高一数学必修1期中考试
高一数学(必修1)期中模拟试卷3
高一数学(必修1)期中模拟试卷一、填空题:(共14小题,每题5分,共70分)1.设非空集合{}1,2,3,4,5,6,7A ⊆ 且当a A ∈ 时,必有8a A -∈则这样的A 共有 个2.已知集合(){},2M x y x y =+=,(){},4N x y x y =-=,那么集合M N ⋂= 3.A 、B 是两个非空集合,定义集合{}A B x x A x B -=∈∉且,若{}{}231,,11M x x N y y x x =-≤≤==-≤≤,则M N -= 4.若()()2212f x ax a x =+-+在()3,3-为单调函数,则a 的取值范围是 5.函数()21,(0)()log ,(0)f x x f x x x ⎧+≤⎪=⎨>⎪⎩ ,则(2)f -=6.已知,a b 为常数,若()()2243,1024f x x x f ax b x x =+++=++,则5a b -=7.若关于x 的方程()22220x m x m +-+=的两根一个比1大一个比1小,则m 的范围是 8.设lg 2a =,lg3b =,则5log 12等于 9.函数2231y x x =-+的单调递减区间为10.函数[]141,3,22xxy x -⎛⎫=-+∈- ⎪⎝⎭,则它的值域为11.若已知()()21,1,1f x x x =+∈-则函数()21x y f =-的值域是 12.若函数()()22224y a x a x =-+-+的定义域为R ,则a 的取值范围是13.{}{}3,4,5,4,5,6,7P Q ==,定义(){},,P Q a b a P b Q *=∈∈则P Q *中元素的个数为 14.阅读下列一段材料,然后解答问题:对于任意实数x ,符号[]x 表示 “不超过x 的最大 整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个 整数点,这个函数叫做“取整函数”,也叫高斯(Gauss )函数.如 []22-=-,[]1.52-=-,[]2.52=则2222222111[log ][log ][log ][log 1][log 2][log 3][log 4]432++++++的值为二、解答题:(共6道题,共90分) 15.计算下列各题:①41320.753440.0081(4)(8)16---++- ②211log 522lg 5lg 2lg 502+++16.已知集合(){}22240A x R x a x a =∈---+=,(){}2223230B x R x a x a a =∈+-+--=, 若A B ≠∅,求实数a 的取值范围.17.已知奇函数()y f x =为定义在(1,1)-上的减函数,且2(1)(1)0f a f a ++-<,求实数a 的 取值范围。
2024年高一数学期中考试质量分析与总结范本(2篇)
2024年高一数学期中考试质量分析与总结范本引言:2024年高一数学期中考试是对学生数学学习成果进行检验的重要一环。
通过对考试结果的分析与总结,可以发现学生的优点与不足,进而针对性地制定教学计划,提高学生的学习效果。
本文将对2024年高一数学期中考试的质量进行分析与总结,以期为数学教学提供参考和借鉴。
一、总体情况分析:2024年高一数学期中考试总体来说,难度适中,题型广泛,涉及面较广。
根据对试卷的分析,试卷各个部分所占比例合理,难易度分布均匀。
二、试卷分析:1.\t选择题分析:选择题作为试卷的主要部分,是对学生解题能力和知识掌握程度的考查。
此次试卷的选择题设计多样,既有基础题目,也有拓展题目。
在答案选项的设置上,存在一些容易引起选择错误的干扰项,可培养学生的综合判断和筛选能力。
但其中部分选择题的难度较大,有的题目涉及了较为复杂的知识点,也引发了一些疑惑和困惑。
未来可适当降低选择题的难度,确保题目涵盖范围与教学进度相一致。
2.\t填空题分析:填空题涉及了学生的思维灵活性和运算能力,也是对学生对知识点的理解和掌握程度的一种考查形式。
此次试卷的填空题设计合理,涉及的知识点全面,但在一些题目的难度上存在一定的波动。
建议未来在设计填空题时,难度适当把握,注重知识点的渗透和灵活运用。
3.\t解答题分析:解答题是对学生综合运用各种数学知识进行思考和解决问题的能力的考查。
此次试卷的解答题设计合理,题目内容与学生实际生活和社会实践密切相关,同时突出了科学性、灵活性和创新性。
但在一些解答题的难度上,存在一些较难的题目,需要学生具备较高的独立思考和分析能力才能解决。
未来建议在设计解答题时,难易程度把握得更准确,考查点更具针对性。
三、学生表现分析:通过对试卷的批改与分析,了解到学生在考试中的表现,总体来说,学生们的数学基础较好,解题能力也较强,但存在一些常见问题,如计算错误、解题思路不清晰等。
此外,也存在一些学生对于某些知识点理解不深、掌握不牢固的问题。
人大附中高一数学第一学期期中考试和答案
高一年级必修1考核试卷说明:本试卷共三道大题,分18道小题,共6页;总分值100分,考试时刻90分钟;请在密封线内填写个人信息。
一、选择题(共8道小题,每道小题4分,共32分.请将正确答案填涂在答题卡上) 1.已知U 为全集,集合P ⊆Q ,那么以下各式中不成立...的是 ( ) A . P ∩Q =P B. P ∪Q =Q C. P ∩(U Q ) =∅ D. Q ∩(U P )=∅2. 函数()lg(31)f x x =-的概念域为 ( ) A .R B .1(,)3-∞ C .1[,)3+∞ D .1(,)3+∞3.若是二次函数21y ax bx =++的图象的对称轴是1x =,而且通过点(1,7)A -,那么( )A .a =2,b = 4B .a =2,b = -4C .a =-2,b = 4D .a =-2,b = -4 4.函数||2x y =的大致图象是 ( )5(01)a b a a =>≠且,那么 ( )A .2log 1a b =B .1log 2ab = C .12log a b = D .12log b a = 6.已知概念在R 上的函数f (x )的图象是持续不断的,且有如下对应值表:那么函数f (x )必然存在零点的区间是 ( ) A . (-∞,1) B . (1,2) C . (2,3) D . (3,+∞) 7.以下说法中,正确的选项是 ( )A .对任意x ∈R ,都有3x >2x ;B .y =(3)-x是R 上的增函数;C .假设x ∈R 且0x ≠,那么222log 2log x x =;D .在同一坐标系中,y =2x 与2log y x =的图象关于直线y x =对称.8.若是函数2(1)2y x a x =+-+在区间(-∞,4]上是减函数,那么实数a 的取值范围是( )A .a ≥9B .a ≤-3C .a ≥5D .a ≤-7二、填空题(共6道小题,每道小题4分,共24分。
高一数学必修期中模拟卷及答案
高一数学必修期中模拟卷及答案Last revised by LE LE in 2021高一数学(必修1)期中模拟卷(一)一、选择题:(每小题5分,共12小题,合计60分) 1、 下列几个关系中正确的是( )A 、0{0}∈B 、 0{0}=C 、0{0}⊆D 、{0}∅=2、设:f M N →是集合M 到集合N 的映射,下列说法正确的是( ) A 、 M 中每一个元素在N 中必有输出值。
B 、 N 中每一个元素在M 中必有输入值。
C 、 N 中每一个元素在M 中的输入值是唯一的。
D 、N 是M 中所有元素的输出值的集合。
3、下列函数与y x =有相同图象的一个是( )A 、y =、2x y x=C 、log (0,a x y a a =>且1)a ≠D 、log (0,x a y a a =>且1)a ≠ 4、集合11{|,},{|,}2442k k M x x k Z N x x k Z ==+∈==+∈,则( ) A 、M N = B 、M N ⊆ C 、N M ⊆ D 、M N =∅5、已知53()2f x x ax bx =-++且(5)17f -=,则(5)f 的值为( ) A 、19 B 、 13 C 、 -19 D 、 -136、若0a <,则函数(1)1x y a =--的图象必过点( ) A 、(0,1) B 、(0,0) C 、(0,-1) D 、(1,-1)7、要得到函数(2)1y f x =-+的图象,只需将函数()y f x =的图象( ) A 、 向右平移2个单位,向下平移1个单位。
B 、 向左平移2个单位,向下平移1个单位。
C 、 向右平移2个单位,向上平移1个单位。
D 、 向左平移2个单位,向上平移1个单位。
8、定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( )A .9 B. 149、已知函数()312f x ax a =+-在区间(-1,1)上存在0x ,使得0()0f x =,则( )A、115a-<< B、15a> C、1a<-或15a> D、1a<-10、对任意实数x规定y取14,1,(5)2x x x-+-三个值中的最小值,则函数y()A、有最大值2,最小值1,B、有最大值2,无最小值,C、有最大值1,无最小值,D、无最大值,无最小值。
北师大版高一数学必修1上期中试题及答案
