数列求和的常用方法(新)

合集下载

数列求和的几种常用方法

数列求和的几种常用方法

数列求和的几种常用方法数列求和是数列部分的重要内容,题型复杂多变,我们根据不同题型总结出一些方法.它对数列的学习是有好处的.一、 反序相加法例1 求数列{n}的前n 项和.解 记S n =1+2+…+(n-1)+n,将上式倒写得: S n =n+(n-1)+…+2+1把两式相加,由于等式右边对应的项和均为n+1,∴2 S n =n(n+1),即S n =21 n(n+1) 说明 此法亦称为高斯求和.二、 错位相减法若{a n }为等差数列,{b n }为等比数列,则{a n b n }的前n 项和可用错位相减法.例2 求和S n =nn n n 212232252321132-+-++++- 解 由原式乘以公比21得: 21S n =1322122322321+-+-+++n n n n 原式与上式相减,由于错位后对应项的分母相同,可以合并,∴S n -21S n =21+112212212121+---+++n n n 即 S n =32232++-n n 一般地, 当等比数列{b n }的公比为q, 则错位相减的实质是作“S n - qS n ”求和.三、 累加法 例3 求和S n =2222321n ++++分析 由133)1(233+++=+k k k k 得133)1(233++=-+k k k k ,令k=1、2、3、…、n 得23-13=3·12+3·1+1 33-23=3·22+3·2+1 43-33=3·32+3·3+1 …… (n+1)3-n 3=3n 2+3n+1把以上各式两边分别相加得:(n+1)3-1=3(12+22+…+n 2)+3(1+2+3+…+n)+n =3S n +23n(n+1)+n 因此,S n =61n(n+1)(2n+1) 想一想 利用此法能否推导自然数的立方和公式:213)]1(21[+=∑=n n k n k 点拨 利用(k+1)4=k 4+4k 3+6k 2+4k+1进行累加.归纳 推导自然数的方幂和∑=n k r k 1公式的方法。

高中数学 数列求和的常用方法(三课时)教案 新人教A版必修5 教案

高中数学 数列求和的常用方法(三课时)教案 新人教A版必修5 教案

数列求和的常用方法(三课时)数列求和是数列的重要内容之一,也是高考数学的重点考查对象。

数列求和的基本思路是,抓通项,找规律,套方法。

下面介绍数列求和的几种常用方法: 一、直接(或转化)由等差、等比数列的求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n例1(07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a q q==,. 又37S =,可知2227q q++=,即22520q q -+=, 解得12122q q ==,.由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +==,,,,由(1)得3312nn a +=3ln 23ln 2n n b n ∴==, 又13ln 2n n n b b +-={}n b ∴是等差数列.12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+=故3(1)ln 22n n n T +=.练习:设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法设数列{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n b a 的前n 项和n S 求解,均可用错位相减法。

数列求和的8种常用方法

数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。

下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。

一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。

三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

专题十一数列求和的常用方法

专题十一数列求和的常用方法

专题十一 数列求和的常用方法一、公式法①等差数列求和公式;②等比数列求和公式;③常用公式:)1(211+==∑=n n k S nk n ,)12)(1(6112++==∑=n n n k S nk n ,213)]1(21[+==∑=n n k S nk n二、.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列.三、分组求和法:将数列分成可以求和的几组。

四.裂项相消法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项. ①111(1)1n n n n =-++ ②1111(k)k k n n n n =-++()③1111[](1)(2)2(1)(1)(2)n n n n n n n =--++++;④n n n n a n -+=++=111五.错位相减法:若}{n a 是等差数列,{n b }是等比数列,则数列{n n b a ⋅}的求和运用错位求和方法,这是仿照推导等比数列前n 项和公式的方法.六.倒序相加法:将一个数列的倒数第k 项(k =1,2,3,…,n )变为顺数第k 项,然后将得到的新数列与原数列相加,这是仿照推导等差数列前n 项和公式的方法. 七、通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。

