九年级上册数学期末考试题及答案

合集下载

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.方程x2+4x+3=0的两个根为( )A.x1=1,x2=3B.x1=-1,x2=3C.x1=1,x2=-3D.x1=-1,x2=-32.一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )A.49B.59C.14D.193.将抛物线y=x2向右平移3个单位长度,再向上平移4个单位长度,得到的抛物线是( )A.y=(x-3)2+4 B.y=(x+3)2+4C.y=(x+3)2-4 D.y=(x-3)2-44.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D5.如图,AB切⊙O于点B,连接OA交⊙O于点C,BD∥OA交⊙O于点D,连接CD.若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°6.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.167.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C,对称轴为直线x=-1.若点A的坐标为(-4,0),则下列结论正确的是( )A.2a+b=0B.4a-2b+c>0C.x=2是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在抛物线上,当x1>x2>-1时,y1<y2<08.图1是一把扇形纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB 的夹角为150°,OA的长为30 cm,贴纸部分的宽AC为18 cm,则CD⏜的长为( )A.5π cm B.10π cmC.20π cm D.25π cm9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是( )A.144°B.130°C.129°D.108°10.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 022二、填空题:本题共6个小题,每小题3分,共18分。

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。

九年级数学上册期末考试卷(附答案解析)

九年级数学上册期末考试卷(附答案解析)

九年级数学上册期末考试卷(附答案解析)一、选择题(每小题3分,共24分)1.(3分)如图,点D是△ABC的边BC上任一点,AB=4,AD=2,∠DAC=∠B.若△ABD的面积为a,则△ACD的面积为()A.a B.a C.a D.a2.(3分)如果Rt△ABC的各边长都扩大为原来的3倍,那么锐角A的正弦、余弦值是()A.都扩大为原来的3倍B.都缩小为原来的C.没有变化D.不能确定3.(3分)如图,点A、B、C、D、E都是⊙O上的点,=,∠D=128°,则∠B的度数为()A.128°B.126°C.118°D.116°4.(3分)用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9 B.(x﹣4)2=9 C.(x+8)2=23 D.(x﹣8)2=95.(3分)将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为()A.y=2(x+2)2﹣1 B.y=2(x+2)2﹣5C.y=2(x﹣4)2﹣1 D.y=2(x﹣4)2﹣56.(3分)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tan B=()A.2B.2C.D.7.(3分)如图,在长为30m,宽20m的矩形田地中开辟两条宽度相等的道路,已知剩余田地的面积为551m2,求道路的宽度.设道路的宽度为xm,则可列方程()A.(20+x)(30+x)=551 B.(20﹣x)(30﹣x)=551C.20×30﹣20x﹣30x=551 D.20×30﹣20x﹣30x﹣x2=5518.(3分)二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:x…﹣2 ﹣1 0 2 4 5 …y…﹣7 ﹣2 1 1 ﹣7 ﹣14 …下列说法正确的是()A.抛物线的开口向上B.当x>1时,y随x的增大而增大C.二次函数的最大值是2D.抛物线与x轴只有一个交点二.填空题(每小题3分,共18分)9.(3分)若关于x的一元二次方程k2x2+(4k﹣1)x+4=0有两个不同的实数根,则k的取值范围是.10.(3分)如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.11.(3分)如图,若二次函数y=ax2+bx+c(a≠0)的图象的对称轴为直线x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则下列结论:①abc>0;②二次函数的最大值为a+b+c;③a﹣b+c<0;④b2﹣4ac<0;⑤当y>0时,﹣1<x<3.⑥3a+c=0;其中正确的结论有.12.(3分)如图,正方形ABCD中,扇形ABC与扇形BCD的弧交于点E,AB=2cm,则图中阴影部分的面积为cm2.(不求近似值)13.(3分)抛物线y=ax2+bx+c经过点A(0,﹣3),B(2,﹣3),C(﹣2,5),则该抛物线上纵坐标为5的另一个点D的坐标是.14.(3分)车从甲地驶往乙地,行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的反比例函数关系如图所示.若列车要在 2.5h内到达,则速度至少需要提高到km/h.三、解答题(共78分)15.(4分)计算:﹣12022﹣+|﹣2|.16.(6分)如图,数学兴趣小组成员在热气球A上看到正面为横跨河流两岸的大桥BC,并测得B,C两点的角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:,,)17.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.18.(10分)由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?19.(6分)如图,△ABC是等腰三角形,AB=AC,AD⊥BC,以AD为直径作⊙O,分别交AB、AC于点E、F,连接EF.判断EF和BC的位置关系,并证明.20.(12分)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.21.(10分)如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x 轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.22.(6分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?23.(14分)已知抛物线y=﹣x2+bx+c(b、c为常数),若此抛物线与某直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线的函数解析式和顶点D的坐标;(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,H1A2取得最小值时,求n的值.参考答案与解析一、选择题(每小题3分,共24分)1.【分析】首先证明△CAD∽△CBA,得,从而,即可得出答案.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△CAD∽△CBA,∴,∴,∵△ABD的面积为a,∴S△CAD=a,故选:C.2.【分析】根据相似三角形的判定方法可得新三角形与Rt△ABC是相似的,从而可得锐角A 的大小是不变的,即可解答.【解答】解:∵Rt△ABC的各边长都扩大为原来的3倍后,所得的三角形与Rt△ABC是相似的,∴锐角A的大小是不变的,∴锐角A的正弦、余弦值是没有变化,故选:C.3.【分析】连接AC、CE,根据圆内接四边形的性质求出∠CAE,根据圆心角、弧、弦之间的关系定理求出∠ACE,根据圆内接四边形的性质计算,得到答案.【解答】解:连接AC、CE,∵点A、C、D、E都是⊙O上的点,∴∠CAE+∠D=180°,∴∠CAE=180°﹣128°=52°,∵=,∴∠ACE=∠AEC=×(180°﹣52°)=64°,∵点A、B、C、E都是⊙O上的点,∴∠AEC+∠B=180°,∴∠B=180°﹣64°=116°,故选:D.4.【分析】将常数项移动方程右边,方程两边都加上16,左边化为完全平方式,右边合并即可得到结果.【解答】解:x2+8x+7=0,移项得:x2+8x=﹣7,配方得:x2+8x+16=9,即(x+4)2=9.故选:A.5.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【解答】解:将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为:y=2(x﹣1+3)2﹣3+2,即y=2(x+2)2﹣1;故选:A.6.【分析】先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tan B的值即可计算.【解答】解:∵CA是∠BCD的平分线,∴∠DCA=∠ACB,又∵AD∥BC,∴∠ACB=∠CAD,∴∠DAC=∠DCA,∴DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,∵AB⊥AC,∴DE⊥AC(等腰三角形三线合一的性质),∴点F是AC中点,∴AF=CF,∴EF是△CAB的中位线,∴EF=AB=2,∵==1,∴DF=EF=2,在Rt△ADF中,AF==4,则AC=2AF=8,tan B===2.故选:B.7.【分析】由道路的宽度为xm,可得出剩余田地部分可合成长为(30﹣x)m,宽为(20﹣x)m的矩形,根据剩余田地的面积为551m2,即可得出关于x的一元二次方程,此题得解.【解答】解:∵道路的宽度为xm,∴剩余田地部分可合成长为(30﹣x)m,宽为(20﹣x)m的矩形.依题意得:(20﹣x)(30﹣x)=551.故选:B.8.【分析】根据给出的自变量x与函数值y的对应值逐一分析解答即可.【解答】解:∵抛物线经过点(﹣2,﹣7),(4,﹣7),则对称轴为x=1,设抛物线的解析式为y=a(x﹣1)2+k,代入点(0,1)和(﹣1,﹣2)得,,解得,∴抛物线的解析式为y=﹣(x﹣1)2+2,∵a=﹣1,∴抛物线开口向下,故A不符合题意;∵对称轴为x=1,∴当x>1时,y随x的增大而减小,故B不符合题意;∵抛物线的顶点坐标为(1,2),开口向下,∴二次函数的最大值为2,故C符合题意;∵抛物线开口向下,顶点为(1,2),∴抛物线与x轴有两个交点,故D不符合题意.故选:C.二.填空题9.答案为:且k≠0.10.(3分)如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为(1,2)或(﹣1,﹣2).【分析】根据位似变换的性质计算即可.【解答】解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).11.答案为:②⑤⑥.12.答案为:π.13.答案为:(4,5).14.答案为:240.三、解答题(共78分)15.(4分)计算:﹣12022﹣+|﹣2|.【分析】这里,先算﹣12022=﹣1,=4,|﹣2|=2﹣,再进行综合运算.【解答】解:﹣12022﹣+|﹣2|=﹣1﹣4+2﹣=﹣3﹣.16.(6分)如图,数学兴趣小组成员在热气球A上看到正面为横跨河流两岸的大桥BC,并测得B,C两点的角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:,,)【分析】过A作AD⊥BC,交CB延长线于点D,证△ACD是等腰直角三角形,则CD=AD,再由锐角三角函数定义得BD=AD,则AD﹣AD=75,求出AD的长,即可解决问题.【解答】解:过A作AD⊥BC,交CB延长线于点D,如图所示:则∠ACD=45°,∠ABD=53°,在Rt△ACD中,tan∠ACD=,∴CD===AD,在Rt△ABD中,tan∠ABD=,∴BD=≈=AD,由题意得:AD﹣AD=75,解得:AD=300(m),∵此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,∴此时热气球(体积忽略不计)附近的温度约为:20℃﹣×0.6℃=18.2℃,答:此时热气球(体积忽略不计)附近的温度约为18.2℃.17.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.【分析】(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线;(2)AB是直径;故只需证明BC与半径相等即可;(3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN •MC;代入数据可得MN•MC=BM2=8.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴=,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴=.∴BM2=MN•MC.又∵AB是⊙O的直径,=,∴∠AMB=90°,AM=BM.∵AB=8,∴BM=4 .∴MN•MC=BM2=32.18.(10分)由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?【分析】(1)设这两次价格上调的平均增长率为x,利用经过两次上调价格后的价格=原价×(1+这两次价格上调的平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,根据每天该口罩的销售额为315元,即可得出关于m的一元二次方程,解之即可得出m的值,再结合要让顾客获得更大的优惠,即可得出每包应该降价3元.【解答】解:(1)设这两次价格上调的平均增长率为x,依题意得:10(1+x)2=16.9,解得:x1=0.3=30%,x2=﹣2.3(不符合题意,舍去).答:这两次价格上调的平均增长率为30%.(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,依题意得:(10﹣m)(30+5m)=315,整理得:m2﹣4m+3=0,解得:m1=1,m2=3.又∵要让顾客获得更大的优惠,∴m的值为3.答:每包应该降价3元.19.(6分)如图,△ABC是等腰三角形,AB=AC,AD⊥BC,以AD为直径作⊙O,分别交AB、AC于点E、F,连接EF.判断EF和BC的位置关系,并证明.【分析】先利用等腰三角形的性质得到∠EAD=∠FAD,则根据圆周角定理得到=,再利用垂径定理的推理得到AD⊥EF,于是可判断EF∥BC.【解答】解:EF∥BC.理由如下:∵AB=AC,AD⊥BC,∴AD平分∠BAC,即∠EAD=∠FAD,∴=,∵AD为直径,∴AD⊥EF,而AD⊥BC,∴EF∥BC.20.(12分)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.【分析】(1)由题意可知b=0,再将(2,2)代入y=ax2+bx﹣2即可求解析式;(2)①求出A(,0),B(﹣,0),再由2[c+2+(c+2)2]=4(c+2),即可求c;②由题意可得m=﹣,k<0,再由m>6,可得﹣<k<0,联立,得到AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,与x轴的交点P (﹣,0),与y轴的交点为N(0,b),由∠PNO=∠AMO,可得k'=m=﹣,则有线段AB的垂直平分线为y=﹣x++,所以N点纵坐标为n=+,即可求<n<.【解答】解:(1)∵顶点在y轴上,∴b=0,∵抛物线y=ax2+bx﹣2经过(2,2),∴4a﹣2=2,∴a=1,∴y=x2﹣2;(2)①当k=0时,y=c,联立,∴A(,c),B(﹣,c),∵△ABP为等腰直角三角形,∴P点在AB的垂直平分线上,∴P点在抛物线的顶点(0,﹣2)处,∵AB=2,AP=BP=,∴2[c+2+(c+2)2]=4(c+2),∴c=﹣1;②∵c=1,∴y=kx+1,∴m=﹣,由题意可知,k<0,∵m>6,∴﹣<k<0,联立,∴x2﹣kx﹣2=0,∴x A+x B=k,∴AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,∴与x轴的交点P(﹣,0),与y轴的交点为N(0,b),∵PN⊥AB,∴∠PNO=∠AMO,∴=,∴k'=m=﹣,∴y=﹣x+b,∴线段AB的垂直平分线为y=﹣x++,∴N点纵坐标为n=+,∴<n<.21.(10分)如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x 轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.【分析】(1)把A点的坐标代入函数解析式,即可求出答案;(2)解由两函数解析式组成的方程组,求出方程组的解,即可得出B点的坐标,求出C点的坐标,再根据三角形面积公式求即可;(3)根据图象即可求出答案.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1,即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)连接OA、OB,∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由解得,,∴由图象可得:点B的坐标为(﹣1,﹣2),∴;(3)由图象可知不等式组的解集为1<x≤2.22.(6分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?【分析】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.【解答】解:(1)利用列表法得出所有可能的结果,如下表:1 2 3 45 5 10 15 206 6 12 18 247 7 14 21 288 8 16 24 32由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为P甲=.(4分)(2)这个游戏对双方不公平,因为甲获胜的概率P甲=,乙获胜的概率P乙=,,所以,游戏对双方是不公平的.(6分)23.(14分)已知抛物线y=﹣x2+bx+c(b、c为常数),若此抛物线与某直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线的函数解析式和顶点D的坐标;(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,H1A2取得最小值时,求n的值.【分析】(1)用待定系数法求函数的解析式即可;(2)过点P作PG∥y轴交AC于点G,设P(t,﹣t2+2t+3),则G(t,t+1),S△PAC=﹣(t ﹣)2+当t=时,△PAC的面积最大值为,此时P(,);(3)由题意可知H1在抛物线y=﹣x2﹣2x+3上,再由H1A2=(t﹣)2+,可得当t=时,A2有最小值,求出n的值即可.H1【解答】解:(1)将A(﹣1,0),C(2,3)两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(2)设AC的直线解析式为y=kx+b,∴,解得,∴y=x+1,过点P作PG∥y轴交AC于点G,设P(t,﹣t2+2t+3),则G(t,t+1),∴PG=﹣t2+t+2,∴S△PAC=×3×(﹣t2+t+2)=﹣(t﹣)2+,∴当t=时,△PAC的面积最大值为,此时P(,);(3)点H(n,t)为抛物线上的一个动点,点H1与H点关于y轴对称,∴H1(﹣n,t),H1在抛物线y=﹣x2﹣2x+3上,∴t=﹣n2﹣2n+3,∴H1A2=(n+1)2+t2=t2﹣t+4=(t﹣)2+,∴当t=时,H1A2有最小值,∴=﹣n2+2n+3,解得n=1+.。