北师大版高一数学必修1上期中试题及答案高一数学期中试卷(满分120分,考试时间90分钟)一、选择题(共12小题,每小题4分,共48分)1.设集合 $A=\{(x,y)|y=-4x+6\}$,$B=\{(x,y)|y=5x-3\}$,则 $A\cap B=$()A。
$\{1,2\}$ B。
$\{x=1,y=2\}$ C。
$\{(1,2)\}$ D。
$(1,2)$2.已知函数 $f(x)$ 是定义在 $[1-a,5]$ 上的偶函数,则$a$ 的值是()A。
0 B。
1 C。
6 D。
-63.若 $a>0$ 且 $a\neq1$,则函数 $y=ax-1$ 的图像一定过点()A。
$(0,1)$ B。
$(0,-1)$ C。
$(1,0)$ D。
$(1,1)$4.若 $f(x)=x+1$,则 $f^{-1}(2)=$()A。
3 B。
2 C。
1 D。
$-1/3$5.下列四个图像中,是函数图像的是()A。
B。
C。
D。
6.下列函数中既是奇函数,又在区间 $(0,+\infty)$ 上单调递增的是()A。
$y=-x^2$ B。
$y=1/x$ C。
$y=x+1/x$ D。
$y=e^{|x|}$7.若方程 $2ax^2-x-1=0$ 在 $(0,1)$ 内恰好有一个解,则$a$ 的取值范围是()A。
$a1$ C。
$-1<a<1$ D。
$a\leq1$8.已知函数 $f(x)=\begin{cases} \log_2x & (x>1) \\ x^3 & (x\leq1) \end{cases}$,则 $f[f(9)]=$()A。
1 B。
3 C。
4 D。
99.为了得到函数 $y=3x$ 的图像,可以把函数 $y=3|x|$ 的图像()。
A。
向左平移3个单位长度 B。
向右平移3个单位长度C。
向左平移1个单位长度 D。
向右平移1个单位长度10.设 $a=\log_{0.3}4$,$b=\log_43$,$c=0.3^{-2}$,则$a$、$b$、$c$ 的大小关系为()A。
高一数学必修一期中备考综合测试01(A卷)(解析版).docx
班级 ________ 姓名___________ .学号__________ 分数《必修一期中备考综合测试卷(一)》(A卷)(测试时问:120分钟满分:150分)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列给出的命题正确的是()A.高中数学课本中的难题可以构成集合B.有理数集Q是最大的数集C.空集是任何非空集合的真子集D.自然数集N中最小的数是1【答案】C【解析】难题不具有确定性,不能构造集合,A错误;实数集R就比有理数集Q犬,疗错误;空集是任何非空集合的真子集,C正确;自然数集N中最小的数是0, D错误;故选C・2.若P={x|x<l),Q={x|x>-l},则()A. PcQB. QcpC. C(! P cQD. Qc Q, P【答案】C【解析】C v P={x|x^l},而Q二{x|x>T},故有C v PCQ故选C.3.已知集合N, P为全集U的子集,且满足McpcN,则下列结论不正确的是()A. [uNcQPB. C N P C GMC. (C U P) AM=0D. ((>M) AN=0【答案】D【解析】因为PUN,所以C V N C QP,故A正确;因为Mcp,所以C N P C C N M,故B正确;因为MCP,所以(CiP) AM=0,故C正确;因为MG N,所以(C U M)DNH0.故D不正确. 故选D.4.[2018届黑龙江省佳木斯市鸡东县第二中学高三第一次月考】若集合A = {l,2,4,8},B = {x|2x<5}, 则A c B =()A. {1}B. {2}C. {1,2}D. {1,2,3}【答案】C【解析】B = {x|2A <5} =(^o,log25)/.AnB = {l,2},选B.5.【2018届福建省数学基地校高三联考】下列函数屮,定义域是R且为增函数的是()A. y = e~xB. y = x^C. y = larD. y = x【答案】B【解析】分别画出四个函数的图象,如图:故选B.6.【2018届广西钦州市高三第一次检测】已知集合A = {1, 2, 3, 4},集合B = {3,4, 5, 6},集合C=AnB, 则集合C的子集的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】2, 3, 4}, B={3, 4, 5, 6},/.C=AnB={l, 2, 3, 410(3, 4, 5, 6} = {3, 4打•:集合C的子集为0, {3},⑷,{3, 4} f共4个.故选:D・7.集合A= {-1,0,1}, A的子集中含有元素0的子集共有()A. 2个B. 4个C. 6个D. 8个【答案】B【解析】含有元素0的子集有{0}, {0,-1}, {0,1}, {0,-1, 1},共4个.故选B.8.[2018届福建省数学基地校高三联考】函数/(对二 _ 的定义域为()71og2x-lA. (0,2)B.「(0,2]C. (2,4W)D. [2,-H X))【答案】C【解析】因为log 2x>l=>x>2,所以选C.X 2,XG [-1,0]9. 函数/(%) = { 1 ([的最值情况为()-,xe(O,ll x A.最小值0,最大值1 B.最小值0,无最大值 C.最小值0,最大值5 D.最小值1,最大值5【答案】B【解析1 xe [-1,0], f(x)的最大值为1,最小值为0; xe(o,l]时,f(x)e [1,+8)无最大值,有最小{Hl,所以f(x)有最小值0,无最大值.故选B.10. 若函数/(尢)的定义域为[—2,2],则函数/(x+l) + /(l-2x)的定义域为() 1 ~| [ 1 ~| 1~ 3~A. —, 1B. —, 2C. [—2,21rD. —3,—_ 2」 L 2」 L 」|_ 2_【答案】A【解析】因为函数/(x)的定义域为[-2=2],所以函数/(x+l)+/(l-2x)中有:-2<x+l<2 -2<l-2x<2故选A.( )A. 4B. —4C. 1 r 1 _D.―一 4 4【答案】 C【解析】 /(-2)= 2-2 =1 _ 4故选C.即函数/(x+l) + /(l-2x)的定义域为11.【2018届新疆呼图壁县第一屮学高三9月】设/(x) = {-J x + 22Xx>0 x<0,求f(-2)的值12. 【2018届甘肃省武威市第六屮学高三第一次】若a 满足a + lga = 4, b 满足b + 10b = 4,函数 f (x )=F + (a ;:)::2zO 则关于x 的方程f (x )=x 解的个数是() A. 1 B. 2 C. 3 D. 4【答案】C【解析】Ta 满足a + 1駅=4, b 满足b + 10b = 4,.・・a, b 分别为函数y = 4-泻函数y = lgx, y = 10週象 交点的横坐标,由于y = x^y = 4-X @象交点的横坐标为2,函数y = lgx, y = 10啲图象关于y = x 对称, y2 1 Ay -L 0 丈 V・・.a + b = 4, .I 函数f (x )=' 一 ,当XMO 时,关于x 的方程f (x ) = x,即P + 4X+2二須 2, x> 0即疋+ 3x4-2=0, /.X = -2或x = -1,满足题鼠 当x > 0时,关于x 的方程f (x ) = x,即x = 2,满足题意, ・•・关于x 的方程f (x ) = x 的解的个数是3,故选C.第II 卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 【2018届浙江省温州市高三9月测试】(J log2S = ___________ ・【答案】;【解析】@10§23= 2』諮=210g23 = |,故答案为*(1 \14.【2018届河北省石家庄二中八月模拟】已知幕函数/(兀)的图彖经过点-,V2,M/(x ) = 丿_1【答案】x 4[ 1 1V2=>c^ = --,所以/(x) = x 4,应填答案兀J 15. 【2018届宁夏育才中学高三第一次月考】函数y = lo&(x+l ) + 2(d>0且dHl )恒过定点A,则A 的坐【解析】由题意- 丿标为____ .【答案】(0, 2)【解析】log 」=0.・.x = 0R 寸y = 2,即A 的坐标为(0, 2).(3X - 1 x > 016. [2018届贵•州省贵阳市第一中学高三月考一】已知函,数f (x )=L ;x2_;;;:0'若方程£(*)=皿有3个不等的实根,则实数m 的取值范围是 __________ . 【答案】(0, 2)【解析】画出函数图像,得二次函数最高•点位(-12),常函数y = m 和曲线有三个交点,则位于x 轴上方, 最高点「下方即可•故得m e (0,2).三、解答题(本大题共6小题,共70分•解答应写出文字说明、证明过程或演算步骤・)17. (本小题 10 分)计算:(1)(0.064戶 + (-2)‘ 3+16_0-75+(0.25)251 19 【答案】(1) —;(2)—16 4【解析】试题分析:(1)主要利用指数幕的运算法则(a ,n )n =a ,,ut 即可得出;(2)利用对数的运算法则、换 底公式即可得出.2 2 16 8 2 16(2)原式ulogQ 石+lgl00+2 +些•坐=—丄 + 4 + 1= —lg2 21g3 4418. (本小题12分)已知函数/(x) = {x 2+l,-l<x<l2x + 3,x v -1(1) 求 /(/(/(-2)))的值。