【课前热身】1、数列2, ,21,,814,413,2121-+n n 的前n 项之和为n n n+112122⎡⎤+-⎢⎥⎣⎦()() 2、设5033171,)1(4321S S S n S n n ++⋅-++-+-=-则 = 1 ;3、数列1,(1+2),(1+2+22),…,(1+2+22+…+n-12),…的前n 项和等于n+12-2-n4、 已知数列{n a }的通项公式是n n n a n 则前,6512++=项和为n3n 3+() 典型例题:例1、(1)求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值(2)求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 解:(1)设S n =89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++则S n =22222sin 89sin 88sin 87sin 2sin 1+++⋅⋅⋅++ ∴2S n =89,故S n =892(2)设T n =01n-13(21)(21)nn n n n C C n C n C ++⋅⋅⋅+-++,则T n =n-110(21)(21)3n n n n n n C n C C C ++-+⋅⋅⋅++∴2T n =01n-1n(22)n n n n n C C C C ⎡⎤+++⋅⋅⋅++⎣⎦=n(22)2n +⋅ ∴nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++注:本例是运用倒序相加法求和。

数列求和的常用方法

数列求和的常用方法

数列求和的常用方法
1.公式法
(1)如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式,注意等比数列公比q的取值情况要分q=1或q≠1.
2.倒序相加法
如果一个数列{an},首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.
3.错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.
4.裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
5.分组转化求和法
若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.
6.并项求和法
一个数列的前n项和中,可两两结合求解,则称之为并
项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.
方法突破
1.等差、等比数列的求和
数列求和,如果是等差、等比数列的求和,可直接用求
和公式求解,要注意灵活选取公式.
2.非等差、等比数列的一般数列求和的两种思路
(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、倒序相加法等来求和.要记牢常用的数列求和的方法.。

数列求和常用方法(含答案)

数列求和常用方法(含答案)

数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。

数列求和的常用方法

数列求和的常用方法

数列求和的常用方法
1、求和公式:求和公式又称为累加公式,是给定一系列数据的加总结果,它
让我们更容易地求得更多数据的总和。

求和公式非常适用于数学计算中的求和,即计算最后一系列数字的和。

2、列表求和:列表求和是计算大量的数字加总的简单方法,即将一系列的数
字列出成一个表格,然后对表格中的每一行数据进行求和,最后统计每一行数据的总和,然后得到最终的总和。

3、迭代:迭代求和是一种求和算法,它主要通过重复地加上每一项便可求出
整个数列的和。

它的算法比较简单,只要循环遍历数列,每一次都求出当前循环项和前面项的值,最终求得数列的总和。

4、求积求和:求积求和也称为立方求和,它使用幂的形式来表示数列的和,
可以将数列分成几个较小的组,每组内的数字乘以相应的幂,然后求出每个组的乘积之和。

5、折半求和:折半求和是求一般多项式系数的和的一种技巧,它可以将一个
大数列的和拆分成两个小数列,每一个小数列分别做求和,最后将这两个结果相加,得到最终的总和。

6、分段求和:分段求和是一种求解比较复杂数列的求和方法,它可以将一个
大数列变成一个个小段,比如三角形中每一条边,然后分别求出每一段的和,再将得到的所有段数的和加起来,就得到这个数列的总和。

7、数列求和:数列求和是一种有用的数学技能,它可以帮助我们快速求出数
列的总和。

有多种不同的求和方法,比如将数列分成特定数量的部分,然后分别计算每部分数列的总和,再将他们加起来,就能求此数列的总和。

数列求和常用方法

数列求和常用方法

Sn a1 a2 a3 an Sn an an1 an2 a1
两式相加得: S n
n(a1 an ) 2
4.裂项相消法: 适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即 an=f(n+ 常用公式:
数列求和常用方法
1.公式法: 等差数列求和公式: S n
n(a1 an ) d 2 d n (a1 )n 2 2 2
举例:1+2+3+4+5+6+7+8+9=(1+9)×9÷ 2=45 等比数列求和公式:
S n n a1 (q 1) 1 q n a1 an q S n a1 (q 1) 1 q 1 q
2.错位相减法: 适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘) { an }、{ bn }分别是等差数列和等比数列: Sn a1b1 a2b2 a3b3 anbn
3.倒序相加法: 这是推导等差数列的前 n 项和公式时所用的方法,就是将一个数列倒过来排列(反序), 再把它与原数列相加,就可以得到 n 个(a1+an)
1 1 1 n(n 1) n n 1 1 1 1 1 ( ) (2n 1)(2n 1) 2 2n 1 2n 1 1 1 1 1 n(n 1)(n 2) 2 n(n 1) (n 1)(n 2) 1 a b ( a b) a b a b

