(x)∈[1,2),故答案为:;[1,2).四、解答题17.解:方案一:选条件①解法一:因为,所以.由平方关系sin2α+cos2α=1,解得或因为,所以.因为,由平方关系sin2(α+β)+cos2(α+β)=1,解得.因为,所以0<α+β<π,所以,所以cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα==.解法二:因为,所以点在角α的终边上,所以,.以下同解法一.方案二:选条件②因为7sin2α=2sinα,所以14sinαcosα=2sinα,因为,所以sinα≠0,所以.由平方关系sin2α+cos2α=1,解得.因为,所以.以下同方案一的解法一.方案三:选条件③因为,所以由平方关系sin2α+cos2α=1,得.因为,所以.以下同方案一的解法一.①18.解:(1)由函数f(x)=x2+2(k﹣1)x+4知,函数f(x)图象的对称轴为x=1﹣k.因为函数f(x)在区间[2,4]上具有单调性,所以1﹣k≤2或1﹣k≥4,解得k≤﹣3或k≥﹣1,所以实数k的取值范围为(﹣∞,﹣3]∪[﹣1,+∞).(2)解法一:若f(x)>0对一切实数x都成立,则△<0,所以4(k﹣1)2﹣16<0,化简得k2﹣2k﹣3<0,解得﹣1<k<3,所以实数k的取值范围为(﹣1,3).解法二:若f(x)>0对一切实数x都成立,则f(x)min >0,所以,化简得k2﹣2k﹣3<0,解得﹣1<k<3,所以实数k的为(﹣1,3).19.解:(1)要使函数有意义,则有,解得﹣3<x<3.所以函数f(x)的定义域为(﹣3,3).(2)函数f(x)为偶函数.理由如下:因为∀x∈(﹣3,3),都有﹣x∈(﹣3,3),且f(﹣x)=log a(3+x)+log a(﹣x+3)=log a(3﹣x)+log a(x+3)=f(x),所以f(x)为偶函数.(3)当a=3时,f(x)=log3(3﹣x)+log3(x+3)=log3[(3﹣x)(x+3)]=.令t=9﹣x2,且x∈(﹣3,3),易知,当x=0时t=9﹣x2取得最大值9,此时取得最大值log39=2,所以函数f(x)的最大值为2.20.解:设,其中x>0,当x=9时,,解得k=20,m=0.8,所以,y2=0.8x,设两项费用之和为z(单位:万元)则==7.2当且仅当,即x=4时,“=”成立,所以这家公司应该把仓库建在距离车站4千米处才能使两项费用之和最小,最小费用是7.2万元.21.解:(1)当时,函数,要使根式有意义,只需,所以,化简得3x≥3=31,解得x≥1,所以函数g(x)的定义域为[1,+∞);(2)函数f(x)在定义域R上为增函数.证明:在R上任取x1,x2,且x1<x2,则=,由x1<x2,可知,则,又因为,,所以f(x1)﹣f(x2)<0,即f (x1)<f(x2).所以f(x)在定义域R上为增函数.22.解:(1)∵====.(1)函数f(x)的最大值为2+a=1,所以a=﹣1.(2)对于函数f(x),由,解得,所以f(x)的单调递增区间为.(3)由(1)知.因为f(x)<0,即.∴,∴.所以,所以使f(x)<0成立的x的取值集合为.。
2019年人教版数学高一上学期综合检测卷
2019年人教版数学高一上学期综合检测卷一一、选择题(每小题5分,共60分)1、设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ).A .{x |0≤x <1}B .{x |0<x ≤1}C .{x |x <0}D .{x |x >1}2、函数22232xy x x -=--的定义域为( ) A 、(],2-∞ B 、(],1-∞ C 、11,,222⎛⎫⎛⎤-∞ ⎪ ⎥⎝⎭⎝⎦ D 、11,,222⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭3.直线3x+y+1=0的倾斜角为 ( )A .50ºB .120ºC .60ºD . -60º4、在空间中,l ,m ,n ,a ,b 表示直线,α表示平面,则下列命题正确的是( ) A 、若l ∥α,m ⊥l ,则m ⊥α B 、若l ⊥m ,m ⊥n ,则m ∥n C 、若a ⊥α,a ⊥b ,则b ∥α D 、若l ⊥α,l ∥a ,则a ⊥α5、过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( ).A .19x -9y =0B .9x +19y =0C .19x -3y = 0D .3x +19y =06.设函数11232221,,log ,333a b c ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭则,,a b c 的大小关系是( ) A. a b c << B. a c b << C. c a b << D. c b a << 7、如果0<ac 且0<bc ,那么直线0=++c by ax 不通过( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限8, 已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为 ( )A 、12-; B 、12; C 、2-; D 、2。
