遗传学(第二版)刘庆昌-重点整理1
遗传学(刘庆昌第二版) 近亲繁殖与杂种优势 答案
《遗传学(第二版)》(刘庆昌主编)部分习题解答四川农业大学农学院生物技术系 杨先泉 第九章 近亲繁殖和杂种优势(p203)3. 假设有3对独立遗传的异质基因,自交5代后群体中3对基因杂合(个体)的比例是多少?3对基因中2对基因杂合、1对基因纯合(个体)的比例是多少?3对基因均纯合(个体)的比例是多少?[提示] 根据孟德尔遗传规律,1对基因杂合体自交r 代,后代群体中纯合体的比例为112r ⎛⎞−⎜⎟⎝⎠,杂合的比例为12r ⎛⎞⎜⎟⎝⎠;n 对独立遗传基因杂合体自交后代中,各种基因型类型及比例符合二项分布:11122n r r ⎡⎤⎛⎞⎛⎞−+⎜⎟⎜⎟⎢⎥⎝⎠⎝⎠⎣⎦。
[答案] 1对基因自交5代,纯合体的比例为3132,杂合体的比例为132; 由于3对(n=3)基因独立遗传,因此自交5代,x 对基因纯合(3-x 对基因杂合)的比例为:()33!311!3!3232x x x x −⎛⎞⎛⎞××⎜⎟⎜⎟×−⎝⎠⎝⎠。
3对基因杂合(x=0)的比例为:3.05×10-51对基因纯合,2对基因杂合(x =1)的比例为:2.84×10-33对基因纯合(x =3)的比例为:0.9099. A 、B 、C 、D 是4个高粱自交系,其中A 和D 是姊妹自交系,B 和C 是姊妹自交系。
四个自交系可配成6个单交种,为了使双杂种的杂种优势最强,你将选哪两个单交种进行杂交,为什么?[答案] 影响杂种优势最主要的因素是双亲间基因型差异,双亲间基因型差异越大,杂种的杂合程度越高,杂种优势越强;同时,亲本的纯合度越高,杂种群体的整齐度越高,杂种优势最明显。
单交种A ×D 与单交种B ×C 均由姊妹自交系产生,具有较高的纯合度;同时两个单交种间的遗传差异最大;因此双交种(A ×D)×(B ×C)的杂种优势最强。
刘庆昌遗传学复习资料
遗传学复习资料第一章绪论一、遗传学研究方向:遗传学是研究生物遗传和变异的科学,直接探索生命起源和进化的机理。
同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。
*遗传:是指亲代与子代相似的现象。
如种瓜得瓜、种豆得豆。
*变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。
二、为什么说遗传、变异和选择是生物进化和新品种选育的三大因素?答:生物的遗传是相对的、保守的,而变异是绝对的、发展的,没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。
遗传和变异这对矛盾不断地运动,经过自然选择,才形成各色的物种。
同时经过人工选择,才育成适合人类需要的不同品种。
因此,遗传、变异和选择是生物进化和新品种选育的三大因素。
第二章遗传的细胞学基础一、真核细胞的结构与功能:质膜:细胞表面的一层单位膜,特称为质膜。
真核细胞除了具有质膜、核膜外,发达的细胞内膜形成了许多功能区隔。
由膜围成的各种细胞器,如核膜、内质网、高尔基体、线粒体、叶绿体、溶酶体等,在结构上形成了一个连续的体系,称为内膜系统。
内膜系统的作用:1.使细胞内表面积增加了数十倍,各种生化反应能够有条不紊地进行;2.细胞代谢能力也比原核细胞大为提高。
细胞核:细胞核是细胞内最重要的细胞器,核表面是由双层膜构成的核被膜,核内包含有由DNA和蛋白质构成的染色体。
细胞质:存在于质膜与核被膜之间的原生质称为细胞质,细胞之中具有可辨认形态和能够完成特定功能的结构叫做细胞器。
除细胞器外,细胞质的其余部分称为细胞质基质或胞质溶胶,其体积约占细胞质的一半。
细胞质基质并不是均一的溶胶结构,其中还含有由微管、微丝和中间纤维组成的细胞骨架结构。
细胞质基质的功能:1)具有较大的缓冲容量,为细胞内各类生化反应的正常进行提供了相对稳定的离子环境。
2)许多代谢过程是在细胞基质中完成的,如①蛋白质的合成、②mRNA的合成、③脂肪酸合成、④糖酵解、⑤磷酸戊糖途径、⑥糖原代谢、⑦信号转导。
遗传学(第二版)___ 重点整理1
遗传学(第二版)___ 重点整理1引言遗传、变异和进化是生物学中的重要概念。
遗传是指亲代和子代之间的相似性,具有相对稳定性和保守性的特点;变异是指亲代和子代之间以及子代个体之间的差异,具有普遍性和绝对性的特点,分为可遗传的和不可遗传的变异;进化是指生物体在生命繁衍过程中通过遗传将物种特性传递下去,经过自然和人为的干涉,后代优于亲代,产生新物种的过程。
本文将探讨遗传、变异和进化之间的关系以及细胞遗传学的相关内容。
遗传与变异的关系遗传和变异是生物繁殖过程中的两个矛盾对立的方面。
遗传是相对稳定和保守的,而变异是绝对的和进步的。
变异是受遗传控制的,不是任意变更的。
在生物的繁殖过程中,每一代都会传递既有遗传又有变异的特性。
生物是在这种矛盾的斗争中不断向前发展的。
选择所需要的变异,从而发展成为生产和生活中所需要的品种。
因此,遗传、变异和选择是生物进化和新品种选育的三大要素。
进化的两种方式生物进化有两种方式:渐变式和跃变式。
渐变式是指通过积累变异成为新类型,如适应性进化;跃变式是指染色体加倍成为新物种,如倍性育种和基因工程育种。
遗传与变异对进化的影响生物进化是环境条件对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代(遗传),变异逐代积累导致物种演变,产生新物种。
动、植物和微生物新品种选育(育种)实际上是一种人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求。
细胞遗传学细胞遗传学是研究细胞遗传现象的学科,包括染色体结构和功能、基因表达和调控、细胞分裂和遗传变异等方面。
其中,染色体结构和功能是细胞遗传学的重要研究内容之一。
结论遗传、变异和进化是生物学中的重要概念,它们之间相互作用,构成了生物进化和新品种选育的三大要素。
细胞遗传学是研究细胞遗传现象的学科,包括染色体结构和功能、基因表达和调控、细胞分裂和遗传变异等方面。
对于深入理解生物学和进化学的相关内容具有重要意义。
真核生物的染色体DNA具有多个复制起始点,形成多个复制子(replicon),在复制过程中形成双向复制(nal n)。
最新刘庆昌版遗传学答案
刘庆昌版遗传学课后习题答案第一章遗传的细胞学基础1 •一般染色体的外部形态包括哪些部分?着丝点、染色体臂、主缢痕、随体。
2 •简述有丝分裂和减数分裂的主要区别。
⑴减数分裂前期有同源染色体配对(联会);⑵减数分裂遗传物质交换(非姐妹染色单体片段交换);⑶减数分裂中期后染色体独立分离,而有丝分裂则着丝点裂开后均衡分向两极;⑷减数分裂完成后染色体数减半;⑸分裂中期着丝点在赤道板上的排列有差异:减数分裂中同源染色体的着丝点分别排列于赤道板两侧,而有丝分裂时则整齐地排列在赤道板上。
4. 某物种细胞染色体数为2n= 24,分别指出下列各细胞分裂时期中的有关数据:(1)有丝分裂后期染色体的着丝点数;(2)减数分裂后期I染色体着丝点数;(3)减数分裂中期I的染色体数;(4)减数分裂末期1I的染色体数。
(1) 48 (2) 24 ( 3) 24 (4) 125 •果蝇体细胞染色体数为2n= 8,假设在减数分裂时有一对同源染色体不分离,被拉向同一极,那么:(1)二分子的每个细胞中有多少条染色单体?(2)若在减数分裂第二次分裂时所有的姊妹染色单体都分开,则产生四个配子中各有多少条染色体?(3)用n表示一个完整的单倍染色体组,应怎样表示每个配子的染色体数?(1)一个子细胞有10条染色单体,另一个子细胞中有6条染色单体(2)两个配子中有5条染色体,另两个配子中有3条染色体。
(3)n+1 和n—1。
6. 人的受精卵中有多少条染色体?人的初级精母细胞、初级卵母细胞、精细胞、卵细胞中各有多少条染色体?46;46;46;23;237 .水稻细胞中有24条染色体,小麦中有42条染色体,黄瓜中有14条染色体。
理论上它们各能产生多少种含不同染色体的雌雄配子?12 21 7水稻:2小麦:2黄瓜:2&假定一个杂种细胞里含有3对染色体,其中A B、C来自父本、A' B'、C'来自母本。
通过减数分裂能形成几种配子?其染色体组成如何?。
遗传学(第二版)刘庆昌-重点整理1