数列求和的8种常用方法

数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。

下面将介绍数列求和的8种常用方法。

1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。

例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。

例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。

首项与末项之和等于和的平均数乘以项数。

例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。

等差数列的和等于首项乘以项数,再加上项数与公差之积的和。

例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。

5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。

平均数等于数列中的第一项与最后一项的平均值。

例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。

首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。

例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。

可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。

例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。

几种常见数列求和方法的归纳

几种常见数列求和方法的归纳

几种常见数列求和方法的归纳1.公式法:即直接用等差、等比数列的求和公式求和。

主要适用于等差,比数列求和。

(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(等差数列推导用到特殊方法:倒序相加)(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)(3)222221(1)(21)1236nk n n n k n =++=++++=∑L (不作要求,但要了解)例:(1)求=2+4+6+ (2)(2)求=x+++…+(x )2.倒序相加:适用于:数列距离首尾项距离相同的两项相加和相同。

例:(1)求证:等差数列{}的前n 项和d n n na a a n S n n 2)1(2)(11-+=+=(2)2222sin 1sin 2sin 3sin 89++++ooooL L .3.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。

例:(1)求和:(1)321ΛΛ个n n S 111111111++++=81109101--+n n(2)22222)1()1()1(n n n x x x x x x S ++++++=Λ当1±≠x 时,n x x x x S n n n n 2)1()1)(1(22222+-+-=+当n S x n 4,1=±=时4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

(分式求和常用裂项相消)常见的拆项公式:111)1(1+-=+n n n n ,)121121(21)12)(12(1+--=+-n n n n , 1111()(2)22n n n n =-++,)12)(12(11)12)(12()2(2+-+=+-n n n n n ,2=例:(1)求和:1111,,,,,132435(2)n n ⨯⨯⨯+L L.(2)求和)12)(12()2(534312222+-++⋅+⋅=n n n S n Λ12)1(2++=n n n S n5.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ(适用于:等差数列乘以等比数列的通项求和)例:求和:23,2,3,,,na a a na L L当1a =时,123n S =+++ (1)2n n n ++=, 当1a ≠时,212(1)(1)n n n na n a aS a ++-++=-6.合并求和法:如求22222212979899100-++-+-Λ的和。