高一数学必修一期中考试试题及答案
考试时间:100分钟,满分100分.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列关系正确的是:A .Q ∈2B .}2{}2|{2==x x x C .},{},{a b b a = D .)}2,1{(∈∅2.已知集合}6,5,4,3,2,1{=U ,}5,4,2{=A ,}5,4,3,1{=B ,则)()(B C A C U U ⋃A .}6,3,2,1{B .}5,4{C .}6,5,4,3,2,1{D .}6,1{ 3.下列函数中,图象过定点)0,1(的是A .x y 2=B .x y 2log =C .21x y = D .2x y =4.若b a ==5log ,3log 22,则59log 2的值是: A .b a -2B .b a -2C .b a 2D .ba25.函数3log )(3-+=x x x f 的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) 6.已知函数ax x x f +=2)(是偶函数,则当]2,1[-∈x 时,)(x f 的值域是: A .]4,1[ B .]4,0[ C .]4,4[- D .]2,0[8.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林 A .14400亩 B .172800亩 C .17280亩 D .20736亩9.设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则A .c b a <<B .a b c <<C .b a c <<D .c a b <<10.已知函数()log a f x x =(0,1a a >≠),对于任意的正实数,x y 下列等式成立的是A .()()()f x y f x f y +=B .()()()f x y f x f y +=+C .()()()f xy f x f y =D . ()()()f xy f x f y =+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卷中的横线上.11.若幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()9f = _________12.函数()f x =的定义域是13. 用二分法求函数)(x f y =在区间]4,2[上零点的近似解,经验证有0)4()2(<⋅f f 。
2024-2025学年高一数学上学期期中真题精选(易错题8类考点专练)(人教A版2019必修第一册)
>
1
,
x
+
x
1 -1
的最小值为
3
D.函数 y = 2 + x + 1 x < 0 的最大值是 0
x
2.(多选)(23-24 高一上·广东广州·期中)下列结论正确的是( )
A.当 x >1时, x + 1 的最小值为 2 x
B.当 x < 0 时, x + 1 的最大值是 -2 x
C.当 0 < x < 1, x 3 - 3x 取得最大值 3
x
=
ìïax2 - 2x - a, x ³ 1
íïîa + 3 x -1, x < 1 是
R
上的减函数,则实数
a
的取值范
围是 .
4.(23-24
高一上·湖南衡阳·期中)已知
f
x
=
ì ï
x2
-
ax
+
5( x
í ïî1
+
1 x
x
³
1
<
1)
是 -¥, +¥
上的减函数,则
a
的取值范围
是
.
易错点 08 复合函数单调性忽视定义域
9 2
ù úû
D.
-¥,1
U
éêë4,
9 2
ù úû
3.(多选)(23-24 高一上·河南郑州·期中)已知集合 A = 4,8 , B = x mx + 2 = 0 ,若 B Í A ,则实数 m
可以是( )
A. - 1 2
B.1
C. - 1 4
D.0
4.(23-24 高一上·河北沧州·期中)已知集合 P = x -1 < x < 3 , Q = x 2m -1 < x < 3m - 2 ,若 Q Í P ,求
高一数学必修一期中试卷及答案
高一数学必修一期中试卷及答案1、已知,当时,求(). [单选题] * A.7B.-7(正确答案)C.0D.无法确定2. 下列语句中是集合的是() [单选题] *A.浙江的所有高楼大厦的全体B.面积较小的三角形的全体C.与0相差不多的数的全体D.中国队的女排运动员的全体(正确答案)3.的定义域是(). [单选题] *A.(-∞,0)B.(0,+∞)C.(-∞,+∞)(正确答案)D.∅4.函数,则当时,(). [单选题] *A.1B.10(正确答案)C.-10D.-35.已知 A={a,0},B={1,2}, A∩B={1},则(). [单选题] * A.1(正确答案)B.1,2C.2D.06.,此函数是()函数. [单选题] *A.一次函数B.二次函数(正确答案)C.反比例函数D.正比例函数7.选出下列选项中正确的一项,4(). [单选题] * A.∈(正确答案)B.∉C.D.8.,,则的结果是(). [单选题] *A.{1,2,3,4,5,6}B.{1,2,3,4,6}C.{2,6}(正确答案)D.∅9.集合,用区间的形式表示出来是(). [单选题] *A. (-∞,7)B. (0,7)C. (7, +∞)(正确答案)D.∅10.已知m,n为实数,则∣m∣=∣n∣是的()条件. [单选题] * A.充分B.必要C.既不充分也不必要D.充分必要(正确答案)11.比较大小() [单选题] *A.>B.<(正确答案)C.≥D.≤12. 下列关系正确的是() [单选题] *A.0∈c80937d345258f239c80937d345258f239b630bd428ad-20221229-13401620.png' />B.π∈QC. ∈R(正确答案)D. ∈Q13.下列关系中,正确的是() [单选题] *A. ∅∈{a}B.a∉{a}C.{a}∈{a,b}D.a∈{a,b}(正确答案)14. 设集合M={x|x},a=4,则下列正确的关系是() [单选题] *A.a∉M(正确答案)B.{a}∈MC. a∈MD.{a}∉M15. 集合M={x|2≤x≤8,且x Z},则集合M元素个数为() [单选题] *A.6B.64C.7(正确答案)D.12816. 集合A={1,2,4,7,9},B={1,3,5,6,7,9},则A B=() [单选题] *A.{1,2,3,4,5,6,7,9}B.{1,7,9}(正确答案)C.{2,4,3,5}D. ∅17. 若M={2,4,6},N={1,3},则M N=() [单选题] *A.{1,2,4}B.{1,2,3,4,6}(正确答案)C. ∅D.{ ∅}18. 集合M={(x ,y)|x+y=2},N={(x ,y)|x-y=4},则集合M N为() [单选题] *A.x=3,y=-1B.(3,-1)C.{3, -1}D.{(3,-1)}(正确答案)19. 设集合A={1},B={1,2},C={1,2,3},则(A B) C=() [单选题] *A.{1,2,3}B.{1,2}(正确答案)C.{1}D.{3}20. 已知全集U=R,A={x|x1},则=() [单选题] *A.{x|x>1}B.{x|0C.{x|x<1}(正确答案)D. ∅21.下列命题正确的是() [单选题] *A. 若a>-(正确答案)b,则c+a>c-bB.若a>b,则a-b>2d则ac>bdD.若a>b,c>b,则a>c22.若a>b,则(). [单选题] *A.b ²≤a ²B.a²>b²C.a²≤b²D.以上都不对(正确答案)23.若,则下列关系式中正确的是(). [单选题] * A. 2x>x²>xB. x²>2x>xC. 2x>x>x²(正确答案)D. x²>x>2x24.不等式的解集为(). [单选题] *A. (-∞,2)∪(3, +∞)B. (-∞,-1) ∪(6, +∞)(正确答案)C.(2,3)D.(-1,6)25.不等式+->0的解集为(). [单选题] *A.(–1,3)(正确答案)B.(–3,1)C.(-∞,–1 )∪(3,+ ∞)D.(-∞,3)26.解集为{x|x<–2或x>3}的不等式为(). [单选题] * A.(x+1)(x-2)<0B.(x+2)(x-3)>0(正确答案)C.x2–2x–3>0D.x2-2x-3<027.若不等式的解集是(-4,3),则c的值等于(). [单选题] * A.12B.-12(正确答案)C.11D.-1128.若|m-5|=5-m,则m的取值是(). [单选题] *A.m >5B.m≥5C.m<5D.m≤5.(正确答案)29.求不等式︱-1︱≤2的解集为(). [单选题] *A.(-∞,3]B.[-1,+∞)C.[-1,3](正确答案)D.(-∞,-1)∪(3,+∞)30.设不等式的解集为(-1,2),则=(). [单选题] *A.1/4B.1/2C.2/3D.3/2(正确答案)31.