绪论Heredity <遗传>亲代与子代<上下代〕之间相似的现象遗传的特点:相对稳定性、保守性.Variation <变异>亲代与子代之间以与子代个体之间的差异.变异的特点:普遍性和绝对性.分为可遗传的变异〔hereditable variation〕,和不可遗传的变异〔non-hereditable variation〕, 变异的多态性〔polymorphism of variation〕.Evolution <进化>生物体在生命繁衍进程中,一代一代繁殖,通过遗传把物种特性传递下去.但不可避免地遭受自然和人为的干涉,即遗传—变异—选择〔淘汰坏的,保留好的〕,后代优于亲代,称为进化.进化的两种方式:渐变式:积累变异成为新类型〔continual variation〕,如适应性进化.跃变式:染色体加倍成为新物种,如倍性育种和基因工程育种.遗传与变异的关系遗传与变异是矛盾对立统一的两个方面.即遗传是相对的,保守的;变异是绝对的,进步的;变异受遗传控制,不是任意变更的.具体如下:★遗传与变异同时存在于生物的繁殖过程中,二者之间相互对立、又相互联系,构成生物的一对矛盾.每一代传递既有遗传又有变异,生物就是在这种矛盾的斗争中不断向前发展.选择所需要的变异,从而发展成为生产和生活中所需要的品种.因此,遗传、变异和选择是生物进化和新品种选育的三大要素.3、遗传、变异与进化的关系生物进化就是环境条件〔选择条件〕对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代〔遗传〕,变异逐代积累导致物种演变,产生新物种.动、植物和微生物新品种选育〔育种〕实际上是一种人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求.摩尔根创立基因学说克里克提出的"中心法则〞.Human Genome Project <HGP>Epigenetics 表观遗传学1. 概念:基因的DNA序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可遗传的表型.2. 特征: <1>可遗传;<2> 可逆性;<3> DNA不变3. 表观遗传学的现象:<1> DNA甲基化<2> 组蛋白修饰<3> MicroRNA<4> Genomic imprinting<5>休眠转座子激活…第一章Cytogenetics 细胞遗传学Plasma membrane 〔细胞质膜〕Cytoplasm<细胞质〕Nucleoid 〔拟核〕Plasmid 〔质粒〕Prokaryote 〔原核生物〕线粒体mitochondria叶绿体chloroplast内质网The Endoplasmic Reticulm <ER>核糖体ribosomeChromatin and Chromosome <染色质和染色体>染色体是遗传物质的主要载体核小体是染色质的基本结构单位Euchromatin〔常染色质〕是指间期细胞核内染色较浅、低度折叠压缩的染色质,是染色质中转录活跃部位,因此又称为活性染色质,处于常染色质状态是基因转录的必要条件.Heterochromatin〔异染色质〕是指间期细胞核内染色很深、压缩程度高,处于凝集状态的染色质,无转录活性,因此也叫非活性染色质.Morphology of Chromosome <染色体形态>中间着丝点染色体〔Metacentric Chromosome〕近中着丝点染色体<Sub-metacentric chro〕近端着丝点染色体<Acrocentric chro〕顶端着丝点染色体〔Telocentric chro〕同源染色体〔Homologous chromosome〕在生物体细胞内,具有形态和结构相同的一对染色体,且含有相同的基因位点;★非同源染色体〔non-homologous chromosome〕一对染色体与另一对形态结构不同的染色体之间,互称为非同源染色体,也叫异源染色体,含有不同的基因位点.核型分析〔Analysis of karyotype〕.Amitosis〔无丝分裂〕Mitosis〔有丝分裂〕细胞周期〔Cell cycle〕指细胞从前一次分裂结束到下一次分裂终了所经历的时期,一个完整的细胞周期包括分裂间期〔Interphase〕和分裂期两个阶段.Mitosis〔有丝分裂〕前期<prophase>中期<metaphase>后期<anaphase>末期<telophase>Meiosis 〔减数 分裂〕第一次分裂是减数的;第二次分裂是不减数的.第一次分裂复杂,时间长;第二次分裂跟一般的有丝分裂一样.同源染色体<homologous chromosome>在二倍体生物中,每对染色体的两个成员中一个来自父方,一个来自母方,其形态大小相同的染色体称为同源染色体.★ 非同源染色体<nonhomologous chromosome>不属于同一对的染色体称为非同源染色体.★ 联会<synapsis>同源染色体的两个成员侧向连接,像拉链一样地并排配对称为联会.联会始于偶线期,终止在双线期.减数分裂的特点1、具有一定的时空性,也就是说它仅在一定的发育阶段,在生殖细胞中进行.2、减数分裂经第一次分裂后染色体数目减半,所以减数分裂的产物是单倍体.3、前期长而复杂,同源染色体经历了配对〔联会〕、交换过程,使遗传物质进行了重组.4、每个细胞遗传信息的组合是不同的.无性生殖 〔Asexual reproduction>母体直接产生子代的繁殖方式.有性生殖〔Sexual reproduction>生物体在于特定部位产生雌雄配子,两种配子受精结合成合子, 由合子进一步分裂,分化,生长形成新的个体的繁殖方式.生活周期是指从合子到成熟个体,再到死亡所经历的一系列发育阶段,包括孢子体世代和配子体世代.有丝分裂 减数分裂 分裂细胞类型体细胞 原始生殖细胞〔孢母细胞〕 细胞分裂次数复制一次分裂一次 复制一次分裂二次 子细胞数目2 4 染色体数目变化2n→2n 2n→n DNA 分子数变化2n→4n→2n 2n→4n→2n→n 染色单体数目变化0→4n→0 0→4n→2n→0 同源染色体行为不联会、无四分体形成 联会后形成四分体 可能发生的变异基因突变和染色体变异 基因突变、染色体变异和基因重组 意义 有丝分裂使生物在个体发育中亲代细胞与子代细胞之间减数分裂和受精作用使上下代生物之间保持染色体数目恒定,高频率基因重组1. 孢子体世代〔sporophyte generation〕有性生殖动植物从受精合子发育为一个成熟的个体,在此过程中,无配子形成和受精发生.也称为无性世代.2. 配子体世代〔gametophytic generation〕孢子体经过发育,某些细胞和组织将产生雌雄配子或雌雄配子体,配子经受精作用形成合子的过程.也称为有性世代.第二章DNA作为主要遗传物质DNA作为遗传信息载体核酸<Nucleic acid>是一类重要的生物大分子,在生物体内负责生命信息的储存和传递.DNA双螺旋结构模型是分子〔生物学〕遗传学诞生的标志.★DNA分子双螺旋结构模型要点<1> 两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行地环绕于同一轴上,很象一个扭曲起来的梯子.<2> 两条多核苷酸链走向为反向平行.即一条链磷酸二脂键为5’-3’方向,而另一条为3’-5’方向,二者刚好相反.<3> 每条长链的内侧是扁平的碱基,碱基一方面与脱氧核糖相联系,另一方面通过氢键<hydrogen bond>与它互补的碱基相联系,相互层叠宛如一级一级的梯子横档.互补碱基对A 与T之间形成两对氢键,而C与G之间形成三对氢键.<4> 上下碱基对之间的距离为3.4Å.每个螺旋为34Å<3.4nm>长,刚好含有10个碱基对,其直径约为20Å.<5>在双螺旋分子的表面大沟<major groove>和小沟<minor groove>交替出现.DNA复制的明显方式——半保留复制〔semiconservative replication〕.是遗传信息能准确传递的保证,是物种稳定性的分子基础.DNA分子的结构特点和DNA功能结构特点稳定性:主链:磷酸与脱氧核糖交替排列稳定不变.碱基对:严格遵循碱基配对原则.多样性:碱基个数、排列顺序不同.特异性:每个DNA分子独一无二.功能DNA具有基因的所有属性,基因也就是DNA的一个片段.DNA的基本功能是作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础.DNA复制〔Replication〕是指以原来的DNA分子为模板合成相同分子的过程,遗传信息通过亲代DNA分子的复制传递给子代.