调节阀的特性及选择(DOC)
调节阀的特性及选择
调节阀的特性及选择调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。
调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。
电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。
本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。
1.调节阀工作原理从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。
对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为()()21221242P P D P P AQ -=-=ρζπρζ式中:Q——流体流经阀的流量,m 3/s ;P1、P2——进口端和出口端的压力,MPa ;A——阀所连接管道的截面面积,m 2; D——阀的公称通径,mm ;ρ——流体的密度,kg/m 3; ζ——阀的阻力系数。
可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。
阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。
调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。
阀开得越大,ζ将越小,则通过的流量将越大。
2.调节阀的流量特性调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即⎪⎭⎫⎝⎛=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。
一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。
但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。
为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。
因此,流量特性有理想流量特性和工作流量特性之分。
调节阀流量特性介绍
调节阀流量特性介绍1. 流量特性调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。
其数学表达式为式中:Qmax-- 调节阀全开时流量L---- 调节阀某一开度的行程Lmax-- 调节阀全开时行程调节阀的流量特性包括理想流量特性和工作流量特性。
理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1)流量特性性质特点直线调节阀的相对流量与相对开度呈直线关系,即单位相对行程变化引起的相对流量变化是一个常数①小开度时,流量变化大,而大开度时流量变化小②小负荷时,调节性能过于灵敏而产生振荡,大负荷时调节迟缓而不及时③适应能力较差等百分比单位相对行程的变化引起的相对流量变化与此点的相对流量成正比①单位行程变化引起流量变化的百分率是相等的②在全行程范围内工作都较平稳,尤其在大开度时,放大倍数也大。
工作更为灵敏有效③ 应用广泛,适应性强抛物线特性介于直线特性和等百分比特性之间,使用上常以等百分比特性代之①特性介于直线特性与等百分比特性之间②调节性能较理想但阀瓣加工较困难快开在阀行程较小时,流量就有比较大的增加,很快达最大①在小开度时流量已很大,随着行程的增大,流量很快达到最大②一般用于双位调节和程序控制在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。
一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。
另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。
因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。
称为工作流量特性[1]。
具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。
(1)串联管道时的工作流量特性调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。
调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。
调节阀的选型依据
调节阀的选型依据
调节阀是工业现场不可或缺的流量调节设备之一,那么如何选择
一款适合自己需要的调节阀呢?下面就为大家介绍调节阀的选型依据:首先,根据流体介质的特性选型。
流体包括气体、液体和蒸汽,
在选型前需要了解流体的温度、粘度、密度、压力变化等参数,以便
进行匹配选择。
其次,根据流量变化情况选型。
通常,流量调节阀的调节范围是10:1或20:1,而超调范围在±5%~±10%之间,因此在选型前,需要
清楚了解实际工况下的流量范围,以便选择合适的调节阀。
第三,考虑阀门的执行机构。
阀门的执行机构根据不同的使用环
境可以分为手动、气动、电动等多种,需要根据现场实际情况进行选择。
如果环境复杂,需要远程控制,那么选择气动或电动阀门会更为
便捷。
第四,考虑安装环境。
调节阀的安装环境通常需要考虑阀门的防
爆等级、密封性、承压能力、安装方式等因素。
例如,在液化气体工
况下,需选用防爆等级较高的调节阀,比如说防爆设计的角行程式控
制阀。
第五,考虑配套件的选择。
配套的附件包括阀门定位器、阀门位
置传感器、防爆限位器、加热器等,也需要根据实际情况选择。
综上所述,对于调节阀的选型,需要综合考虑流体介质的特性、流量变化情况、阀门执行机构、安装环境、配套附件等多重因素,以达到最佳匹配。
