光电计数器

合集下载

光电计数为零的原因

光电计数为零的原因

光电计数为零的原因光电计数是一种应用光电效应原理的计数器,通过光电传感器检测光电信号的变化来实现计数功能。

然而,在使用光电计数器时,有时会遇到计数为零的情况,即光电计数器无法正确计数。

下面将探讨几种可能导致光电计数为零的原因。

一、传感器故障光电计数器的核心部件是光电传感器,它负责检测光电信号的变化并将其转换为电信号。

如果光电传感器出现故障,如灵敏度降低、损坏或失灵等,就会导致光电计数为零。

这可能是由于长时间使用或不当使用导致的。

解决这个问题的方法是更换故障的光电传感器,确保其正常工作。

二、光源问题光电计数器的正常计数依赖于光源的稳定和光强的恰当调节。

如果光源出现故障或光强不足,就会导致光电计数为零。

此外,光源的位置和方向也会影响光电传感器的接收效果,进而影响计数的准确性。

解决这个问题的方法是检查光源是否正常工作,确保光强适中,并调整光源的位置和方向。

三、环境干扰光电计数器的工作需要一个相对稳定的环境,避免外界因素对光电传感器的影响。

例如,如果有其他光源干扰或强光直射光电传感器,就会导致计数不准确甚至为零。

此外,温度、湿度等环境因素也可能影响光电计数的稳定性。

为了解决这个问题,可以采取屏蔽干扰光源、调整环境条件或使用防护罩等措施。

四、信号处理问题光电计数器在接收到光电信号后需要进行信号处理,包括放大、滤波、数字化等步骤。

如果信号处理电路出现故障或设置不当,就会导致计数为零。

解决这个问题的方法是检查信号处理电路是否正常工作,并根据实际情况调整信号处理参数。

五、连接问题光电计数器与其他设备的连接也可能影响计数的准确性。

如果连接线路松动、接触不良或连接错误,就会导致光电计数为零。

解决这个问题的方法是检查连接线路是否牢固可靠,确保正确连接。

光电计数为零可能是由于传感器故障、光源问题、环境干扰、信号处理问题或连接问题等多种原因导致。

在使用光电计数器时,我们应该认真检查和排除这些可能的问题,确保光电计数器的正常工作。

光电感应计数器原理图

光电感应计数器原理图

光电感应计数器原理图
不包含标题的光电感应计数器原理图如下:
[image]
光电感应计数器是一种电子设备,用于通过光电传感器检测光线的存在或者光的强度变化,并将其转换为数字信号进行计数。

它通常包括一个光源和一个光电传感器。

光源通常是一种发光二极管(LED),它发出一束光线以照明待检测区域。

光线经过待检测区域后,被光电传感器接收。

光电传感器是一种能够将光线转换为电信号的器件。

它通常由一个光敏元件和一个电路组成。

光敏元件可以是光敏电阻、光敏二极管或者光敏三极管等。

当光线照射到光敏元件上时,它的电阻、电流或者电压会发生变化。

光电传感器的电路会将光敏元件输出的电信号进行放大和处理,然后将其转换为数字信号。

这些数字信号会传送到计数器电路,进行计数并显示。

光电感应计数器常用于对通过某个区域的物体或人员进行计数。

当物体或人员经过待检测区域时,遮挡光线,光电传感器感知到信号的变化,计数器根据信号的变化进行计数。

光电感应计数器具有快速、精确、可靠等特点,广泛应用于超市、图书馆、展览场所等需要进行人流或物品计数的场合。

数字电路实验-光电计数器

数字电路实验-光电计数器

课程综合设计课程名称:《数字电路实验》实验名称:《光电计数器》学院:应用科技学院专业:电子信息工程年级:2012级学号:____________姓名:____________设计意义及实现功能:工厂生产线或某些设备上(如打印机)常装有自动计数器,以便计算产量或为生产过程自动化合计算机管理系统提供数据,计数器种类很多,光电计数器是常见的一种。

设计并制作一个光电计数器,要求如下:(1)光源采用聚焦白炽灯,电压为6.3V,自行选择光敏器件。

当有光照到光敏器件上时,计数器不计数,当光照有亮突变到暗的一瞬间,产生一个脉冲沿,对这个脉冲沿进行技术,光照由暗突变到亮不计数。

(2) 计数器范围:00~99。

用两只LED数码管作显示组件,可显示00~99。

(3)定数控制功能:当需要定数时,事先预置一个定数值,显示器同时显示这个定数值。

每光照一次,计数器减“1”,当定数值减至:“00”,发出声、光报警。

(4)当计数器作“累加”功能时,需先清零。

计数器从“00”累加到“99”。

当光照次数大于99次时,发出声,光报警。

实验原理CD4511引脚图及功能CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点如下:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS 电路能提供较大的拉电流。