人教版2019学年高一数学考试试卷含答案(10套 )
人教版2019学年高一数学考试试题(一)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.下列四种说法正确的一个是 ( ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的数集BC .函数是一种特殊的映射D .映射是一种特殊的函数 2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( ) A .q p + B .q p 23+ C .q p 32+ D .23q p + 3.下列各组函数中,表示同一函数的是( )A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y == D . 2)(|,|x y x y == 4.已知函数23212---=x x x y 的定义域为( )A .]1,(-∞B .]2,(-∞C .]1,21()21,(-⋂--∞ D . ]1,21()21,(-⋃--∞ 5.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f( )A .1+πB .0C .πD .1-6.下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是 ( )7.设函数x x xf =+-)11(,则)(x f 的表达式为 ( )A .x x -+11B . 11-+x xC .xx +-11D .12+x x8.已知二次函数)0()(2>++=a a x x x f ,若0)(<m f ,则)1(+m f 的值为 ( )A .正数B .负数C .0D .符号与a 有关9.已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 ( )A .x b c a c y --=B .x c b a c y --=C .x ac bc y --= D .x ac cb y --= 10.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为( )A .)2,1[-B .]1,1[-C .)2,2(-D .)2,2[-二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.已知x x x f 2)12(2-=+,则)3(f = . 12.若记号“*”表示的是2*ba b a +=,则用两边含有“*”和“+”的运算对于任意三个实数“a ,b ,c ”成立一个恒等式 .13.集合A 中含有2个元素,集合A 到集合A 可构成 个不同的映射.14.从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满. 这样继续下去,建立所倒次数x 和酒精残留量y 之间的函数关系式 . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)①.求函数|1||1|13-++-=x x x y 的定义域;②求函数x x y 21-+=的值域;③求函数132222+-+-=x x x x y 的值域.16.(12分)在同一坐标系中绘制函数x x y 22+=,||22x x y +=得图象.17.(12分)已知函数x x f x x f x =+-+-)()11()1(,其中1≠x ,求函数解析式.18.(12分)设)(x f 是抛物线,并且当点),(y x 在抛物线图象上时,点)1,(2+y x 在函数)]([)(x f f x g =的图象上,求)(x g 的解析式.19.(14分)动点P 从边长为1的正方形ABCD 的顶点出发顺次经过B 、C 、D 再回到A ;设x 表示P 点的行程,y 表示PA 的长,求y 关于x 的函数解析式. 20.(14分)已知函数)(x f ,)(x g 同时满足:)()()()()(y f x f y g x g y x g +=-;1)1(-=-f ,0)0(=f ,1)1(=f ,求)2(),1(),0(g g g 的值.人教版2019学年高一数学考试试题(二)一、选择题:1、 设u={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(CuA ))(CuB ⋃的值为( ) (A ){0} (B ){0,1} (C ){0,1,2,3,4} (D ){0,1,4}2、 如是(x ,y )在映射f 下的象是(x+y,x-y),那么(4,2)在f 下的原象是( ) (A )(-3,1) (B )(3,-1) (C )(3,1) (D )(-3,-1)3、 已知:p:3+3=5,q :5>3,则下列判断中错误的是 ( ) (A )p 或q 为真,非q 为假 (B )p 或q 为真,非p 为真 (C )p 且q 为假,非p 为假 (D )p 且q 为假,p 或q 为真4、“p 或q 为真命题”是:“p 且q”为真命题的 ( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要5、已知)3(),1(log )(12--=fx x f 则为 ( )(A) 1 (B )9 (C )3 (D )8 6、若不等式022>++bx ax 的解集为(-31,21,),则b a +的值为( ) (A )10 (B )-10 (C )14 (D )-14 7、函数)0(12>+=-x y x 的反函数是 ( )(A )y=)21(11log 2<<-x x (B )y=)21(11log 2≤<-x x (C )y=)21(11log 2<<--x x (D ))21(11log 2≤<--=x x y 8、设a )21,0(∈,则2121,log ,a a a a之间的大小关系为 ( )(A )2121log >>aa aα (B)a a a a >>2121log(C)2121log a a a a>> (D)a a aa >>2121log9、设函数)3(log ,)4(),3()4(,)21()(2f x x f x x f x则⎪⎩⎪⎨⎧<+≥=的值为 ( )(A )23- (B )111 (C )481 (D )24110、函数)2(x a x y -=在20≤≤x 时有最大值a a 则,2的范围为( )(A )R a ∈(B ) a>2 (C )20≤≤a (D )a<011、在等差数列{n a }中324)(2)(1310753=++++a a a a a ,则数列前13项之和为 ( )(A )156 (B )52 (C )26 (D )1312、数列{ 123121,,,}----n n n a a a a a a a a 满足 是首项为1,公比为31的等比数列,则n s 等于 ( ) (A )),311(23n - (B )),311(231--n (C ))311(32n - (D ))311(321--n 13、已知等比数列{}n a 的公比86427531,31a a a a a a a a q ++++++-=则等于( )(A )31- (B )-3 (C )31 (D )3 14、{}n a 是公差为-2的等比数列,如果5097741=++++a a a a ,那么99963a a a a ++++ 的值是 ( )(A )-82 (B )-78 (C )-148 (D )-18215、数列 ,1181,851,521⨯⨯⨯的前n 项和为 ( ) (A )23+n n (B )46+n n (C )463+n n (D )231++n n二、填空题:16、设A=}{124|2<--x x x ,B=}⎩⎨⎧≤-+062|x x x 全集U=R ,那么(CuA )=⋂B 17、函数)23(log 221+-=x x y 的单调递增区间是 。
(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)
第一章综合测试一、单选题(每小题5分,共40分)1.已知集合{}{}31A x x x Z B x x x Z =∈=∈<,,>,,则A B =( )A .∅B .){3223--,,,C .{}202-,,D .{}22-,2.命题“()01x x e x ∀∈+∞+,,≥”的否定是( ) A .()01x x e x ∃∈+∞+,,≥B .()01x x e x ∀∈+∞+,,< C .()01x x e x ∃∈+∞+,,<D .()01x x e x ∀∈-∞+,,≥ 3.若集合{}0A x x =<,且B A ⊆,则集合B 可能是( ) A .{}1x x ->B .RC .{}23--,D .{}3101--,,, 4.若a b c R ∈,,且a b >,则下列不等式成立的是( ) A .22a b >B .11a b<C .a c b c >D .2211a bc c ++>5.已知a b R ∈,,则“20a b +=”是“2ab=-”成立的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.某市原来居民用电价为0.52元/kW h ,换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/kW h ,谷时段(晚上九点到次日早上八点)的电价为0.35元/kW h .对于一个平均每月用电量为200kW h 的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为( ) A .110kW hB .114kW hC .118kW hD .120kW h7.已知210a +<,则关于x 的不等式22450x ax a -->的解集是( ) A .{5x x a <或}x a -> B .{5x x a >或}x a -< C .{}5x a x a -<<D .{}5x a x a -<<8.若102x <<,则函数y = )A .1B .12C .14D .18二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合[)()25A B a ==+∞,,,.若A B ⊆,则实数a 的值可能是( ) A .3-B .1C .2D .510.下列不等式不一定正确的是( )A .12x x+≥B .222x y xy+≥C .222x y xy +>D .2x y+≥ 11.