解链酶<helicase>解开DNA双链中氢键,消耗A TP单链结合蛋白〔single-stranded DNA-binding protein〕与单链DNA结合,保持模板处于单链状态,保护复制中的DNA单链不被核酸酶降解DNA拓扑异构酶〔topoisomerase>引物酶<primase>DNA聚合酶〔DNA polymerase>DNA连接酶<DNA ligase>复制起始点<origin, ori>:DNA复制开始的特定位点.原核生物只有一个复制起始点;真核生物染色体DNA有多个复制起始点,同时形成多个复制单位,两个起始点之间的DNA片段称为复制子<replicon>.复制叉<replication fork>双向复制<bidirectional replication>原核生物从一个固定的起始点开始,同时向两个方向进行,称为双向复制.用电子显微镜看到了DNA复制过程中出现一些不连续片段,这些不连续片段只存在与DNA 复制叉上其中的一股.后来就把这些不连续的片段称为冈崎片段.复制有终止信号polⅠ5′→3′外切酶活性水解引物polⅠ聚合活性填补空隙DNA连接酶连接缺口.★真核生物DNA合成的特点1、DNA合成发生的时间:仅为细胞周期的S期.2、真核生物DNA聚合酶多<种类, 拷贝数>3、复制的起始点为多起点.4、合成所需的RNA引物和冈崎片断都比原核生物的短.5、核小体的复制.6、染色体端粒的复制.端粒的合成是在端粒酶作用下完成★真核生物染色体为线状,存在端粒1、防止染色体末端为DNA酶酶切;2、防止染色体末端与其它DNA分子的结合;3、使染色体末端在DNA复制过程中保持完整.信使RNA <messenger RNA,mRNA>转移RNA <transfer RNA,tRNA>核糖体RNA <ribosomal RNA,rRNA>真核生物的核糖体,含有5S、5.8S、18S和28S 4种rRNA和约80种蛋白质.原核生物含有5S, 16S和23S三种种rRNA,占总RNA的80%〔细胞〕.转录〔transcription〕:以DNA为模板,在RNA聚合酶〔RNA polymerase〕的作用下合成mRNA,将遗传信息从DNA分子上转移到mRNA分子上,这一过程称为转录〔transcription〕.模板链用作RNA合成模板的链〔template strand, antisense strand〕编码链互补于模板链的DNA链. 〔coding strand, sense strand〕启动子〔promoter〕是位于结构基因5’端上游的一段特异的DNA序列,通常位于基因转录起点100bpX围内,是RNA聚合酶识别并结合形成转录复合物的部位.启动点: 转录起始的第一个碱基;转录单位<transcription unit>:由启动子到终止子的序列转录起始点<startpoint>为+1, 起始点5’端的序列称为上游<upstream>, 起始点3’端的序列为下游<downstream>.序列都约定俗成的写成从5’端向3’端顺式作用元件---- 真核生物Cis-regulatory element位于真核DNA转录起始点上游,与转录起始和调控有关的DNA序列.反式作用因子:直接或间接辨认、结合顺式作用元件的蛋白质.原核生物与真核生物RNA转录的区别1. 真核生物RNA的转录是在细胞核内,翻译在细胞质中进行;原核生物则在核区同时进行转录和翻译;2. 真核生物一个mRNA只编码一个基因;原核生物一个mRNA编码多个基因;3. 真核生物有RNA聚合酶Ⅰ、Ⅱ、Ⅲ等三种不同的酶;原核生物则只有一种RNA聚合酶;4. 真核生物中转录的起始更复杂,RNA的合成需要转录因子的协助进行转录;原核生物则较为简单所有的遗传密码子都是由3 个核苷酸组成的, 所以可称三联体密码< triplet code>简并性:一个氨基酸由二个或二个以上的三联体密码所决定的现象.起始密码子:AUG GUG;终止密码子: UAA UAG UGA翻译:以mRNA为模板指导蛋白质合成的过程多聚核糖体polyribosome or polysome中心法则阐述的基因两大基本属性:复制:DNA→DNA;表达:从DNA→mRNA→蛋白质;聚合酶链式反应<Polymerase chain reaction, PCR>PCR是在体外模拟体内DNA复制的过程,是一种在模板DNA、引物和4种脱氧核苷酸、Mg2+存在下合适的缓冲体系中的DNA聚合酶酶促反应,通过3个温度的反复循环实现.第三章The Law of Segregation <分离规律>杂交〔Hybridization or Cross〕在遗传分析中有意识地将两个基因型不同的亲本进行交配称杂交.★性状〔Trait or Character 〕指生物体所表现出的形态特征和生理特性的总称.★单位性状〔Unit character〕指某一具体的性状.★相对性状<Relative or contrasting Character>指同一单位性状在不同个体间所表现出来的相对差异,例如,豌豆花色的红花与白花.★表现型〔Phenotype〕简称表型,指生物个体表现出来的可观测的某一性状.表型是基因型与环境共同作用的结★ 基因型〔Genotype 〕指代表个体不同遗传组成的基因组合类型.基因型不能用肉眼识别,只能通过基因的遗传行为来加以鉴别.★ 基因〔Gene 〕是DNA 分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位. ★ 基因座位〔locus 〕基因在染色体上所处的位置.★ 等位基因〔alleles 〕同源染色体上占据相同座位的两个不同形式的基因.★ 显性基因〔dominant gene 〕在杂合状态下,能够表现其表型效应的基因,一般以大写字母表示.★ 隐性基因〔Recessive gene 〕在杂合状态下不表现其表型效应的基因,一般用小写字母表示.★ 纯合体〔Homozygote 〕基因座位上有两个相同的等位基因,就这个基因座而言,此个体称纯合体.★ 杂合体〔heterozygote 〕基因座位上有两个不同的等位基因.★ 测交〔testcross 〕杂交产生的子一代个体再与其隐性亲本的交配方式.<1>. 纯合基因型〔homozygous genotype 〕:成对的基因型相同.如CC 、cc 或称纯合体,纯质结合.<2>. 杂合基因型〔heterozygous genotype 〕:成对的基因不同.如Cc 或称杂合体,为杂质结合.★ 分离现象的特点〔1〕不论正反交,F1代所有植株表现的性状一致,都只表现一个亲本的性状,另一亲本的性状则隐藏未现;〔2〕F1代自交的后代〔F2代〕出现性状分离,在F1代未表现的亲本性状在F2代出现. 性状分离现象〔Character segregation 〕F2代在F1代的基础上发生了性状分离,表现出了双亲的性状,这一现象叫分离现象. ★ Rule of Segregation <分离规律><Mendel’s first law> <孟德尔第一定律>一对基因在杂合状态互不干扰,保持相互独立,在配子形成时,各自分配到不同的配子中去.正常情况下,配子分离比为1∶1,F2代基因型比是1∶2∶1, F2代表型比为3∶1.The Law of Independent Assortment <独立分配规律,自由组合规律>控制两对性状的两对等位基因,分别位于不同的同源染色体上.在减数分裂形成配子时,每对同源染色体上的每一对等位基因各自独立分离,而位于非同源染色体上的基因之间则自由组合.亲组合 parental combination 在杂交实验的后代中,与亲本的表现型一致的那些个体类型称为亲组合,或称为亲本组合.重组合 recombination在杂交实验的后代中,与亲本的表现型不一致的那些个体类型称为重组合,或称为重新∑-=X EE O 2)(2X 2 测验基本公式:〔注:O是实测值,E是理论值〕df----自由度,等于n –1P>0.05说明"差异不显著〞,P<0.05说明"差异显著〞;如果P<0.01说明"差异极显著〞.x2测验法不能用于百分比,如果遇到百分比应根据总数把他们化成频数,然后计算差数.完全显性complete dominance:F1表现与亲本之一完全一样.共显性codominance如:人类血型ABO, MN;红细胞镰形和碟形;不完全显性imcomplete dominance又称半显性semidominance,F1表现为双亲性状的中间型.