可直接驱动LED显示器。

器中的字形消隐。

其功能介绍如下:BI:4脚是消隐输入控制端,当BI=0 时,不管其它输入端状态如何,七段数码管均处于熄灭(消隐)状态,不显示数字。

LT:3脚是测试输入端,当BI=1,LT=0 时,译码输出全为1,不管输入DCBA 状态如何,七段均发亮,显示“8”。

它主要用来检测数码管是否损坏。

LE:锁定控制端,当LE=0时,允许译码输出。

LE=1时译码器是锁定保持状态,译码器输出被保持在LE=0时的数值。

A1、A2、A3、A4、为8421BCD码输入端。

a、b、c、d、e、f、g:为译码输出端,输出为高电平1有效。

光电计数器的工作原理

光电计数器的工作原理

光电计数器的工作原理光电计数器是一种常见的电子计数器,它是一种使用光学器件来实现计数功能的计数器。

它的工作原理基于光电效应,通过光电转换将物体通过光线的照射变成电子信号来进行计数。

光电计数器主要包括探测器和计数器两个部分。

探测器一般由光电开关、发光二极管、光电二极管等电子元件组成。

当物体穿过光电计数器时,物体挡住光线,光线被遮挡后,照射到光电开关或光电二极管上的光电元件因而无法继续发射或接收光线,会产生相应的电信号。

这些电信号经过调理和放大处理后,然后发送到计数器中进行计数。

计数器是光电计数器中的核心部件,它完成了对每个物体的计数动作。

计数器使用数字技术来实现物体计数,通过将输入的电信号转化为数字模数,在计数器中对其进行编码、存储和运算等处理,以获得准确的物体计数结果。

计数器还可以设置相应的警报、返回、自动复位等功能,使得光电计数器具有高效性和便捷性。

光电计数器的工作原理主要分为两个阶段:探测信号的产生和计数处理。

① 探测信号的产生在探测信号产生的第一步中,发光二极管将发射准直方向的光线,光线照射到光电二极管上,光电二极管产生电信号。

在探测信号产生的第二步中,光电开关直接将关于受遮挡现象的信号发送到计数器。

其中,发光二极管和光电二极管的发出和接收光线的方向可以任意设置,使得光电计数器能够适应不同的应用场景。

② 计数处理通过探测信号的产生,计数器会将信号进行编码和存储,最终实现对物体的计数。

在实际使用中,光电计数器计数量的增加通常是以值的形式显示出来。

在计数处理阶段,计数器接受来自探测器的数字信号,将其转换为数字模拟信号,信号经过调理进行放大处理后,被转换为数字信号。

然后将转换的数字信号经过诸如二进制、八进制等算法进行编码,以便数字之间的运算以及数字之间的比较。

数字计数器还可通过特殊的电子线路或运算逻辑实现特殊功能,例如设置报警功能、回退功能、自动累加等功能。

在这些功能完成后,数字计数器可以重置,以使得计数器能够进行新的计数。

光电计数器的原理与制作

光电计数器的原理与制作

制作天地HANDS ON PROJECTS光电计数器的应用非常广泛,例如绕线机线圈匝数的检测、点钞机纸币张数的检测、复印机纸张数量的检测等。

它和机械计数器相比具有可靠性高、体积小、计数频率高、能和计算机连接实现自动控制等优点。

本文介绍一种光电计数器的原理与制作方法,供大家参考。

一、电路组成光电计数器电路如图1所示,由T1槽型光耦、IC1单稳态触发器、IC2~IC4计数译码显示电路所组成。

计数范围是0~999。

显示器采用共阴极LED数码管。

该电路具有上电自动清零功能,也可通过“复位”按钮实现手动清零。

二、检测电路槽型光耦ITR9608、R1、R2组成光电检测电路,负责把被检测物的数量转换成电压脉冲信号。

槽型光耦是由红外发光管和光敏三极管构成的,工作时红外发光管发出红外光线透过光耦的槽投射到光敏三极管上,光敏三极管导通,集电极输出低电平;当红外光线被检测物遮断时,光敏三极管截止,集电极输出高电平。

遮挡一次槽型光耦输出一个脉冲,因此脉冲的个数就是被检测物的数量。

槽型光耦中红外发光管的正向电流为50mA,在环境温度为25℃时它的最大耗散功率100mW,正向压降为1.5V。

当环境温度上升时,允许的正向工作电流还要减小。

为了留有一定的裕量,取它的工作电流为20mA。

则R1=5V-1.5V20mA=175Ω取R1=200Ω,其中5V是电源电压,1.5V是红外发光管的正向压降。

根据槽型光耦ITR9608的技术手册可知,使红外发光管的正向电流为20mA,当有遮挡时,光敏三极管ICE O=100nA;无遮挡时,光敏三极管的I C≈0.7mA。

为了使光敏三极管能工作在开关状态,则R2=5V-0.4V=6.5kΩ取R2=10kΩ,其中5V是电源电压,0.4V是光敏三极管的饱和压降。

R3、C2、C3和IC1组成单稳态触发器。

其作用是对槽型光耦传来的脉冲信号进行整形,去掉杂波信号,提高抗干扰能力。

IC1的型号是NE555,电路中将输入端TH和放电端DIS同时接在定时电容上,触发端TR平时为高电平。

基于单片机的光电计数器课程设计

基于单片机的光电计数器课程设计

计控学院College of computer and control engineeringQiqihar university电气工程课程设计报告题目:基于单片机的光电计数器系别电气工程系专业班级电气123班学生姓名宋恺学号2012024073指导教师李艳东提交日期 2015年6月 24日成绩光电计数器是利用光电元件制成的自动计数装置。

其工作原理是从光源发出的一束平行光照射在光电元件(如光电管、光敏电阻等)上,每当这束光被遮挡一次时,光电元件的工作状态就改变一次,通过放大器可使计数器记下被遮挡的次数。

光电计数器的应用范围非常广泛,常用于记录成品数量,例如绕线机线圈匝数的检测、点钞机纸币张数的检测、复印机纸张数量的检测,或展览会参观者人数。

光电计数器与机械计数器相比,具有可靠性高、体积小、技术频率高、能和计算机链接实现自动控制等优点。

本文即介绍基于MCS-51单片机的光电技术器。

关键词:单片机;光电计数器;数码显示;自动报警1 设计目的及意义 (1)2 设计内容 (1)2.1 系统整体设计 (1)2.1.1 实验方案 (1)2.1.2 光电计数器结构框图 (2)图1 光电计数器结构框图 (2)2.2系统硬件设计 (2)2.2.1稳压直流电源电路 (2)2.2.2发射接收电路 (3)2.2.3显示电路 (3)2.2.4报警电路 (4)2.2.5硬件系统 (4)2.3系统软件设计 (6)3 结论74 参考文献 (8)1 设计目的及意义设计要求:(1) 实现0~99999范围内计数,能在超出最大值后溢出报警;(2) 通过LED显示数据;(3) 要求使用光电传感器检测;(4) 能在设定值报警,在报警后延时3s自动关闭报警并自动重新计数;可以手动清除报警;(5) 有抗干扰技术,防止背景光或物件抖动时产生误计数;通过本次基于单片机的光电计数器课程设计,使我能够将在课堂上学习到的单片机理论知识与实际应用结合起来,而且能进一步加深对电子电路、电子元器件、印制电路板等知识的认识与理解,同时在软件编程、排错调试、焊接技术、相关仪器设备的使用技能等方面得到较全面的锻炼和提高。