已知2323x y <<,<<,则( )A .2x y +的取值范围为()69,B .2x y -的取值范围为()23,C .x y -的取值范围为()11-,D .xy 的取值范围为()49,12.23520x x +->的充分不必要条件是( )A .132x -<<B .102x -<<C .12x <<D .16x -<<三、填空题(每小题5分,共20分)13.已知集合{}2114M m m =++,,,如果5M ∈,那么m =________.14.二次函数()2y ax bx c x R =++∈的部分对应值如表:则a =________;不等式20ax bx c ++>的解集为________.15.已知{}{}2212210A x x B x x ax a ==-+-<<,<,若A B ⊆,则a 的取值范围是________. 16.若正数a b ,满足1a b +=,则113232a b +++的最小值为________. 四、解答题(共70分)17.(10分)判断下列命题是全称量词命题还是存在量词命题. (1)任何一个实数除以1,仍等于这个数;(2)至少有一个整数,它既能被11整除,又能被9整除;(3)()210x R x ∀∈+,≥;(4)22x R x ∃∈,<.18.(12分)已知集合{3512A x x B x x ⎧⎫=-=⎨⎬⎩⎭<≤,<或}2x U R =>,.(1)求()UA B AB ,;(2)若{}2131C x m x m =-+<≤,且B C U =,求m 的取值范围.19.(12分)(1)已知集合{}{2124A a B ==,,,,,且A B B =,求实数a 的取值范围;(2)已知:20:40P x q ax -->,>,其中a R ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.20.(12分)“绿水青山就是金山银山”.随着经济的发展,我国更加重视对生态环境的保护,2018年起,政府对环保不达标的养鸡场进行限期整改或勒令关闭.一段时间内,鸡蛋的价格起伏较大(不同周价格不同).假设第一周、第二周鸡蛋的价格分别为x 元、y 元(单位:kg );甲、乙两人的购买方式不同:甲每周购买3kg 鸡蛋,乙每周购买10元钱鸡蛋.(1)若810x y ==,,求甲、乙两周购买鸡蛋的平均价格.(2)判断甲、乙两人谁的购买方式更实惠(平均价格低视为实惠),并说明理由.21.(12分)解关于x 的不等式()22340x ax a a R +-∈<.22.(12分)为了缓解市民吃肉难的生活问题,某生猪养殖公司欲将一批猪肉用冷藏汽车从甲地运往相距120千米的乙地,运费为每小时60元,装卸费为1 000元,猪肉在运输途中的损耗费(单位:元)是汽车速度(km /h )值的2倍.(说明:运输的总费用=运费+装卸费+损耗费) (1)若汽车的速度为每小时50千米,试求运输的总费用.(2)为使运输的总费用不超过1 260元,求汽车行驶速度的范围.(3)若要使运输的总费用最小,汽车应以每小时多少千米的速度行驶?第一章综合测试答案解析一、 1.【答案】D【解析】选D .因为{}{}321012A x x x Z =∈=--<,,,,,,{}{11B x x x Z x x =∈=>,>或}1x x Z -∈<,,所以{}22AB =-,.2.【答案】C【解析】选C .命题为全称量词命题,则命题“()01x x e x ∀∈+∞+,,≥”的否定是“()01xx e x ∃∈+∞+,,<”. 3.【答案】C【解析】选C .因为23A A -∈-∈,,所以{}23A --⊆,. 4.【答案】D【解析】选D .选项A :01a b ==-,,符合a b >,但不等式22a b >不成立,故本选项是错误的;选项B :当01a b ==-,符合已知条件,但零没有倒数,故11a b<不成立,故本选项是错误的;选项C :当0c =时,a c b c >不成立,故本选项是错误的; 选项D :因为210c +>,所以根据不等式的性质,由a b >能推出2211a bc c ++>. 5.【答案】B【解析】选B .220aa b b=-⇒+=,反之不成立. 所以“20a b +=”是“2ab=-”成立的必要不充分条件.6.【答案】C【解析】选C .设每月峰时段的平均用电量为kW h x , 则谷时段的用电量为()200kW h x -;根据题意,得:()()()0.520.550.520.352002000.5210%x x -+--⨯⨯≥,解得118x ≤. 所以这个家庭每月峰时段的平均用电量至多为118kW h . 7.【答案】A【解析】选A .方程22450x ax a --=的两根为5a a -,. 因为210a +<,所以12a -<, 所以5a a ->.结合二次函数2245y x ax a =--的图象,得原不等式的解集为{5x x a <或}x a ->,故选A . 8.【答案】C【解析】选C .因为102x <<,所以2140x ->,所以2211414122224x x +-⨯⨯=≤,当且仅当2x =4x =. 二、9.【答案】AB【解析】选AB .因为A B ⊆,所以2a <,结合选项可知,实数a 的值可能是3-和1. 