已知函数的定义域是() [单选题] * A.{x|x≥1}(正确答案)B.{x|x≤1}C. {x|x>1}D. {x|x<1}32.与函数相等的函数是() [单选题] * A. y=(x+1) ºB. y=t+1(正确答案)C.D. y=|x+1|33.设函数f(x)=则f(3)=() [单选题] * A.0.2B.3C.2/3(正确答案)D.13/934.函数的定义域为() [单选题] * A. (1, +∞)B. [1, +∞)C. [1,2)D.[1,2) ∪(2, +∞)(正确答案)35.已知函数,其定义域为() [单选题] *A.{x|x≥1或x≤-3}B. {x|-1≤x≤3}C.{x|x≥3或x≤-1}(正确答案)D. {x|-3≤x≤1}36.已知函数,则f(f(4))=() [单选题] *A.-2B.0C.4(正确答案)D.1637.已知函数f(x)=ax³+bx+4(a,b不为零),且,则等于() [单选题] *A.-10B.-2(正确答案)C.-6D.1438.设函数f(x)=x²+2(4-a)x+2在区间 (-∞,3]上是减函数,则实数a的取值范围是() [单选题] *A.a≥-7B.a≥7(正确答案)C.a≥3D.a≤-739.已知函数,若,则的值是(). [单选题] * A.-2(正确答案)B.2或-2.5C.2或-2D.2或-2或-2.540.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是()[单选题] *A.这个函数仅有一个单调增区间B.这个函数有两个单调减区间C.这个函数在其定义域内有最大值是7(正确答案)D.这个函数在其定义域内有最小值是-741.如果偶函数在区间(0,1)上是减函数且最大值为3,则在区间(-1,0)上是() [单选题] *A.增函数且最大值为3(正确答案)B.增函数且最小值为3C.减函数且最大值为3D.减函数且最小值为342.本场考试需要2小时,在本场考试中,钟表的时针转过的弧度数为() [单选题] *A.B.(正确答案)C.D.43.930°=() [单选题] *A.B.C.D.(正确答案)44.将轴正半轴绕原点逆时针旋转30°,得到角α,则下列与α终边相同的角是() [单选题] *A.330°B.-330°(正确答案)C.210°D.-210二、判断题,正确的打√,错误的打×(每小题2分,共6题,共12分)1. 集合可以写成. [判断题] *对(正确答案)错2.是一个函数解析式. [判断题] *对错(正确答案)3.集合,集合,则集合. [判断题] *对错(正确答案)4.是空集. [判断题] *对错(正确答案)5.. [判断题] *对(正确答案)错6.,其中元素一共有5个. [判断题] *对(正确答案)错。
北师大版高一数学必修1第一学期期中试卷及答案
高一年级数学学科(期中试卷)说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共120分,时间90分钟第I 卷一、选择题(每小题5分,共50分) 1.设集合A={x ∈Z|x >-1},则( )A 、A ∅∈ BA C 、0A ∈ D 、{}2-A2.方程062=+-px x 的解集为M ,方程062=-+q x x 的解集为N ,且}2{=⋂N M ,那么=+q p ( )A 、21B 、8C 、6D 、7 3.下列四组函数中,表示相等函数的一组是( ) A 、2)(,)(x x g x x f == B 、22)()(,)(x x g x x f ==C 、1)(,11)(2+=--=x x g x x x f D 、1)(,11)(2-=-∙+=x x g x x x f 4.已知集合}1{},4,2{},4,3,2,1{===A B I ,则)(B C A I ⋃等于( ) A 、{1} B 、{1,3} C 、{3} D 、{1,2,3} 5.图中阴影部分所表示的集合是( )A .)]([C A CB U ⋃⋂ B.)()(C B B A ⋃⋃⋃ C.)()(B C C A U ⋂⋃ D. )]([C A C B U ⋂⋃6.设集合A 和B 都是自然数集,映射f :A →B 把A 中的元素 n 映射到B 中的元素2n +n ,则在映射f 下,象3的原象是( ) A.1 B.3 C.9 D.117.已知函数xxx x f -++=11)(的定义域是( ) A 、),1[+∞- B 、]1,(--∞ C 、),1()1,1[+∞- D 、R 8.已知:f (x -1)=x 2,则f (x+1)=( )A .(x -1)2B .(x+1)2C .(x+2)2D .x 2+2 9.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<- B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f fD .)1()23()2(-<-<f f f10. 在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )第II 卷二、填空题(每小题4分,共16分) 11. 设1,(0)(), (0)0, (0)x x f x x x π⎧⎪⎨⎪⎩+>==<,则{[(1)]}f f f -=_______________12. 某航空公司规定,乘机所携带行李的重量 (kg )与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的最大重量为 .13. 设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时,()f x =_____________________。
高一数学必修一期中考试试题及答案
高一数学必修一期中考试试题及答案一、选择题1.(20 13年高考四川卷)设集合a={1,2,3},集合b={ -2,2},则a∩b等于( b )(a) (b){2}(c){-2,2} (d){-2,1,2,3}解析:a∩b={2},故挑选b.(a){2} (b){0,2}(c){-1,2} (d){-1,0,2}解析:依题意得集合p={-1,0,1},(a)1个 (b)2个 (c)4个 (d)8个4.(年高考全国新课标卷ⅰ)已知集合a={x|x2-2x>0},b={x|-(a)a∩b= (b)a∪b=r解析:a={x|x>2或x<0},∴a∪b=r,故挑选b.5.已知集合m={x ≥0,x∈r},n={y|y=3x2+1,x∈r},则m∩n等于( c )(a) (b){x|x≥1}(c){x|x>1} (d){x|x≥1或x<0}解析:m={x|x≤0或x>1},n={y|y≥1}={x|x≥1}.∴m∩n={x|x>1},故选c.6.设子集a={x + =1},子集b={y - =1},则a∩b等同于( c )(a)[-2,- ] (b)[ ,2](c)[-2,- ]∪[ ,2] (d)[-2,2]解析:集合a表示椭圆上的点的横坐标的取值范围a=[-2,2],集合b表示双曲线上的点的纵坐标的取值范围b=(-∞,- ]∪[ ,+∞),所以a∩b=[-2,- ]∪[ ,2].故选c.二、填空题7.( 年高考上海卷)若集合a={x|2x+1>0},b={x||x-1|<2},则a∩b=.解析:a={x x>- },b={x|-1所以a∩b={x -答案:{x -解析:因为2∈a,所以 <0,即(2a-1)(a- 2)>0,Champsaura>2或a< .①若3∈a,则 <0,即为( 3a-1)(a-3)>0,解得a>3或a< ,①②挑关连得实数a的值域范围就是∪(2,3].答案: ∪(2,3]若a≠0,b=(- ),∴- =-1或- =1,∴a=1或a=-1.所以a=0或a=1或a=-1组成的集合为{-1,0,1}.答案:{-1,0,1}10.已知集合a={x|x2+ x+1=0},若a∩r= ,则实数m的取值范围是.解析:∵a∩r= ,∴a= ,∴δ=( )2-4<0,∴0≤m<4.答案:[0,4)11.已知集合a={x|x2-2x-3>0},b={x|x2+ax+b≤0},若a∪b=r,a∩b={x| 3解析:a={x|x<-1或x>3},∵a∪b=r,a∩b={x|3∴b={x|-1≤x≤4},即方程x2+ax+b=0的两根为x1=-1,x2=4.∴a=-3,b=-4,∴a+b=-7.答案:-7三、解答题12.未知子集a={-4,2a-1,a2},b={a-5,1-a,9},分别谋适宜以下条件的a的值.(1)9∈(a∩b);(2){9}=a∩b.解:(1) ∵9∈(a∩b),∴2a-1= 9或a2=9,∴a=5或a=3或a=-3.当a=5时,a={-4,9,25},b={0,-4,9};当a=3时,a-5=1-a=-2,不满足集合元素的互异性;当a=-3时,a={-4,-7,9},b={-8,4,9},所以a=5或a=-3.(2)由(1)所述,当a=5时,a∩b={-4,9},相左题意,当a=-3时,a∩b={9}.所以a=- 3.13.已知集合a={x|x2-2x-3≤0};b={x|x2-2mx+m2-4≤0,x∈r,m∈r}.(1)若a∩b=[0,3],谋实数m的值;解:由已知得a={x|-1≤x≤3},b={x|m-2≤x≤m+2}.(1)∵a∩b=[0,3],∴∴m=2.∴m-2>3或m+2<-1,即m>5或m<-3.14.设u=r,子集a={x |x2+3x+2=0},b={x|x2+(m+1)x+m=0},若解:a={x|x=-1或x=-2},方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,当-m=-1,即m=1时,b={-1},当-m≠-1,即m≠1时,b={-1,-m},∴-m=-2,即m=2.所以m=1或m=2.集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合a={1,2},集合b={2,1},则集合a=b。