数列求和的常用方法

数列求和的常用方法

数列求和的常用方法
首先要了解什么是求和,求和其实就是把给定的一组数求出他们的总和。

求和是数学中常用的操作,在平时的生活中也经常使用。

在科学、工程等领域中,求和可以帮助快速地完成计算任务,减少时间消耗。

求和可以分为两种情况:求有限序列和的和和求无限序列的和,求有限序列和的和又分为利用枚举法和数学公式求和。

1.枚举法求和
枚举法是求和的最简单也是最常用的方法,它的主要思路是把一组数按一定的规则列出,然后把求和的数列一个一个地累加起来,最后得到结果。

枚举法不需要了解数学公式,只需要熟练掌握技巧,并且能够灵活运用,以便解决求和问题。

2.数学公式求和
数学公式求和是比较常用的求和方法,它的主要思路是利用数学公式把求和问题转换成可以计算的公式,然后把公式代入数值即可得到结果。

数学公式在求和中的应用有很多,例如等差数列和等比数列和的求取,这种求和方法要求计算者熟悉数学公式,并且时刻关注公式是否正确,是否满足全部的条件。

3.函数法求和
函数法也是一种比较常用的求和方法,它的主要思路是将一组数的求和能够被简化到计算函数值的过程当中。

数列求和的几种方法

数列求和的几种方法

数列求和的几种方法一、数列的求和问题在数学中非常常见,可以通过各种方法进行求解。

下面将介绍一些数列求和的常用方法。

1.直接求和法直接求和法是最基础的求和方法,即将数列中的所有项相加得到数列的总和。

例如,对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

根据等差数列求和公式Sn = n(a1 + an)/2,可以直接将数列中的所有项相加来求和。

2.差分法差分法是一种将数列转化为差分序列进行求和的方法。

对于数列an,可以构造差分序列∆an = an+1 - an,然后将差分序列的所有项相加,得到数列的和。

差分法在数列中的应用较为广泛,尤其对于一些递推关系式的求和问题具有很好的效果。

3.转化法转化法是将数列进行变换,使其转化为容易求解的形式进行求和的方法。

例如,对于等差数列an,可以将其转化为等比数列,再利用等比数列的求和公式进行求解。

转化法需要根据具体数列的性质进行变换,通常需要一定的技巧和经验。

4.等差数列求和公式对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数,有等差数列求和公式Sn = n(a1 + an)/2、该公式是数列求和中最常用的公式之一,可以快速计算得到等差数列的和。

此外,还可以利用等差数列的对称性求和,即Sn = na1 + n(n-1)d/25.等比数列求和公式对于等比数列an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数,有等比数列求和公式Sn = a1 * (q^n - 1)/(q - 1)。

该公式是数列求和中另一个常用的公式,可以迅速计算得到等比数列的和。

6.综合求和法当数列无法通过上述方法直接求和时,可以尝试使用综合求和法。

综合求和法是利用数列中的递推关系式和数学归纳法进行求和的方法。

通过观察数列中的规律,可以得到数列中前n项的和与前n-1项的和之间的关系,从而得到数列的总和。

以上是数列求和的一些常用方法,不同的数列可以采用不同的方法求解。

数列求和的常用方法有哪些数列求和的七种方法

数列求和的常用方法有哪些数列求和的七种方法

一、数列求和的常用方法有哪些
1.裂项相加法:数列中的项形如的形式,可以把表示为
,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如
的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。

4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。

5、公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式求和,常用的公式有:
数列求和的方法多种多样,要视具体情形选用合适方法。

1、裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如
的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。

数列求和的方法多种多样,要视具体情形选用合适方法。

数列求和特别提醒:
(1)对通项公式含有的一类数列,在求时,要注意讨论n的奇偶性;
(2)在用等比数列前n项和公式时,一定要分q=1和q≠1两种情况来讨论。

数列专题:数列求和的6种常用方法(原卷版)

数列专题:数列求和的6种常用方法(原卷版)

数列专题:数列求和的6种常用方法一、几种数列求和的常用方法1、分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.2、裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.3、错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.4、倒序相加法:如果一个数列{}n a 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、公式法求和常用公式公式法主要适用于等差数列与等比数列.1、等差数列{}n a 的前n 项和11()(1)22++==+n n n a a n n S na d 2、等比数列{}n a 的前n 项和111(1)11,,=⎧⎪=-⎨≠⎪-⎩n n na q S a q q q 3、一些常见的数列的前n 项和:①112123(1)==++++=+∑nk k n n n ;122462(1)==++++=+∑nk k n n n ②21(21)135(21)=-=++++-=∑n k k n n ;③22222116123(1)(21)==++++=++∑nk k n n n n ;④3333321(1)2123[]=+=++++=∑nk n n k n 三、裂项相消法中常见的裂项技巧1、等差型裂项(1)111(1)1=-++n n n n (2)1111()()=-++n n k k n n k(3)21111()4122121=---+n n n (4)1111(1)(2)2(1)(1)(2)⎡⎤=-⎢⎥+++++⎣⎦n n n n n n n (5)211111()(1)(1)(1)2(1)(1)==---+-+n n n n n n n n n(6)22111414(21)(21)⎡⎤=+⎢⎥-+-⎣⎦n n n n (7)1111(1)(2)(3)3(1)(2)(1)(2)(3)⎡⎤=-⎢⎥++++++++⎣⎦n n n n n n n n n n (8)2222211111)(()+=-++n n n n n (9)222211112)42)((⎡⎤+=-⎢⎥++⎣⎦n n n n n 2、根式型裂项=1=-k12=(1)1111(1)1++=+-++n n n n n n 3、指数型裂项(1)11112(21)(21)11(21)(21)(21)(21)2121++++---==-------n n n n n n n n n (2)113111()(31)(31)23131++=-----n nn n n (3)122(1)21111(1)2(1)2122(1)2-++-⎛⎫==-⋅=- ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)1111(41)31911333(2)2(2)22-+--⎛⎫⎡⎤-⋅=-⋅=- ⎪⎢⎥+++⎣⎦⎝⎭n n n n n n n n n n n (5)11(21)(1)(1)(1)(1)++⋅---=-++n n n n n n n n (6)222111(1)2(1)(1)(42)2(1)(42)2(1)2(1)2(1)2+++-++++-++-++==⋅⋅+⋅+⋅+⎡⎤⎣⎦n n n n n n n n n n n n n n n n n n n n n n 1111(1)1111(1)(1)(1))22(1)2222(1)2++++⎡⎤⎡⎤---=+-+=-+⎢⎥⎢⎥⋅+⋅⋅+⋅⎣⎦⎣⎦n n n n n n n n nn n n n n 4、对数型裂项11log log log ++=-n a n aa a n na a a 四、错位相减法求和步骤形如n n n A B C =⋅,其中{}n B 为等差数列,首项为1b ,公差为d ;{}n C 为等比数列,首项为1c ,公比为q .对数列{}n A 进行求和,首先列出n S ,记为①式;再把①式中所有项同乘等比数列{}n C 的公比q ,即得n q S ⋅,记为②式;然后①②两式错开一位作差,从而得到{}n A 的前n 项和。