九年级数学上册期末考试及答案【完整】

九年级数学上册期末考试及答案【完整】

九年级数学上册期末考试及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列各式中,正确的是( )A 3=-B .3=-C 3=±D 3±2.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( ) A .﹣2B .﹣4C .2D .43.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣344.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩5.若α,β是方程2x 2x 20180+-=的两个实数根,则2α3αβ++的值为( ) A .2015B .2016-C .2016D .20196.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3B .c <﹣2C .c <14D .c <17.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( )A .30B .36︒C .60︒D .72︒二、填空题(本大题共6小题,每小题3分,共18分)116.2.分解因式:ab 2﹣4ab+4a=________.3.33x x -=-,则x 的取值范围是__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311xx x x +=--2.已知关于x 的一元二次方程x 2+x +m ﹣1=0. (1)当m =0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m 的取值范围.3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点. (1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集;(3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G . (1)证明:ADG DCE ∆∆≌; (2)连接BF ,证明:AB FB =.5.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.6.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、C6、B7、D8、C9、B 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、42、a (b ﹣2)2.3、3x ≤4、425、6、(,6)三、解答题(本大题共6小题,共72分)1、x=32、(1)x 1x 2(2)m <543、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)4、(1)略;(2)略.5、(1)40,补图详见解析;(2)108°;(3)16.6、(1)到2020年底,全省5G 基站的数量是6万座;(2)2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.。