调节阀选型、动作特性选择
1阀门选型1.1调节阀选型、动作特性选择1.1.1阀门选用原则生产过程中,被控介质的特性千差万别,有高压的,高粘度的,强腐蚀的;流体的流动状态也各不相同,有流量小的,有流量大的,有分流的,有合流的。
因此,必须根据流体的性质、工艺条件和过程控制要求,并参照各种阀门结构的特点进行综合考虑,同时兼顾经济性来最终确定合适的结构型式。
(1)调节阀选用的原则①调节前后压差较小,要求泄漏量小,一般可选用单座阀。
②调节低压差、大流量气体可选用蝶阀。
③调节强腐蚀性介质,可选用隔膜阀、衬氟单座阀。
④既要求调节,又要求切断时,可选用偏心旋转阀。
其他有此功能的还有球阀、蝶阀、隔膜阀。
⑤噪音较大时,可选用套筒阀。
⑥控制高粘度、带纤维、细颗粒的介质可选用偏心旋转阀或V型球阀。
⑦特别适用于浆状物料的调节阀有球阀、隔膜阀、蝶阀等。
(2)常用调节阀介绍以下介绍常用于工业生产的几种调节阀,除此之外,还有某些特殊用途的调节阀,比如高压阀、三通阀等。
总而言之,用于调节的阀门要求它的调节范围大,调节灵活省力.开得彻底,关得严密。
有时还必须耐热、耐腐蚀、耐高压,此外对其流量特性也有要求。
单座阀:优点是全关时比较严密,可以做到不泄漏。
但是当阀门前后压力差很大时,介质的不平衡力作用在阀芯上,会妨碍阀门的开闭,口径越大或压力差越大影响尤其严重。
因此,它只适用在口径小于25mrn的管路中,或压力差不大的情况下。
双座阀:要想关闭时完全不泄漏,必须两个阀芯同时和间座接触,但这只能在加工精度有保证的情况下才能做到,所以双座阀的制造工艺要求高。
此外,即使常温下确实不漏,但在高温下难免因间杆和同座膨胀不等仍然会引起泄漏。
虽然设计时要考虑到材抖的膨服系数,终难使热膨胀程度配合得十分完美。
而且双座间的流路比较复杂,不适合高粘度或含纤维的流体。
角形阀:有两种,流体的流路有底进侧出的和侧进底出的。
前者流动稳定性好,调节性能好,常被采用。
隔膜调节阀:用于腐蚀性介质的阀门常采用隔膜调节阀,这种阀用柔性耐腐蚀隔膜与阀座配合以调节流最,介质与外界隔离,能有效地防止介质外泄。
调节阀流量特性及选择分析
调节阀流量特性及选择分析摘要:调节阀在稳定生产、优化控制等方面发挥着重要作用,是保证调节系统安全和平稳运行的关键。
本文主要通过对调节阀的流量特性进行分析,讨论调节阀的选型问题。
关键词:调节阀;流量特性;阀门特性;选型1 引言根据《火力发电厂热工控制设计技术规定 DL/T 5175-2003》7.1.3 条规定:对选用的控制阀的配置情况应按下列要求进行校核。
阀门开度:开度为85%‐90%时应满足运行的最大需要。
阀门差压:对泄漏量有严格要求时,宜取流量为零时的最大差压;对泄漏量无特殊要求时,宜取最小流量下的最大差压,其值应不大于该阀门的最大允许差压。
阀门特性:控制阀门的工作流量特性应满足工艺系统的控制要求;阀门配套的附件应能满足控制系统的接口要求。
正确的选择和使用调节阀,不仅直接关系到整个自动控制系统的控制质量,而且还将对生产秩序的稳定产生重要的影响。
自动控制系统不能正常投入运行有2/3 以上是由于调节阀的选型不当造成的,因此,如何正确选择合适的调节阀,应引起仪控技术人员的重视。
2 调节阀流量特性分析2.1工作原理根据流体力学可知,调节阀是一个局部阻力可以变化的节流元件。
对不可压缩流体,调节阀的流量式中 p1——调节阀前压力;p2——调节阀后压力;A ——节流截面积;ξ——调节阀阻力系数;ρ——流体密度。
由式(1)可知,当A一定,Δp= p1-p2也恒定时,通过阀的流量Q随阻力系数ξ变化,即阻力系数ξ愈大,流量愈小。
而阻力系数ξ则与阀的结构和开度有关。
所以调节器输出信号控制阀门的开或关,可改变阀的阻力系数,从而改变被调介质的流量。
2.2调节阀的流动特性2.2.1调节阀理想流量特性调节阀理想流量特性是指给定压差下,阀门开度和通过阀门的流量之间的关系,对在自动控制中应用的调节阀而言,有三种基本的流量特性:快开、线形、等百分比。
开流量特性的阀门,较小的阀门开度可以达到很大的流量改变。
例如50%的开度可以达到阀门最大流量的65%至90%。
阀门分类、特性及其选择原则
阀门分类、特性及其选择原则在流体管道系统中,阀门是控制元件,其主要作用是隔离设备和管道系统、调节流量、防止回流、调节和排泄压力。
阀门可用于控制空气、水、蒸汽、各种腐蚀性介质、泥浆、油品、液态金属和放射性介质等各种类型流体的流动。
由于管道系统选择最适合的阀门显得非常重要,所以,了解阀门的特性及选择阀门的步骤和依据也变得至关重要起来。
阀门分类一、阀门总的可分两大类:第一类自动阀门:依靠介质(液体、气体)本身的能力而自行动作的阀门。
如止回阀、安全阀、调节阀、疏水阀、减压阀等。
第二类驱动阀门:借助手动、电动、液动、气动来操纵动作的阀门。
如闸阀,截止阀、节流阀、蝶阀、球阀、旋塞阀等。
二、按结构特征,根据关闭件相对于阀座移动的方向可分:1.截门形:关闭件沿着阀座中心移动;2.闸门形:关闭件沿着垂直阀座中心移动;3.旋塞和球形:关闭件是柱塞或球,围绕本身的中心线旋转;4.旋启形:关闭件围绕阀座外的轴旋转;5.碟形:关闭件的圆盘,围绕阀座内的轴旋转;6.滑阀形:关闭件在垂直于通道的方向滑动。
三、按用途,根据阀门的不同用途可分:1.开断用:用来接通或切断管路介质,如截止阀、闸阀、球阀、蝶阀等。
2.止回用:用来防止介质倒流,如止回阀。
3.调节用:用来调节介质的压力和流量,如调节阀、减压阀。
4.分配用:用来改变介质流向、分配介质,如三通旋塞、分配阀、滑阀等。
5.安全阀:在介质压力超过规定值时,用来排放多余的介质,保证管路系统及设备安全,如安全阀、事故阀。
6.其他特殊用途:如疏水阀、放空阀、排污阀等。
四、按驱动方式,根据不同的驱动方式可分:1.手动:借助手轮、手柄、杠杆或链轮等,有人力驱动,传动较大力矩时装有蜗轮、齿轮等减速装置。
2.电动:借助电机或其他电气装置来驱动。