一般数列求和的常用方法

一般数列求和的常用方法

一般数列求和的常用方法
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。

1、倒序相加法
倒序相乘法如果一个数列{an}满足用户与首末两项等“距离”的两项的和成正比(或等同于同一常数),那么谋这个数列的前n项和,需用倒序相乘法。

2、分组求和法
分组议和法一个数列的通项公式就是由几个等差或等比或可以议和的数列的通项公式共同组成,议和时需用分组议和法,分别议和而后相乘。

3、错位相减法
错位二者加法如果一个数列的各项就是由一个等差数列和一个等比数列的对应项之积形成的,那么这个数列的前n项和需用此法xi,例如等比数列的前n项和公式就是用此法推论的。

4、裂项相消法
裂项二者消法把数列的通项切割成两项之差,在议和时中间的一些项可以相互抵销,从而求出其和。

5、乘公比错项相减(等差×等比)
这种方法就是在推论等比数列的'前n项和公式时所用的方法,这种方法主要用作谋数列{an×bn}的前n项和,其中{an},{bn}分别就是等差数列和等比数列。

6、公式法
对等差数列、等比数列,求前n项和sn可以轻易用等差、等比数列的前n项和公式展开解。

运用公式解的注意事项:首先必须特别注意公式的应用领域范围,确认公式适用于于这个数列之后,再排序。

7、迭加法
主要应用于数列{an}满足用户an+1=an+f(n),其中f(n)就是等差数列或等比数列的条件下,可以把这个式子变为an+1-an=f(n),代入各项,获得一系列式子,把所有的式子提至一起,经过整理,纡出来an,从而算出sn。

几种常见数列求和方法的归纳

几种常见数列求和方法的归纳

几种常见数列求和方法的归纳1.公式法:即直接用等差、等比数列的求和公式求和。

主要适用于等差,比数列求和。

(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(等差数列推导用到特殊方法:倒序相加)(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)(3)222221(1)(21)1236nk n n n k n =++=++++=∑(不作要求,但要了解)例:(1)求=2+4+6+ (2)(2)求=x+++…+(x )2.倒序相加:适用于:数列距离首尾项距离相同的两项相加和相同。

例:(1)求证:等差数列{}的前n 项和d n n na a a n S n n 2)1(2)(11-+=+=(2)2222sin 1sin 2sin 3sin 89++++ .3.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。

例:(1)求和:(1)个n n S 111111111++++=81109101--+n n(2)22222)1()1()1(n n n x x x x x x S ++++++=当1±≠x 时,n x x x x S n n n n 2)1()1)(1(22222+-+-=+ 当n S x n 4,1=±=时4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