显性转换reversal of dominance显性在不同的环境条件下发生转换的现象.复等位基因〔multiple alleles〕:指在同源染色体的相同位点上,存在三个或三个以上的等位基因.致死基因〔lethal alleles〕,是指当其发挥作用时导致个体死亡的基因.包括显性致死基因〔dominant lethal alleles〕和隐性致死基因〔recessive lethal alleles〕.基因互作gene interaction由于不同对基因间相互作用共同决定同一单位性状表现的遗传现象.★基因互作的两种情况:<1> 基因内互作:指同一位点上等位基因的相互作用,为显性或不完全显性和隐性;2> 基因间互作:指不同位点非等位基因相互作用共同控制一个性状,如上位性和下位性或抑制等.1> 互补作用complementary effect当两对基因在显性纯合或杂合状态时,个体表现为一种性状,当两对基因中只有一对基因为显性或两对基因均为隐性时,个体表现为另一种性状,这种基因互作类型称为基因互补作用<complementary effect>.发生互补作用的基因称为互补基因〔complementary gene 〕.<2> 累加作用additive effect当两对或两对以上基因互作时,显性基因累积越多,个体性状表现越明显的现象,这种基因互作类型称为基因累加作用〔additive effect 〕.<3> 重叠作用duplicate effect当两对或两对以上基因同时控制一种单位性状时,只要其中一对等位基因中存在显性基因,个体表现为显性性状,而两对基因均为隐性时,个体表现为隐性性状,这种这种基因互作类型称为基因重叠作用<4> 上位作用epistatic effect当两对基因同时控制一种单位性状时,其中一对基因对另一对基因表现具有遮盖作用,这种情形称为上位性〔Epistasis〕,这种基因互作类型称为基因上位作用〔epistatic effect 〕.起遮盖作用的基因称为上位基因<epistatic gene> .如果起遮盖作用的基因是显性基因,则称为显性上位作用〔dominace epistasis〕.如果起遮盖作用的基因是隐性基因,则称为隐性上位作用〔recessive epistasis〕.<5> 抑制作用inhibiting effect当两对基因中某一对基因本身不控制性状的表现,但对另一对基因的表现具有抑制的作用,这种这种基因互作类型称为基因抑制作用〔inhibiting effect 〕.具有抑制作用的基因称为抑制基因〔inhibiting gene〕.多因一效multigenic effect许多不同的基因影响一种性状发育的现象.或者一个性状的发育受许多不同基因影响的现象.一因多效pleiotropism一个基因影响许多性状发育的现象.第四章在杂交试验中,原来为同一亲本所具有的两个性状在F2中不符合独立分配规律,而常有连在一起遗传的倾向,这种现象叫做连锁<linkage>遗传现象.★连锁遗传〔Linkage inheritance〕是指在同一同源染色体上的非等位基因连在一起而遗传的现象.♣相引相<coupling phase>遗传学上把两个显性性状连在一起遗传,而两个隐性性状连在一起遗传的杂交组合,称为相引相或相引组.♣相斥相<repulsion phase>遗传学上把一个显性性状与另一个隐性性状连在一起遗传,而一个隐性性状与另一个显性性状连在一起遗传的杂交组合,称为相斥相或相斥组.重组率<交换值> :重组型的配子百分数称为重组率.当两对基因为连锁遗传时,其重组率总是<50%.♥连锁遗传规律连锁遗传的相对性状是由位于同一对染色体上的非等位基因间控制,具有连锁关系,在形成配子时倾向于连在一起传递;交换型配子是由于非姊妹染色单体间交换形成的.♣完全连锁<Complete linkage>位于同源染色体上非等位基因之间未发生非姐妹染色单体之间的交换,则这两个非等位基因总是连接在一起而遗传的现象.♣不完全连锁〔Incomplete linkage〕位于同源染色体上连锁基因之间发生非姐妹染色单体间的交换,不仅形成两种亲型配子,同时形成两种重组型配子.1.交换:是指同源染色体的非姊妹染色单体间基因的互换,从而引起相应基因间的交换与重组.2.交换的过程:杂种减数分裂时期〔前期I的粗线期〕.相引相:Rf =1-2x F2双隐性个体数/F2总个体数相斥相:Rf = 2x F2双隐性个体数/F2总个体数两基因间的距离越远,基因间的连锁强度越小,交换值就越大因间的相对距离,也称为遗传距离<genetic distance>.以1%的重组率作为一个遗传距离单位/遗传单位,以厘摩〔Centimorgan,cM 〕表示.基因定位〔Gene mapping〕确定基因在染色体上的相对位置和排列次序.<一>、两点测验<two-point testcross>通过三次测验,获得三对基因两两间交换值、估计其遗传距离;每次测验两对基因间交换值;根据三个遗传距离推断三对基因间的排列次序.<二>、三点测验<three-point testcross>一次测验就考虑三对基因的差异,从而通过一次测验获得三对基因间的距离并确定其排列次序.♣两点测验:局限性1.工作量大,需要作三次杂交,三次测交;2.不能排除双交换的影响,准确性不够高.单交换:在三个连锁基因之间仅发生了一次交换.双交换:在三个连锁区段内,每个基因之间都分别要发生一次交换由于双交换实际上在两个区域均发生交换,所以在估算每个区域交换值时,都应加上双交换值,才能够正确地反映实际发生的交换频率.干扰<interference>,或干涉:一个交换发生后,它往往会影响其邻近交换的发生.其结果是使实际双交换值不等于理论双交换值.符合系数<coefficient of coincidence>也称为并发系数:用以衡量两次交换间相互影响的性质和程度.♣性染色体<Sex chromosome>在生物许多成对的染色体中直接与性别决定有关的一个或一对染色体.成对性染色体往往是异型的:形态、结构、大小、功能上都有所不同.♣常染色体<Autosome, A>除性染色体以外的所有同源染色体均为常染色体,都是同型的.★性连锁〔sex linkage〕指性染色体上基因所控制的某些性状总是伴随性别而遗传的现象.这种遗传方式称伴性遗传〔sex-linked inheritance〕.如色盲、A型血友病等就表现为性连锁遗传.♣限性遗传<sex-limited inheritance>指位于Y/W染色体上基因所控制的性状,它们只在异配性别上表现出来的现象.♣位于Y/W染色体上的基因<限性遗传>:由于Y/W染色体仅在异配性别中出现,因此其上基因仅在异配性别中才可能表现,并且无论显性基因还是隐性基因都会得到表现.♣从性遗传<sex-controlled inheritance>:也称为性影响遗传<sex-influenced inheritance>:控制性状的基因位于常染色体上,但其性状表现受个体性别影响的现象.例:秃头的遗传第五章基因〔Gene〕是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位.★Promoter启动子指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列,它控制基因的转录起始过程.★Enhancer 〔增强子〕指远离转录起始点、决定基因的时间、空间特异性、增强启动子转录活性的DNA序列.★编码区能编码出RNA的DNA片段,包括外显子〔Exon〕和内含子〔Intron〕.起始密码子:ATG 终止密码子:TAG/TGA/TAA★间隔序列Intergenic sequence在两个基因的编码区之间存在一些不编码的核苷酸序列,被称为基因间的间隔序列.长度从1bp-kb不等.其主要特征:〔1〕不编码蛋白质;〔2〕有些区域具有调节功能,如目前比较流行的sRNA.★结构基因<Structural gene>从功能上讲,能编码多肽链的基因称为结构基因.结构基因所使用的密码在整个生物界是统一的.结构基因的突变可导致特定蛋白质改变.★调控基因<Regulatory gene>调控基因是指可调节控制结构基因表达活性的基因,包括调节基因、操纵基因和启动基因等. ★假基因<Pseudogene>假基因是指一类在物种进化过程中由于编码区的核苷酸序列发生致死性突变而导致不能表达功能性蛋白质的基因.★组成性基因<Constitutive gene>组成性基因指其表达不太受环境变动而变化的一类基因.