光电计数器设计报告

光电计数器设计报告

前言随着大规模、自动化的生产不断发展,很多企业在生产的过程中,大量使用各种智能化的产品,提高生产管理水平;采用红外线遮光方式的光电计数器,抗干扰性好,可靠性高;可用于测量宾馆、饭店、商场、超市、博物馆、展览馆、车站、码头、银行等场所的人员数量及人员流通数量,同时丝毫不会侵犯到被测人员的个人隐私;该产品应用广泛,也可以测量流水线上的产品的数量,以及可检查产品有无缺损;适用于各种环境对产品的成品或者是半成品进行计数,以满足现代生产的适时管理和需要,实现了智能控制;本人根据了光电计数器的工作原理,再结合了刚学过的模拟电子技术、数字电子技术、光电传感技术等电子类专业知识,制作了一个简易的红外光电计数器,本课题设计是对自己所学知识的一个综合运用和检验;同时也是自己走向社会前对产品的制作工艺以及产品生产流程的了解;该电路的指导思想是利用红外发光管发射红外线,红外接收管接收此红外线,并将其放大、整流转换成高低电平信号,驱动计数器计数,并经译码驱动电路使数码管显示数值;该电路还设计了一个报警电路,当计数器计数到上限时即99时,产生一个进位脉冲来驱动555产生延时信号使蜂鸣器报警;由于本人经验不足,且实验器材精确度不高,故设计还有很多不足和缺陷,需做进一步的改进和完善;第一章设计内容及要求1.设计主要内容该设计以红外发射及接收管为主要元器件产生光电脉冲,该脉冲通过双十进制加法计数器计数,4-8译码器译码,7段数码显示管显示来实现系统0-99光电计数及显示;当计数到99时计数暂停并报警;启动清零开关可重新计数;2.设计要求设计主要包含基本和提高要求两层次基本要求:利用红外发射接收管作为光电计数器的传感器进行计数,用数码管显示计数值,当数码管显示值与设定值相同时报警,此外计数器停止计数,手动清除报警后可重新工作;提高要求:l发光器件和光接收器之间的距离大于lM提示:生于距离较远;需要增大发光二极管的电流,这种情况下只能采用脉冲供电方法,此时有物体和无物体其输出频率会产生变化;2有抗干扰技术,防止背景光和瓶子抖动产生计数误差3每计数100,用灯闪烁2S指示一下;第二章系统设计方案选择方案一图方案一电路原理设计图该电路采用遮光式红外管触发计数器计数,当计数器递增计时到99即定时时间到时,显示器上显示99,同时发出光电报警信号;译码显示电路由74LS48和共阴极七段LED显示器以及1K电阻排组成;报警电路主要由555定时器脉冲控制;秒脉冲发生器产生的信号是电路的时钟脉冲和定时标准,但本设计对此信号要求并不是太高;主要是利用555产生一个延时信号使蜂鸣器扬声报警,此时可按下复位开关是电路重新从00开始计数;方案二图方案二电路原理设计图方案比较1.光电转换部分方案一设计简单,原理清晰,对负载及红外信号的发射强度未予考虑;方案二红外接收管的负载能力得以提高,但实现光电脉冲对电阻及三极管的开关参数有一定的要求,红外接收管还会受到三极管作用下的外围负载影响,不易于实现标准的高低电平转化;2.计数显示部分由于两种方案在计数部分所用的芯片不同,因此在芯片的个数选择和各引角连接方面就存在明显的差异;其一74LS192多了清零端方便清零功能的实现;74LS190就需在置数端实现置数功能基础上做点改进,这里通过一双向开关实现硬件复位;其二是进制设置:74LS192采用的是S9=1001,74LS190采用的是S10=1010;都需要使用与非门实现置数,但是74LS192是同步置数,74LS190是异步置数,74LS192当一有进位信号时就开始置数,而74LS190置数信号有延迟;这是两者最主要的区别,也是方案设计选择前者的主要原因;3.译码部分都采用4输入8输出译码方式,实现功能相同,两者没有明显的优劣差异;4.显示部分都采用共阴极七断数码驱动显示管,此部分没有区别;5.报警设置若实现99报时,方案一设计更简单,直接从CO端引出报警信号,通过555定时器产生一定频率的脉冲驱动报警电路;方案二报警设计具有通用性,能设置0-99范围内任意数值显示时的报警,但设置报警数值时较为不便;考虑实际应用采用方案一;总上所述,方案一更简易、经济,更可行;图系统原理组成框图工作原理该计数器采用了遮光式红外发射与接收管来产生脉冲信号,当没有遮光物时,红外接收管产生低电平信号,再经过三极管信号放大反向后变为高电平信号,最后经过74LS14反向器又变为低电平,同理,当有遮光物挡住对管时,接收管产生高电平信号,在经过放大反向后,作用在74LS192计数器上一个高电平信号,这样就有一个正跳沿脉冲使计数器开始进行加计数,并且通过74LS48译码电路在两个共阴极数码管上显示计数值,计数部分采用了同步时序逻辑电路设计,当计数器递增计数到99即计数最大值时,两计数器开始同步置数,同时高位计数器产生进位脉冲信号驱动报警电路报警,报警电路采用的是NE555构成的多谐振荡器,振荡频率 f0=1/R1+2R2CLn2=R1+2R2C,其输出信号经三极管推动蜂鸣器工作;PR未控制信号,当PR为高电平时,多谐振荡器工作;反之,电路停振;此时可以用复位开关使其清零,当再有脉冲信号时,计数器又开始循环计数;第四章单元电路设计、参数计算、器件选择光电转换模块光电转换的电路见图由于发光二极管的工作电压大约在左右,工作电流大约在4mA到10mA左右,并且电源电压为5V,所以R3=/4mA~10mA=250Ω~625Ω,因此选择470的电阻作为发光管的限流电阻;三极管有放大作用,所以集电极的电流较大,所以要加一个阻值较大的电阻作为限流电阻,因此选择了10KΩ电阻;当接通电源的时候,红外发射管发光,红外接收管反向导通,相当于短路,所以A点的电压为低电平,基极电流降低,发射结的电压降低,所以发射结反向截止,根据三极管基极电压与集电极电压反向的特性,所以集电极电压为高电平,当一旦有东西遮在发光管和光敏三极管中间时,红外接收管正向截止,即A点电位为高电平,当之超过三极管的导通电压一般为硅管为,锗管为左右时,三极管就会导通,当基极电流继续增加时,三极管会饱和导通,此时三极管相当于工作在开关的闭合状态,发射极相当于直接接地,所以集电极输出为低电平;再经过一个反向器后变为高电平,这样就可以给后面计数器一个上升沿脉冲;使其触发开始工作;图光电转换电路计数显示模块4.2.1 数码管译码:编码的逆过程,即将输入代码“翻译”成特定的输出信号;译码器:实现译码功能的数字电路;七段数字显示器原理按内部连接数字显示器分为共阴极和共阳极两种(a)管脚排列图; b共阴极接线图; c 共阳级接线图图数码管内部电路4.2.2 显示译码器74LS48图 74LS48的管脚排列图和其逻辑符号图4.3 A 0 =0时,/ LT =1时,若七段均完好,显示字形是“8”,该输入端常用于检查74LS48显示器的好坏; 当 A 1=1时,译码器方可进行译码显示; 用来动态灭零,当A 2= 1时, 且A 3 =0, 输入A3A2A1A0=0000时,则/ I BR =0使数字符的各段熄灭; / LT为灭灯输入/灭灯输出,当 V CC =0时不管输入如何, 数码管不显示数字; 为控制低位灭零信号,当A 3=1时, 说明本位处于显示状态;若 A 3 =0, 且低位为零, 则低位零被熄灭;图 译码显示电路 