(完整版)高一数学第一学期期中考试试题及答案
A高一数学(必修1)第I 卷 选择题(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(C u M )∩N =A .B .C .D .{}4,3,2{}2{}3{}4,3,2,1,02.设集合,,给出如下四个图形,其中能表示从集{}02M x x =≤≤{}02N y y =≤≤合到集合的函数关系的是M NA .B .C .D .3. 设,用二分法求方程内近似解的过程中()833-+=x x f x()2,10833∈=-+x x x在得,则方程的根落在区间()()()025.1,05.1,01<><f f f A. B. C. D. 不能确定(1,1.25)(1.25,1.5)(1.5,2)4. 二次函数的值域为])5,0[(4)(2∈-=x x x x f A. B. C. D.),4[+∞-]5,0[]5,4[-]0,4[-5. =+--3324log ln 01.0lg 2733e A .14 B .0C .1 D . 66. 在映射,,且,则中B A f →:},|),{(R y x y x B A ∈==),(),(:y x y x y x f +-→A 中的元素在集合B 中的像为)2,1(-A . B .C .D . )3,1(--)3,1()1,3()1,3(-7.三个数,,之间的大小关系为231.0=a 31.0log 2=b 31.02=c A .a <c <b B .a <b <c C .b <a <cD .b <c <a8.已知函数在上为奇函数,且当时,,则当时,()y f x=R0x≥2()2f x x x=-0x<函数的解析式为()f xA. B.()(2)f x x x=-+()(2)f x x x=-C. D.()(2)f x x x=--()(2)f x x x=+9.函数与在同一坐标系中的图像只可能是xy a=log(0,1)ay x a a=->≠且A. B. C. D.10.设,则2log2log<<baA. B.10<<<ba10<<<abC . D.1>>ba1>>ab11.函数在区间上的最大值为5,最小值为1,则实数m的取值54)(2+-=xxxf],0[m范围是A. B.[2,4] C. [0,4] D.),2[+∞]4,2(12.若函数()f x为定义在R上的奇函数,且在(0,)+∞内是增函数,又(2)f0=,则不等式的解集为)(<xxfA.(2,0)(2,)-+∞B.(,2)(0,2)-∞-C.(,2)(2,)-∞-+∞D.)2,0()0,2(-高一数学(必修1)答题卷题 号一二三总分得 分一、选择题:(本大题小共12题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案第II 卷 非选择题(共90分)二、填空题:(本大题共4小题,每小题4分,共16分)13.函数,则的值为.⎩⎨⎧≥<--=-)2(2)2(32)(x x x x f x )]3([-f f 14.计算:.=⋅8log 3log 9415.二次函数在区间上是减少的,则实数k 的取值范围为 842--=x kx y ]20,5[.16.给出下列四个命题:①函数与函数表示同一个函数;||x y =2)(x y =②奇函数的图像一定通过直角坐标系的原点;③函数的图像可由的图像向右平移1个单位得到;2)1(3-=x y 23x y =④若函数的定义域为,则函数的定义域为;)(x f ]2,0[)2(x f ]4,0[⑤设函数是在区间上图像连续的函数,且,则方程()x f []b a ,()()0<⋅b f a f 在区间上至少有一实根;()0=x f []b a ,得分评卷人得分评卷人其中正确命题的序号是 .(填上所有正确命题的序号)三、解答题:(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知全集,集合,,R U ={}1,4>-<=x x x A 或{}213≤-≤-=x x B (1)求、;B A )()(BC A C U U (2)若集合是集合A 的子集,求实数k 的取值范围.{}1212+≤≤-=k x k x M 18. (本题满分12分)已知函数.1212)(+-=x x x f ⑴判断函数的奇偶性,并证明;)(x f ⑵利用函数单调性的定义证明:是其定义域上的增函数.)(x f 19. (本题满分12分)已知二次函数在区间上有最大值,求实数的值2()21f x x ax a =-++-[]0,12a 20. (本题满分12分)函数)1,0)(3(log )(≠>-=a a ax x f a (1)当时,求函数的定义域;2=a )(x f (2)是否存在实数,使函数在递减,并且最大值为1,若存在,求出的值;a )(x f ]2,1[a 若不存在,请说明理由.21. (本题满分13分)广州亚运会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向广州亚组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则得分评卷人增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元.x (1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)y x 的函数关系式(并写出这个函数的定义域);(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出x y 最大值.22. (本题满分13分)设是定义在R 上的奇函数,且对任意a 、b ,当时,都有)(x f R ∈0≠+b a .0)()(>++ba b f a f (1)若,试比较与的大小关系;b a >)(a f )(b f (2)若对任意恒成立,求实数k 的取值范围.0)92()329(>-⋅+⋅-k f f xx x ),0[+∞∈x 高一数学参考答案一、选择题:题号123456789101112答案CDBCBDCAABBD二、填空题:13.14. 15. 16. ③⑤8143101,0()0,( -∞三、解答题:17. (1){}{}32213≤≤-=≤-≤-=x x x x B ………2分,∴{}31≤<=x x B A ………4分{}3,1)()(>≤=x x x B C A C U U 或 ………6分(2)由题意:或, 112>-k 412-<+k ………10分解得:或. 1>k 25-<k ………12分18. (1)为奇函数.)(x f ………1分 的定义域为,,012≠+x∴)(x f R ………2分又 )(121221211212)(x f x f x x x x xx -=+--=+-=+-=--- 为奇函数.)(x f ∴………6分(2)1221)(+-=x x f 任取、,设,1x R x ∈221x x <)1221(1221()()(2121+--+-=-x x x f x f )121121(212+-+=x x )12)(12()22(22121++-=x x x x , 又,022********<-∴<∴<x x x x x x 或 12210,210x x +>+>.在其定义域R 上是增函数.)()(0)()(2121x f x f x f x f <∴<-∴或)(x f ∴………12分19. 