其中某些基因表达产物是细胞或生物体整个生命过程中都持续需要而必不可少的,这类基因可称为看家基因<housekeeping gene>,如泛素基因,肌动蛋白基因等.★诱导性基因<Inducible gene>诱导性基因指环境的变化容易使其表达水平变动的一类基因.诱导因子主要包括光、温度、水分和盐害以与生物胁迫等★基因家族〔Gene family〕指结构相似,功能相关的一组基因, 由同一祖先进化而来.★基因超家族〔Gene superfamily〕在结构上有不同程度的同源性,但功能不一定相同.如:免疫球蛋白基因超家族.★直源同源基因<orthologous gene>和并源同源基因<paralogous gene>它们是同源序列的两种类型,直源同源基因是指在不同物种中来自于共同祖先的基因.而并源同源基因是指在同一物种内由于基因复制而产生的同源基因.★突变<Mutation>指遗传物质内所发生的可遗传的变异.是自然界产生变异的主要来源,是生物进化的源泉.★基因突变<Gene mutation>指染色体上某一基因位点内部发生了化学结构改变,与原来基因形成对性关系,又称点突变〔Point mutation〕,结果是原来的基因突变为它的等位基因之一.★突变体<Mutant> 与野生型<Wild type>突变体指携带突变基因并具有某种突变表型的细胞或个体称为突变型或突变体;野生型指存在于自然界中没有经过基因突变,具有正常生化代谢功能的遗传类型;★根据突变的起源分<Causes of mutation>1、自发突变<Spontaneous mutation>:由外界环境条件自然作用或生物体内DNA复制时错配等发生的突变;2、诱发突变<Induced mutation>:在特设的诱变因素〔物理、化学、生物等〕诱发下发生的。
(整理)刘庆昌普通遗传学答案-
遗传学课后习题及答案(刘庆昌第二版)第一章遗传的细胞学基础(32页)1.中期染色体的外部形态包括哪些部分? 染色体的形态有哪些类型?着丝点、染色体臂、主缢痕、随体。
中间着丝粒染色体、近中着丝粒染色体、近端着丝粒染色体、顶端着丝粒染色体。
2.简述有丝分裂和减数分裂的主要区别。
⑴减数分裂前期有同源染色体配对(联会);⑵减数分裂遗传物质交换(非姐妹染色单体片段交换);⑶减数分裂中期后染色体独立分离,而有丝分裂则着丝点裂开后均衡分向两极;⑷减数分裂完成后染色体数减半;⑸分裂中期着丝点在赤道板上的排列有差异:减数分裂中同源染色体的着丝点分别排列于赤道板两侧,而有丝分裂时则整齐地排列在赤道板上。
3. 简述真核生物染色体结构染色质的基本结构单位是核小体。
核小体是由组蛋白核心和盘绕其上的DNA构成,是一个八聚体。
DNA包装成染色体需要经过三级压缩,其具体过程是:1)首先组蛋白组成盘装八聚体,DNA缠绕其上,成为核小体颗粒,两个颗粒之间经过DNA连接,形成外径10nm的纤维状串珠,称为核小体串珠纤维,是为染色体一级结构。
2)核小体串珠纤维在酶的作用下形成每圈6个核小体,外径30nm的螺旋结构。
是为染色体二级结构3)螺旋结构再次螺旋化,形成超螺旋结构,此为三级结构4)超螺线管(或者说微带),形成绊环,即线性的螺线管形成的放射状环。
绊环再非组蛋白上缠绕即形成了显微镜下可见的染色体结构。
4.某物种细胞染色体数为2n=24,分别指出下列各细胞分裂时期中的有关数据:(1)有丝分裂后期染色体的着丝点数;48(2)减数分裂后期I染色体着丝点数;24(3)减数分裂中期I的染色体数;24(4)减数分裂末期1I的染色体数。
125.果蝇体细胞染色体数为2n=8,假设在减数分裂时有一对同源染色体不分离,被拉向同一极,那么:(1)二分子的每个细胞中有多少条染色单体?(2)若在减数分裂第二次分裂时所有的姊妹染色单体都分开,则产生四个配子中各有多少条染色体?(3)用n表示一个完整的单倍染色体组,应怎样表示每个配子的染色体数?(1)一个子细胞有10条染色单体,另一个子细胞中有6条染色单体(2)两个配子中有5条染色体,另两个配子中有3条染色体。
刘庆昌遗传学复习资料
第一章绪论遗传学(Genetics)是研究生物遗传和变异的科学,是生命科学最重要的分支之一遗传与变异是生物界最普通、最基本的两个特征。
遗传(heredity):指生物亲代与子代相似的现象,即生物在世代传递过程中可以保持物种和生物个体各种特性不变;变异(variation):指生物在亲代与子代之间,以及在子代与子代之间表现出一定差异的现象。
遗传代表的是性状的稳定性,是相对的;变异代表的是性状的不稳定性,是绝对的。
遗传和变异是生物进化和物种形成的内在因素。
遗传、变异和选择是生物进化和新品种选育的三大因素。
生物进化就是环境条件(选择条件)对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代(遗传) ,变异逐代积累导致物种演变、产生新物种。
动、植物和微生物新品种选育(育种)实际上是一个人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求。
生物所表现出的性状变异分为:可遗传(heritable)变异和不可遗传(non-heritable)。
变异考察生物遗传与变异应该在给定环境条件下进行。
达尔文:泛生假说(hypothesis of pangensis)达尔文在解释生物进化时也对生物的遗传、变异机制进行了假设,并提出了泛生假说,认为:遗传物质是存在于生物器官中的“泛子/泛生粒”;遗传就是泛子在生物世代间传递和表现达尔文也承认获得性状遗传的一些观点,认为生物性状变异都能够传递给后代。
孟德尔:遗传因子假说遗传因子假说认为:生物性状受细胞内遗传因子(hereditary factor)控制。
遗传因子在生物世代间传递遵循分离和独立分配两个基本规律。
这两个遗传基本规律是近现代遗传学最主要的、不可动摇的基础。
生物进化理论的基础,遗传学研究生物在少数几个世代繁育过程中表现出来的遗传、变异现象与规律,生物进化研究生物在长期历史过程中的遗传与变异规律及发展方向。
遗传学研究的任务在于:阐明生物遗传和变异的现象及其表现的规律;探索遗传和变异的原因及物质基础,揭示其内在的规律;从而进一步指导动物、植物、微生物的育种实践,防止遗传疾病,提高医学水平,造福人类。
刘庆昌遗传学考研题库
刘庆昌遗传学考研题库刘庆昌遗传学考研题库遗传学是生物学中重要的一个分支,研究基因在遗传传递和表达中的规律。
对于考研生物学专业的学生来说,掌握遗传学知识是必不可少的。
而在备考过程中,一个好的题库是提高考试成绩的重要保障。
刘庆昌遗传学考研题库就是备考生的首选。
刘庆昌遗传学考研题库是一套经过精心编撰的题目集合,涵盖了遗传学的各个方面,包括基因的结构和功能、遗传变异、遗传与进化等内容。
这套题库不仅题量大,还注重题目的难度和质量,能够帮助考生全面了解遗传学的知识点,提高解题能力。
在刘庆昌遗传学考研题库中,题目的形式多样,有选择题、填空题、判断题等。
每道题目都有详细的解析,解析过程中会涉及相关的理论知识和实际应用,帮助考生更好地理解和掌握遗传学的概念和原理。
此外,刘庆昌遗传学考研题库还特别注重题目的实用性。
他们会结合考研真题和历年考试的趋势,选取一些常考的知识点和难点进行深入解析。
通过做题,考生能够更好地了解考试的命题思路和出题规律,提高备考的针对性。
刘庆昌遗传学考研题库还提供了一些辅助性的学习材料,如知识点总结、复习提纲等。
这些材料能够帮助考生系统地学习和复习遗传学的知识,提高备考效率。
同时,他们还提供了一些经典的例题和习题,供考生巩固知识和提高解题能力。
在备考过程中,刘庆昌遗传学考研题库的使用方法也很重要。
考生可以根据自己的时间和能力,有针对性地选择题目进行练习。
可以先从简单的题目入手,逐渐提高难度,以此提高解题能力和应对考试的自信心。
此外,刘庆昌遗传学考研题库还提供了一些模拟考试和真题训练,帮助考生熟悉考试的环境和节奏。
通过模拟考试,考生能够更好地了解自己的备考情况,找出薄弱环节,有针对性地进行复习和强化训练。
总之,刘庆昌遗传学考研题库是备考生物学专业考研的必备工具。
通过做题,考生能够全面了解遗传学的知识点,提高解题能力和备考效果。
在备考过程中,考生还可以结合其他辅助材料和模拟考试进行综合训练,提高备考的全面性和针对性。
chapter11 细胞质遗传
第十一章细胞质遗传(p254-255)3. 如果正反杂交试验获得的F1表现不同,这可能是由于:①性连锁。