3.液动:借助(水、油)来驱动。
4.气动:借助压缩空气来驱动。
五、按压力,根据阀门的公称压力可分:1.真空阀:绝对压力lt;0.1Mpa即760mm汞柱高的阀门,通常用mm汞柱或mm水柱表示压力。
调节阀的型式选择
调节阀的型式选择1、根据工艺变量(温度、压力、压降和流速等)、流体特性(粘度、腐蚀性、毒性、含悬浮物或纤维等)以及调节系统的要求(可调比、泄漏量和噪音等)、调节阀管道连结形式来综合选择调节阀型式。
2、一般情况下优先选用体积小,通过能力大,技术先进的直通单、双座调节阀和普通套筒阀。
也可以选用低S值节能阀和精小型调节阀。
3、根据不同场合,可选用下列型式调节阀。
1)直通单座阀一般适用于工艺要求泄漏量小、流量小、阀前后压差较小的场合。
但口径小于20mm的阀也广泛用于较大差压的场合;不适用于高粘度或含悬浮颗粒流体的场合。
2)直通双座阀一般适用于对泄漏量要求不严、流量大和阀前后压差较大的场合;但不适用于高粘度或含悬浮颗粒流体的场合。
3)套筒阀一般适用于流体洁净,不含固体颗粒的场合。
阀前后压差大和液体可能出现闪蒸或空化的场合。
4)球型阀适用于高粘度、含纤维、颗粒状和污秽流体的场合。
调节系统要求可调范围很宽(R可达200:1;300:1)的场合。
阀座密封垫采用软质材料时,适用于要求严密封的场合。
“0”型球阀一般适用两位式切断的场合。
“V”型球阀一般适用于连续调节系统,其流量特性近似于等百分比。
5)角型阀一般适用于下列场合:高粘度或悬浮物的流体(必要时,可接冲洗液管);气-液混相或易闪蒸的流体;管道要求直角配管的场合。
6)高压角型阀除适用5)中各种场合外,还适用于高静压、大压差的场合。
但一定要合理选择阀内件的材质和结构形式以延长使用寿命。
7)阀体分离型调节阀一般适用于高粘度、含颗粒、结晶以及纤维流体的场合;用于强酸、强碱或强腐蚀流体的场合时,阀体应选用耐腐蚀衬里,阀盖、阀芯和阀座应采用耐腐蚀压垫或相应的耐腐蚀材料。
其流量特性比隔膜阀好。
8)偏心旋转阀适用于流通能力较大,可调比宽(R可达50:1或100:1)和大压差,严密封的场合。
9)蝶型阀适用于大口径、大流量和低压差的场合;一般适用于浓浊液及含悬浮颗粒的流体场合;用于要求严密封的场合,应采用橡胶或聚四氟乙烯软密封结构;对腐蚀性流体,需要使用相应的耐蚀衬里。
调节阀特点
调节阀特点调整阀(controlvalve)用于调整介质的流量、压力和液位。
依据调整部位信号,自动掌握阀门的开度,从而达到介质流量、压力和液位的调整。
调整阀分电动调整阀、气动调整阀和液动调整阀等。
调整阀由电动执行机构或气动执行机构和调整阀两部分组成。
调整并通常分为直通单座式和直通双座式两种,后者具有流通力量大、不平衡办小和操作稳定的特点,所以通常特殊适用于大流量、高压降和泄漏少的场合。
流通力量Cv是选择调整阀的主要参数之一,调整阀的流通力量的定义为:当调整阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调整阀的流量数,称为流通力量,也称流量系数,以Cv表示,单位为t/h,液体的Cv值按下式计算。
依据流通力量Cv值大小查表,就可以确定调整阀的公称通径DN。
调整阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调整阀的相对流量与它的开度之间关系。
调整阀的流量特性有线性特性,等百分比特性及抛物线特性三种。
三种注量特性的意义如下:(1)等百分比特性(对数)等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。
所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调整精度。
(2)线性特性(线性)线性特性的相对行程和相对流量成直线关系。
单位行程的变化所引起的流量变化是不变的。
流量大时,流量相对值变化小,流量小时,则流量相对值变化大。
(3)抛物线特性流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。
从上述三种特性的分析可以看出,就其调整性能上讲,以等百分比特性为最优,其调整稳定,调整性能好。
而抛物线特性又比线性特性的调整性能好,可依据使用场合的要求不同,选择其中任何一种流量特性。
调整阀(controlvalve)用于调整介质的流量、压力和液位。
依据调整部位信号,自动掌握阀门的开度,从而达到介质流量、压力和液位的调整。
教你九招准确选择调节阀
教你九招准确选择调节阀1、阀型的选择:(1)确定公称压力,不是用PMAX去套PN,而是由温度、压力、材质三个条件从表中找出相应的PN并满足于所选阀之PN值。
(2)确定的阀型,其泄漏量满足工艺要求。
(3)确定的阀型,其工作压差应小于阀的允许压差,如不行,则须从特殊角度考虑或另选它阀。
(4)介质的温度在阀的工作温度范围内,环境温度符合要求。
(5)根据介质的不干净情况考虑阀的防堵问题。
(6)根据介质的化学性能考虑阀的耐腐蚀问题。
(7)根据压差和含硬物介质,考虑阀的冲蚀及耐磨损问题。
(8)综合经济效果考虑的性能、价格比。
需考虑三个问题:A、结构简单(越简单可靠性越高)、维护方便、备件有来源;B、使用寿命;C、价格。
(9)优选秩序。
蝶阀-单座阀-双座阀-套筒阀-角形阀-三通阀-球阀-偏心旋转阀-隔膜阀。
2、执行机构的选择:(1)最简单的是气动薄膜式,其次是活塞式,最后是电动式。
(2)电动执行机构主要优点是驱动源(电源)方便,但价格高,可靠性、防水防爆不如气动执行机构,所以应优先选用气动式。
(3)老电动执行机构笨重,我们已有电子式精小型高可靠性的电动执行机构提供(价格相应高)。
(4)老的ZMA、ZMB薄膜执行机构可以淘汰,由多弹簧轻型执行机构代之(性能提高,重量、高度下降约30%)。
(5)活塞执行机构品种规格较多,老的、又大又笨的建议不再选用,而选用轻的新的结构。