10.【答案】BCD 【解析】选BCD .因为x 与1x同号, 所以112x x x x+=+≥,A 正确; 当x y ,异号时,B 不正确;当x y =时,222x y xy +=,C 不正确;当11x y ==-,时,D 不正确.11.【答案】ACD【解析】选ACD .因为2323x y <<,<<, 所以49426xy x <<,<<, 所以629x y +<<,而32y ---<<,所以12411x y x y ---<<,<<. 12.【答案】BC【解析】选BC .由不等式23520x x +->,可得22530x x --<,解得132x -<<,由此可得:选项A ,132x -<<是不等式23520x x +->成立的充要条件;选项B ,102x -<<是不等式23520x x +->成立的充分不必要条件;选项C ,12x <<是不等式23520x x +->成立的充分不必要条件; 选项D ,16x -<<是不等式23520x x +->成立的必要不充分条件. 三、13.【答案】4或1或1-【解析】①当15m +=时,4m =,此时集合{}1520M =,,,符合题意, ②当245m +=时,1m =或1-,若1m =,集合{}125M =,,,符合题意,若1m =-,集合{}105M =,,,符合题意, 综上所求,m 的值为4或1或1-. 14.【答案】1 {2x x -<或}3x >【解析】由表知2x =-时03y x ==,时,0y =, 所以二次函数2y ax bx c =++可化为()()23y a x x =+-.又因为1x =时,6y =-,所以1a =,图象开口向上,结合二次函数的图象可得不等式20ax bx c ++>的解集为{2x x -<或}3x >. 15.【答案】12a ≤≤【解析】方程22210x ax a -+-=的两根为11a a +-,,且11a a +->, 所以{}11B x a x a =-+<<.因为A B ⊆,所以1112a a -⎧⎨+⎩≤≥,解得12a ≤≤.16.【答案】47【解析】由1a b +=,知()()113232732323232910b a a b a b ab ++++==+++++, 又2124a b ab +⎫⎛= ⎪⎝⎭≤(当且仅当12a b ==时等号成立), 所以499104ab +≤,所以749107ab +≥. 四、17.【答案】(1)命题中含有全称量词“任何一个”,故是全称量词命题. (2)命题中含有存在量词“至少有一个”,是存在量词命题. (3)命题中含有全称量词“∀”,是全称量词命题. (4)命题中含有存在量词“∃”,是存在量词命题.18.【答案】(1)因为集合{3512A x x B x x ⎧⎫=-=⎨⎬⎩⎭<≤,<或}2x >,所以32AB x x ⎧⎫=⎨⎬⎩⎭≤或}2x >,因为{1U R B x x ==,<或}2x >,所以{}U12B x x =≤≤.所以()U 312AB x x ⎧⎫=⎨⎬⎩⎭≤≤.(2)依题意得:2131211312m m m m -+⎧⎪-⎨⎪+⎩<,<,≥,即2113m m m ⎧⎪-⎪⎨⎪⎪⎩>,<,≥,所以113m ≤<.19.【答案】(1)由题知BA ⊆.2=时,4a =,检验当4a =时,{}{}1241612A B ==,,,,,符合题意. 4=时,16a =,检验当16a =时,{}{}12425614A B ==,,,,,符合题意. 2a 时,0a =或1,检验当0a =时,{}{}124010A B ==,,,,,符合题意. 当1a =时,{}1241A =,,,,由于元素的互异性,所以舍去. 综上:4a =或16a =或0a =.(2)设{}{}240A x x B x ax ==->,>, 因为p 是q 的必要不充分条件,所以BA .①当0a >时,42a>,所以02a <<.②当0a <时,不满足题意.③当0a =时,:40q ->,即B ≠∅,符合题意. 综上:02a ≤<.20.【答案】(1)因为810x y ==,,所以甲两周购买鸡蛋的平均价格为()3831096⨯+⨯=元,乙两周购买鸡蛋的平均价格为()208010109810=+元. (2)甲两周购买鸡蛋的平均价格为3362x y x y++=, 乙两周购买鸡蛋的平均价格为2021010xyx y x y=++, 由(1)知,当810x y ==,时,乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,猜测乙的购买方式更实惠.证法一(比较法):依题意0x y ,>,且x y ≠,因为()()()()22420222x y xy x y x y xy x y x y x y +--+-==+++>, 所以22x y xyx y++>, 所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠. 证法二(分析法):依题意0x y ,>,且x y ≠, 要证:22x y xyx y++>, 只需证:()24x y xy +>只需证:222x y xy +>, 只需证:x y ≠(已知).所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠. 21.