②细胞质遗传。
③母性影响。
你如何用试验方法确定它属于哪一种情况?[答案] X染色体上基因控制的性状:以纯合显性母本与隐性父本杂交时,F1代雌雄个体均表现为显性;以隐性母本与显性父本杂交时,F1代雌性表现为显性,雄性表现为隐性。
因此,只需要考察正反F1代性状表现与性别间的关系。
就可以确定是否属于性连锁遗传。
正反交F1分别进行自交,考察F2性状表现:如果两种F2群体均一致表现为同一种性状,则属于母性影响;如果两个F2群体分别表现两种不同的性状(与对应的F1一致),则属于细胞质遗传。
4. 玉米埃形条纹叶(ijij)与正常绿叶(IjIj)植株杂交,F1的条纹叶(Ijij)作母本与正常绿色叶植株(IjIj)回交。
将回交后代作母本进行下列杂交,请写出后代的基因型和表现型。
(1)绿叶(Ijij)♀ × ♂条纹叶(Ijij)(2)条纹叶(IjIj)♀ × ♂绿叶(IjIj)(3)绿叶(Ijij)♀ × ♂绿叶(Ijij)[答案] F1的条纹叶核基因型为:Ijij,细胞质有两种基因型:+/-。
回交后代遗传组成与表型如下:+(IjIj)绿叶+(Ijij)绿叶-(IjIj)白化-(Iji)白化+/-(IjIj)条纹叶+/-(Ijij)条纹叶(1)绿叶(Ijij)回交后代细胞质全部为正常叶绿体基因+,杂交后代基因型及表现型分别为:+(IjIj)、+(Ijij)绿色,+(ijij)会产生突变叶绿体基因Æ+/-(ijij)为条纹叶或白(2)条纹叶(IjIj)产生的后代可能有3种细胞质细胞类型,但核基因均为IjIj,即:+(IjIj)为绿色、-(IjIj)为白化苗和+/-(IjIj)为条纹叶。
(3)绿叶(Ijij)细胞质全部为正常叶绿体基因,杂交后代:+(IjIj)、+(Ijij)绿色,+(ijij)会产生突变叶绿体基因Æ+/-(ijij)为条纹叶或白化。
遗传学知识点总结
普通遗传学知识点总结绪论什么是遗传,变异?遗传、变异与环境的关系?(1).遗传(heredity):生物亲子代间相似的现象。
(2).变异(variation):生物亲子代之间以及子代不同个体之间存在差异的现象。
遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。
生物与环境的统一,这是生物科学中公认的基本原则。
因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。
遗传学诞生的时间,标志?1900年孟德尔遗传规律的重新发现标志着遗传学的建立和开始发展)第二章遗传的细胞学基础1.同源染色体和非同源染色体的概念?答:同源染色体:形态和结构相同的一对染色体;异源染色体:这一对染色体与另一对形态结构不同的染色体,互称为非同源染色体。
2.染色体和姐妹染色单体的概念,关系?染色体:在细胞分裂过程中,染色质便卷缩而呈现为一定数目和形态的染色体姐妹染色单体:有丝分裂中,由于染色质的复制而形成的物质3.染色质和染色体的关系?染色体和染色质实际上是同一物质在细胞分裂周期过程中所表现的不同形态。
4.不同类型细胞的染色体/染色单体数目?(根尖、叶、性细胞,分裂不同时期(前期、中期)的染色体数目的动态变化?)答:有丝分裂:间期前期中期后期末期染色体数目: 2n 2n 2n 4n 2nDNA分子数: 2n-4n 4n 4n 4n 2n染色单体数目:0-4n 4n 4n 0 0减数分裂:*母细胞初级*母细胞次级*母细胞 *细胞染色体数目: 2n 2n n(2n) nDNA分子数: 2n-4n 4n 2n n染色单体数目: 0-4n 4n 2(0) 05.有丝分裂和减数分裂的特点?遗传学意义?在减数分裂过程中发生的重要遗传学事件(交换、交叉,同源染色体分离,姐妹染色单体分裂?基因分离?)特点:细胞进行有丝分裂具有周期性。
即连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。
遗传学(版)刘庆昌重点整理复习过程
第九章★无性繁殖(Asexual reproduction)指通过营养体增殖产生后代的繁殖方式,其优点是能保持品种的优良特性、生长快。
★有性繁殖(Sexual reproduction)指通过♀、♂结合产生的繁殖方式,其优点是可以产生大量种子和由此繁殖较多的种苗。
大多数动植物都是进行有性生殖的。
★近交(Inbreeding)指血缘关系较近的个体间的交配,近亲交配。
近交可使原本是杂交繁殖的生物增加纯合性(homozygosity),从而提高遗传稳定性,但往往伴随严重的近交衰退现象(inbreeding depression)。
★杂交(crossing or hybridization)指亲缘关系较远,基因型不同的个体间的交配。
可以使原本是自交或近交的生物增加杂合性(heterozygosity),产生杂种优势。
一、近交的种类★自交(Selfing)指同一个体产生的雌雄配子彼此融合的交配方式,它是近交的极端形式,一般只出现在植物中(自花授粉植物),又称自花受粉或自体受精(self-fertilization)。
★回交(Back-crossing)杂交子代和其任一亲本的杂交,包括亲子交配(parent-offspring mating)。
★全同胞交配(Full-sib mating)相同亲本的后代个体间的交配,又叫姊妹交。
★半同胞交配(Half-sib mating)仅有一个相同亲本的后代个体间的交配。
★自花授粉植物(Self-pollinated plant)天然杂交率低(1-4%):如水稻、小麦、大豆、烟草等;★常异花授粉植物(Often cross -pollinated plant)天然杂交率常较高(5-20%):如棉花、高粱等;★异花授粉植物(Cross-pollinated plant):天然杂交率高(>20-50%)如玉米、黑麦等,在自然状态下是自由传粉。
★近交衰退(Inbreeding depression)近交的一个重要的遗传效应就是近交衰退,表现为近交后代的生活力下降,产量和品质下降,适应能力减弱、或者出现一些畸形性状。
《遗传学》考试大纲
《遗传学》考试大纲一、大纲综述《遗传学》是研究生物遗传与变异及其规律性的科学,是林木遗传育种学科入学考试主干考试科目。
通过掌握现代遗传学的主要原理使学生理解植物主要经济性状遗传和变异的基本规律和分子机理,为今后从事植物遗传与育种研究打下基础。
为了帮助考生了解《遗传学》课程的主要知识点和复习范围及报考的有关要求,特制定本考试大纲。
二、考试内容1. 绪论(1) 遗传学的基本概念及其产生与发展历程。
(2) 遗传学的主要研究内容与任务。
(3) 遗传学在农林业生产和研究中的应用价值和发展趋势。
2. 遗传物质的分子基础(1) 遗传物质的证据。
(2) 遗传物质DNA和RNA及其分子结构。
(3) 原核生物和真核生物DNA的合成过程及特点。
(4) RNA的转录及加工,包括RNA的种类,RNA复制的特点,原核生物RNA的合成和真核生物遗传物质的转录及加工。
(5) 遗传密码与遗传信息的翻译,包括DNA与遗传密码,蛋白质的合成及中心法则的内容。
3. 传递遗传学(1)染色体的传递与遗传:有丝分裂和细胞分裂、减数分裂和有性生殖。
(2)孟德尔遗传学:孟德尔试验、林木性状的孟德尔遗传、孟德尔遗传的统计检验。
(3) 孟德尔定律的扩展:部分显性、共显性、上位性;连锁遗传的发现、解释及验证。
4. 基因突变(1) 基因的概念与基因精细结构分析和基因的表达与调控。
(2) 基因突变的基本概念及其一般特征;基因突变与性状表现及基因突变的分子基础;基因突变的检测和诱发。
(3) 转座因子的发现与鉴定,转座因子的结构特征及其应用。
5. 染色体变异(1) 染色体结构变异的概念及主要类型如染色体缺失、重复、倒位、易位的类型、细胞学鉴别及遗传效应。
(2) 染色体组的概念及染色体数目变异类型。
(3) 整倍体与非整倍体的类型、遗传表现及应用。
6. 基因工程(1) 基因工程的发展历史、基本概念、基本原理和一般步骤。
(2) 基因克隆的策略与方法、常用工具酶和载体。
遗传学重点整理大纲
遗传学重点整理大纲第一章绪论1、遗传学发展中的几个重要里程碑。
答:(1)1859年,达尔文出版了巨著《物种起源》提出著名的进化论。
(2)1985年,孟德尔根据其8年的植物杂交试验结果,在2月8日当地科学协会上宣读了一篇题为“植物杂交试验”的论文。
1900年宣告遗传学诞生,孟德尔为遗传学的奠基人。