3、材料的选择:(1)阀体耐压等级、使用温度和耐腐蚀性能等方面应不低于工艺连接管道的要求,并应优先选用制造厂定型产品。
(2)水蒸汽或含水较多的湿气体和易燃易爆介质,不宜选用铸铁阀。
(3)环境温度低于-20℃时(尤其是北方),不宜选用铸铁阀。
(4)对汽蚀、冲蚀较为严重的介质温度与压差构成的直角坐标中,其温度为30 0℃,压差为1.5MPA两点连线以外的区域时,对节流密封面应选用耐磨材料,如钴基合金或表面堆焊司特莱合金等。
(5)对强腐蚀性介质,选用耐蚀合金必须根据介质的种类、浓度、温度、压力的不同,选择合适的耐腐蚀材料。
调节阀的流量特性
调节阀的流量特性、流通能力的计算与选择摘要:企业的能源计量已成为节能减排的重要方式,而流量调节阀作为流量控制中的重要方法,文章详细介绍了调节阀的流量特性,直线特性、等百分比特性及介于两者之间的抛物线特性的流量调节阀的作用及如何选型。
关键词:调节阀;流量特性;流通能力;等百分比特性;直线特性调节阀作为一个执行器将来自控制器的信号,变成控制量作用在对象上。
它是控制系统的重要组成部分,在选择使用时,应和选用传感器、变送器一样,从现有的商品中,选择能满足要求的产品。
下面介绍调节阀的流量特性和口径的计算。
1 调节阀的流量特性及其选择1.1 调节阀的流量特性调节阀的流量特性是指流过调节阀介质的相对流量与调节阀的相对开度之间的关系,即:式中:Q/Q max:相对流量,即调节阀某一开度下的流量与全开流量之比;L/L max:相对开度,即调节阀某一开度下的行程与全开行程之比。
调节阀流量特性是由调节阀阀芯形状决定的。
阀芯形状有柱塞阀和开口阀两类,而每一类都分为直线特性、等百分比特性和抛物线特性。
此外还有平板形的快开特性。
图1 是阀芯形状示意图,图2 是理想流量特性图。
图1 阀芯形状图2 理想流量特性(1)直线特性;(2)等百分比特性;(3)快开特性;(4)抛物线特性所谓理想流量特性是指阀前后压差在流量改变时保持不变条件下,所得到的流量特性,这自然应在实验条件下才能形成恒定的压差。
从图2 可以看出,各流量特性线,当开度为零时,相对流量为3.3%,可知在相对开度为零时为最小流量,且此最小流量与最大流量之比为3.3%,或者说最大流量与最小流量之比为30。
直线流量特性的斜率等于常数,与相对流量值无关;等百分比流量特性的斜率与相对流量成正比;抛物线特性介于直线和等百分比特性之间。
1.2 调节阀流量特性的选择工程所用调节阀的特性有直线特性、等百分比特性及介于两者之间的抛物线特性,此外还有快开特性。
对于直通调节阀可用等百分比特性阀代替抛物线特性阀,而快开特性阀只应用于双位控制和程序控制中。
浅析调节阀选型应该注意的几个方面
浅析调节阀选型应该注意的几个方面一、根据工艺条件,选择合适的结构形式和材质1. 如何选择调节阀的型式(1)调节阀前后压差较小,要求泄漏量较小,一般可选用单座阀。
(2)调节低压差、大流量的气体,可选用蝶阀。
(3)调节强腐蚀性流体,可选用隔膜阀。
(4)既要求调节又要求切断,可选用偏心旋转阀。
(5)噪声较大时可选用套筒阀。
2. 如何选择调节阀的材质(1)一般应选铸钢。
(2)使用要求不高时(120℃、1.6 MPa以下)也可选用铸铁。
(3)高温(450~600 ℃)或低温(-60 ~+250℃)场合应选用1Cr18Ni9Ti。
(4)高压(22~32 MPa)场合应选用锻钢,1Cr18Ni9Ti、0Cr18Ni12Mo3Ti。
(5)强腐蚀介质应选1Cr18Ni9Ti。
二、根据工艺对象的特点,选择合适的流量特性调节阀的流量特性是介质流过调节阀的相对流量与相对位移(调节阀的相对开度)间的关系,一般来说改变调节阀的阀心与阀座的流通截面,便可控制流量,但实际上由于多种因素的影响,如在节流面积变化的同时,还发生阀前后压差的变化,而压差的变化又将引起流量的变化。
在阀前后压差保持不变时,调节阀的流量特性称为理想流量特性;调节阀的结构特性是指阀心位移与流体流通截面积之间的关系,它纯粹由阀心大小和几何形状决定,与调节阀几何形状有关外,还考虑了在压差不变的情况下流量系数的影响,因此,调节阀的理想流量特性与结构特性是不同的。
理性流量特性主要有线性、等百分比、抛物线及快开四种。
在实际生产应用过程中,调节阀前后压差总是变化的,这时的流量特性称为工作流量特性,因为调节阀往往和工艺设备串联或并联使用,流量因阻力损失的变化而变化,在实际工作中因阀前后压差的变化而使理想流量特性畸变成工作特性。
调节阀的理想流量特性,在生产中常用的是直线、等百分比、快开三种,抛物线流量特性介于直线与等百分比之间,一般可用等百分比来代替,而快开特性主要用于二位式调节及程序控制中,因此,调节阀的特性选择是指如何选择直线和等百分比流量特性。
调节阀的结构形式、特点、工作原理、设计与选型原则
调节阀的结构形式、特点、工作原理、设计与选型原则一、概述:1、调节阀是一种用于控制流体介质流量、压力和温度的装置。
它通过改变阀门的开度来调节流体的流量,从而实现对流体系统的控制。
调节阀广泛应用于石油、化工、电力、冶金、制药、食品等工业领域,具有重要的作用。
2、调节阀是气动执行机构和电动执行机构配套使用的阀门。
它由一个主阀及其附设的导管、导套、活塞、弹簧等附件组成。
主阀主要由塞型阀芯(密封座)、主阀体(缸体)和连接件(定位器)组成。
3、调节阀是制造业里非常重要的流体控制元件,合理、正确的选型将为工业控制系统提高效率、保证生产安全、节约能源、提高经济效益。
4、在生产现场,调节阀直接控制着工艺介质,有些介质成分比较复杂,尤其是高温、高压、易燃、易爆等特殊情况,若选择不当,往往给生产控制带来困难,以致调节质量下降,甚至造成严重的生产事故。
二、调节阀的结构型式、特点及工作原理:1、闸阀式调节阀:闸阀式调节阀是以闸阀作为调节介质的调节装置,它的主要特点是流体的流量可以比较的控制。
它的工作原理是,当控制信号发生变化时,控制阀杆转动,改变闸阀的开度,从而改变流量。