(分式求和常用裂项相消)常见的拆项公式:111)1(1+-=+n n n n ,)121121(21)12)(12(1+--=+-n n n n , 1111()(2)22n n n n =-++,)12)(12(11)12)(12()2(2+-+=+-n n n n n ,=例:(1)求和:1111,,,,,132435(2)n n ⨯⨯⨯+.(2)求和)12)(12()2(534312222+-++⋅+⋅=n n n S n12)1(2++=n n n S n5.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ (适用于:等差数列乘以等比数列的通项求和)例:求和:23,2,3,,,n a a a na当1a =时,123n S =+++ (1)2n n n ++=, 当1a ≠时,212(1)(1)n n n na n a aS a ++-++=-6.合并求和法:如求22222212979899100-++-+- 的和。

数列求和的常用方法

数列求和的常用方法

数列求和的常用方法1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求 和。

例:求数列n {223}n +-的前n 项和n S .2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。

例:若数列{}n a 的通项n n n a 3)12(⋅-=,求此数列的前n 项和n S3.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。

适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差)。

可裂项为:111111()n n nn a a d a a ++=-⋅1d=-例:求和:S=1+n++++++++++ 321132112114.倒序相加法:n n n a a a a S ++++=-121121a a a a S n n n ++++=- 把这两个式子相加: ()()()11212a a a a a a S n n n n ++++++=- 例:设221)(xxx f +=,求:⑴)4()3()2()()()(213141f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++数列求和练习题:1. 求和12321-++++n nx x x (0≠x )2. 求和)12)(12(1751531311+-++⨯+⨯+⨯n n3. 求和n n +++++++++113212311214. 数列,1614,813,412,211的前n 项和5. 已知数列}{n a 的前n 项和12-=n n S ,则22221na a a ++6.等比数列}{n a 同时满足下列条件:①3361=+a a ,②3243=a a ,③三个数432,2,4a a a 依次成等差数列.(1)求数列}{n a 的通项公式; (2)记nn a n b =,求数列}{n b 的前n 项和T n .7.等差数列}{n a 各项均为正整数,31=a ,前n 项和为n S ,在等比数列}{n b 中,11=b 且6422=S b ,公比为8。

数列求和常见的7种方法

数列求和常见的7种方法

数列求和常见的7种方法数列求和是数学中比较常见的问题之一,它在各个领域中都有广泛的应用。

在数学中,我们常常使用不同的方法来求解数列求和问题,以下将介绍一些常见的数列求和方法。

一、公式法:公式法是求解数列求和中最常用的方法之一、对于一些特定的数列,我们可以通过找到它们的通项公式,从而直接计算出数列的和。

例如,对于等差数列an = a1 + (n-1)d,其前n项和Sn =[n(a1+an)]/2,其中a1为首项,an为末项,d为公差。

同样地,对于等比数列an = a1 * r^(n-1),其前n项和Sn = a1 *(1 - r^n)/(1 - r),其中a1为首项,r为公比。

二、递推法:递推法是另一种求解数列求和问题的常用方法。

通过推导出数列的递推关系式,我们可以通过逐项求和的方式来求解数列求和问题。

例如,对于斐波那契数列Fn=Fn-1+Fn-2(其中n>2),我们可以通过递推的方式来求得前n项和。

三、画图法:画图法是一种直观的方法,通过画图可以更清楚地理解数列求和问题,并帮助我们找到解题思路。

例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为一个由等差数列首项、末项组成的矩形,然后通过计算矩形的面积来求解数列的和。

四、换元法:换元法是将数列中的变量进行换元,从而将原始数列转化为另一种形式,从而更容易求出数列的和。

例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +(a1+nd),我们可以将其表示为Sn = (n+1)a1 + d(1+2+3+...+n),然后再利用等差数列的求和公式来求解。

五、差分法:差分法是一种将数列进行相邻项之间的差分操作,从而得到一个新的数列,通过对新数列进行求和的方式来求解原始数列的和。

例如,对于等差数列an = a1 + (n-1)d,我们可以计算得到数列bn = a2 - a1,然后求出bn的和,再通过一些变换得到原始数列的和。

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。

解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。

本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。

尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。

二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,3,5,7,9$ 的和。

分析:此数列的首项为1,公差为2,总共有5项。

解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。

2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$2,4,8,16,32$ 的和。

分析:此数列的首项为2,公比为2,总共有5项。

解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。

3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。

分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和的常用方法
永德二中 王冬梅
数列是高中数学的重要内容,又是学习高等数学的基础。