根据设计要求由于数码管是由发光二极管构成的,所以要在译码器与数码管之间加1K 的电阻保护,因为选择的是共阴的数码管,数码管的两个公共端与地端相接;4.2.3 十进制计数器74LS19274LS192是双时钟方式的十进制可逆计数器; CPU 为加计数时钟输入端,CPD 为减计数时钟输入端;LD 为预置输入控制端,异步预置;CR 为复位输入端,高电平有效,异步清除;CO 为进位输出:1001状态后负脉冲输出, BO 为借位输出:0000状态后负脉冲输出;图 a74ls192引脚图 b74LS192逻辑符号图表 74LS192的真值表工作原理:当LD =1,CR=0时,若时钟脉冲加入到U CP 端,且D CP =1,则计数器在预置数的基础上完成加计数功能,当加计数到9时,CO 端发出进位下跳脉冲;若时钟脉冲加入到D CP 端,且U CP =1,则计数器在预置数的基础上完成减计数功能,当减计数到0时,BO 端发出借位下跳变脉冲;由74LS192组成的一百进制递加计数器如下图,其预置数为N=1001 10018421BCD=99;它的计数原理是:只有当低位CO 端发出进位脉冲时,高位计数器才作加计数;当高、低位计数器处于99,且置数端LD =0,计数器完成并行置数,此计数器的置数值为99,当置数到99时可用复位端使其清零,在U CP 端的输入时钟脉冲作用下,计数器再次进入下一循环加计数;图 计数器计数置位部分声光报警模块由555定时器和三极管构成的报警电路如图所示;其中,555构成多谐振荡器,振荡频率 f0=1/R1+2R2CLn2=R1+2R2C,其输出信号经三极管推动扬声器;PR 未控制信号,当PR 为高电平时,多谐振荡器工作;反之,电路停振;图 报警工作电路555电路的工作原理555电路的内部电路方框图如图所示;它含有两个电压比较器,一个基本RS 触发器,一个放电开关管T,比较器的参考电压由三只 5K Ω的电阻器构成的分压器提供;它们分别使高电平比较器A 1 的同相输入端和低电平比较器A 2的反相输入端的参考电平为CC V 32和CC V 31;A 1与A 2的输出端控制RS 触发器状态和放电管开关状态;当输入信号自6脚,即高电平触发输入并超过参考电平CC V 32时,触发器复位,555的输出端3脚输出低电平,同时放电开关管导通;当输入信号自2脚输入并低于CC V 31时,触发器置位,555的3脚输出高电平,同时放电开关管截止;D R 是复位端4脚,当D R =0,555输出低电平;平时D R 端开路或接V CC ,V C 是控制电压端5脚,平时输出CC V 32作为比较器A 1 的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个μf 的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定;T 为放电管,当T 导通时,将给接于脚7的电容器提供低阻放电通路;图 555电路的内部电路方框图本电路由555定时器和外接元件R 1、R 2、C 构成多谐振荡器,脚2与脚6直接相连;电路没有稳态,仅存在两个暂稳态,电路亦不需要外加触发信号,利用电源通过R 1、R 2向C 充电,以及C 通过R 2向放电端 C t 放电,使电路产生振荡;电容C 在CC V 31和CC V 32之间充电和放电,其波形如图b 所示;输出信号的时间参数是T =t w1+t w2, t w1=R 1+R 2C, t w2=2C 555电路要求R 1 与R 2 均应大于或等于1K Ω ,但R 1+R 2应小于或等于Ω;图 多谐振荡器结构及工作电压波形第五章 实验、调试及测试结果与分析·调试电路板焊接好后,先不能急着通电,先要检查硬件线路,其步骤如下:1检查连线是否正确根据电路原理图连线,按一定顺序一一检查安装好线路,这样可以比较容易查出错线或少线;为了防止出错,对于已查过的线路在电路图上做出标记 ;2元器件的安装情况检查元器件引脚之间有无短路;连接处有无接触不良,有无虚焊,假焊情况;二极管的极性和集成元件的引脚是否连接有误;这样检查无误后就开始通电,通电后发现十位数码管中e 极二极管不亮,找出其连接译码器的15脚,发现是虚焊了,重新焊了下,通上电数码管正常工作;当我们把遮光物放在对管再抽出的过程中,数码管没变化,还是显示00,通过用数字万用表检测后,发现红外接收管内阻很大,已经烧坏了,可能是在焊接的过程中,温度过高散热不当所致,后又换了个红外接收管;当再次通电后,在用同样的方法发现数码管还是不计数,我们用万用表检查了以下,发现当没有遮住红外管时,红外接收管的电压为本应该在左右,当遮住了红外管后,电压变为,总结下低电平电压过高,不能使反向器反向,也就不能使计数器计数,我们把红外管对折后重新焊接,在通上电,这次把电源电压改小了,改为原来是,结果板子正常工作了,能实现00-99计数了,而且比较稳定;结果与分析通过调试以后,电路板可以按照预定的要求实现功能;刚开始通电,数码管显示00,当有遮光物挡住又拔出时,计数器进行加1,这样能完成00—99计数,通过检测我们发现红外管需要对折焊接后才会更加灵敏,这样才能使脉冲信号更加稳定,计数更准确,还有板子的工作电压要调好,不能过高也不能太低,要让板子能正常工作即可,在焊接时一定注意温度控制好,可以先把一些敏感元件引脚留长些,这样可以方便散热,以免烧坏元件;总结为期一周的电子课题设计终于落下帷幕了,我和我的搭档经过这一周的辛苦努力,终于得到了收获,完成了我们的电子设计---光电计数器;因为以前动手很少,对做电子线路板经验不足,所以刚开始有点不知所措,但我们没有放弃这次难得的动手机会,通过查阅相关资料,把原理图画好,经过仿真确定其可行性,然后就开始焊接电路板,在焊接电路板的过程中,我们从中发现了许多问题,也遇到了不少难题,不过我们没有退却,在指导老师的帮助下,把问题给逐一解决了,而且在动手操作的过程中,也领悟到了许多焊接技巧,方法,增强了实践动手能力,当我和搭档把电路板成功焊接完成后,非常兴奋,很有成就感,更增加了我们以后动手操作的信心,在后期调试过程中,通过数字万用表,示波器等相关测量工具获得了计数器的一些工作参数,在结合实验现象和结果分析,更加懂得了该光电计数器的工作原理;感谢学校给我们提供了这次宝贵的动手实践机会,通过动手操作,我们学到了许多书本上没有的知识,而且更加巩固了所学知识,真正做到了所学即所用;经过这次电子设计,我从中收获了很多,更加懂得了理论联系实际的重要性,让我们对电子设计这门科目有了更深一层次的了解;我相信我能在以后的电子设计中做的更好,会有更多新的发现;参考文献1 梁宗善. 电子技术基础与课程设计.华东理工大学出版社. 1994.2 郁汉琪. 数字电子技术实验及课题设计.高等教育出版社.3 梁廷贵、王裕琛.译码器编码器数据选择器电子开关电源分册.科学技术文献出版社.4 杨志忠、卫桦林. 数字电子技术. 高等教育出版社.5 杜虎林.数字万用表使用测量技法与故障检修.人民邮电出版社.6 吴运昌.模拟集成电路原理与应用.华南理工大学出版社.7 黄智伟. 全国大学生电子设计竞赛技能训练.北京航空航天大学出版社.8 刘守义.数字电子技术基础.清华大学出版社.附录1电路原理总图附录2电路元器清单。