【答案】由于()22340x ax a a R +-∈<可化为()()40x a x a -+<,且方程()()40x a x a -+=的两个根分别是a 和4a -.当4a a =-,即0a =时,不等式的解集为∅; 当4a a ->,即0a >时,解不等式得4a x a -<<; 当4a a -<,即0a <时,解不等式得4a x a -<<.综上所述,当0a =时,不等式的解集为∅;当0a >时,不等式的解集为{}4x a x a -<<;当0a <时,不等式的解集为{}4x a x a -<<.22.【答案】(1)当汽车的速度为每小时50千米时,运输的总费用为:()120601000250124450⨯++⨯=元. (2)设汽车行驶的速度为km /h x , 由题意可得:12060100021260x x⨯++≤, 化简得213036000x x -+≤, 解得4090x ≤≤,故为使运输的总费用不超过1260元,汽车行驶速度不低于40km /h 时,不高于90km /h . (3)设汽车行驶的速度为km /h x ,则运输的总费用为12072006010002100010001240x x x ⨯++++=≥, 当72002x x=,即60x =时取得等号, 故若要使运输的总费用最小,汽车应以每小时60千米的速度行驶.。
人教版2019学年高一数学考试试卷与答案(共10套 )
人教版2019学年高一数学考试试题(一)一、选择题1.已知D 、E 、F 分别是ΔABC 的边AB 、BC 、CA 的中点,则下列等式中不正确的是A =+B =++C EC DA DE =+D FD DE DA =+ 2.设θ是第二象限角,则点))cos(cos ),(sin(cos θθP 在A 第一象限B 第二象限C 第三象限D 第四象限 3.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是A .0.42B .0.28C .0.3D .0.7 4.若││=2sin150,││=4cos150, 与的夹角为030,则•的值是A23B 3C 23D 215.把函数)34cos(π+=x y 的图象向右平移θ(θ>0)个单位,所得的图象关于y 轴对称,则θ的最小值为A 6πB 3πC 32πD 34π6.用秦九韶算法计算多项式283512)(x x x f +-+=在4-=x 时的值时,3V 的值为A. -845B. 220C. 7.输出的结果为A 8B 20C 9D 8.函数)2cos 21(log 21x y -=A )0,6(π-B 4,0(π) C [2,6ππ9.下面是某个算法的程序,如果输入的x 值是20, 则输出的y 值是A .100B .50C .25D .15010.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a ,b ]是其中的一组,抽查出的个体在该组上的频率为m ,该组上的直方图的高为h ,则=-||b a A .h m B .hm C .mhD .m h + 11.若函数()()sin f x x ωϕ=+的图象(部分)如图所示,则ω和ϕ的取值是 A .1,3πωϕ== B. 1,3πωϕ==-C. 1,26πωϕ==D. 1,26πωϕ==-12.已知平面上直线l 的方向向量=(53,54-),点)0,0(O 和)2,1(-A 在l 上的射影分别是O '和A ',则A O ''=λ,其中λ等于A511 B - 511C 2D -2 二、填空题13.某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有____学生 14.若41log )sin(8=-απ,且)0,2(πα-∈,则)2cos(απ-的值是____________ 15.两个正整数840与1764的最大公约数为____ _____16.函数x x y cos sin -=的图象可以看成是由函数x x y cos sin +=的图象向右平移得到的,则平移的最小长度为_____________. 选择题答题卡三、解答题17.已知平面内三个已知点)3,8(),0,0(),7,1(C B A ,D 为线段BC 上的一点,且有⊥++)(,求点D 的坐标.18.设一元二次方程02=++C Bx x ,若B 、C 是一枚骰了子先后掷两次出现的点数,求方程有实根的概率。
2019级高一数学必修一综合1(试卷)
2019级高一数学必修一综合1一、选择题(本大题共12小题,共60.0分) 1. 已知幂函数的图象与轴无公共点,则的值的取值范围是A.B. C.D.2. 函数是指数函数,则a 的值为( )A.B. 1C.D. 1或3. 已知集合A ={x |y =},B =,则A ∩B =()A. [-2,-1]B. [-1,2)C. [-1,1]D. [1,2)4. 已知a =log 2,b =5-3,c =2,则a ,b ,c 的大小关系为( )A. a <b <cB. a <c <bC. c <b <aD. c <a <b5. 已知函数g (x )=f (x )+x ,若g (x )有且仅有一个零点,则a的取值范围是( )A. (-∞,-1)B. [-1,+∞)C. (-∞,0)D. [0,+∞)6. 