九年级上册数学期末试卷

九年级上册数学期末试卷

人教版九年级数学上册期末试卷(含答案解析)一、选择题(每小题3分,共42分)1.(3分)计算a7•()2的结果是()A.a B.a5 C.a6 D.a82.(3分)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣13.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A. B. C.D.4.(3分)根据下列已知条件,能唯一画出△ABC的是()A.AB=2,BC=4,AC=7B.AB=5,BC=3,∠A=30°C.∠A=60°,∠B=45°,AC=4D.∠C=90°,AB=65.(3分)下列各式:,,,,(x﹣y)中,是分式的共有()A.1个 B.2个 C.3个D.4个6.(3分)若(x+3)(x﹣4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12B.p=﹣1,q=﹣12C.p=7,q=12D.p=7,q=﹣127.(3分)下列能判定△ABC为等腰三角形的是()A.AB=AC=3,BC=6B.∠A=40°、∠B=70°C.AB=3、BC=8,周长为16D.∠A=40°、∠B=50°8.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.六边形 B.八边形 C.九边形 D.十边形9.(3分)如图,四边形ABCD中,BC∥AD,AB=CD,BE=DF,图中全等三角形的对数是()A.5 B.6 C.3 D.410.(3分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠2=65°,则∠1的度数为()A.65° B.25° C.35° D.45°11.(3分)已知y2+10y+m是完全平方式,则m的值是()A.25 B.±25 C.5 D.±512.(3分)如图,若∠A=27°,∠B=50°,∠C=38°,则∠BFE等于()A.65° B.115° C.105° D.75°13.(3分)若分式方程无解,则m的值为()A.﹣2 B.0 C.1 D.214.(3分)若m=2100,n=375,则m,n的大小关系为()A.m>n B.m<n C.m=n D.无法确定二、填空题(本大题满16分,每小题4分)15.(4分)计算:= .16.(4分)一个矩形的面积为(6ab2+4a2b)cm2,一边长为2abcm,则它的周长为cm.17.(4分)等腰三角形一个顶角和一个底角之和是100°,则顶角等于.18.(4分)下列图形中对称轴最多的是.三、解答题(本大题满分62分)19.(10分)计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab)(2)[(x+y)2﹣(x﹣y)2]÷(2xy)20.(10分)把下列多项式分解因式:(1)4x2y2﹣4(2)2pm2﹣12pm+18p.21.(10分)如图,已知△ABC的三个顶点的坐标分别为:A(﹣2,3)、B (﹣6,0)、C(﹣1,0).(1)将△ABC沿y轴翻折,画出翻折后的△A1B1C1,点A的对应点A1的坐标是.(2)△ABC关于x轴对称的图形△A2B2C2,直接写出点A2的坐标.(3)若△DBC与△ABC全等(点D与点A重合除外),请直接写出满足条件点D的坐标.22.(10分)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.23.(10分)有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克?24.(12分)(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,线段BE、EF、FD之间存在什么数量关系,为什么?(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,根据(2)的结论求E、F之间的距离.参考答案与试题解析一、选择题(每小题3分,共42分)1.【考点】分式的乘除法.【分析】首先利用分式的乘方计算()2,再计算乘法即可.【解答】解:原式=a7•=a5,故选:B.2.【考点】分式有意义的条件.【分析】分式有意义的条件是分母不等于零.【解答】解:∵分式有意义,∴x﹣1≠0.解得:x≠1.故选:A.3.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.4.【考点】全等三角形的判定.【分析】判断是否符合所学的全等三角形的判定定理及三角形的三边关系即可.【解答】解:A、不符合三角形三边之间的关系,不能构成三角形,错误;B、∠A不是已知两边的夹角,无法确定其他角的度数与边的长度,不能画出唯一的三角形,错误;C、符合全等三角形判定中的ASA,正确;D、只有一个角和一个边,无法作出一个三角形,错误;故选C.5.【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,(x﹣y)是分式,故选:C.6.【考点】多项式乘多项式.【专题】计算题;整式.【分析】已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出p与q的值即可.【解答】解:已知等式整理得:x2﹣x﹣12=x2+px+q,则p=﹣1,q=﹣12,故选B7.【考点】等腰三角形的判定.【分析】根据等腰三角形判定,利用三角形内角定理对4个选项逐一进行分析即可得到答案.【解答】解:A、AB=AC=3,BC=6,不能组成三角形,错误;B、∠A=40°、∠B=70°,可得∠C=70°,所以是等腰三角形,正确;C、AB=3、BC=8,周长为16,AC=16﹣8﹣3=5,不是等腰三角形,错误;D、∠A=40°、∠B=50°,可得∠C=90°,不是等腰三角形,错误;故选B8.【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:360÷40=9,即这个多边形的边数是9,故选C.9.【考点】全等三角形的判定.【分析】先找出图中所有的三角形,根据直觉判断全等,再根据判定方法寻找条件验证.【解答】解:在四边形ABCD中,BC∥AD⇒∠ABD=∠CDB.又AB=CD,BD=DB,∴△ABD≌△CDB;∠ABD=∠CDB,AB=CD,又BE=DF⇒△ABE≌△CDF;BE=DF⇒BF=DE.∵BC=DA,CF=AE,∴△BCF≌△DAE.故选C.10.【考点】平行线的性质.【专题】探究型.【分析】先根据平行线的性质求出∠3的度数,再由平角的定义即可得出结论.【解答】解:∵直线a∥b,∠2=65°,∴∠3=∠2=65°,∵AB⊥BC,∴∠ABC=90°,∴∠1=180°﹣∠3﹣∠ABC=180°﹣65°﹣90°=25°.故选B.11.【考点】完全平方式.【分析】直接利用完全平方公式求出m的值.【解答】解:∵y2+10y+m是完全平方式,∴y2+10y+m=(y+5)2=y2+10y+25,故m=25.故选:A.12.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形外角的性质,可得∠AEB=∠A+∠C=65°,再根据三角形的内角和定理,求得∠BFE的度数即可.【解答】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=50°,∴△BEF中,∠BFE=180°﹣(65°+50°)=65°,故选:A.13.【考点】分式方程的解.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+2=0,求出x的值,代入整式方程即可求出m的值.【解答】解:去分母得:x=m,由分式方程无解,得到x+2=0,即x=﹣2,把x=﹣2代入得:m=﹣2,故选A14.【考点】幂的乘方与积的乘方.【分析】结合幂的乘方与积的乘方的概念,将m变形为(24)25,n变形为(33)25,然后进行比较求解即可.【解答】解:m=2100=(24)25,n=375=(33)25,∵24<33,∴(24)25<(33)25,即m<n,故选B.二、填空题(本大题满16分,每小题4分)15.【考点】分式的加减法.【分析】应用同分母分式的加减运算法则求解即可求得答案,注意要化简.【解答】解:==﹣1.故答案为:﹣1.16.【考点】整式的除法;单项式乘多项式.【专题】计算题;几何图形问题.【分析】先根据矩形的面积公式求出另一边的长,再根据矩形的周长=2×(长+宽)列式,通过计算即可得出结果.【解答】解:(6ab2+4a2b)÷2ab=3b+2a,2×(2ab+3b+2a)=4ab+4a+6b.故答案为:4ab+4a+6b.17.【考点】等腰三角形的性质.【分析】已知给出了两角的和,可根据三角形内角和定理求出另一个底角,再相减即可求出顶角.【解答】解:依题意得:等腰三角形的顶角和一个底角的和是100°即它的另一个底角为180°﹣100°=80°∵等腰三角形的底角相等故它的一个顶角等于100°﹣80°=20°.故答案为:20°.18.【考点】轴对称图形.【分析】直接得出各图形的对称轴条数,进而得出答案.【解答】解:正方形有4条对称轴;长方形有2条对称轴;圆有无数条对称轴;线段有2条对称轴.故对称轴最多的是圆.故答案为:圆.三、解答题(本大题满分62分)19.【考点】整式的混合运算.【分析】(1)先算乘方,再算乘除即可.(2)先算括号里面的,最后算除法即可.【解答】解:(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6.(2)原式=[x2+2xy+y2﹣x2+2xy﹣y2]÷2xy=4xy÷2xy=2.20.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】(1)原式提取4,再利用平方差公式分解即可;(2)原式提取2p,再利用完全平方公式分解即可.【解答】解:(1)原式=4(x2y2﹣1)=4(xy+1)(xy﹣1);(2)原式=2p(m2﹣6m+9)=2p(m﹣3)2.21.【考点】翻折变换(折叠问题);作图-轴对称变换.【分析】(1)直接利用关于y轴对称点的性质得出对应点位置;(2)直接利用关于x轴对称点的性质得出对应点位置;(3)直接利用全等三角形的判定方法得出对应点位置.【解答】解:(1)翻折后点A的对应点的坐标是:(2,3);故答案为:(2,3);(2)如图所示:△A1B1C1,即为所求,A1(﹣2,﹣3);(3)如图所示:D(﹣2,﹣3)或(﹣5,3)或(﹣5,﹣3).22.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;(2)由全等三角形的性质得AF=BC,由等腰三角形的性质“三线合一”得BC=2CD,等量代换得出结论.【解答】证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.23.【考点】分式方程的应用.【分析】首先设第一块试验田每亩收获蔬菜x千克,则第二块试验田每亩收获蔬菜(x+300)千克,根据关键语句“有两块面积相同的试验田”可得方程=,再解方程即可.【解答】解:设第一块试验田每亩收获蔬菜x千克,由题意得:=,解得:x=450,经检验:x=450是原分式方程的解,答:第一块试验田每亩收获蔬菜450千克.24.【考点】全等三角形的判定与性质;全等三角形的应用.【分析】(1)根据全等三角形对应边相等解答;(2)延长FD到G,使DG=BE,连接AG,根据同角的补角相等求出∠B=∠ADG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“边角边”证明△AEF和△GAF全等,根据全等三角形对应边相等可得EF=GF,然后求解即可;(3)连接EF,延长AE、BF相交于点C,然后求出∠EAF=∠AOB,判断出符合探索延伸的条件,再根据探索延伸的结论解答即可.【解答】解:(1)EF=BE+DF;证明:如图1,延长FD到G,使DG=BE,连接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF;(2)EF=BE+DF仍然成立.证明:如图2,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如图3,连接EF,延长AE、BF相交于点C,∵∠AOB=20°+90°+(90°﹣60°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣20°)+(60°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=583米.【点评】本题考查了全等三角形的判定与性质,读懂问题背景的求解思路,作辅助线构造出全等三角形并两次证明三角形全等是解题的关键,也是本题的难点.。

九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.方程x2-2x-24=0的根是( )A.x1=6,x2=4 B.x1=6,x2=-4C.x1=-6,x2=4 D.x1=-6,x2=-42.一个不透明的袋子中装有2个白球和3个黑球,这些球除了颜色外无其他差别,从中摸出3个球,下列事件属于必然事件的是( )A.至少有1个球是白色球B.至少有1个球是黑色球C.至少有2个球是白色球D.至少有2个球是黑色球3.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.16x2-6x+21,有以下结论:①当x>5时,y随x的增大而4.对于二次函数y=12增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中正确结线y=12论的个数为( )A.1 B.2C.3 D.4⏜的长是5.如图,四边形ABCD内接于⊙O,⊙O的半径为3.若∠D=120°,则AC( )πA.πB.23C .2πD .4π6.如图,在△AOB 中,OA =4,OB =6,AB =2√7,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(-4,2)B .(2√3,-4)或(-2√3,4)C .(-2√3,2)或(2√3,-2)D .(2,-2√3)或(-2,2√3)7.如图,AB 是O 的直径,ACD CAB ∠=∠ 2AD = 4AC =,则O 的半径为( )A .B .C .D8.如图,四边形ABCD 中,60A ∠=︒ //AB CD DE AD ⊥交AB 于点E ,以点E 为圆心 、DE 为半径且6DE =的圆交CD 于点F ,则阴影部分的面积为( )A .6π-B .12π-C .6πD .12π 9.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .3(1)6210x x -= B .3(1)6210x -=C .(31)6210x x -=D .36210x =10.如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A ,B 是圆上的两点,O 为圆心,∠AOB =120°,小强从点A 走到点B ,走便民路比走观赏路少走( )A .(6π-6√3)米B .(6π-9√3)米C .(12π-9√3)米D .(12π-18√3)米二、填空题:本题共6个小题,每小题3分,共18分。