光电计数器工作原理

光电计数器工作原理

光电计数器工作原理
光电计数器是一种根据光电效应原理来实现计数的装置。

其工作原理如下:
1. 光电效应:当光线照射到某些材料表面时,光子的能量可以导致电子从材料中解离出来,这个过程称为光电效应。

2. 光电效应的应用:光电计数器利用光电效应,将光线照射到光电计数器的光电导(例如光电二极管)上。

当光照射到光电导上时,光电导会产生电流。

3. 计数原理:光电计数器通过测量光电导上的电流来实现计数。

当有光线照射到光电导上时,光电导会产生电流,这时计数器会对电流进行检测和记录。

4. 计数过程:光电计数器会根据光电导上产生的电流来判断光线的存在与否。

当光线照射到光电导上时,计数器会记录一次计数。

当光线消失时,计数器停止计数。

通过记录每次计数的次数,可以得到光线的数量。

需要注意的是,光电计数器的工作原理可以根据具体的设计和制造与不同,上述介绍只是一种典型的工作原理。

光电计数原理

光电计数原理

光电计数原理
光电计数原理,又称光电效应计数原理,是一种基于光电效应的计数方法。

根据光电效应的原理,光线照射在物质表面时,如果光子的能量大于物质表面的逸出功,光子与物质表面的原子或分子相互作用,使电子从物质中逸出,形成电子流。

利用这一原理,可以将光电效应用于计数过程中。

光电计数器通常由光电倍增管构成。

光电倍增管中有一光阴极和若干个倍增极,光子照射到光阴极上时,光子能量被光阴极吸收,激发光阴极上的电子,并使其逸出。

逸出的电子被加速电场加速,并在倍增极中引起二次发射,形成更多的电子。

这些次级电子再次被二次发射,不断引发更多的电子,产生电子倍增效应。

最终,电子在电子倍增器中形成强烈的电子流。

光电计数器的工作过程为:光子照射到光阴极上,产生的电子受电场的加速作用,形成电子流。

根据电子流的大小,可以确定光子的数量。

光电计数器通常与计数电路连接,将电子流转换为计数信号。

计数电路可以根据光电计数器输出的电信号进行计数,从而实现对光子的计数。

光电计数器的优点是敏感度高、计数精确、响应速度快。

它可以用于各种需要计数的领域,如核辐射测量、天文学观测、光谱分析等。

此外,光电计数器还广泛应用于科学实验、工业生产、医学检测等领域。

总之,光电计数原理利用光电效应实现对光子的计数。

通过光电倍增管将光子能量转化为电子能量,从而形成电子流。

利用
计数电路对电子流进行计数,可以得到光子的数量。

光电计数器具有高敏感度、精确计数和快速响应的特点,广泛应用于各个领域。

毕业论文光电计数器设计及制作

毕业论文光电计数器设计及制作

毕业论文光电计数器设计及制作光电计数器是一种常见的数字传感器,可以通过光电元件对光强度进行测量,并将得到的信号转换成数字信号进行计数。

本文将介绍光电计数器的设计和制作过程。

一、原理介绍光电计数器的基本原理是利用光敏元件(比如光敏二极管)和计数器芯片(比如74LS76)实现对光强的测量和数字计数。

具体流程如下:1. 光敏元件接收光信号,将光信号转化为电信号。

这里我们使用光敏二极管,通过照射它来产生电流(或电压)信号。

2. 信号放大。

由于光敏二极管产生的电流信号非常微弱,需要经过一个放大器进行放大,通过构建像素放大器来对信号进行放大。

3. 信号滤波处理。

由于光信号中包含噪声,在进行信号测量之前需要对信号进行滤波处理,通常可以采用低通滤波器来消除高频噪声。

4. 数字计数。

将上述处理之后的信号输入74LS76芯片进行数字计数,可以实现对光信号的计数。

其中,74LS76是一款可同步74LS系列预置式双稳态计数器,包含两个独立恒压源的JK触发器。

二、设计过程1. 光敏元件的选择。

在本设计中,我们选择了光敏二极管作为光敏元件,其灵敏度较高,响应速度较快,此外成本也相对较低。

需要注意选择合适的工作波长(根据不同应用场景的光源波长进行选择)。

2. 像素放大器的设计。

为了放大光敏二极管产生的微弱信号,我们需要构建一个像素放大器。

放大器的主要部件包括一个放大电路和一个反馈电路。

电路设计采用了双运算放大器,具备高增益、高输入阻抗和低噪声等特点。

反馈电路采用了电压跟随器结构,能够实现电压放大,同时对电压进行平滑处理,起到滤波作用。

3. 滤波器设计。

为了消除光信号中的高频噪声,我们采用了一级低通滤波器。

该低通滤波器采用R-C串联结构,通过改变电容的大小可以调节滤波器的截止频率。

4. 计数器的选择。

在本设计中,我们选择了74LS76芯片作为计数器。

这款芯片具有高速、低功耗、低成本的特点,可以满足光电计数器的计数要求。