函数的对称轴为:,)(x f x a =当时,在上递减,,即; 0<a ()f x ]1,0[2)0(=∴f 1,21-=∴=-a a ………4分当时,在上递增,,即; 1>a ()f x ]1,0[2)1(=∴f 2=a ………8分当时,在递增,在上递减,,即,01a ≤≤()f x ],0[a ]1,[a 2)(=∴a f 212=+-a a 解得:与矛盾;综上:或 251±=a 01a ≤≤1a =-2=a ………12分20. (1)由题意:,,即,)23(log )(2x x f -=023>-∴x 23<x 所以函数的定义域为;)(x f 23,(-∞………4分(2)令,则在上恒正,,在ax u -=3ax u -=3]2,1[1,0≠>a a ax u -=∴3上单调递减,]2,1[,即023>⋅-∴a )23,1()1,0( ∈a ………7分又函数在递减,在上单调递减,,即)(x f ]2,1[ax u -=3 ]2,1[1>∴a )23,1(∈a ………9分又函数在的最大值为1,, )(x f ]2,1[1)1(=∴f 即,1)13(log )1(=⋅-=a f a 23=∴a ………11分与矛盾,不存在. 23=a )23,1(∈a a ∴………12分21. (1)依题意⎩⎨⎧∈<<---∈≤<--+=++N x x x x N x x x x y ,4020),7)](20(1002000[,207),7)](20(4002000[ ∴, ⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022………5分定义域为{}407<<∈+x N x ………7分 (2) ∵,⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,402041089247[(100,207],81)16[(40022∴ 当时,则,(元)020x <≤16x =max 32400y =………10分当时,则,(元)2040x <<472x =max 27225y =综上:当时,该特许专营店获得的利润最大为32400元. 16x =………13分22. (1)因为,所以,由题意得:b a >0>-b a ,所以,又是定义在R 上的奇函数,0)()(>--+ba b f a f 0)()(>-+b f a f )(x f ,即.)()(b f b f -=-∴0)()(>-∴b f a f )()(b f a f >………6分(2)由(1)知为R 上的单调递增函数,)(x f ………7分对任意恒成立,0)92()329(>-⋅+⋅-k f f x x x ),0[+∞∈x ,即,)92()329(k f f x x x -⋅->⋅-∴)92()329(x x x k f f ⋅->⋅-………9分,对任意恒成立,x x x k 92329⋅->⋅-∴x x k 3293⋅-⋅<∴),0[+∞∈x 即k 小于函数的最小值. ),0[,3293+∞∈⋅-⋅=x u xx………11分令,则,xt 3=),1[+∞∈t 13131(323329322≥--=-=⋅-⋅=∴t t t u x x .1<∴k (13)。
2024-2025学年高一上学期期中模拟考试数学试题(北师大版2019必修第一册第一-三章)含解析
2024-2025学年高一数学上学期期中试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版2019必修第一册第一章~第三章。
5.难度系数:0.65。
第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
.B.C.D.【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。
四、解答题:本题共5小题,共77分。
解答应写出文字说明、证明过程或演算步棸。
15.(13分)16.(15分)设集合{}|(3)()0,R A x x x a a =--=∈,{}2|540B x x x =-+=.(1)当4a =时,求A B ⋂,A B ;(2)记C A B = ,若集合C 的真子集有7个,求:所有实数a 的取值所构成的集合.【解析】(1)当4a =时,{}}|(3)(4)R {30,4,x x x a A ==∈=--,2540x x -+=,即(4)(1)0x x --=,解得4x =或1,{1,4}B ∴=,{4}A B ∴= ,{1,3,4}A B ⋃=.(7分)(2)若集合C 的真子集有7个,则217n -=,可得3n =,即C A B = 中的元素只有3个,而(3)()0x x a +-=,解得3x =或a ,则{3,}A a =,由(1)知{1,4}B =,则当1,3,4a =时,{1,3,4}C A B == ,故所有实数a 的取值所构成的集合为{1,3,4}.(15分)17.(15分)18.(17分)19.(17分)。
高一年级期中考试数学试卷(内容:必修一第一至三章)
高一年级期中考试数学试卷(内容:必修一第一至三章)一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数与x y =有相同图象的一个函数是( ).A .2x y =B .xx y 2= C .)10(log ≠>=a a a y xa 且 D .x a a y log = (01)a a >≠且2.已知,a b 是非负整数,记集合{(,)|||1}M a b a b ab =-+=,则M 的元素的个数 为( ).A .1个B .2个C .3个D .4个 3.若1a b >>,且10log log 3a b b a +=,则log log a b b a -=( ). A .83 B .83- C .43 D .43-4.某商品1月份降价10%,此后受市场因素影响,价格连续上涨三次,使目前售价与1月份降价前相同,则三个价格平均回升率为( ).A 1B 1C .1D .1 5.若函数2()4f x x x a =--的零点个数为3,则a =( ).A .3B .4C .5D .6 6.如图,正比例函数y x =和(0)y ax a =>的图象与反比例函数(0)ky k x=>的图象分别相交于第一象限的A 点和C 点,若Rt AOB ∆和Rt COD ∆的面积分别为1S 和2S ,则1S 与2S 的关系是( ).A .12S S >B .12S S =C .12S S <D .不确定7.设{,}M a b =,{1,0,1}N =-,从M 到N 的映射f 满足()()0f a f b +=,则这样的映射f 的个数为( ).A .1B .2C .3D .48.设0,()x x e aa f x a e>=+是R 上的偶函数,则a =( ).A .12B .1C .2D .39.函数()ln(f x x =,若实数,a b 满足()(1)0f a f b +-=,则a b +=( ). A .1- B .0 C .1 D .不确定10.函数y =).A .(-∞B .C .)+∞D .[0,)+∞ 11.942--=a ax y 是偶函数,且在),0(+∞是减函数,则整数a 组成的集合为( ).A .{1,3,5}B .{1,3,5}-C .{1,1,3}-D .{1,1,3,5}-12.设函数12(),(lg )x f x a f a -==且a 的值组成的集合为( ).A .{}10B 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.若集合22{2,}{24,1,2,3}{66}a a a a -=-- ,则实数a 的值组成的集合为 . 14.已知一次函数()f x 的图象过点(0,2)-,一次函数()g x 的图象过点(0,0), 若[()][()]32f g x g f x x ==-,则()()f x g x += .15.已知函数2()680,[1,]f x x x x a =-+=∈,并且函数()f x 的最小值为()f a ,则a 的取值范围是________________.16.定义在R 上的函数()f x 是奇函数,且当0x >时,()1x f x e =+,则x R ∈时,()f x =__________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设集合2{|}{},{(,)}A x x ax b x a M a b =++===,求集合M . 18.(本小题满分12分)设函数21()ax f x bx c+=+是奇函数,(,,a b c Z ∈)且(1)2f =,(2)3f <,求函数的解析式.19.(本小题满分12分)设函数2()21f x x x =--在区间[,1]t t +有最小值()g t ,求函数()g t 的零点. 20.(本小题满分12分)已知函数2()||,()21(0)f x x a g x x ax a =-=++>,且函数()f x 与()g x 的图象在y 轴上的截距相等,(1)求a 的值;(2)求函数()()f x g x +的单调递增区间. 21.(本小题满分12分)已知定义在(0,)+∞上的函数 满足:①对任意的,(0,)x y ∈+∞ 都有()()()f xy f x f y =+; ②当1x >时,()0f x >.求证:(1)对任意的(0,)x ∈+∞,都有)()1(x f xf -=;(2)()f x 在(0,)+∞上是增函数.22.(本小题满分12分)设2221()2(log )2log f x x a b x =++,已知12x =时,()f x 有最小值8-, (1)求a 与b 的值;(2)在(1)的条件下,求()0f x >的解集A ; (3)设集合11[,]22B t t =-+,且A B =∅ ,求实数t 的取值范围.参考答案与解析:1.【答案】D【思路导引】有相同三要素的函数就是同一函数,应当从函数的三要素来判断,同时注意函数的定义域和函数的对应法则一起就决定了值域。
人教版高一上学期数学期中(必修一)试卷(含答案解析,可下载)
-2-
18.(本小题满分 12 分)
已知函数 f x log4 4x 1 kx k R 是偶函数.