九年级数学上册期末试卷及答案【完整版】

九年级数学上册期末试卷及答案【完整版】

九年级数学上册期末试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. 2 C. D.2.若点A(1+m, 1﹣n)与点B(﹣3, 2)关于y轴对称, 则m+n的值是()A. ﹣5B. ﹣3C. 3D. 13.若点, , 都在反比例函数的图象上, 则, , 的大小关系是()A. B. C. D.4.为考察甲、乙、丙、丁四种小麦的长势, 在同一时期分别从中随机抽取部分麦苗, 获得苗高(单位: cm)的平均数与方差为: = =13, = =15: s甲2=s丁2=3.6, s乙2=s丙2=6.3.则麦苗又高又整齐的是()A. 甲B. 乙C. 丙D. 丁5.一个整数815550…0用科学记数法表示为8.1555×1010, 则原数中“0”的个数为()A. 4B. 6C. 7D. 106. 对于二次函数,下列说法正确的是()A. 当x>0, y随x的增大而增大B. 当x=2时, y有最大值-3C.图像的顶点坐标为(-2, -7)D. 图像与x轴有两个交点7.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 18.如图, AB是⊙O的直径, BC与⊙O相切于点B, AC交⊙O于点D, 若∠ACB=50°, 则∠BOD等于()A. 40°B. 50°C. 60°D. 80°9.如图, 四边形ABCD内接于⊙O, 点I是△ABC的内心, ∠AIC=124°, 点E 在AD的延长线上, 则∠CDE的度数为()A. 56°B. 62°C. 68°D. 78°10.两个一次函数与, 它们在同一直角坐标系中的图象可能是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: =______________.2. 分解因式: a2b+4ab+4b=_______.3. 若二次根式有意义, 则x的取值范围是__________.4.如图, 在Rt△ACB中, ∠ACB=90°, ∠A=25°, D是AB上一点, 将Rt △ABC沿CD折叠, 使点B落在AC边上的B′处, 则∠ADB′等于______.5. 如图所示, 直线a经过正方形ABCD的顶点A, 分别过正方形的顶点B.D作BF⊥a于点F, DE⊥a于点E, 若DE=8, BF=5, 则EF的长为__________.6. 如图抛物线y=x2+2x﹣3与x轴交于A, B两点, 与y轴交于点C, 点P是抛物线对称轴上任意一点, 若点D.E、F分别是BC.BP、PC的中点, 连接DE, DF, 则DE+DF的最小值为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:=12. 在平面直角坐标系中, 已知点, 直线经过点. 抛物线恰好经过三点中的两点.(1)判断点是否在直线上. 并说明理由;(2)求,a b的值;(3)平移抛物线, 使其顶点仍在直线上, 求平移后所得抛物线与轴交点纵坐标的最大值.3. 正方形ABCD的边长为3, E、F分别是AB.BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°, 得到△DCM.(1)求证: EF=FM(2)当AE=1时, 求EF的长.4. 已知是的直径, 弦与相交, .(Ⅰ)如图①, 若为的中点, 求和的大小;(Ⅱ)如图②, 过点作的切线, 与的延长线交于点, 若, 求的大小.5. 学校开展“书香校园”活动以来, 受到同学们的广泛关注, 学校为了解全校学生课外阅读的情况, 随机调查了部分0次1次2次3次4次及以上学生在一周内借阅图书的次数, 并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数人数7 13 a 10 3请你根据统计图表中的信息, 解答下列问题:______, ______.该调查统计数据的中位数是______, 众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生, 根据调查结果, 估计该校学生在一周内借阅图书“4次及以上”的人数.6. 俄罗斯世界杯足球赛期间, 某商店销售一批足球纪念册, 每本进价40元, 规定销售单价不低于44元, 且获利不高于30%. 试销售期间发现, 当销售单价定为44元时, 每天可售出300本, 销售单价每上涨1元, 每天销售量减少10本, 现商店决定提价销售. 设每天销售量为y本, 销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时, 商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时, 商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.D2.D3.B4.D5.B6.B7、B8、D9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、.2.b(a+2)23.4、40°.5.136.三、解答题(本大题共6小题, 共72分)1.x=12、(1)点在直线上, 理由见详解;(2)a=-1, b=2;(3)3.(1)略;(2)5 2.4.(1)52°, 45°;(2)26°5、17、20;2次、2次;;人.6、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时, 商店每天获利2400元;(3)将足球纪念册销售单价定为52元时, 商店每天销售纪念册获得的利润w元最大, 最大利润是2640元.。

九年级数学上学期期末检测试题(含答案)

九年级数学上学期期末检测试题(含答案)

九年级数学上学期期末检测试题(含答案)注意事项:本试题共8页,满分为150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并将考点、姓名、准考证号和座号填写在试题规定的位置.考试结束后,仅交回答题卡....... 第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.) 1.sin30︒的值为( ) A.1223 D.12.如图中几何体的左视图为( )A. B.C. D.3.如果25a b =,那么下列比例式中正确的是( ) A.25a b = B.25a b= C.52a b = D.25a b = 4.下列的各点中,在反比例函数1y x=图象上的点是( ) A.()2,4B.()1,5C.1,22⎛⎫⎪⎝⎭D.11,23⎛⎫⎪⎝⎭5.关于x 的一元二次方程2210kx x ++=有两个相等的实数根,则k 的值为( )A.2-B.1-C.0D.16.若点()11,y -,()21,y ,()32,y 在反比例函数ky x=(0k <)的图象上,则下列结论中正确的是( ) A.123y y y >> B.132y y y >>C.312y y y >>D.321y y y >>7.如图,在64⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC △的顶点均是格点,则sin ABC ∠的值是( )510 25D.458.一次函数y cx a =-(0c ≠)和二次函数2y ax x c =++(0a ≠)在同一平面直角坐标系中的图象可能是( )A. B.C. D.9.如图,在矩形ABCD 中,连接BD ,分别以B 、D 为圆心,大于12BD 的长为半径画弧,两弧交于P 、Q 两点,作直线PQ ,分别与AD 、BC 交于点M 、N ,连接BM 、DN .若3AB =,6BC =,则四边形MBND 的周长为( )A.15B.9C.154D.9410.如图,已知开口向上的抛物线2y ax bx c =++与x 轴交于点()1,0-,对称轴为直线1x =.下列结论:①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >.其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分.)11.如图,四边形ABCD ∽四边形A B C D '''',若55B ∠=︒,80C ∠=︒,110A ∠'=︒,则D ∠=______°.12.在一个不透明的袋子里装有若干个红球和6个黄球,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则估计袋子中红球的个数是______个. 13.如图,若点A 在反比例函数ky x=(0k ≠)的图象上,AM x ⊥轴于点M ,AMO △的面积为8,k =______.14.将抛物线()2213y x =-+向右移3单位,上移2单位所得到的新抛物线解析式为______. 15.定义一种运算:()sin sin cos cos sin αβαβαβ+=+,()sin sin cos cos sin αβαβαβ-=-. 例如:当60α=︒,45β=︒时,()321262sin 604522224-︒=⨯-⨯︒=, 则sin75︒的值为______.16.如图,在正方形ABCD 中,点M 、N 为边BC 和CD 上的动点(不含端点),45MAN ∠=︒, 下列四个结论:①当2MN MC =时,则22.5BAM ︒∠=;②90AMN MNC ︒∠+∠=;③MNC △的周长不变;④若2DN =,3BM =,则ABM △的面积为15.其中正确结论的序号是______.三、解答题(本大题共10小题,共86分) 17.(6分)计算:()0π12sin60123︒---. 18(6分)2670x x +-=.19.(6分)如图,在菱形ABCD 中,CE AB ⊥于点E ,CF AD ⊥于点F ,求证:AE AF =.20.(8分)如图,12∠=∠,B D ∠=∠,9AE =,12AD =,20AB =.求AC 的长度.21.(8分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A .音乐;B .体育;C .美术;D .阅读;E .人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了______名学生; ②补全条形统计图(要求在条形图上方注明人数); ③扇形统计图中圆心角a =______度;(2)若该校有2800名学生,估计该校参加D 组(阅读)的学生人数;(3)学校计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.22.(8分)为进一步加强疫情防控工作,长清区某学校决定安装红外线体温检测仪,对进入测温区域的人员进行快速测温(如图1),其红外线探测点O 可以在垂直于地面的支杆OP 上下调节(如图2),已知探测最大角(OBC ∠)为61°,探测最小角(OAC ∠)为37°.若该校要求测温区域的宽度AB 为1.4米,请你帮助学校确定该设备的安装高度OC .(参考数据:sin610.87≈︒,cos610.48︒≈,tan61 1.8≈︒,sin370.6≈︒,cos370.8≈︒tan370.75︒︒≈)23.(10分)某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个.现在采取提高商品定价减少销售量的办法增加利润,定价每增加1元,销售量净减少10个. (1)商店若将准备获利2000元,则定价应增加多少元?(2)若商店要获得最大利润,则定价应增加多少元?最大利润是多少? 24.(10分)如图,一次函数1y x =-的图象与反比例函数ky x=(0x >)的图象交于点()3,B a ,与x 轴交于点A .点C 在反比例函数ky x=(0x >)的图象上的一点,CD x ⊥轴,垂足为D ,CD 与AB 交于点E ,OA AD =.(1)求a ,k 的值;(2)若点P 为x 轴上的一点,求当PB PC +最小时,点P 的坐标;(3)F 是平面内一点,是否存在点F 使得以A 、B 、C 、F 为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由. 25.(12分)【发现问题】(1)如图1,已知CAB △和CDE △均为等边三角形,D 在AC 上,E 在CB 上,易得线段AD 和BE 的数量关系是______.(2)将图1中的CDE △绕点C 旋转到图2的位置,直线AD 和直线BE 交于点F . ①判断线段AD 和BE 的数量关系,并证明你的结论; ②图2中AFB ∠的度数是______. 【探究拓展】(3)如图3,若CAB △和CDE △均为等腰直角三角形,90ABC DEC ︒∠=∠=,AB BC =,DE EC =,直线AD 和直线BE 交于点F ,分别写出AFB ∠的度数,线段AD 、BE 间的数量关系,并说明理由.26.(12分)综合与探究:如图,抛物线23y ax bx =+-(0a ≠)与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .(1)求此抛物线的函数表达式;(2)若点D 是第三象限抛物线上一动点,连接AD ,CD ,AC ,求ACD △面积的最大值,并求出此时点D 的坐标;(3)若点E 在抛物线的对称轴上,线段EB 绕点E 逆时针旋转90°后,点B 的对应点B '恰好也落在此抛物线上,请直接写出点E 的坐标.参考答案一、选择题(本大题共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案ADCCDBABAD11. 115 12. 2 13.16- 14.()2245y x =-+ 15.426+ 16.①③. 三.解答题(本大题共10小题,共86分)17.(6分)计算:()03π12sin601231223332--︒+-=-= 18.(6分)2670x x +-=.公式法:算出64=△,11x ∴=,27x =-因式分解法:()()170x x -+=,11x ∴=,27x =- 配方法:()2316x +=,11x ∴=,27x =- 19.(6分) 证明:菱形ABCD ,AB AD BC CD ∴===,B D ∠=∠CE AB ⊥,CF AD ⊥.90BEC DFC ∴∠=∠=︒()BCE DCF AAS ∴△≌△(或者连接AC ,证()ACE ACF AAS △≌△) AE AF ∴=.20.(8分) 证明:12∠=∠,12BAE BAE ∴∠+∠=∠+∠,DAE BAC ∴∠=∠B D ∠=∠,DAE BAC ∴△∽△ AD AE AB AC ∴=,12920AC∴=,15AC ∴= 21.(8分)根据图中信息,解答下列问题: (1)①400;②60,60;③54 (2)1402800980400⨯=(人) 答:参加D 组(阅读)的学生人数为280人 (3)列表或画树状图正确共有12中等可能的结果,其中恰好抽到A ,C 两人同时参赛的有两种P ∴(恰好抽中甲、乙两人)21126== 22.(8分)方法1:解:在Rt OBC △中,8tan tan 6 1.1O B OBC CC∠==︒=, ∴设BC x =,则 1.8OC x =在Rt OAC △中,1tan ta 5n 37.80.71.4OC C AC O xA x=+==∠︒=, 1x ∴=.经检验,1x =是原方程的解1.8 1.8OC x ∴==方法2:解:在Rt OAC △中,7tan tan 330.547O C A C A O C ∠=︒===∴设3OC x =,则4AC x =在Rt OBC △中,3 1.81tan .t 4n 614a O C C x BC OB x ==-∠=︒=0.6x ∴=经检验,0.6x =是原方程的解3 1.8OC x ∴==23.(10分)(1)解:设定价应增加x 元()()5240180102000x x -+-=解得18x =,22x =-采取提高商品定价减少销售量的办法增加利润22x ∴=-不合题意舍去,8x ∴=答:定价应增加8元.(1)设定价增加x 元时获利y 元()()215240108016010026y x x x x -+=-+-=+当3x =时,y 有最大值,为2250元.答:若商店要获得最大利润,则定价应增加3元,最大利润是2250元. 24.(10分)(1)求出2a =,6k =;(2)求出()2,3C ,画图找到P 点,求出点P 的坐标1305⎛⎫⎪⎝⎭,; (3)()14,5F ,()22,1F -,()30,1F 25.(12分)【发现问题】 (1)AD BE =(2)①AD BE =,证明过程 ②60度 (3)写出45AFB ∠=度,2AD BE =证明过程26.(12分)(1)解出1a =,2b =,∴抛物线的函数表达式223y x x =+- (2)求出点()0,3C -,AC 直线关系式3y x =--设点()2,23D m m m +-,过点D 作x 轴的垂线,交AC 于点F , 则点(),3F m m --,()()223233DE m m m m m ∴=---+-=--23922m m S --∴=当32m =-时,S 有最大值为827,此时315,24D ⎛⎫-- ⎪⎝⎭,(3)()11,3E -,()21,2E --。