三、制作过程1. 光电元件的连接。

(最新)光电计数器_实验报告

(最新)光电计数器_实验报告

(最新)光电计数器_实验报告电子系统课程设计设计题目,光电计数器作者,指导教师,光电计数器实验报告工业生产中常常需要自动统计产品的数量,数字式电子计数器有直观和计数精确的优点,目前已在各种行业中普遍使用。

本次设计的光电计数器采用光电传感器与计数器实现对物件的数目统计。

光电式传感器是将光信号转化为电信号的一种传感器。

我们采用的传感器为红外光电传感器。

一、设计内容及要求设计并制作一个光电计数器装置。

1(基本部分(1)发光器件和光接收器件之间的距离大于1m;(2)有抗干扰技术,防止背景光或瓶子抖动产生误计数; (3)每计数100,用灯闪烁2s指示一下;(4)LED数码管显示计数值。

2(发挥与扩展部分(1)发光器件和光接收器件之间的距离大于2m;(2)每计数100,用灯闪烁2s指示一下,同时喇叭发出提示音; (3)设计一个倒计数器。

二、设计方案1.基本思路我们的设计思路是将基本部分与发挥部分统筹考虑,进行方案设计。

第一、光信号的采集,光能否被接收会产生不同的信号,将其转换成高低电平;第二、计数器记录高低电平的变化,实现计数功能;第三、计数器计满后,输出信号通过单稳态触发器,产生2秒延时,同时驱动相应的蜂鸣器电路与LED电路。

2.器件选择计数器:由于计数要求为100,且可以倒计数,我们选择了74LS190计数器,其计数方式为模10的8421BCD码计数。

对射管:74LS190为上升沿计数,因而我们选用使用广泛的红外对射管,光路断开时,输出低电平;光路建立时,输出高电平。

一个上升沿恰好对应一次计数。

此外,它还有集成度高,使用灵活,输出电平稳定等优点。

数码管:我们选用的是8段共阳数码管。

显示译码器:由于计数器输出为8421BCD码,且数码管为共阳,因此我们选用74LS47。

555定时器:由于在计满数后,进位端产生低电平,且要求在两秒内驱动提示电路,因此我们采用被广泛使用的NE555定时电路,用作单稳态触发器。

光电计数为零的原因

光电计数为零的原因

光电计数为零的原因
光电计数器是一种常用的计数器,其原理是利用光电效应将光信号转
化为电信号进行计数。

然而,在使用过程中,有时会出现光电计数为
零的情况,这可能与以下几个方面有关:
一、检测物体不适合使用光电计数器
如果被检测的物体表面太亮或太暗,或者表面不平整、有反射等情况,都会影响光线的传播和反射,从而导致光电计数器无法正常工作。


时需要对被检测物体进行调整或更换其他类型的检测设备。

二、设备故障
如果光电计数器本身存在故障,也会导致计数为零。

例如,探头出现
损坏、接线松动等情况都可能导致计数器无法正常工作。

此时需要进
行维修或更换设备。

三、环境干扰
在使用过程中,如果周围环境发生变化(如温度变化、灰尘堆积等),也会对光电计数器产生干扰。

此时需要对环境进行调整或采取相应的
防护措施。

四、操作不当
操作人员在使用过程中存在误操作也可能导致计数为零。

例如,探头
放置不正确、设备设置错误等情况都可能导致计数器无法正常工作。

此时需要对设备进行重新设置或培训操作人员。

综上所述,光电计数器计数为零的原因可能与被检测物体、设备故障、环境干扰以及操作不当等方面有关。

在使用过程中,需要仔细检查和
排除各种可能的因素,确保光电计数器能够正常工作。

光电计数器(数电)

光电计数器(数电)

(理工科类)Ⅰ、课程设计(报告)题目:对生产线产品计数的光电计数器设计Ⅱ、课程设计(论文)工作内容一、课程设计目的1、通过电子技术基础(模电、数电)课程的学习,使学生在掌握基本理论知识的基础上,学会常见电子集成器件的使用。

2、通过设计一个模数结合的小型电子电路系统,使学生了解电子电路设计的方法、步骤;学会元器件的选用;学会用软件仿真验证设计方案的正确性;培养综合运用知识和独立开展实践创新的能力。

3、通过搭建调试电路,进一步熟悉相关仪器设备的使用。

4、通过绘制电路图,熟悉Protel的使用,扩充专业知识技能。

5、规范化训练学生撰写技术研究报告,提高书面表达能力。

二、课程设计任务与要求1、基本部分:1)由光耦实现产品监测;2)由计数器对脉冲信号计数,计数结果经LED显示;3)计数范围0~99,电路具备手动清零功能。

4)根据要求设计电路,画出原理图,用EWB仿真,验证设计方案;5)学习使用Protel,画出系统的PCB图。

2、发挥部分:1)计数结果要求实现十位数的动态“零消隐”,即:当计数结果不超过10时,十位数的那个数码管无显示;2)报告第三部分给出其他设计方案,画出仿真实现的电路图,并与参考方案对比分析。