(3)1910年摩尔根创立了连锁定律并证实了基因在染色体上以直线排列,提出了遗传的染色体理论。
(4)1953年沃森和克里克建立了DNA的双螺旋模型结构,并与1958年提出了中心法则。
第二章遗传的细胞学基础1、在遗传上有丝分裂和减数分裂哪一个更有意义?答:有丝分裂的意义:保证把S期已经复制好的DNA平均分配到两个子细胞中去,以保证遗传的连续性和稳定性。
减数分裂的意义:(1)DNA复制一次,细胞分裂两次,保证了有性生殖生物个体世代之间染色体数目的稳定。
(2)为有性生殖过程中创造变异提供了遗传的物质基础。
同源染色体分离,非同源染色体的自由组合,非姐妹染色单体的交叉互换等保证物种的多样性。
因此,在遗传学上减数分裂更有意义。
第四章孟德尔式遗传分析显性基因:在杂合状态下,能够表现其表型效应的基因,一般以大写字母表示。
隐性基因:在杂合的状态下,不表现其表型效应的基因,一般以小写字母表示。
等位基因:在同源染色体上占据相同座位的两个不同形式的基因,一般都是由突变所造成的。
杂交:在遗传分析中有意识地将两个基因型不同的亲本进行交配。
性状:遗传学中把生物个体的形态,结构,生理,生化等特征,如植株的高度、种皮的颜色,花色等。
遗传病:遗传病或遗传性疾病是指其发生需要有一定的遗传基础,通过这种遗传基础,按一定的方式传于后代的疾病。
单基因病:是指受一对主基因影响而发生疾病,符合孟德尔式遗传。
可分为AD、AR、XD、XR、Y连锁和线粒体遗传。
常染色体显性遗传病(AD):一种疾病的致病基因位于1~22号染色体上是显性基因,这种遗传方式称为AD遗传病。
刘庆昌版遗传学答案
刘庆昌版遗传学答案刘庆昌版遗传学课后习题答案第一章遗传的细胞学基础一.一般染色体的外部形态包括哪些部分?着丝粒,染色体臂,主收缩,卫星。
2.简要描述有丝分裂和减数分裂的主要区别。
(1)减数分裂前期的同源染色体配对(联会);⑵减数分裂遗传物质交换(非姐妹染色单体片段交换);(3)减数分裂中期后染色体独立分离,着丝粒分裂后有丝分裂向两极均匀分裂;(4)减数分裂后染色体数目减半;⑸分裂中期着丝点在赤道板上的排列有差异:在减数分裂中,同源染色体的着丝粒排列在赤道板的两侧,而在有丝分裂中,它们整齐地排列在赤道板上。
4.一个物种的染色体数目为2n=24。
指出了以下细胞分裂阶段的相关数据:(1)有丝分裂后期染色体着丝粒数;(2)减数分裂后期I染色体着丝粒数;(3)减数分裂中期Ⅰ的染色体数目;(4)减数分裂结束时染色体的数目。
(1)48(2)24(3)24(4)125.果蝇体细胞染色体数目为2n=8。
假设一对同源染色体不分离,在减数分裂过程中被拉到同一个极点,那么:(1)两个分子的每个细胞中有多少染色单体?(2)若在减数分裂第二次分裂时所有的姊妹染色单体都分开,则产生四个配子中各有多少条染色体?(3)用n表示一个完整的单倍染色体组,应怎样表示每个配子的染色体数?(1)一个子细胞中有10个染色单体,另一个子细胞中有6个染色单体。
(2)两个配子中有5条染色体,另外两个配子中有3条染色体。
(3) N+1和N-1。
6.人的受精卵中有多少条染色体?人的初级精母细胞、初级卵母细胞、精细胞、卵细胞中各有多少条染色体?46;46;46;23;237.水稻细胞中有24条染色体,小麦中有42条染色体,黄瓜中有14条染色体。
理论上它们各能产生多少种含不同染色体的雌雄配子?大米:2小麦:2黄瓜:28.假定一个杂种细胞里含有3对染色体,其中a、b、c来自父本、a’、b’、c’来自母本。
通过减数分裂能形成几种配子?其染色体组成如何?。
同时含有3条父本染色体或是条母本染色体的比例是多少?如果雌配子形成,则只形成一个配子ABC或a'b'c'或a'bc或ab'c'或a'bc'或ABC'或a'b'c;如果形成的是雄配子,那么可以形成两种配子abc和a’b’c’或ab’c和a’bc’或a’bc和ab’c’或abc’或和a’b’c。
遗传学刘庆昌重点整理
第九章★无性繁殖(Asexual reproduction)指通过营养体增殖产生后代的繁殖方式,其优点就是能保持品种的优良特性、生长快。
★有性繁殖(Sexual reproduction)指通过♀、♂结合产生的繁殖方式,其优点就是可以产生大量种子与由此繁殖较多的种苗。
大多数动植物都就是进行有性生殖的。
★近交(Inbreeding)指血缘关系较近的个体间的交配,近亲交配。
近交可使原本就是杂交繁殖的生物增加纯合性(homozygosity),从而提高遗传稳定性,但往往伴随严重的近交衰退现象(inbreeding depression)。
★杂交(crossing or hybridization)指亲缘关系较远,基因型不同的个体间的交配。
可以使原本就是自交或近交的生物增加杂合性(heterozygosity),产生杂种优势。
一、近交的种类★自交(Selfing)指同一个体产生的雌雄配子彼此融合的交配方式,它就是近交的极端形式,一般只出现在植物中(自花授粉植物),又称自花受粉或自体受精(self-fertilization)。
★回交(Back-crossing)杂交子代与其任一亲本的杂交,包括亲子交配(parent-offspring mating)。
★全同胞交配(Full-sib mating)相同亲本的后代个体间的交配,又叫姊妹交。
★半同胞交配(Half-sib mating)仅有一个相同亲本的后代个体间的交配。
★自花授粉植物(Self-pollinated plant)天然杂交率低(1-4%):如水稻、小麦、大豆、烟草等;★常异花授粉植物(Often cross -pollinated plant)天然杂交率常较高(5-20%):如棉花、高粱等;★异花授粉植物(Cross-pollinated plant):天然杂交率高(>20-50%)如玉米、黑麦等,在自然状态下就是自由传粉。
★近交衰退(Inbreeding depression)近交的一个重要的遗传效应就就是近交衰退,表现为近交后代的生活力下降,产量与品质下降,适应能力减弱、或者出现一些畸形性状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Heredity (遗传)亲代与子代(上下代)之间相似的现象遗传的特点:相对稳定性、保守性。
Variation (变异)亲代与子代之间以及子代个体之间的差异。
变异的特点:普遍性和绝对性。
分为可遗传的变异(hereditable variation),和不可遗传的变异(non-hereditable variation), 变异的多态性(polymorphism of variation)。
Evolution (进化)生物体在生命繁衍进程中,一代一代繁殖,通过遗传把物种特性传递下去。
但不可避免地遭受自然和人为的干涉,即遗传—变异—选择(淘汰坏的,保留好的),后代优于亲代,称为进化。
进化的两种方式:渐变式:积累变异成为新类型(continual variation),如适应性进化。
跃变式:染色体加倍成为新物种,如倍性育种和基因工程育种。
遗传与变异的关系遗传与变异是矛盾对立统一的两个方面。
即遗传是相对的,保守的;变异是绝对的,进步的;变异受遗传控制,不是任意变更的。
具体如下:★遗传与变异同时存在于生物的繁殖过程中,二者之间相互对立、又相互联系,构成生物的一对矛盾。
每一代传递既有遗传又有变异,生物就是在这种矛盾的斗争中不断向前发展。
选择所需要的变异,从而发展成为生产和生活中所需要的品种。
因此,遗传、变异和选择是生物进化和新品种选育的三大要素。
3、遗传、变异与进化的关系生物进化就是环境条件(选择条件)对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代(遗传),变异逐代积累导致物种演变,产生新物种。
动、植物和微生物新品种选育(育种)实际上是一种人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求。
摩尔根创立基因学说克里克提出的“中心法则”。
Human Genome Project (HGP)Epigenetics 表观遗传学1. 概念:基因的DNA序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可遗传的表型。