人教版九年级上册数学期末考试试卷及答案

人教版九年级上册数学期末考试试卷及答案

人教版九年级上册数学期末考试试题一、单选题1.下列图形中,是中心对称图形的是( )A .B .C .D .2.已知2x =是一元二次方程220x mx ++=的一个根,则m 的值是( )A .3-B .3C .0D .0或3-3.下列事件中,是必然事件的是( )A .从一个只有白球的盒子里摸出一个球是白球B .掷一枚硬币,正面朝上C .任意买一张电影票座位是3D .汽车经过红绿灯路口时前方正好是绿灯4.把抛物线y =﹣(x+1)2向左平移1个单位,然后向上平移3个单位,则平移后抛物线为( )A .y =﹣(x+2)2﹣3B .y =﹣x 2﹣3C .y =﹣x 2+3D .y =﹣(x+2)2+35.如图,点A ,B ,C 在O 上,若BC ,AB ,AC 分别是O 内接正三角形.正方形,正n 边形的一边,则n =( )A .9B .10C .12D .156.若二次函数y =ax 2的图象经过点(1,﹣2),则它也经过( )A .(﹣1,﹣2)B .(﹣1,2)C .(1,2)D .(2,1) 7.如图,在ABC 中,64C ∠=︒,将ABC 绕着点A 顺时针旋转后,得到AB C '',且点C '在BC 上,则B C B ∠''的度数为( )A .42°B .48°C .52°D .58°8.一台机器原价100万元,若每年的折旧率是x ,两年后这台机器约为y 万元,则y 与x 的函数关系式为( )A .2100(1)y x =-B .100(1)y x =-C .2100y x =-D .2100(1)y x =+ 9.如图,圆锥侧面展开得到扇形,此扇形半径6CA =,圆心角120ACB ∠=︒,则此圆锥高OC 的长度是( )A .2B .C .D .10.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;①方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;①3a +c >0;①当y >0时,x 的取值范围是-1≤x <3;①当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题11.在平面直角坐标系中点A (2,1)关于原点对称点的坐标是 ___.12.已知一元二次方程x 2+2x ﹣m =0有两个不相等的实数根,则m 的取值范围是 _____.13.如图:四边形ABCD 内接于①O ,E 为BC 延长线上一点,若①A =72°,则①DCE =______°.14.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时同地测得一栋楼的影长为90m ,则这栋楼的高度为________m .15.如图,一名男生推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系是y =﹣22531312x x ++,则他将铅球推出的距离是 _____m .16.如图,反比例函数的图象与一次函数y =﹣2x+3的图象相交于点P ,点P 到y 轴的距离是1,则这个反比例函数的解析式是__________________.17.方程x (x ﹣2)﹣x+2=0的正根为_____.三、解答题18.如图,①ABC 绕着顶点A 逆时针旋转到①ADE ,①B =40°,①E =60°,AB//DE ,求①DAC 的度数.19.如图,AB 是①O 直径,弦CD 交AB 于点E ,OE =DE ,①BOD =α,求①AOC (用含α的式子表示).20.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.(1)随机摸取一个小球的标号是奇数,该事件的概率为_______;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出的小球标号相同的概率.21.如图所示,点D是①ABC的AB边上一点,且AD=1,BD=2,AC①ACD①①ABC.22.如图,墙壁EF长24米,需要借助墙壁围成一个矩形花园ABCD,现有围栏40米,设AB长x米.(1)BC的长为米(用含x的式子表示);(2)求这个花园的面积最大值.23.如图1,AB是①O的直径,弦CD与AB相交于点E,①C+①D=90°,BF①CD.(1)求证:BF是①O的切线;(2)延长AC交直线FB于点P(如图2),若点E为OB中点,CD=6,求PC的长.24.如图,AB是①O的直径,AC是弦,P为AB延长线上一点,①BCP=①BAC,①ACB 的平分线交①O于点D,交AB于点E,(1)求证:PC是①O的切线;(2)求证:①PEC是等腰三角形;(3)若AC+BC=2时,求CD的长.25.如图,抛物线2=++与x轴交于A,B两点,与y轴交于C点,OA=1,OB=OC=3.y ax bx c(1)求抛物线的表达式;(2)如图1,点D为第一象限抛物线上一动点,连接DC,DB,BC,设点D的横坐标为m,①BCD的面积为S,求S的最大值;(3)如图2,点P(0,n)是线段OC上一点(不与点O、C重合),连接PB,将线段PB以点P为中心,旋转90°得到线段PQ,是否存在n的值,使点Q落在抛物线上?若存在,请求出满足条件的n的值,若不存在,请说明理由.26.如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.①当t>0时,①BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案1.C【详解】解:A、不是中心对称图形,选项说法错误,不符合题意;B、不是中心对称图形,选项说法错误,不符合题意;C、是中心对称图形,选项说法正确,符合题意;D、不是中心对称图形,选项说法错误,不符合题意;故选:C.2.A【详解】解:①x=2是一元二次方程x2+mx+2=0的一个解,①4+2m+2=0,①m=3 .故选:A.3.A【详解】解:A 、“从一个只有白球的盒子里摸出一个球是白球”是必然事件,此项符合题意;B 、“掷一枚硬币,正面朝上”是随机事件,此项不符题意;C 、“任意买一张电影票座位是3”是随机事件,此项不符题意;D 、“汽车经过红绿灯路口时前方正好是绿灯”是随机事件,此项不符题意;故选:A .4.D【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“上加下减,左加右减”的原则可知,平移后的抛物线解析式为2(11)3y x =-+++即为2(2)3y x =-++故选D5.C【分析】分别连接OB 、OA 、OC ,根据正多边形的中心角=360n︒,可分别求得①BOC 、①AOB 的度数,从而可得①AOC 的度数,再根据正多边形的中心角=360n ︒,可求得边数n . 【详解】分别连接OB 、OA 、OC ,如图所示①BC 是O 内接正三角形的一边 ①①BOC=3601203︒=︒ 同理,可得:①AOB=90°①①AOC=①BOC−①AOB=30°①AC 是O 正n 边形的一边①36030n︒=︒ ①n=12故选:C .【点睛】本题考查了正多边形与圆,正多边形的中心角=360n︒,掌握这一知识是解决本题的关键.6.A【分析】先根据题意求出a 的值,然后逐项分析判断即可.【详解】解:①二次函数2y ax =的图象经过点(1,﹣2),①将(1,﹣2)代入2y ax =得:2a =-,①二次函数的解析式为:22y x =-,当1x =-时,2y =-,即原函数图象经过点(﹣1,﹣2),当2x =时,8y =-,即原函数图象经过点(2,﹣8),当1x =时,2y =-,即原函数图象经过点(1,﹣2),故选:A .【点睛】本题考查二次函数2y ax =的图象与性质,掌握函数图象上点坐标的特征,准确求解函数解析式是解题关键.7.C【分析】根据旋转的性质可以得到AC AC =',然后根据64C ∠=︒,即可得到旋转角的度数,然后三角形内角和,即可得到B C B ∠''的度数. 【详解】解:将ABC 绕着点A 顺时针旋转后,得到AB C '',64C ∠=︒, AC AC ∴=',CAC BAB ∠'=∠',B B ∠=∠',64C AC C ∴∠=∠'=︒,18052CAC C AC C ∴∠'=︒-∠-∠'=︒,52BAB ∴∠'=︒,52B AD ∴∠'=︒,B B ∠=∠',BDC B DA ∠'=∠',52BC D B AD ∴∠'=∠'=︒,即B C B ∠''的度数为52︒,故选:C.【点睛】本题考查旋转的性质、三角形内角和、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.A【分析】原价为100万元,一年后的价格是100×(1-x),二年后的价格是为:100×(1-x)×(1-x)=100(1-x)2,则函数解析式求得.【详解】解:由题意得:二年后的价格是为:100×(1-x)×(1-x)=100(1-x)2,则函数解析式是:y=100(1-x)2.故选A.【点睛】本题考查了根据实际问题列二次函数关系式的知识,需注意第二年的价位是在第一年的价位的基础上降价的.9.C【分析】设圆锥底面圆的半径为r,根据圆锥的侧面展开图求出圆锥的底面圆的周长,进而求得OA,最后用勾股定理求出CA即可.【详解】解:设圆锥底面圆的半径为r①AC=6,①ACB=120°①12062180l AB rππ⨯==,即:r=OA=2在Rt①AOC中,OA=2,AC=6,由勾股定理得,OC==故填:【点睛】本题主要考查了扇形的弧长公式、勾股定理等知识点,根据弧长公式和圆的周长公式求得OA是解答本题的关键.10.B【详解】解:①抛物线与x轴有2个交点,①b2﹣4ac>0,所以①正确;①抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),①方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以①正确;①x=﹣2b a=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0, ①a+2a+c=0,所以①错误;①抛物线与x 轴的两点坐标为(﹣1,0),(3,0),①当﹣1<x <3时,y >0,所以①错误;①抛物线的对称轴为直线x=1,①当x <1时,y 随x 增大而增大,所以①正确.故选:B .11.(-2,-1)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【详解】解:点A (2,1)关于原点的对称点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.12.m>-1【分析】根据一元二次方程根的判别式,当①>0时,方程有两个不相等的实数根,列不等式求出m 的范围即可.【详解】①方程有两个不相等的实数根①①>0①22 -4×1• (-m)>04+4m>0m>-1①m 的取值范围是m>-1故答案为:m>-1【点睛】本题主要考查一元二次方程根的判别式,对于一元二次方程ax 2+bx+c=0, ①>0时,方程有两个不相等的实数根;①=0时,方程有两个相等的实数根;①<0时方程没有实数根.掌握以上知识是解题的关键.13.72【分析】根据圆内接四边形对角和为180°再结合补角的性质即可得到①DCE=①A .【详解】解:①四边形ABCD 内接于①O ,①①A+①BCD=180°①①BCD+①DCE=180°①①DCE=①A=72°,故答案为:72.【点睛】本题考查的是圆内接四边形的性质和补角性质,掌握圆这些是本题关键. 