(1)证明:对任意实数 b ,函数 y
f
x 的图象与直线 y
3 2
x b 最多只有一个交点;
(2)若方程 f x log4
a 2 x
4 3
有且只有一个解,求实数 a 的取值范围.
19.(12 分)某投资公司投资甲乙两个项目所获得的利润分别是 M (亿元)和 N (亿元),它们与
投资额 t (亿元)的关系有经验公式: M
1 3
t,
N
1 6
t
,今该公司将
3
亿元投资这个项目,若设甲
项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
集为
.
14.幂函数 y
x
1 2
p
2
p
3 2
p Z 为偶函数,且
f
1
f
4 ,则实数 p
.
15.用 min a, b, c 表示 a 、 b 、 c 三个数中的最小值设 f x min 2x, x 2,10 x x 0 ,则
f x 的最大值为
22.(12
分)已知函数
f
x
11x1x1
, ,
0 x1
. x 1
(1)当 0
a
log1 a ,
3
1 3
b
log1 b,
3
1 3
c
lo g3 c ,则
2024-2025学年高一上学期期中模拟考试数学试题(苏教版2019,必修第一册第1-5章)含解析
2024-2025学年高一数学上学期期中模拟卷(苏教版2019)(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:苏教版2019必修第一册第1章~第5章。
5.难度系数:0.65。
第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}()14,2,5A x x B =-<<=,则()R B A = ð()A .(]1,2-B .()1,2-C .()[),45,-∞⋃+∞D .()[),15,-∞-+∞ 【答案】A【解析】()2,5B =,则R (,2][5,)B =-∞+∞ ð,则()(]R 1,2B A =- ð.故选:A.2.已知集合{}{}2,,42,A xx k k B x x k k ==∈==+∈Z Z ∣∣.设:,:p x A q x B ∈∈,下列说法正确的是()A .p 是q 的充分不必要条件B .p 是q 的必要不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件【答案】B【解析】由(){}221,B xx k k ==+∈Z ∣,{}2,A x x k k ==∈Z ∣,故B 为A 的真子集,又:,:p x A q x B ∈∈,故p 是q 的必要不充分条件.故选:B.3.,,,a b c b c ∈>R ,下列不等式恒成立的是()A .22a b a c +>+B .22a b a c +>+C .22ab ac >D .22a b a c>【答案】B【解析】对于A ,若0c b <<,则22b c <,选项不成立,故A 错误;对于B ,因为b c >,故22a b a c +>+,故B 成立,对于C 、D ,若0a =,则选项不成立,故C 、D 错误;故选:B.4.已知实数a 满足14a a -+=,则22a a -+的值为()A .14B .16C .12D .18【答案】A【解析】因为()212212a a a a a a ---=+++⋅,所以()22211216214a a a a a a ---+=+-⋅=-=.故选:A.5.早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若221a b +=,则()()2121a b++的最大值为()A .916B .2516C .94D .254【答案】C【解析】因为()()212122221a b a b a b++=⋅+++,又221a b +=,所以()()22292121222(224a b aba b+++=⋅+≤+=,当且仅当1222ab==,即1a b ==-时取等号,故选:C6.已知函数()25,1,1x ax x f x a x x⎧-+≤⎪=⎨>⎪⎩满足对任意实数12x x ≠,都有()()21210f x f x x x -<-成立,则a 的取值范围是()A .(]0,3B .[)2,+∞C .()0,∞+D .[]2,3【答案】D【解析】因为函数()f x 满足对任意实数12x x ≠,都有2121()()0f x f x x x -<-成立,不妨假设12x x <,则210x x ->,可得()()210f x f x -<,即()()12f x f x >,可知函数()f x 在R 上递减,则1206a a a a ⎧≥⎪⎪>⎨⎪-+≥⎪⎩,解得23a ≤≤,所以a 的取值范围是[]2,3.故选:D.7.已知函数()221x f x x x =-+,且()()1220f x f x ++<,则()A .120x x +<B .120x x +>C .1210x x -+>D .1220x x ++<【答案】A【解析】由函数单调性性质得:y x x =,21x y =+在R 上单调递增,所以()221x f x x x =-+在R 上单调递增,令函数222121()||1||||21212121x x x x x x g x x x x x x x +-=-+=-+=+++++,则2112()||||()2121x xxx g x x x x x g x -----=-+=-+=-++,所以()()0g x g x +-=,则函数()g x 为奇函数,且在R 上单调递增,故()()()()12121212200f x f x g x g x x x x x ++<⇔<-⇔<-⇔+<.故选:A .8.已知关于x 的不等式20(,,)ax bx c a b c ++>∈R 的解集为(4,1)-,则29c a b++的取值范围为()A .[)6,-+∞B .(,6)-∞C .(6,)-+∞D .(],6∞--【答案】D【解析】由不等式20(,,)ax bx c a b c ++>∈R 的解集为(4,1)-,可知1和4-是方程20ax bx c ++=的两个实数根,且0a <,由韦达定理可得4141b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,即可得3,4b a c a ==-,所以()222499169994463444a c a a a a b a a a a a -+++⎛⎫===+=--+≤-=- ⎪++-⎝⎭.当且仅当944a a -=-时,即34a =-时等号成立,即可得(]29,6c a b∞+∈--+.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若集合{1,1,3,5}M =-,集合{3,1,5}N =-,则正确的结论是()A .,x N x M ∀∈∈B .,x N x M ∃∈∈C .{1,5}M N ⋂=D .{1,5}M N = 【答案】BC【解析】对于A ,3N -∈,但是3M -∉,A 错误,对于B ,1N ∈,1M ∈,B 正确,对于CD ,{1,1,3,5}{3,1,5}{1,5}M N =--= ,{1,1,3,5}{3,1,5}{3,1,1,3,5}M N =--=-- ,C 正确,D 错误.故选:BC .10.已知0a >,0b >,且2a b +=,则()A .222a b +≥B .22log log 0a b +≤C .1244a b -<<D .20a b ->【答案】ABC【解析】对于A ,有()()()()2222222222111122222222a b a ab b a ab b a b a b a b ⎡⎤+=+++-+=++-≥+=⋅=⎣⎦,当且仅当a b =时取等号,故A 正确;对于B ,0a >,0b >,有()22112144ab a b ≤+=⋅=,当且仅当a b =时取等号,故1ab ≤,从而()2222log log log log 10a b ab +=≤=,故B 正确;对于C ,由,0a b >,知0ab >,所以()()()()()()222222222042224ab a ab b a ab b a b a b a b a b <=++--+=+--=--=--,故()24a b -<,从而22a b -<-<,所以22122244a b --=<<=,故C 正确;对于D ,由于当1a b ==时,有,0a b >,2a b +=,但2110a b -=-=,故D 错误.故选:ABC.11.对于任意的表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”.下列说法正确的是()A .函数[]()y x x =∈R 为奇函数B .函数[]y x =的值域为ZC .对于任意的,x y +∈R ,不等式[][][]x y x y +≤+恒成立D .不等式[]2[]430x x -+<的解集为{}23x x ≤<【答案】BCD【解析】对于A ,当01x ≤<时,[]0y x ==,当10x -<<,[]1y x ==-,所以[]()y x x =∈R 不是奇函数,所以A 错误,对于B ,因为[]x 表示不超过x 的最大整数,所以当x ∈R 时,[]Z x ∈,所以函数[]y x =的值域为Z ,所以B 正确,对于C ,因为,x y +∈R 时,[][],x x y y ≤≤,所以[][][][][]x y x y x y x y ⎡⎤+=+≤+≤+⎣⎦,所以C 正确,对于D ,由[]2[]430x x -+<,得[]13x <<,因为[]x 表示不超过x 的最大整数,所以23x ≤<,所以D 正确.故选:BCD第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汉寿五中2017下学期高一数学
期中考试试卷
•选择题(本大题共12小题,每小题3分,共36分•在每小题给出的四个选项中 ,有且 只有一项是符合题目要求的,把答案填填在答题卡上)
0,3,5 , N 1,4,5,则 M C U N (
A .