2、旋塞式调节阀:旋塞式调节阀是以旋塞作为调节介质的调节装置,它的主要特点是能够调节流量的范围比较大,而且操作简单。
它的工作原理是,当控制信号发生变化时,控制阀杆转动,改变旋塞的开度,从而改变流量。
3、蝶阀式调节阀:蝶阀式调节阀是以蝶阀作为调节介质的调节装置,它的主要特点是可以调节流量的范围比较大,而且操作简单。
它的工作原理是,当控制信号发生变化时,控制阀杆转动,改变蝶阀的开度,从而改变流量。
4、气动薄膜式调节阀:气动薄膜式调速装置由气动薄膜式调速装置的主机、电磁铁和电源三部分组成。
主机部分包括气缸1(1个或2个);气缸2(2个);单向活接头(3个);手动操作手柄(1个)。
电磁铁部分包括电磁铁1(1只),线圈1(4根),固定螺帽3颗。
电源部分包括交流220伏50Hz单相三线制供电线路。
气动调节阀气开气关选择
气动调节阀气开、气关方式的选择气动调节阀气开、气关方式的选择主要是从生产安全角度出发来考虑的。
当调节阀上信号或气源中断时,应避免损坏设备和伤害人员。
如事故情况下,调节阀处于关闭位置危害小,则应选用气开式调节阀;反之,应选用气关式调节阀。
举例来说,如加热炉的燃料气或燃料油调节阀,应选用气开式,以保证事故时能切断燃料,以免烧坏炉子。
对于塔、储罐等设备,它们的压力控制若是通过排出物料来操纵,则调节阀应选用气关式;若是通过进入物料来进行操纵,则调节阀应选用气开式,以防事故时设备超压损坏。
对供气安全系数特别高的大型石油化工厂,因为它们除有足够容量的储气罐以外,还设有备用压缩机、外接气源等,而且工厂的供电等级也很高,所以供气系统的不安全度极小。
在这种情况下,一般用途的调节阀可以根据操作习惯与方便、统一的原则来选择调节阀的气开、气关方式。
对于少数极重要的调节阀,则不仅需要合理选择气开、气关方式,还需要考虑设置保位阀、事故用储气罐等专有的附属装置,以确保其在任何清况下的安全、可靠,并有利于事故后恢复生产。
气动调节阀的气开、气关方式,可以通过气动执行机构的正、反作用与阀芯正、反装的组合来实现。
确定调节阀的一些参数一.调节阀⑴确定计算流量:根据生产能力,设备负荷及介质状况,确定Qmax和Qmin.⑵确定计算压差:根据系数特点选定S值,然后确定计算压差。
⑶计算流量系数:选择合适的计算公式或图表,求取最大和最小流量时的Cmax和Cmin。
⑷C值的选取:根据Cmax,在所选产品型式的标准系列中,选取大于Cmax并最接近的那一级C值。
⑸调节阀开度验算:要求最大流量时,阀开度不大于90%,最小流量时开度不小于10%,(根据《自动化选型规定》HG/T20507-92).对于直线特性阀,最大开度≦80%,最小开度应≧10%;等百分比特性阀,最大开度≦90%,最小开度应≧30%.⑹实际可调比的验算:一般要求,实际可调比不小于10.(一般选取30左右自认为)⑺口径的确定:验证合适后,根据C值决定。
调节阀的选择与选型
调节阀的选择与选型一、调节阀的选择1、调节阀选用。
首先应清楚了解各种类型调节阀的结构特点、适用范围、使用功能等。
如结构类型、公称尺寸、压力温度等级、管道连接、上阀盖类型、流量特性、材料及执行机构等,还必须弄清控制过程中各工艺参数、调节仪表等基本条件,做到有的放矢。
以满足工艺流程中控制的需要,确保高品质、安全、稳定、可靠、长寿运行。
还要注意其经济性能的适配,可从以下几点着手。
A.流量、压力调节系统反应速度快的选用等百分比流量特性。
B.温度、液位调节系统反应滞后的应选用直线(性)流量特性。
C.流通能力同口径调节阀的流量系数"Kv”值越大越好,阀阻力损失小、流通能力大。
如双阀座、蝶形阀、球形阀等。
D.如考虑调节范围,小开度特性时,就不能选用双座阀、衬胶、衬纸蝶形阀,因其受结构限制,小开度时易产生跳动、振荡。
E.如要考虑关闭时的允许压差的能力,阀的允许压差值越大此功能就越好。
如考虑不周时,阀关闭不到位,引起泄漏量过大,或开度小时跳动不稳、振荡。
允许压差值大的阀门如双座阀、套筒阀(平衡笼式阀)、球形阀等。
F.如流体介质为黏、稠或含杂质较多时,就要选用防堵性能好的阀门,如蝶形阀、球形阀、角形阀、隔膜阀,其自洁性好、不易堵塞。
G.如流体介质有腐蚀性时,应考虑安全生产,使用寿命问题。
阀门受流体介质的化学性质引起的材料腐蚀,通常选用与介质相适应的耐腐蚀材料解决。
如选用不锈钢、铬钼钢、蒙乃尔合金等及衬胶、衬氟阀。
H.如流体介质有毒、有害、易造成人员伤害时,应考虑选用波纹管密封的调节阀(无填料阀),严密无泄漏。
I.如有大压差、大流速时,除应考虑选用较大压差的阀门外,还应考虑阀芯、阀座采用耐磨耐蚀材料(工作压差大于1.1MPa或包含了临界压力汽化点时),如硬质合金堆焊,及选用能降速降压式阀门,如笼式阀、笼式低噪声阀、多级降压阀。
J.关闭泄漏量方面:要求关闭严密的,常温低压阀选用软密封型调节切断阀(零泄漏量)。
调节阀特点
调节阀特点调节阀特点调节阀特点目录调节阀特点 0直通单座调节阀特点: (2)直通双座调节阀特点: (2)轴流式调节阀特点 (2)CVS-C型减温减压阀(专用于高压蒸汽冷凝器的减压)特点: (3)三通调节阀特点:、 (3)角式调节阀特点: (3)隔膜阀特点: (4)套筒调节阀特点: (4)球阀特点: (4)偏心旋转阀特点: (5)蝶阀特点(蝶阀分为常温蝶阀(-29~425℃)、低温蝶阀(-196~-46℃)、高温蝶阀(425~610℃和610~816℃)、高压蝶阀:PN420(Class 2500)等几类。
): (5)闸阀特点: (6)自力式调节阀 (6)智能调节阀(因附带智能阀门定位器而使调节阀具有智能化功能) (7)智能阀门定位器与普通阀门定位器的主要区别: (7)带现场总线智能阀门定位器的气动调节阀较一般智能阀门定位器的特点: (7)直通单座调节阀特点:1)泄漏量小,容易实现严格的密封和切断,可采用金属与金属的密封或金属与聚四乙烯(PTFE)或其他复合材料的密封。
标准泄漏量为IEC 60534-4:2006中Ⅳ级。
2)允许压差小,例如DN100阀的允许压差仅为120Kpa3)流通能力小,例如DN100的直通阀的流通能力仅为100m3/ℎ。