已知函数f (x )=,方程f (x )=k 恰有两个解,则实数k 的取值范围是( )A. (,1)B. [,1)C. [,1]D. (0,1)7. 已知f (x )=,则方程f (f (x ))=1的实数根的个数是( )A. 4B. 5C. 6D. 78. 在下列区间中,函数的零点所在的区间为( )A.B.C.D.9. 已知f (x )=满足对任意x 1≠x 2,都有<0成立,那么a 的取值范围是()A. (0,]B. [,1)C. [,]D. [,1)10. 已知函数若均不相等,且,则的取值范围是 A. (0,9) B. (2,9)C. (2,11)D. (9,11)11. 已知函数,若,则的取值范围是()A. B.C.D.12. 已知函数是定义在上的偶函数,当时,,则函数的零点个数()A.B. C.D.二、填空题(本大题共4小题,共20.0分)13. 计算= ______ .14. 函数的单调递减区间为______________. 15. 已知函数的定义域为,对任意,有,且,则不等式的解集为__________.16. 函数的值域为 ________________.三、解答题(本大题共5小题,共60.0分) 17. 设集合,.(Ⅰ)若,求实数的值; (Ⅱ)若,求实数组成的集合.18.已知函数f(x)=(a2-3a+3)a x是指数函数,(1)求f(x)的表达式;(2)判断F(x)=f(x)-f(-x)的奇偶性,并加以证明;(3)解不等式:log a(1-x)>log a(x+2)。
2019年秋学期高一数学(必修1)综合试卷(无答案)
2019年秋学期高一数学综合检测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分(时间:120分钟 满分:150分) 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合P={x |x ²≤1},M={a}.若P ∪M=P,则a 的取值范围是( ) A .(-∞,-1] B .[1,+∞) C . [-1,1] D .(-∞,-1]∪[1,+∞)2.若()f x =则()f x 的定义域为( )A . 1,02⎛⎫-⎪⎝⎭ B . 1,02⎛⎤- ⎥⎝⎦ C . 1,2⎛⎫-+∞ ⎪⎝⎭D .()0,+∞ 3.设()f x 是定义在R 上的奇函数,当x ≤0时, ()f x =2x ²-x 则()1f = ( ) A . -3 B . -1 C . 1 D .34.设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .()()f x g x - 是奇函数 B .()()f x g x +是偶函数 C .()()f x g x -是奇函数 D . ()()x g x f +是偶函数5.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A . 三棱锥B .圆柱C .球D .正方体 6.给出下列几个命题:①过一点有且只有一条直线与已知直线平行; ②过一点有且只有一条直线与已知直线垂直; ③过平面外一点有且只有一条直线与该平面平行; ④过平面外一点有且只有一个平面与该平面平行. 其中正确命题的个数为( ) A .0 B .1 C .2 D .37.如图是长和宽分别相等的两个矩形,给定下列三个命题:① 存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱, 其正(主)视图、俯视图如右图,其中真命题的个数是 ( )A . 3B .2C .1D .0正(主)视图 俯视图8.已知平面α∥平面β,b ⊂α,则( )A .b ⊂βB .b ∥βC .b ,β相交D .以上均有可能9.一个圆柱的侧面展开图是一个正方形,这个圆柱的表面积与侧面积的比是( ) A .122ππ+ B .142ππ+ C .124ππ+ D .144ππ+ 10.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的几何体的体积是( ) A .23 B .76 C .45 D .5611.体积相等的正方体、球、等边圆柱(即底面直径与母线相等的圆柱)的全面积分别为S 1、S 2、S 3,那么它们的大小关系为( )A .S 1<S 2<S 3B .S 1<S 3<S 2C .S 2<S 3 <S 1D .S 2<S 1<S 3 12.已知a 、b 、c 为三条不重合的直线,α、β为两个不重合的平面. ①a ∥c ,b ∥c ⇒a ∥b ; ②a ∥β,b ∥β⇒a ∥b ; ③a ∥c ,c ∥α⇒a ∥α; ④a ∥β,a ∥α⇒α∥β; ⑤a ⊄α,b ⊂α,a ∥b ⇒a ∥α. 其中正确的命题是( ) A .①⑤ B .①② C .②④ D .③⑤第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把答案填在题中横线上) 13.将一个半径为R 的球削成尽可能大的正方体,则此正方体的体积是____________. 14.关于函数2232x x y --=有以下4个结论:(1)定义域为(-∞,-1)∪(3,+∞); (2)递增区间为[1,+∞); (3)是非奇非偶函数; (4)值域是(116,+∞) 则正确的结论是________________(填序号) 15. 