2. 特征: (1)可遗传;(2) 可逆性;(3) DNA不变3. 表观遗传学的现象:(1) DNA甲基化(2) 组蛋白修饰(3) MicroRNA(4) Genomic imprinting(5)休眠转座子激活…Cytogenetics 细胞遗传学Plasma membrane (细胞质膜)Cytoplasm(细胞质)Nucleoid (拟核)Plasmid (质粒)Prokaryote (原核生物)线粒体mitochondria叶绿体chloroplast内质网The Endoplasmic Reticulm (ER)核糖体ribosomeChromatin and Chromosome (染色质和染色体)染色体是遗传物质的主要载体核小体是染色质的基本结构单位Euchromatin(常染色质)是指间期细胞核内染色较浅、低度折叠压缩的染色质,是染色质中转录活跃部位,因此又称为活性染色质,处于常染色质状态是基因转录的必要条件。
Heterochromatin(异染色质)是指间期细胞核内染色很深、压缩程度高,处于凝集状态的染色质,无转录活性,因此也叫非活性染色质。
Morphology of Chromosome (染色体形态)中间着丝点染色体(Metacentric Chromosome)近中着丝点染色体(Sub-metacentric chro)近端着丝点染色体(Acrocentric chro)顶端着丝点染色体(Telocentric chro)同源染色体(Homologous chromosome)在生物体细胞内,具有形态和结构相同的一对染色体,且含有相同的基因位点;★非同源染色体(non-homologous chromosome)一对染色体与另一对形态结构不同的染色体之间,互称为非同源染色体,也叫异源染色体,含有不同的基因位点。
核型分析(Analysis of karyotype)。
Amitosis (无丝分裂)Mitosis (有丝分裂)细胞周期(Cell cycle )指细胞从前一次分裂结束到下一次分裂终了所经历的时期,一个完整的细胞周期包括分裂间期(Interphase )和分裂期两个阶段。
Mitosis (有丝分裂)前期(prophase)中期(metaphase)后期(anaphase)末期(telophase) Meiosis (减数 分裂)第一次分裂是减数的;第二次分裂是不减数的。
第一次分裂复杂,时间长;第二次分裂跟一般的有丝分裂一样。
同源染色体(homologous chromosome)在二倍体生物中,每对染色体的两个成员中一个来自父方,一个来自母方,其形态大小相同的染色体称为同源染色体。
★ 非同源染色体(nonhomologous chromosome) 不属于同一对的染色体称为非同源染色体。
★ 联会(synapsis)同源染色体的两个成员侧向连接,像拉链一样地 并排配对称为联会。
联会始于偶线期,终止在双线期。
减数分裂的特点1、具有一定的时空性,也就是说它仅在一定的发育阶段,在生殖细胞中进行。
2、减数分裂经第一次分裂后染色体数目减半,所以减数分裂的产物是单倍体。
3、前期长而复杂,同源染色体经历了配对(联会)、交换过程,使遗传物质进行了重组。
4、每个细胞遗传信息的组合是不同的。
无性生殖 (Asexual reproduction) 母体直接产生子代的繁殖方式。
有性生殖(Sexual reproduction)有丝分裂 减数分裂分裂细胞类型体细胞原始生殖细胞(孢母细胞) 细胞分裂次数复制一次分裂一次 复制一次分裂二次 子细胞数目 2 4 染色体数目变化2n→2n 2n→n DNA 分子数变化 2n→4n→2n 2n→4n→2n→n 染色单体数目变化 0→4n→0 0→4n→2n→0 同源染色体行为不联会、无四分体形成联会后形成四分体 可能发生的变异 基因突变和染色体变异基因突变、染色体变异和基因重组意义有丝分裂使生物在个体发育中亲代细胞与子代细胞之间减数分裂和受精作用使上下代生物之间保持染色体数目恒定,高频率基因重组生物体在于特定部位产生雌雄配子,两种配子受精结合成合子,由合子进一步分裂,分化,生长形成新的个体的繁殖方式。
生活周期是指从合子到成熟个体,再到死亡所经历的一系列发育阶段,包括孢子体世代和配子体世代。
1. 孢子体世代(sporophyte generation)有性生殖动植物从受精合子发育为一个成熟的个体,在此过程中,无配子形成和受精发生。
也称为无性世代。
2. 配子体世代(gametophytic generation)孢子体经过发育,某些细胞和组织将产生雌雄配子或雌雄配子体,配子经受精作用形成合子的过程。
也称为有性世代。
第二章DNA作为主要遗传物质DNA作为遗传信息载体核酸(Nucleic acid)是一类重要的生物大分子,在生物体内负责生命信息的储存和传递。
DNA双螺旋结构模型是分子(生物学)遗传学诞生的标志。
★DNA分子双螺旋结构模型要点(1) 两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行地环绕于同一轴上,很象一个扭曲起来的梯子。
(2) 两条多核苷酸链走向为反向平行。
即一条链磷酸二脂键为5’-3’方向,而另一条为3’-5’方向,二者刚好相反。
(3) 每条长链的内侧是扁平的碱基,碱基一方面与脱氧核糖相联系,另一方面通过氢键(hydrogen bond)与它互补的碱基相联系,相互层叠宛如一级一级的梯子横档。
互补碱基对A 与T之间形成两对氢键,而C与G之间形成三对氢键。
(4) 上下碱基对之间的距离为3.4Å。
每个螺旋为34Å(3.4nm)长,刚好含有10个碱基对,其直径约为20Å。
(5)在双螺旋分子的表面大沟(major groove)和小沟(minor groove)交替出现。
DNA复制的明显方式——半保留复制(semiconservative replication)。
是遗传信息能准确传递的保证,是物种稳定性的分子基础。
DNA分子的结构特点和DNA功能结构特点稳定性:主链:磷酸与脱氧核糖交替排列稳定不变。
碱基对:严格遵循碱基配对原则。
多样性:碱基个数、排列顺序不同。
特异性:每个DNA分子独一无二。
功能DNA具有基因的所有属性,基因也就是DNA的一个片段。
DNA的基本功能是作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。
DNA复制(Replication)是指以原来的DNA分子为模板合成相同分子的过程,遗传信息通过亲代DNA分子的复制传递给子代。
解链酶(helicase)解开DNA双链中氢键,消耗A TP单链结合蛋白(single-stranded DNA-binding protein)与单链DNA结合,保持模板处于单链状态,保护复制中的DNA单链不被核酸酶降解DNA拓扑异构酶(topoisomerase)引物酶(primase)DNA聚合酶(DNA polymerase)DNA连接酶(DNA ligase)复制起始点(origin, ori):DNA复制开始的特定位点。
原核生物只有一个复制起始点;真核生物染色体DNA有多个复制起始点,同时形成多个复制单位,两个起始点之间的DNA片段称为复制子(replicon)。
复制叉(replication fork)双向复制(bidirectional replication)原核生物从一个固定的起始点开始,同时向两个方向进行,称为双向复制。
用电子显微镜看到了DNA复制过程中出现一些不连续片段,这些不连续片段只存在与DNA 复制叉上其中的一股。
后来就把这些不连续的片段称为冈崎片段。
复制有终止信号polⅠ5′→3′外切酶活性水解引物polⅠ聚合活性填补空隙DNA连接酶连接缺口。
★真核生物DNA合成的特点1、DNA合成发生的时间:仅为细胞周期的S期。
2、真核生物DNA聚合酶多(种类, 拷贝数)3、复制的起始点为多起点。
4、合成所需的RNA引物和冈崎片断都比原核生物的短。
5、核小体的复制。
6、染色体端粒的复制。
端粒的合成是在端粒酶作用下完成★真核生物染色体为线状,存在端粒1、防止染色体末端为DNA酶酶切;2、防止染色体末端与其它DNA分子的结合;3、使染色体末端在DNA复制过程中保持完整。
信使RNA (messenger RNA,mRNA)转移RNA (transfer RNA,tRNA)核糖体RNA (ribosomal RNA,rRNA)真核生物的核糖体,含有5S、5.8S、18S和28S 4种rRNA和约80种蛋白质。