14.54【分析】根据同一时刻物高与影长成正比即可得出结论.【详解】解:设这栋楼的高度为hm ,①在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋楼的影长为60m , ①1.8390h =, 解得h=54(m ).故答案为54.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.15.10【分析】成绩就是当高度y=0时x 的值,所以解方程可求解.【详解】解:当y=0时,-22531312x x ++=0, 解之得x 1=10,x 2=-2(不合题意,舍去),所以推铅球的距离是10米.故答案为10【点睛】此题把函数问题转化为方程问题来解,渗透了函数与方程相结合的解题思想方法.16.5y x=- 【分析】根据点P 到到y 轴的距离及其象限,确定横坐标,代入一次函数解析式,得到其纵坐标,再将点P 的坐标代入反比例函数解析式k y x=中求得k 值,即可得解; 【详解】解:①点P 到y 轴的距离是1,且由图可知,点P 在第二象限,①点P 的横坐标为x=-1,代入一次函数y =﹣2x+3中得到:y =﹣2×(-1)+3=5,①点P 的坐标为(-1,5), 设反比例函数的解析式为:k y x=,点P 在反比例函数图象上, ①51k =-, ①k=-5,①反比例函数解析式为:5y x=-, 故答案为:5y x=- 【点睛】本题考查了一次函数与反比例函数的交点问题,利用待定系数法,熟练掌握待定系数法是解本题的关键.17.x =1或x =2【分析】利用提取公因式法解方程即可得答案.【详解】①x (x ﹣2)﹣(x ﹣2)=0,①(x ﹣2)(x ﹣1)=0,①x ﹣2=0或x ﹣1=0,解得:x =2或x =1,故答案为:x =1或x =2【点睛】本题考查解一元二次方程,一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.18.40°【分析】根据旋转的性质可知,①B =①D ,①C =①E ;根据三角形内角和即可求出①BAC 的度数;再根据AB①DE ,可得①BAD =①D ,因此可求解①DAC 的度数.【详解】①①ABC 旋转到①ADE ,①B =40°,①E =60°①①B =①D =40°,①C =①E =60°①①BAC =180°-40°-60°=80°①AB①DE①①BAD =①D =40°①①DAC =①BAC -①BAD =80°-40°=40°【点睛】本题考查了旋转的性质、平行线的性质、三角形的内角和定理,运用旋转的性质得出①C的度数是本题的关键.19.①AOC=3α【分析】利用等腰三角形的性质得到①D=①BOD=α,利用三角形外角性质得到①CEO=2α,由于OC=OD,则①C=①D=α,然后根据三角形外角性质得到①AOC=3α.【详解】解:①OE=DE,①①D=①BOD=α,①①CEO=①D+①BOD,①①CEO=2α,①OC=OD,①①C=①D=α,①①AOC=①C+①CEO,①①AOC=3α.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆心角、弧、弦的关系.20.(1)23(2)P(两次取出的小球标号相同)1 3【分析】(1)直接由概率公式求解即可;(2)画树状图,共有9种等可能的结果,两次取出小球标号相同的结果有3种,再由概率公式求解即可.(1)①在1,2,3三个数中,其中奇数有1,3共2个数,①随机摸取一个小球的标号是奇数,该事件的概率为23故答案为:23;(2)画树状图如下:由树状图可知,随机摸取一个小球后放回,再随机摸取一个小球,共有9种等可能的结果,其中两次取出的小球标号相同的结果共有3种,①P (两次取出的小球标号相同)3193==. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21.见解析 【分析】首先利用已知得出AD AC AC AB=,进而利用相似三角形的判定方法得出即可.【详解】证明:①AD AC =,AC AB ==,, ①AD AC AC AB =, ①①A=①A ,①①ACD①①ABC .【点睛】本题主要考查了相似三角形的判定,正确把握相似三角形的判定方法是解题关键.22.(1)(40-2x )(2)200平方米【分析】(1)由AB+BC+CD=40米,AB=CD=x 米可得答案;(2)根据矩形的面积公式得出y=x (40-2x )=-2x 2+40x=-2(x -10)2+200,再利用二次函数的性质求解即可.(1)解:由题意知AB+BC+CD=40米,AB=CD=x 米,所以BC 的长为(40-2x )米,故答案为:(40-2x );(2)解:设这个花园的面积为y 平方米,由题意得:y=x (40-2x )=-2x 2+40x=-2(x -10)2+200,①-2<0,①当x=10时,y 取得最大值,最大值为200,答:这个花园的面积最大值为200平方米.【点睛】本题考查二次函数的应用,关键是根据等量关系写出函数解析式.23.(1)见解析(2)PC=2【分析】(1)根据圆周角定理以及已知条件可得①BEC=①A+①C=90°,根据平行线的性质得①ABF=①BEC=90°,则AB①BF,即可得BF是①O的切线;(2)由垂径定理得DE=CE=3,根据线段垂直平分线的性质得OD=BD,可证明①OBD是等可得边三角形,可得①BDE=30°,BD=2BE,根据勾股定理求出(1)证明:①①A=①D,①C+①D=90°,①①BEC=①A+①C=90°,①BF∥CD,①①ABF=①BEC=90°,①AB①BF,①BF是①O的切线;(2)解:连接OD,①①BEC=90°,①AB①CD,①点E为OB中点,CD=6,①CE=DE=3,OD=BD,①OB=OD=BD,①①OBD 是等边三角形,①①OBD=60°,①BDE=30°,①BD=2BE ,①A=①BDE=30°,在Rt①BDE 中,BD 2=BE 2+DE 2,①(2BE )2=BE 2+32,解得①点E 为OB 中点,在Rt①ACE 中,AC 2=CE 2+AE 2=32+(2=36,①AC=6=2CE ,①BP=4,AP=8,①PC=8-6=2.24.(1)见解析;(2)见解析;(3【分析】(1)连接OC ,根据圆周角定理可得①ACB=90°,根据等腰三角形等边对等角以及已知条件证明①BCP +①OCB=90°即可;(2)根据题意以及角平分线定义求得①PEC=①PCE 即可得出结论;(3)连接BD ,作DM AC ⊥,DN CB ⊥,垂足为M ,N ,先证明()AMD BND HL ≌,然后证明四边形CMDN 为正方形,结合已知可得出结论.【详解】解:连接OC,①AB 为直径,①①ACB=90°,①①ACO+①OCB=90°,①OA=OC ,①①BAC=①ACO ,①①BCP =①BAC ,①①BCP=①ACO①①BCP +①OCB=90°,即①OCP=90°,①PC 是①O 的切线;(2)①①BCP =①BAC ,① ①ACB 的平分线交①O 于点D ,①①ACD =①BCD ,①①PCE =①PCB+ ①BCD ,①PEC =①BAC+①ACD ,①①PEC=①PCE ,①①PEC 是等腰三角形;(3)连接BD ,作DM AC ⊥,DN CB ⊥,垂足为M ,N ,①CD 平分ACB ∠,DM AC ⊥,DN CB ⊥,①DM DN =,AD BD =,①AD BD =,①90AMD BND ∠=∠=︒,①()AMD BND HL ≌,①90DMC MCN CND ∠=∠=∠=︒,①四边形CMDN 为矩形,①DM DN =,①矩形CMDN 为正方形,①CN =, ①2AC BC CM AM CB CN +=++=, ①AC BC +=,①2AC BC +=, ①CD25.(1)2y x 2x 3=-++;(2)278;(3)存在,n=1或 【分析】(1)通过待定系数法求解函数解析式即可;(2)作DF①x 轴于点F ,交BC 于点E ,根据12S DE OB =⋅求得S 关于m 的解析式,根据二次函数的性质求解即可;(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N ,利用全等三角形的性质求解即可.【详解】解:(1)设函数关系式为2y ax bx c =++由题意,得A(-1,0),B(3,0),C(0,3)①(1)(3)y a x x =+-把C(0,3)代入得,1a =-①2y x 2x 3=-++(2)作DF①x 轴于点F ,交BC 于点E设直线BC 关系式为y=kx +b ,代入(3,0),(0,3)得k=-1,b=3,①y=-x +3①点D 的横坐标为m ,则DF=223m m -++,EF=-m +3①DE=23m m -+22133327(3)()22228S DE OB m m m =⋅=-+=--+ ①302-<,①S 的最大值是278(3)过点P 作PB 的垂线,交抛物线于点1Q 和2Q ,作1Q M y ⊥轴于点M ,2Q N y ⊥轴于点N①1290Q MP Q NP BOP ∠=∠=∠=︒①1190Q PM PQ M ∠+∠=︒,190Q PM BPO ∠+∠=︒,①1PQ M BPO ∠=∠又①1BP PQ =,①1Q PM PBO △≌△①1MQ OP n ==,3MP OB ==,①1()3Q n n +,代入抛物线,得2323n n n +=-++解得11n =,20n =(舍去)同理,2PN Q PBO ≌,①2Q (-n ,n -3)代入抛物线,得2323n n n =-+--解得1n =2n =舍去)综上,存在n 的值,n=1或 【点睛】此题考查了二次函数与几何的综合应用,涉及了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,解题的关键是熟练掌握二次函数以及全等三角形的判定与性质.26.(1),B 点坐标为(3,0);(2)①;①.【分析】(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y=0可求得B 点坐标;(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON=PM ,可得到关于t 的方程,可求得t 的值;①由题意可知OB=OA ,故当①BOQ 为等腰三角形时,只能有OB=BQ 或OQ=BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值.【详解】(1)①抛物线2y x bx c =-++对称轴是直线x=1,①﹣2(1)b ⨯-=1,解得b=2, ①抛物线过A (0,3),①c=3,①抛物线解析式为2y x 2x 3=-++,令y=0可得2230x x -++=,解得x=﹣1或x=3, ①B 点坐标为(3,0);(2)①由题意可知ON=3t ,OM=2t ,①P 在抛物线上,①P (2t ,2443t t -++),①四边形OMPN 为矩形,①ON=PM ,①3t=2443t t -++,解得t=1或t=﹣34(舍去), ①当t 的值为1时,四边形OMPN 为矩形;①①A (0,3),B (3,0),①OA=OB=3,且可求得直线AB 解析式为y=﹣x+3,①当t>0时,OQ≠OB,①当①BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,①Q(2t,﹣2t+3),﹣3|,又由题意可知0<t<1,当OB=QB|2t﹣3|=3,解得当OQ=BQ﹣3|,解得t=34;综上可知当t34时,①BOQ为等腰三角形.21。