4)由于流体对阀芯的推力大,即不平衡力大,因此在高压差、公称尺寸DN大的应用场合不宜采用这类调节阀。
直通双座调节阀特点:1)所受不平衡力下,允许的压降大,例如DN100的双座调节阀允许压差为280Kpa.2)流通能力强。
与相同公称尺寸的其他调节阀比较,双阀座阀可流过更多流体,相同公称尺寸的双座阀流通能力比单座阀流通能力大20%~50%。
例如,DN100双座调节阀的流通能力达160m3/ℎ。
因此为获得相同的流通能力,双座调节阀可选用较小推力的执行机构。
3)泄漏量大。
双座调节阀的上,下阀芯不能同时保证关闭,因此双座阀的泄漏量较大,标准的泄漏量为IEC 60534-4:2006的Ⅲ级。
调节阀的选型
自控工程设计中调节阀的选型笼式就是套筒型。
直行程阀芯常用类型为柱塞型和套筒型。
柱塞型主要应用在常规场所,而高压差、蒸汽等特殊环境就要选用套筒型。
笼式的阀芯,是指在阀芯外面再套一个导向筒,一方面起到多级降压作用,一方面可以起到平衡阀芯和导向的作用。
1 调节阀选型的重要性调节阀在过程控制中的作用是接受调节器或计算机的控制信号,改变被调介质的流量,使被调参数维持在所要求的范围内,从而达到生产过程自动化。
调节阀是自控系统中的执行器,它的应用质量直接反应在系统的调节品质上。
作为过程控制中的终端元件,人们对它的重要性较过去有了更新的认识。
调节阀应用的好坏,除产品自身质量、用户是否正确安装、使用、维护外,正确地计算、选型十分重要。
由于计算选型的失误,造成系统开开停停,有的甚至无法投用,设计人员应该认识阀在现场的重要性,必须对调节阀的选型重视,至关重要。
2 调节阀的工作原理要正确选型必须知道调节阀的工作原理,调节阀与孔板一样是一个局部阻力元件。
调节阀的节流面积可以由阀芯的移动来改变,因此是一个可变的节流元件。
因此可以把调节阀模拟成节流件孔板的形式。
对于不可压缩流体,根据伯努利方程,调节阀的流量方程为:P1/ρg+V12/2g=P2/ρg+V22/2g;V1,V2—节流前后速度;P1,P2—节流前后压力;A ——节流面积;Q ——流量;ζ——阻力系数;g ——重力加速度;ρ——流体密度。
当调节阀的口径一定时即调节阀两端压差(P1-P2)不变时,流量Q随阻力系数而变化。
减少,Q增大。
3 调节阀选型的原则调节阀由执行机构和阀门两部分组成,调节阀选型需遵循下面的原则:3.1 根据工艺条件,选择合适的结构形式和材料3.1.1 根据阀的阀体的结构形式可分为单座阀、双座阀、角阀、三通阀、偏心旋转阀、蝶阀、球阀、隔膜阀等。
选择阀门之前,要对控制过程的介质、工艺条件和参数进行细心的分析,收集足够的数据,了解系统对调节阀的要求。
可以从以下几个方面考虑:1)阀芯的形状结构主要根据所选择的流量特性和不平衡力等因素考虑。
调节阀的结构、分类、特点、选择及维护使用
调节阀的结构、分类、特点、选择及维护使用1、概念调节阀也称为执行器,它由执行机构和调节机构两部分组成。
其中执行机构是调节阀的推动部分,它按控制信号的大小产生相应的推力,通过阀杆使调节阀阀芯产生相应的位移。
调节机构是调节阀的调节部分,它与调节介质直接接触,在执行机构的推动下,改变阀芯与阀座间的流通面积,从而达到调节流量的目的。
2、分类执行器按其能源形式分气动、电动、液动三大类。
气动薄膜式执行器活塞式执行器气动执行器按其执行机构形式分薄膜式、活塞式和长行程式。
电动直行程执行器电动角行程执行器电动和液动执行器按执行机构的运行方式分为直行程和角行程两类。
目前在石化工业中普遍采用气动执行器。
3、调节机构调节机构又称阀。
种类很多,根据结构、用途来分,其基本形式是直通单座阀、直通双座阀、蝶阀、三通阀、偏心旋转阀、套筒阀、角形阀等。
3.1直通单座阀:阀体内只有一个阀芯和阀座,阀杆带动阀芯上下移动来改变阀芯与阀座之间的相对位置,从而改变流体流量。
其主要优点是泄漏量小结构与使用特点:阀体内只有一个阀芯和阀座, DN≥25时,阀芯为双导向(现在的精小型单座阀已改为单导向);DN≤20的,阀芯为单导向。
其使用特点如下:(1)由于只有一个阀芯,容易保证密封,泄漏量小,但不能完全切断,其标准泄漏量为0.01%Kv,因此适用于泄漏量要求小的场合。
当进一步设计后,可作为切断阀使用。
(2)因为只有一个阀芯,压差对阀芯产生的不平衡推力大,口径越大,上推的不平衡力越大,所以,允许压差△P越小,因此直通单座调节阀仅适用于△P小的场合,否则必须选用推力大的执行机构,或配用阀门定位器。
但口径较小时,因△P作用面积小,也可用于大压差场合。
((3)因阀体流路较复杂,加之导向处易被固体卡住,不适用于高粘度、悬浮液、含固体颗粒等易沉淀、易堵塞的场合。
该阀主要优点一个:泄漏小;主要缺点三个:允许压差小、易堵卡、太笨重。
3.2直通双座阀:阀体内只有两个阀芯和阀座,阀杆带动阀芯上下移动来改变阀芯与阀座之间的相对位置,从而改变流体流量。
调节阀的特性分析
调节阀的特性分析6.2.1 调剂阀的节流原理和流通能力当流体通过调剂阀时,由于阀芯、阀座间流通面积的局部缩小,形成局部阻力,使流体在此处产生能量缺失,那个缺失的大小通常用阀前后的压差来表示。
凋节阀前后管道直径相同,流速相同,依照流体能量守恒原理,可得到流体通过调剂阀后的能量缺失与调剂阀前后的压差关系为:设调剂阀开度不变,流体重度不变(不可压缩流体),则单位重量的流体的能量缺失与流体的动能成正比。
即:当调剂阀口径一定,即调剂阀接管截面积A一定,且P1-P2不变时,阻力系数ζ减小,流量Q则增大,反之ζ增大则Q减小,因此调剂阀的工作原理确实是由输入信号的大小、改变阀芯的行程,从而改变流通面积达到调剂流量的目的。
C称为流通能力,与阀芯、阀座的结构、阀前后的压差、流体性质等因素有关。
必须在规定了—定的条件后,再描述调剂阀的流通能力。
我国所用流通能力C的定义为:在调剂阀全开,阀前后压差为1kgf/cm2,介质重度为1gf/cm3时,流经调剂阀的流量数。