给出下列命题:(1).若m ⊂α, n ⊂α, m ∥β, n ∥β, 则α∥β (2).若α内有无数条直线平行于β, 则α∥β (3).若α内任意直线都平行于β, 则α∥β(4).若m // n,m//α,m //β,n//α,n//β,则α//β (5).若α//γ,β//γ,则α//β其中正确的命题为___________(填序号)16.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB=6,BC=则棱锥O –ABCD 的体积为____________.三、解答题(本大题共6个小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)集合A={X|-1≤x ≤7},B={X|2-m ≤x ≤3m+1},若A ∩ B= B ,求实数m 的取值范围.18.(本小题满分12分)设函数()()28f x ax b x a ab =+---的两个零点分别是-3和2;⑴求()f x .⑵当函数()f x 的定义域是[0,1]时,求函数()f x 的值域.19.(本小题满分12分)多面体P –ABCD 的直观图及三视图如图所示,其中正视图、侧视图是等腰直角三角形,俯视图是正方形,E 、F 、G 分别为PC 、PD 、BC 的中点. ⑴求证:PA ∥平面EFG .⑵求三棱锥P –DCG 的体积.20.(本小题满分12分)在正方体ABCD –A 1B 1C 1D 1中,M,E,F,N 分别是A 1B 1,B 1C 1,C 1D 1,D 1A 1的中点. ⑴求异面直线BD 与ME 所成角的大小; ⑵求证:E,F,B,D 四点共面;⑶求证:平面NAN ∥平面EFDB .21.(本小题满分12分) 如图,在三棱柱ABC –A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N , A C ∩平面BC 1N=N 求证:N 为AC 的中点.22.(本小题满分14分)有一个圆锥的侧面展开图是一个半径为10,圆心角为 o216 的扇形,在这个圆锥中内接一个高为x 的圆柱. ⑴求圆锥的体积;⑵当x 为何值时,圆柱的侧面积()S x 最大?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019级高一数学必修一综合1
一、选择题(本大题共12小题,共60.0分)
1.已知幂函数的图象与轴无公共点,则的值的取值范围是
A. B.
C. D.
2.函数是指数函数,则a的值为( )
A. B. 1 C. D. 1或
3.已知集合A={x|y=},B=,则A∩B=()
A. [-2,-1]
B. [-1,2)
C. [-1,1]
D. [1,2)
4.已知a=log2,b=5-3,c=2,则a,b,c的大小关系为()
A. a<b<c
B. a<c<b
C. c<b<a
D. c<a<b
5.已知函数g(x)=f(x)+x,若g(x)有且仅有一个零点,则a
的取值范围是()
A. (-∞,-1)
B. [-1,+∞)
C. (-∞,0)
D. [0,+∞)
6.已知函数f(x)=,方程f(x)=k恰有两个解,则实数k的取值范
围是()
A. (,1)
B. [,1)
C. [,1]
D. (0,1)
7.已知f(x)=,则方程f(f(x))=1的实数根的个数是()
A. 4
B. 5
C. 6
D. 7
8.在下列区间中,函数的零点所在的区间为()
A. B.
C. D.
9.已知f(x)=满足对任意x1≠x2,都有<0成立,那么
a的取值范围是()
A. (0,]
B. [,1)
C. [,]
D. [,1)
10.已知函数若均不相等,且,则的
取值范围是
A. (0,9)
B. (2,9)
C. (2,11)
D. (9,11)
11.已知函数,若,则的取值范围是()
A. B.
C. D.
12.已知函数是定义在上的偶函数,当时,
,则函数的零点个数()
A. B. C. D.
二、填空题(本大题共4小题,共20.0分)
13.计算= ______ .
14.函数的单调递减区间为______________.
15.已知函数的定义域为,对任意,有,且,
则不等式的解集为__________.
16.函数的值域为________________.
三、解答题(本大题共5小题,共60.0分)
17.设集合,.
(Ⅰ)若,求实数的值;
(Ⅱ)若,求实数组成的集合.
18.已知函数f(x)=(a2-3a+3)a x是指数函数,
(1)求f(x)的表达式;
(2)判断F(x)=f(x)-f(-x)的奇偶性,并加以证明;
(3)解不等式:log a(1-x)>log a(x+2)。
19.函数的定义域为.
Ⅰ设,求t的取值范围;
Ⅱ求函数的值域.
20.如图是一个二次函数y=f(x)的图象
(1)写出这个二次函数的零点
(2)求这个二次函数的解析式
(3)当实数k在何范围内变化时,函数g(x)=f(x)-kx在区间[-2,2]上是单调函数?
21.已知方程.
(1)若此方程有两个正实根,求实数的取值范围;
(2)若此方程有两个正实根均在,求实数的取值范围.。