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。

()2. 一个正方形的对角线互相垂直且平分。

()3. 一个圆的半径是直径的一半。

()4. 一个长方体的对角线互相垂直。

()5. 一个等腰三角形的底角等于顶角。

()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。

2. 一个正方形的对角线长是边长的______倍。

3. 一个圆的周长是直径的______倍。

4. 一个长方体的体积是长、宽、高的______。

5. 一个等腰三角形的底边长是腰长的______倍。

四、简答题(每题2分,共10分)1. 简述等边三角形的性质。

2. 简述正方形的性质。

3. 简述圆的性质。

4. 简述长方体的性质。

5. 简述等腰三角形的性质。

五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。

2. 一个正方形的边长为8cm,求其对角线长。

3. 一个圆的直径为14cm,求其周长。

4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。

5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。

人教版九年级上册数学期末考试试卷(含解析)

人教版九年级上册数学期末考试试卷(含解析)

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案,每小题3分,共30分)1.下列属于一元二次方程的是( )A .x 2-3x+y=0B .x 2+2x= C .2x 2=5x D .x(x 2-4x)=32.抛物线的顶点坐标为( )A .(3,0) B.(-3,0) C .(0,3) D .(0,-3)3.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A . B . C . D .4.若关于x 的方程x 2﹣2x ﹣k =0有实数根,则k 的值可能为( )A .﹣4B .﹣3C .﹣2D .05.若△ABC ∽△DEF ,且S △ABC :S △DEF =3:4,则△ABC 与△DEF 的周长比为A .3:4B .4:3C 2D .26.如图,将就点C 按逆时针方向旋转75°后得到,若∠ACB =25°,则∠BCA′的度数为( )A .50°B .40°C .25°D .60°7.为了迎接春节,某厂10月份生产春联万幅,计划在12月份生产春联万幅,设11、12月份平均每月增长率为根据题意,可列出方程为()A .B .C .D .8.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若∠ABD=55°,则∠BCD 的度数为( )1x 2y 2x 3=-()()2019nCoV -ABC A B C ''△50120,x ()()2501501120x x +++=()()250501501120x x ++++=()2501120x +=()50160x +=A .25°B .30°C .35°D .40°9.若二次函数的图象,过不同的六点、、、、、,则、、的大小关系是( )A .B .C .D .10.关于x 的方程k 2x 2+(2k-1)x+1 =0有实数根,则下列结论正确的是()A .当k=时,方程的两根互为相反数B .当k=0时,方程的根是x=-1C .若方程有实数根,则k≠0且k≤D .若方程有实数根,则k≤二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级(上)期末数学考试试题一.选择题(本题12小题,每小题3分,共计36分.请把答案填到题后的答题栏)1.(3分)在,,,,中最简二次根式的个数是()A.1个B.2个C.3个D.4个2.(3分)(2010•)下列计算结果正确的是()A.+=B.3﹣=3C.×=D.=53.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.(3分)如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF,则△EBF的形状是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形5.(3分)如果关于x的方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3C.﹣3 D.都不对6.(3分)下列方程中,有实数根的是()A.x2+4=0 B.x2+x+3=0C.D.5x2+1=2x7.(3分)用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2C.y=(x﹣6)2﹣2D.y=(x﹣3)2+28.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一表示留念,全班共送1035照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=10359.(3分)(2012•)如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A.B.C.D.10.(3分)已知⊙01和⊙O2的半径分别为2和5,且圆心距O1O2=7,则这两圆的位置关系是()A.外切B.切C.相交D.相离11.(3分)(2010•)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()A.48πB.24πC.12πD.6π12.(3分)PA、PB分别切⊙O于A、B两点,C为⊙O上一动点(点C不与A、B重合),∠APB=50°,则∠ACB=()A.100°B.115°C.65°或115°D.65°二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2012•)计算:4﹣= _________ .14.(4分)点A(3,n)关于原点对称的点的坐标为(﹣3,2),那么n= _________ .15.(4分)(2012•二模)方程x(x﹣1)=x的根是_________ .16.(4分)已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m= _________ .17.(4分)如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为_________ ;若∠P=40°,则∠DOE= _________ .18.(4分)(2013•大港区一模)如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为_________ .三、解答题(本题共7个小题,满分60分)19.(5分)计算:.20.(10分)解下列方程.(1)x2+4x﹣5=0;(2)x(2x+3)=4x+6.21.(5分)△ABC三个顶点A,B,C在平面直角坐标系中位置如图所示.将△ABC绕C点顺时针旋转90°,画出旋转后的△A2B2C2,并写出A2的坐标.22.(10分)(2011•天津)已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(II)如图②,连接CD、CE,若四边形ODCE为菱形,求的值.23.(8分)(2008•)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.24.(12分)(2012•)菜农伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到伟处购买5吨该蔬菜,因数量多,伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.25.(10分)一位同学拿了两块45°三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为_________ ,周长为_________ .(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为_________ ,周长为_________ .(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为_________ .(4)在图3情况下,若AD=1,求出重叠部分图形的周长.参考答案与试题解析一.选择题(本题12小题,每小题3分,共计36分.请把答案填到题后的答题栏)1.(3分)在,,,,中最简二次根式的个数是()A.1个B.2个C.3个D.4个考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:因为=,=2,=,所以符合条件的最简二次根式为,,共2个.故选:B.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.(3分)(2010•)下列计算结果正确的是()A.+=B.3﹣=3C.×=D.=5考点:二次根式的混合运算.分析:按照二次根式的运算法则进行计算即可.解答:解:A、和不是同类二次根式,不能合并,故A错误;B、3﹣=(3﹣1)=2,故B错误;C、×==,故C正确;D、,故D错误;故选C.点评:此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.3.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;所以,既是轴对称图形又是中心对称图形共有3个.故选C.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF,则△EBF的形状是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形考点:旋转的性质;正方形的性质.分析:根据旋转的性质知,△ABE≌△CBF,则BE=BF,所以△BEF为等腰直角三角形.解答:解:∵把△ABE绕点B旋转到△CBF,∴△ABE≌△CBF,∴BE=BF,∵∠ABC=90°,∴△BEF为等腰直角三角形.故选:D.点评:此题主要考查了旋转的性,根据已知得出旋转角以及对应边是解题关键.5.(3分)如果关于x的方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3C.﹣3 D.都不对考点:一元二次方程的定义.分析:本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.据此即可得到m2﹣7=2,m﹣3≠0,即可求得m的围.解答:解:由一元二次方程的定义可知,解得m=﹣3.故选C.点评:要特别注意二次项系数m﹣3≠0这一条件,当m﹣3=0时,上面的方程就是一元一次方程了.6.(3分)下列方程中,有实数根的是()A.x2+4=0 B.x2+x+3=0C.D.5x2+1=2x考点:根的判别式.专题:计算题.分析:先把D中的方程化为一般式,再计算四个方程的判别式的值,然后根据判别式的意义判断.解答:解:A、△=0﹣4×4<0,方程没有实数根,所以A选项错误;B、△=1﹣4×3<0,方程没有实数根,所以B选项错误;C、△=(﹣)2﹣4×2×(﹣1)>0,方程有两个不相等的实数根,所以C选项正确;D、5x2﹣2x+1=0,△=4﹣4×5×1<0,方程没有实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.(3分)用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2C.y=(x﹣6)2﹣2D.y=(x﹣3)2+2考点:二次函数的三种形式.专题:计算题;配方法.分析:由于二次项系数是1,利用配方法直接加上一次项系数一半的平方来凑完全平方式,可把一般式转化为顶点式.解答:解:y=x2﹣6x+11,=x2﹣6x+9+2,=(x﹣3)2+2.故选D.点评:二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).8.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一表示留念,全班共送1035照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035考点:由实际问题抽象出一元二次方程.专题:其他问题.分析:如果全班有x名同学,那么每名同学要送出(x﹣1),共有x名学生,那么总共送的数应该是x(x﹣1),即可列出方程.解答:解:∵全班有x名同学,∴每名同学要送出(x﹣1);又∵是互送照片,∴总共送的数应该是x(x﹣1)=1035.故选C.点评:本题考查一元二次方程在实际生活中的应用.计算全班共送多少,首先确定一个人送出多少是解题关键.9.(3分)(2012•)如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A.B.C.D.考点:垂径定理;勾股定理.分析:首先过点O作OD⊥AB于点D,由垂径定理,即可求得AD,BD的长,然后由勾股定理,可求得OD的长,然后在Rt△OCD中,利用勾股定理即可求得OC的长.