例如:一个C值为32的调剂阀确实是表示当阀全开,阀前后压差为1kgf/cm2时,每小时能通过的水量为32m3。
6.2.2 调剂阀流量特性的定义调剂阀的流量特性是指被调介质流过阀门的相对流量与阀门的相对开度之间的关系,即:一样说来,变化调剂阀的阀芯与阀座之间的流通面积,就可实现流量的调剂。
但实际上由于各种因素的阻碍,假如在改变节流面积的同时发生阀前后压差的变化,而压差的变化也会引起流量的变化。
为了便于分析,假定阀前后压差为一定值,现在的流量特性称为理想流量特性。
在此基础上引伸到真实情形的研究,这确实是工作流量特性。
6.2.3 理想流量特性调剂阀在前后压差一定的情形下得到的流量特性称为朋想流量特性。
理想流量特性取决于阀芯的形状,不同阀芯曲面可得到不同的理想流量特性如图6.2—1。
典型的理想流量特性有直线、等百分比(对数)、快开和抛物线四种,特性曲线如图6.2—2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调节阀的特性及选择调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。
调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。
电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。
本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。
1.调节阀工作原理从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。
对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为()()21221242P P D P P AQ -=-=ρζπρζ式中:Q——流体流经阀的流量,m 3/s ;P1、P2——进口端和出口端的压力,MPa ;A——阀所连接管道的截面面积,m 2; D——阀的公称通径,mm ;ρ——流体的密度,kg/m 3; ζ——阀的阻力系数。
可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。
阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。
调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。
阀开得越大,ζ将越小,则通过的流量将越大。
2.调节阀的流量特性调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即⎪⎭⎫⎝⎛=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。
一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。
但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。
为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。
因此,流量特性有理想流量特性和工作流量特性之分。
2.1 调节阀的理想流量特性调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。
调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。
(1)直线流量特性直线流量特性是指调节阀的相对流量与相对开度成直线关系,即单位行程变化所引起的流量变化是常数。
由此可见,直线流量特性调节阀在行程变化相同的条件下所引起的相对流量变化也相同,但相对流量变化的相对值不同。
即流量小时,相对流量变化的相对值大;而流量大时,相对流量变化的相对值小。
也就是说,阀在小开度时控制作用太强,不易控制,易使系统产生振荡;而在大开度时,控制作用太弱,不够灵敏,控制难于及时。
(2)等百分比(对数)流量特性等百分比流量特性是指单位相对行程变化所引起的相对流量变化与此点的相对流量成正比关系,即该点单位相对行程变化的百分数与相对流量变化的百分数相等,故称为等百分比流量特性。
等百分比流量特性的相对开度与相对流量成对数关系,故又称之为对数流量特性。
这种调节阀的放大系数是随行程的增大而递增,即在开度小时,相对流量变化小,工作缓和平稳,易于控制;而开度大时,相对流量变化大,工作灵敏度高,这样有利于控制系统的工作稳定。
(3)抛物线流量特性抛物线流量特性的调节阀的相对流量与相对开度的二次方成比例关系。
(4)快开流量特性调节阀在开度较小时就有较大流量,随开度的增大,流量很快就达到最大,故称为快开流量特性。
快开流量特性的阀芯是平板形的,适用于迅速启闭的切断阀或双位控制系统。
2.2 工作流量特性在实际使用时,调节阀总是与具有阻力的表冷器、换热器、管道等相连接,即使能保持供、回水压差不变,也不能始终保持调节阀前后的压差恒定。
因此,虽然在同一相对开度下,通过调节阀的实际流量将与理想特性时所对应的流量不同。
所谓调节阀的工作流量特性就是指调节阀在前后压差随负荷变化的工作条件下,它的相对流量与相对开度之间的关系。
(1)串联管道时调节阀的工作流量特性直通调节阀与管道和设备串联的系统及其压差变化情况如图5-7所示。
调节阀安装在串联管道系统中,串联管道系统的阻力与通过管道的介质流量成平方关系。
当系统总压差为一定时,调节阀一旦动作,随着流量的增大,串联设备和管道的阻力亦增大,这就使调节阀上压差减小,结果引起流量特性的改变,理想流量特性就变为工作流量特性。