三、课程设计考核平时20%;验收40%;报告40%摘要21世纪是信息时代,是获取信息,处理信息,运用信息的时代。

传感与检测技术的重要性在于它是获得信息并对信息进行必要处理的基础技术,是获取信息和处理加工信息的手段,无法获取信息则无法运用信息。

光电式传感器是将光信号转化为电信号的一种传感器。

它的理论基础是光电效应。

这类效应大致可分为三类。

第一类是外光电效应,即在光照射下,能使电子逸出物体表面。

利用这种效应所做成的器件有真空光电管、光电倍增管等。

第二类是内光电效应,即在光线照射下,能使物质的电阻率改变。

这类器件包括各类半导体光敏电阻。

第三类是光生伏特效应,即在光线作用下,物体内产生电动势的现象,此电动势称为光生电动势。

光电计数器课课程设计

光电计数器课课程设计

光电计数器课课程设计一、教学目标本章节的教学目标是使学生掌握光电计数器的基本原理和操作方法,培养学生运用光电计数器进行数据采集和分析的能力。

具体目标如下:1.知识目标:–了解光电计数器的工作原理;–掌握光电计数器的结构及其各部分功能;–理解光电计数器在实际应用中的重要性。

2.技能目标:–能够正确操作光电计数器进行数据采集;–能够对光电计数器采集的数据进行处理和分析;–能够运用光电计数器解决实际问题。

3.情感态度价值观目标:–培养学生对光电技术的兴趣,激发学生探索科学的热情;–培养学生合作意识,提高学生团队协作能力;–使学生认识到光电计数器在现代科技领域的重要地位,培养学生的创新精神。

二、教学内容本章节的教学内容主要包括光电计数器的工作原理、结构及其在实际应用中的基本操作。

教学大纲如下:1.光电计数器的工作原理:介绍光电计数器的工作原理,使学生了解光电计数器是如何实现计数的。

2.光电计数器的结构:讲解光电计数器的各个部分及其功能,使学生能够认识并区分各个部分。

3.光电计数器的操作方法:演示光电计数器的操作步骤,引导学生动手实践,掌握操作方法。

4.光电计数器在实际应用中的案例分析:通过实际案例,使学生了解光电计数器在生产、科研等领域的应用,培养学生运用知识解决实际问题的能力。

三、教学方法为了提高教学效果,本章节将采用以下教学方法:1.讲授法:讲解光电计数器的工作原理、结构及其操作方法,使学生掌握基本知识。

2.实验法:安排实验环节,让学生动手操作光电计数器,加深对知识的理解和记忆。

3.案例分析法:通过分析实际案例,使学生了解光电计数器的应用,提高学生的实践能力。

4.讨论法:学生进行分组讨论,培养学生的合作意识和团队协作能力。

四、教学资源为了支持教学内容和教学方法的实施,本章节将准备以下教学资源:1.教材:选用符合教学大纲的教材,为学生提供系统、科学的学习材料。

2.参考书:提供相关参考书籍,丰富学生的知识体系。

光电计数器原理分析图

光电计数器原理分析图

光电计数器设计
1.电路图及其工作原理
(1)光电测试部分
图中Optoisolator1是一个红外对管(反射式),OP07是放大器,SN74HC04N是非门当有物体挡住时,红外对管的阻值很小,放大器输出端会有微小电流输出,逆时针方向流过1.2M的电阻,此时非门的1端为高电瓶。

当没有物体挡住时,红外对管阻值很大,放大器输出端没有电流输出,此时非门1端为低电瓶。

同时非门有对信号整形的作用,使其输出成矩形波状。

(2)数码管显示部分
2.proteus仿真电路图
由于proteus软件没有红外对管,所以此电路图使用光敏电阻代替,调节光的强度以代表原理图中的物体遮挡。

由于proteus软件是理想化处理,所以原理图中的1.2M电阻在仿真时要调得非常大结果才比较明显,因为放大器输出的噪声电流跟理想化有差距。

3.电路板实物图。

光电计数器电路工作原理

光电计数器电路工作原理

光电计数器电路工作原理嘿,咱聊聊光电计数器电路工作原理呗!这可老神奇啦!光电计数器,那可是个厉害的小玩意儿。

就像一个小精灵,默默地数着来来往往的东西。

光电计数器电路是咋工作的呢?简单来说,就像一个小侦探在破案。

它有个光发射的部分,就像一个小太阳,不断地发出光芒。

这光芒照到要计数的东西上,然后反射回来。

这就好比你拿个手电筒照在墙上,光会反弹回来一样。

接着呢,有个光接收的部分。

这个部分就像一个小眼睛,紧紧地盯着反射回来的光。

一旦有光进来,它就马上反应。

这就像一个站岗的士兵,时刻保持警惕。

要是没有光接收部分,那光发射出去不就白费了吗?肯定不行啊!当光被接收后,电路就开始工作啦。

这就像一个小工厂,各个零件都忙碌起来。

有个部分专门负责把光信号变成电信号。

这就像一个魔法师,把一种东西变成另一种东西。

光信号变成电信号后,就可以被处理啦。

这就好比把一堆乱麻整理成一根绳子,变得有条有理。

然后呢,还有个计数的部分。

这个部分就像一个小会计,一笔一笔地记着数。

每来一个光信号,它就加一。

这可不能出错,要是记错了数,那可就麻烦啦。

就像你去买东西,收银员算错了钱,你能乐意吗?肯定不乐意啊!光电计数器电路还得稳定可靠。

不能一会儿好一会儿坏,那可不行。

就像一辆车,得能稳稳地跑在路上,不能突然抛锚。

要是电路不稳定,一会儿能计数,一会儿不能计数,那还有啥用?肯定没用啊!你说,光电计数器电路神奇不?那肯定神奇啊!它能在不知不觉中数清楚那么多东西。

我的观点是,光电计数器电路通过光发射、光接收、信号转换和计数等过程,实现了准确计数的功能,是个非常实用的小发明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电计数器的设计摘要: 21世纪是信息时代,是获取信息,处理信息,运用信息的时代。

传感与检测技术的重要性在于它是获得信息并对信息进行必要处理的基础技术,是获取信息和处理加工信息的手段,无法获取信息则无法运用信息。

光电式传感器是将光信号转化为电信号的一种传感器。

它的理论基础是光电效应。

这类效应大致可分为三类。

第一类是外光电效应,即在光照射下,能使电子逸出物体表面。

利用这种效应所做成的器件有真空光电管、光电倍增管等。

第二类是内光电效应,即在光线照射下,能使物质的电阻率改变。

这类器件包括各类半导体光敏电阻。

第三类是光生伏特效应,即在光线作用下,物体内产生电动势的现象,此电动势称为光生电动势。

这类器件包括光电池、光电晶体管等。

光电效应都是利用光电元件受光照后,电特性发生变化。

敏感的光波长是在可见光附近,包括红外波长和紫外波长。

数字式电子计数器有直观和计数精确的优点,目前已在各种行业中普遍使用。

数字式电子计数器有多种计数触发方式,它是由实际使用条件和环境决定的。

有采用机械方式的接触式触发的,有采用电子传感器的非接触式触发的,光电式传感器是其中之一,它是一种非接触式电子传感器。

采用光电传感器制作的光电式电子计数器。

这种计数器在工厂的生产流水线上作产品统计,有着其他计数器不可取代的优点。

关键词:计数光电传感器单片机设计内容与要求:1、发光器件和接收器件之间的距离大于一米;2、有抗干扰技术,防止由于抖动产生的误计数;3、每计数100,用等闪烁2s指示一下;4、LED数码显示计数器。