解答:解:过点O作OD⊥AB于点D,∵弦AB=2,∴AD=BD=AB=,AC=AB=,∴CD=AD﹣AC=,∵⊙O的半径为2,即OB=2,∴在Rt△OBD中,OD==1,在Rt△OCD中,OC==.故选D.点评:此题考查了垂径定理与勾股定理的应用.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.(3分)已知⊙01和⊙O2的半径分别为2和5,且圆心距O1O2=7,则这两圆的位置关系是()A.外切B.切C.相交D.相离考点:圆与圆的位置关系.分析:由⊙O1与⊙O2的半径分别为2、5,且圆心距O1O2=7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1与⊙O2的半径分别为2和5,且圆心距O1O2=7,又∵2+5=7,∴两圆的位置关系是外切.故选A.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系是解此题的关键.11.(3分)(2010•)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()A.48πB.24πC.12πD.6π考点:相切两圆的性质.分析:由图可知,四个小圆的直径和等于大圆直径,4个小圆大小相等,故小圆直径为12÷4=3,根据周长公式求解.解答:解:大圆周长为12π,四个小圆周长和为4×(12÷4)π=12π,5个圆的周长的和为12π+12π=24π.故选B.点评:本题主要考查相切两圆的性质,解题的关键是熟记圆周长的计算公式:直径×π.12.(3分)PA、PB分别切⊙O于A、B两点,C为⊙O上一动点(点C不与A、B重合),∠APB=50°,则∠ACB=()A.100°B.115°C.65°或115°D.65°考点:切线的性质.分析:画出图形,连接OA、OB,则OA⊥AP,OB⊥PB,求出∠AOB,继而分类讨论,可得出∠AC'B及∠ACB的度数.解答:解:连接OA、OB,∵PA、PB分别切⊙O于A、B两点,∴OA⊥AP,OB⊥PB,①当点C在优弧AB上时,∠AOB=180°﹣∠APB=130°,∴∠AC'B=65°;②当点C在劣弧AB上时,∠ACB=180°﹣∠AC'B=135°.综上可得:∠ACB=65°或115°.故选C.点评:本题考查了切线的性质,需要用到的知识点为:①圆的切线垂直于经过切点的半径,②圆周角定理,③圆接四边形的对角互补.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2012•)计算:4﹣= 0 .考点:二次根式的加减法.专题:计算题.分析:先将二次根式化为最简,然后合并同类二次根式即可.解答:解:原式=4×﹣2=0.故答案为:0.点评:此题考查了二次根式的加减运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.14.(4分)点A(3,n)关于原点对称的点的坐标为(﹣3,2),那么n= ﹣2 .考点:关于原点对称的点的坐标.分析:根据两点关于原点的对称,横纵坐标符号相反,即可得出n的值.解答:解:∵A(3,n)关于原点对称的点的坐标为(﹣3,2),∴n=﹣2,故答案为:﹣2.点评:本题主要考查了平面直角坐标系关于原点对称的点的特点,关键是把握坐标变化规律.15.(4分)(2012•二模)方程x(x﹣1)=x的根是x1=0,x2=2 .考点:解一元二次方程-因式分解法.分析:先将原方程整理为一般形式,然后利用因式分解法解方程.解答:解:由原方程,得x2﹣2x=0,∴x(x﹣2)=0,∴x﹣2=0或x=0,解得x1=2,x2=0.故答案为:x1=2,x2=0.点评:本题考查了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.16.(4分)已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m= 2 .考点:一元二次方程的解;一元二次方程的定义.分析:根据条件,把x=0代入原方程可求m的值,注意二次项系数m+2≠0.解答:解:依题意,当x=0时,原方程为m2﹣4=0,解得m1=﹣2,m2=2,∵二次项系数m+2≠0,即m≠﹣2,∴m=2.故本题答案为:2.点评:本题考查了一元二次方程解的定义.方程的解是使方程左右两边成立的未知数的值.17.(4分)如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为16cm ;若∠P=40°,则∠DOE= 70°.考点:切线长定理.分析:根据切线长定理,可得DC=DA,EC=EB,继而可将△PCD的周长转化为PA+PB,连接OA、OB、OD、OE、OC,则可求出∠AOB的度数,从而可得∠DOE的度数.解答:解:∵PA、PB、DE是⊙O的切线,∴DA=DC,EC=EB,∴△PDE的周长=PD+DC+EC+PE=PA+PB=2PA=16cm.连接OA、OB、OD、OE、OC,则∠AOB=180°﹣∠P=140°,∴∠DOE=∠COD+∠COE=(∠BOC+∠AOC)=∠BOC=70°.故答案为:16cm、70°.点评:此题考查了切线长定理及切线的性质,难度适中,注意掌握数形结合思想的应用.18.(4分)(2013•大港区一模)如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为20πcm .考点:弧长的计算;旋转的性质.分析:顶点A从开始到结束所经过的路径是一段弧长是以点C为圆心,AC为半径,旋转的角度是180﹣60=120°,所以根据弧长公式可得.解答:解:=20πcm.故答案为20πcm.点评:本题考查了弧长的计算以及旋转的性质,解本题的关键是弄准弧长的半径和圆心角的度数.三、解答题(本题共7个小题,满分60分)19.(5分)计算:.考点:二次根式的混合运算.专题:计算题.分析:先根据二次根式的乘除法法则得到原式=﹣+2,然后利用二次根式的性质化简后合并即可.解答:解:原式=﹣+2=4﹣+2=4+.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.20.(10分)解下列方程.(1)x2+4x﹣5=0;(2)x(2x+3)=4x+6.考点:解一元二次方程-因式分解法.分析:(1)分解因式,即可得出两个一元一次方程,求出方程的解即可.(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:(1)分解因式得:(x+5)(x﹣1)=0,x+5=0,x﹣1=0,x1=﹣5,x2=1;(2)移项得:x(2x+3)﹣2(2x+3)=0,(2x+3)(x﹣2)=0,2x+3=0,x﹣2=0,x1=﹣,x2=2.点评:本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.21.(5分)△ABC三个顶点A,B,C在平面直角坐标系中位置如图所示.将△ABC绕C点顺时针旋转90°,画出旋转后的△A2B2C2,并写出A2的坐标.考点:作图-旋转变换.专题:作图题.分析:根据网格结构找出点A、B、C绕点C顺时针旋转90°后的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标.解答:解:△A2B2C2如图所示;点A2(8,3).点评:本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(10分)(2011•天津)已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(II)如图②,连接CD、CE,若四边形ODCE为菱形,求的值.考点:切线的性质;含30度角的直角三角形;勾股定理;菱形的性质.专题:几何综合题.分析:(1)连接OC,根据切线的性质得出OC⊥AB,再由勾股定理求得OA即可;(2)根据菱形的性质,求得OD=CD,则△ODC为等边三角形,可得出∠A=30°,即可求得的值.解答:解:(1)如图①,连接OC,则OC=4,∵AB与⊙O相切于点C,∴OC⊥AB,∴在△OAB中,由AO=OB,AB=10,得AC=AB=5.在Rt△AOC中,由勾股定理得OA===;(2)如图②,连接OC,则OC=OD,∵四边形ODCE为菱形,∴OD=CD,∴△ODC为等边三角形,有∠AOC=60°.由(1)知,∠OCA=90°,∴∠A=30°,∴OC=OA,∴=.点评:本题考查了切线的性质和勾股定理以及直角三角形、菱形的性质,是一道综合题,要熟练掌握.23.(8分)(2008•)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.考点:切线的判定;圆周角定理.专题:证明题.分析:要证GE是⊙O的切线,只要证明∠OEG=90°即可.解答:证明:(证法一)连接OE,DE,∵CD是⊙O的直径,∴∠AED=∠CED=90°,∵G是AD的中点,∴EG=AD=DG,∴∠1=∠2;∵OE=OD,∴∠3=∠4,∴∠1+∠3=∠2+∠4,∴∠OEG=∠ODG=90°,故GE是⊙O的切线;(证法二)连接OE,OG,∵AG=GD,CO=OD,∴OG∥AC,∴∠1=∠2,∠3=∠4.∵OC=OE,∴∠2=∠4,∴∠1=∠3.又OE=OD,OG=OG,∴△OEG≌△ODG,∴∠OEG=∠ODG=90°,∴GE是⊙O的切线.点评:本题考查切线的判定方法及圆周角定理运用.24.(12分)(2012•)菜农伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到伟处购买5吨该蔬菜,因数量多,伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.考点:一元二次方程的应用.专题:增长率问题;压轴题.分析:(1)设出平均每次下调的百分率,根据从5元下调到3.2列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.解答:解(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000﹣200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.点评:本题考查了一元二次方程的应用,在解决有关增长率的问题时,注意其固定的等量关系.25.(10分)一位同学拿了两块45°三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为 4 ,周长为4+4.(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为 4 ,周长为8 .(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为4 .(4)在图3情况下,若AD=1,求出重叠部分图形的周长.考点:旋转的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形;三角形中位线定理.分析:(1)根据AC=BC=4,∠ACB=90°,得出AB的值,再根据M是AB的中点,得出AM=MC,求出重叠部分的面积,再根据AM,MC,AC的值即可求出周长;(2)易得重叠部分是正方形,边长为AC,面积为AC2,周长为2AC.(3)过点M分别作AC、BC的垂线MH、ME,垂足为H、E.求得Rt△MHD≌Rt△MEG,则阴影部分的面积等于正方形CEMH的面积.(4)先过点M作ME⊥BC于点E,MH⊥AC于点H,根据∠DMH=∠EMH,MH=ME,得出Rt△DHM≌Rt△EMG,从而得出HD=GE,CE=AD,最后根据AD和DF的值,算出DM=,即可得出答案.解答:解:(1)∵AC=BC=4,∠ACB=90°,∴AB===4,∵M是AB的中点,∴AM=2,∵∠ACM=45°,∴AM=MC,∴重叠部分的面积是=4,∴周长为:AM+MC+AC=2+2+4=4+4;故答案为:4,4+4;(2)∵叠部分是正方形,∴边长为×4=2,面积为×4×4=4,周长为2×4=8.故答案为:4,8.(3)过点M分别作AC、BC的垂线MH、ME,垂足为H、E,∵M是△ABC斜边AB的中点,AC=BC=4,∴MH=BC,ME=AC,∴MH=ME,又∵∠NMK=∠HME=90°,∴∠NMH+∠HMK=90°,∠EMG+∠HMK=90°,∴∠HMD=∠EMG,在△MHD和△MEG中,∵,∴△MHD≌△MEG(ASA),∴阴影部分的面积等于正方形CEMH的面积,∵正方形CEMH的面积是ME•MH=×4××4=4;∴阴影部分的面积是4;故答案为:4.(4)如图所示:过点M作ME⊥BC于点E,MH⊥AC于点H,∴四边形MECH是矩形,∴MH=CE,∵∠A=45°,∴∠AMH=45°,∴AH=MH,∴AH=CE,在Rt△DHM和Rt△GEM中,,∴Rt△DHM≌Rt△GEM.∴GE=DH,∴AH﹣DH=CE﹣GE,∴CG=AD,∵AD=1,∴DH=1.∴DM==∴四边形DMGC的周长为:CE+CD+DM+ME=AD+CD+2DM=4+2.点评:此题考查了等腰直角三角形,利用等腰直角三角形的性质,等腰直角三角形的面积公式,正方形的面积公式,全等三角形的判定和性质求解.======*以上是由明师教育编辑整理======。

相关文档
最新文档