假设在无其他串联设备阻力的条件下,阀全开时的流量为Q max ,在有串联设备阻力的条件下,阀全开的流量为Q 100,两者关系可用下式表示:v P Q Q max 100=式中P v 为阀全开时,阀上的压差与系统总压差之比值,称为阀权度,也称为阀门能力或压差比,即PP P v ∆∆=1式中:ΔP 1——调节阀全开时阀上的压力降;ΔP ——包括调节阀在内的全部管路系统总的压力降。
显然,随着串联阻力的增大,P v 值减小,则Q 100会减小,这时阀的实际流量特性偏离理想流量特性也就愈严重。
以Q 100作参比值,不同P v 值下的工作流量特性如图5-8所示。
由图5-8可以看出,当P v =1时,理想流量特性与工作流量特性一致;随着P v 的值降低,Q 100逐渐减小,所以实际可调比R(R=Q max /Q min )是调节阀所能控制的最大与最小畸变,也会逐渐减小;随着P v 值的减小,特性曲线发生畸变,直线特性阀趋于快开特性,而等百分比特性阀趋于直线特性阀,这就使得调节阀在小开度时控制不稳定,大开度时控制迟缓,会严重影响控制系统的调节质量。
因此,在实际使用时,对P v 值要加以限制,一般希望不低于0.3~0.5。
(2)并联管道时调节阀的工作流量特性调节阀一般都装有旁路,以便于手动操作和维护,当负荷提高或调节阀选小了时,可以打开一些旁路阀,此时调节阀的理想特性就改变为工作特性。
若以X 代表管道并联时调节阀全开流量1Q 与总管最大流量max Q 之比,即m axm ax1Q Q X =,可以得到压差为一定而X 值不同时的工作流量特性,如图5-9所示。
当X=1,即旁路阀关闭时,调节阀的工作特性同理想特性一致;随着X 的减小,系统的可调比将大大下降。
同时,在实际应用中总有串联管道阻力的影响,调节阀上压差还会随流量的增加而降低,使可调比更为下降。
一般认为X 值不应低于0.5,最好不低于0.8。
3.调节阀的可调比调节阀的可调比就是调节阀所能控制的最大流量与最小流量之比。
可调比也称可调范围,若以R 来表示,则m inm axQ Q R =要注意最小流量Q min 和泄漏量的含义不同。
最小流量是指可调流量的下限值,它一般为最大流量Q max 的2%-4%,而泄漏量是阀全关时泄漏的量,它仅为最大流量的0.1%-0.01%。
3.1 理想可调比当调节阀上压差一定时,可调比称为理想可调比,即minmaxmin max C C Q Q R ==也就是说,理想可调比等于最大流量系数与最小流量系数之比,它反映了调节阀调节能力的大小,是由结构设计所决定的。
一般总是希望可调比大一些为好,但由于阀芯结构设计及加工方面的限制,流量系数C min 不能太小,因此,理想可调比一般均小于50,我国规定在设计中理想可调比统一取30。
3.2 实际可调比调节阀在实际工作时不是与管路系统串联就是与旁路阀并联,随管路系统的阻力变化或旁路阀开启程度的不同,调节阀的可调比也会产生相应的变化,这时的可调比就称为实际可调比。
(1)串联管道时的可调比如图5-7所示的串联管道,由于流量的增加,管道的阻力损失也增加。
若系统的总压差ΔP 不变,则分配到调节阀上的压差相应减小,这就使调节阀所能通过的最大流量减小, 所以,串联管道时调节阀实际可调比会降低。
若用R ′表示调节阀的实际可调比,则PP RP P RP C P C Q Q R ∆∆≈∆∆=∆∆=='min1max 1min 1max1minmin1max minmaxρρ式中 max 1P ∆——调节阀全关时阀前后的压差,约等于系统的总压差P ∆;min 1P ∆——调节阀全开时阀前后的压差。
由串联管道时调节阀的工作流量特性可知,PP ∆∆m in1=v P ,即阀权度。
则v P R R ='由上式可知,当v P 值越小,即串联管道的阻力损失越大时,实际可调比就越小。
(2)并联管道时的可调比在图3-13所示并联管道中,由于旁路流量的存在,相当于提高了调节阀的最小流量min Q 。
当打开与调节阀并联的旁路时,实际可调比为:2min 1maxQ Q Q R +='由m ax m ax 1Q Q X =, m in1m ax 1Q QR = 可得: max min 1Q RXQ =, max max 1max 2)1(Q X Q Q Q -=-= 因此XR R RQ Q Q R )1(2min 1max -+=+='从上式可知:当X 值越小,即旁路流量越大时,实际可调比就越小,由此可见旁路阀的开度对实际可调比的影响极大。
由于150~30>>=R ,因此2max max 1max max 11Q Q Q Q Q X R =-=-≈' 上式表明在并联管道中调节阀的实际可调比与调节阀本身的可调比近乎无关,由于调节阀的最小流量一般比旁路流量小得多,故其实际可调比实际上只是总管最大流量与旁路流量的比值。
综上所述,串联或并联管道都将使实际可调比下降,所以在选择调节阀和组成系统时不应使v P 值太小,并且要尽量避免打开并联管路的旁路阀,以保证调节阀有足够的可调比。
3.3 调节阀流通能力调节阀流通能力是衡量阀门流量控制的能力。
其定义为:当调节阀全开、阀两端压差为105Pa 、流体密度为ρ=1g /cm 3时,每小时流经调节阀的流量数,以m 3/h 计。
从调节阀的流量方程式可知:()P A P P A Q ∆=-=ρζρζ2221式中 Q ——流体流量,m 3/h ;A ——调节阀接管截面积,cm 2;P 1——阀前压力,105Pa =10N/cm 2;P 2——阀后压力,105Pa =10N/cm 2;ΔP ——阀两端压差,105Pa =10N/cm 2;ρ——流体的密度,1g/cm 3=10N -5·S 2/cm 4。
把采用的单位量纲代人上式后可得到:ρζρζρζPAP AP A Q ∆=∆⨯=∆=-09.51010225令ζAC 09.5=,则有: ρPCQ ∆=,C 称为调节阀的流通能力,又称为调节阀的流量系数。
由于P 1、P 2和ΔP 的单位是105Pa ,使用起来不方便,若改为Pa 作单位,而C 仍用上式计算,则有:ρPC Q ∆=316,即 ρPQ C ∆=316上式是ΔP 以Pa 为单位,ρ以g/cm 3作单位时计算C 值的基本公式。