5 B • 0,3 C • 0,2,3,5 D •
0,1,3,4,5
2•下列四组函数,表示同一函数的是(
)
2
A . f(x)
:2
x , g(x) x B . f (x) x , g(x)
x x
C. f(x) In x 2
,g(x) 2lnx D . f(x) log a a x (a > 0 ,a 1), g(x) Vx
3•函数 f x
3 x Iog 2(x 1)的定义域为()
A .
1,3
B
1,3
C
. ( 1,3]
D .
1,3
4•下列函数为奇函数,且在
,0上单调递减的函数是(
)
1
A. f x x 1
B. f x x 2
C. f x x 2
D. f x x 3
5•设f : x T .x 是集合A 到集合B 的映射,若B {1,2},贝y AI B ()
1 x
6•函数f x 22的大致图象为(
1 •设集合 U 01,2,3,4,5 , M
A . 1
B . 2
C. 或 1
D. 或2
7.已知f(x)是奇函数,是g(x)偶函数,且f( 1) g(1) 2 , f(1)
A.4
B.3
C.2
D.1 &已知a log 2 0.3,b 20.1 ,c 0.21.3,则a,b,c 的大小关系是(
)
A .
a b c B .
b c
a C . ca
b D • a
c b
0 , f (1.25) 0,则方程的根落在区间(
A • (1 ,1.25)
B • (1.25 ,1.5)
C • (1 ,2)
D • (1.5 ,2)
11
•设 f(x)
驚1), x 2. ,则 f (f(f(10)))的值是(
)
10 •图中曲线分别表示 y l og a x , y l og b x , y l o g c x , y l og d x 的图象,a, b, c, d 的关系是( ) yf
A 、
0<a<b<1<d<c B 0<b<a<1<c<d
C 、
0<d<c<1<a<b
D 、 0<c<d<1<a<b
O
g( 1) 4,则 g(1)等
9•设函数f (x) 3x 3x 8,用二分法求方程3x
3x 8 0在x (1 ,2)内近似解的过程
中,计算得到f (1) 0 , f(1.5)
2
A. 1 B .2 C. e D. e2
12 •若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”
例如函数y x2,x 1,2与函数y x2,x 2, 1即为“同族函数” •请你找出下面哪个函数解析式也能够被用来构造“同族函数”的是( )
A. y X
B. y x 3
C. y 2x
D. y log 1 x
2
二•填空题(本大题共4小题,每小题3分,共12分)
1
13.计算:(1) [(3 )2]2= _________ ;
(2) 1.1° 洱0.5 2 lg 25 2lg 2
14•函数f(x) a3x 1 1恒过定点_________________ .
15•已知函数y x2 4x 6 , x [1,4],则函数的值域为___________________________ .
16 .已知函数f (x)满足:对任意正数x-i x2,有f (xj f (x2),且
f(X1 X2) f(xj f(X2)•求(1) f (1) = ____________________ ;
(2)请写出一个满足条件的函数,则这个函数可以
写为f(x) = _________________________ (注:只需写出一个函数即可) •
三.解答题:本大题共6小题,满分52分.
2 □
(3)解方程:log s x 3 1 log 3
(x
) 3
18. (本小题满分8分)设全集U R ,集合A ={x| 1 x 3} , B ={x|2x 4 x 2}.
(I)求 C u (A B);
(n)若集合C {x|x a 0},满足B C C ,求实数a 的取值范围.
a 3 19. (本小题满分 8分)已知函数 f (x) x ,且f(2)
x
2
(I)求实数a 的值;
(n)判断函数是奇函数还是偶函数?并证明。
2x b 20. (本小题满分 8分)已知定义域为 R 的函数f(x) ------------------ 是奇函数。
2x 1
(I)求b 的值;
(n)判断函数f x 的单调性;
21. (本小题满分8分)
17.(满分9分,每小问3分)计算:
⑴ log 9
字 lg 25 lg4 7
log72
0.80
3
(2)用分数指数幕表示下式
3
(a >0,b >0)
某城市出租车,乘客上车后,行驶3km内收费都是10元,之后每行驶1km加收2元,超过15km,每行驶1km加收为3元(假设途中一路顺利,没有停车等候),若乘客需要行驶20km. ( I )求付费总数y与行驶路程x收费之间的函数关系式;
(n )当出租车行驶了15km后,乘客是中途换乘一辆出租车还是继续乘坐这辆出
租车行驶完余下的5km路程,哪一种方式更便宜?
22. (本小题满分11分,)
已知函数f(X)是定义在R上的奇函数,
当x 0 时,f(x) X2 2x .
(I)求f (x)的解析式,并画出的f (x)图象;
(n)设g(x) f (x) k,禾.用图象讨论:
当实数k为何值时,函数g(x)有一个零点?二个零点?三个零点?
汉寿五中2017下学期高一数学
期中考试试卷答题卡
填空题:本大题共4小题,每小题3分,满分12分.
13
、
14
15、16、
三.解答题:本大题共6小题,满分52分.
17.(满分9分,每小问3分)
4 27
计算:⑴log^l7
lg 25 lg4 7log72 0.8°
(2)用分数指数幕表示下式b3
(a>0,b >0)
b3
2
⑶解方程:log s x 3 1 log3(x 5 3)
18. (本小题满分8分)
设全集U R,集合A={x| 1 x 3} , B={x|2x 4 x 2}.
(I)求C U(A B);
(n)若集合C {x|x a 0},满足B C C,求实数a的取值范围.
19. (本小题满分8分)
a 3
已知函数f (x) x a,且f (2)-.
x 2
(I)求实数a的值;
(n)判断函数是奇函数还是偶函数?并证明。
20、(本小题满分8分)
2X b
已知定义域为R的函数f(x) -b是奇函数。
2x 1
(I)求b的值;
(n)判断函数f x的单调性;
21.(本小题满分8 分)
某城市出租车,乘客上车后,行驶3km内收费都是10元,之后每行驶1km加收2元,超过15km,每行驶1km加收为3元(假设途中一路顺利,没有停车等候),若乘客需要行驶20km. ( I )求付费总数y与行驶路程x收费之间的函数关系式;
(n )当出租车行驶了15km后,乘客是中途换乘一辆出租车还是继续乘坐这辆出
租车行驶完余下的5km路程,哪一种方式更便宜?
22.(本小题满分11分,)
已知函数f(x)是定义在R上的奇函数,
当x 0 时,f(x) x2 2x .
(I)求f (x)的解析式,并画出的f (x)图象;
(n)设g(x) f(x) k,利用图象讨论:
当实数k为何值时,函数g(x)有一个零点?二个零点?三个零点?。