在高考和各种数学竞赛中都占有重要的地位。

数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。

下面,简单介绍下数列求和的基本方法和技巧。

第一类:公式法
利用下列常用求和公式求和是数列求和的最基本最重要的方法。

1
S n 2S n 3(1(2(3的前n 例1解:Ⅰ、若q =0, 则n S =0
Ⅱ、若q =1,则)1(2
1321+=
+⋯+++=n n n S n Ⅲ、若q ≠0且q ≠1,
则12321-+⋯+++=n n nq q q S ① n n nq q q q qS +⋯+++=3232 ②
①式—②式:n n n nq q q q q S q -+⋯++++=--1321)1(
⇒)1(11132n n n nq q q q q q
S -+⋯++++-=- ⇒)11(11n n
n nq q
q q S ----= ⇒q
nq q q S n
n n ----=1)1(12
⎧1(1(2(3(42、根式形式,如:
n n n n a n -+=++=111
例2:求数列211⨯,321⨯,4
31⨯,…,)1(1+n n ,…的前n 项和n S 解:∵)1(1+n n =1
11+-n n
1
11313121211+-+⋯++-+-=n n S n ⇒1
11+-=n S n 例3:求数列
311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和n S 解:由于:)2(1+n n =2
11(21+-n n )
⇒ ⇒ 例3例4(1 (2则,由条件:对任意R x ∈都有2)1()(=-+x f x f 。

⇒)(
1222222+=+⋯+++=n a n ⇒1+=n a n ⇒21+=+n a n
⇒11=-+n n a a
从而:数列}{n a 是1,21==d a 的等差数列。

(2)、2
111)2)(1(111+-+=++=⨯+n n n n a a n n ⇒n T =)
2(11541431321+⨯++⋯+⨯+⨯+⨯n n )( ⇒n T =4
22121211141313121+=+-=+-++⋯+-+-n n n n n 故:n T =4
2+n n
例5⇒⇒⇒令T n T 2⇒)222221(132n n n n T ⨯-+⋯++++-=-
⇒)22
121(n n
n n T ⨯----= ⇒12)1(+⨯-=n n n T
故:n n n n n n n S 2)1(1
1212)1()111(⨯-++-=+⨯-++-=
例6:求数列{2)1
(n n x x +}的前n 项和n S 分析:将2
)1(n n n x x a +=用完全平方和公式展开,再将其分为几个数列的和进行求解。

解:2)1(n n n x x a +==22
)1(12)(n n n n x x x x +⨯⨯+=n n x x 2212++=n
n x x 22)1(2++
])1
(2[])1
(2[])1
(2[224422
n n n x x x x x x S +++⋯++++++= ⇒])1
()1()1[()222()(242242n
n n x x x x x x S +⋯++++⋯++++⋯++=
①x ②x ①x ②x =122222222-⨯⨯-++x x x x x x n n =)1()
1
(22222-⨯⨯-⨯x x x x x n n
=)1(1
222--x x x n n
综上所述:
①1=x 时,n n n n G M T S n n n n 42=++=++=
②1≠x 时,)
1(1212222222--++--=++=+x x x n x x x G M T S n n n n n n n 这个题,除了注意分组求和外,还要注意分类讨论思想的应用。

第六类:拆项求和法
在这类方法中,我们先研究通项,通项可以分解成几个等差或等比数列的和或差的形式,再代入公式求和。

例7:求数列9,99,999,… 的前n 项和n S
分析:此数列也既不是等差数列也不是等比数列启发学生先归纳出通项公式110-=n
a 可转化为一
例8=n n n )2(1)1(2-++ 解析:根据通项的特点,通项可以拆成两项或三项的常见数列,然后再分别求和。

这篇文章中,有6类重要方法,8个典型例题,大部分常见数列的前n 项和都可以求出来了,由于知识的不完备,在该类知识上还有些缺憾,在此希望这篇文章可以带给学习数列的同学们多一些帮助。

相关文档
最新文档