目录第1章引言 (2)第2章光电计数器的系统设计 (3)2.1系统硬件设计 (3)2.1.1各组成模块 (4)2.1.2主要芯片元器件引脚图及功能介绍 (7)2.2系统软件设计 (9)第3章设计原理 (10)3.1计数测量 (10)3.2 中断方式计数 (11)第4章软件程序的设计 (11)4.1 时间控制设置 (11)4.2 10ms定时设置 (12)4.3 中断闪烁2S (12)4.4 总程序调试 (12)第一章引言传感与检测技术是一门知识面广、综合程度高、实用性很强的专业课程。

它从传感器的基本理论入手,着重讲叙传感器的结构与感测原理,传感器是一个二端口的装置,不同的传感器输入-输出特性不同,同一传感器适应不同的被测信号呈现的特性也有所不同。

尤其当被测信号为静态信号时两种状态下,传感器的输入-输出特性完全不同。

感测技术在许多新技术、新器件里都有应用,在课程安排上,以信息的传感、转换、处理为核心,从基本物理概念入手,阐述热工量、机械量、几何量等参数的测量原理及方法。

自动化的计数提高了工业生产上的效率以及准确性,计数的自动化和智能化最终能加速实现现代化的工业。

随着生产自动化、设备数字化和机电一体化的发展,对光电计数器的需求日益增多。

光电计数器设计一方面是为了巩固课本所学知识,完成知识迁移,另一方面加强动手能力,识图能力及设计能力。

光电计数器在实际生产中已经得到了广泛的应用。

在应用中,光电传感器部分主要有光电断路器和光电开关,但在工业生产中主要使用的是光电开关,计数电路有CD 系列芯片组成的,也有74系列芯片组成的,实际功能差别不大。

基本设计要求:本次设计光电计数器,要求使用红外发光二极管、红外接收管,实现计数功能,掌握红外传感器相关知识,掌握单片机汇编语言,学会如何实现无接触计数。

该系统可用于工厂生产线工件计数,通过红外光电管接收到的信号情况,由单片机程序来控制是否计数。

提高设计要求:要求光电发射级与接收级有1米以上的间距,能有较强的抗干扰性。

每100灯闪烁2S 。

第二章 光电计数器的系统设计2.1系统硬件设计 1.工作原理检测部分使用红外对管:发射管和接收管。

当有物体穿越光路时,接收头输出为高电平,反之则为低电平,接收头的电平信号经由一电压比较器反相后送入CPU 。

接单片机P3.2口,启动计数器开始计数,并将计数后所得的数据送给LED 显示。

系统的原理 框图如图1所示。

图 1 系统电路原理图2.硬件电路的组成本系统的硬件电路由光电转换、单片机系统、计数显示组成。

生产流水线 红外线发射红外线接收89C51单片机系统计数显示XTAL218XTAL119ALE 30EA31PSEN 29RST 9P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P1.0/T21P1.1/T2EX 2P1.23P1.34P1.45P1.56P1.67P1.78P3.0/RXD 10P3.1/TXD 11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD17P3.6/WR 16P3.5/T115P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427U1AT89C52SRCFILE=计数器\ji.hexR1560R2560R3470R R4470R R5470R R6470RR7470R R8560321411U3:ALM324R13182K12U4:A7404D2LED-BLUER141kX1CRYSTALC130pC230pC31nFR154kQ1FZT789AQ2FZT789AQ3FZT789AR910kR1010kR1110k65412U2OPTOCOUPLER-NPNR1210KR1620KR17180mR18180mR19200本智能光电计数系统是利用AT89C2051定时/计数器来工作的。

当有物体通过时将信号挡住,会遮断红外信号,红外接收器接收不到信号。

每次遮断电压信号通过电压比较器产生高电压通过电压比较器和非门使AT89C2052单片机的P3.2产生低电平,经内部程序运算后进行加法处理,其结果通过六个LED 数码管显示出来AT89C2052单片机的P 口分时输出数据(段选码),用于点亮六个数码管,AT89C2051单片机的P0.0、P0.1、 P0.2、P0.3,P0.4,P0.5,P0.6,P0.7则选通A,B,C,D,E,F,G,DP. 2.1.1 各模块组成在此系统中共涉及了个模块,分别是光电转换、单片机系统模块、计数显示。

红外的发射和接收模块位于生产流水线的两侧,通过感知红外线被阻断并将此信号转化为电信号输入到计算机内,由单片机实现技术功能,而单片机系统是光电计数系统的核心模块,实现的主要功能包括: 1)实现0―999范围计数.2)要求使用红外发光二极管、光电管检测; 3)每计数100,用灯闪烁2S 指示一下4)要求光电发射管与接收管有1米以上的间距,发射器和接收器分别置于流水线两边,中间没有阻挡时发射器的红外线射到接收器,接收器接收到发射来的红外线,经反相处理使之没有信号输出,有工件经过时挡住光路,接收器失去红外线信号便输出一个脉冲信号到单片机进行计数。

因此要达到要求的功能就需要单片机控制部分要有很高的精确性和自动化,各部件的有机结合实现了光电技术系统的功能。

1.光电转换红外对管和R1,R2组成的光电检测电路,负责把被检测的数量转换成电压脉冲信号。

工作时红外发光管发出的红外光线投射到光敏三极管上,光敏三极管导通,集电极输出低电平;当红外光线被检测物遮断时,光敏三极管截止,集电极输出高电平。

遮断一次输出一个脉冲,因此脉冲的个数就是被检测物的数量红外对管中红外发光管的正向电流为50mA ,在环境温度为25°C 时,它的最大耗散功率100mW ,正向压降1.5V 。

当环境温度上升时,允许的正向工作电流还要减小。

为了留有一定的欲量,取它的工作电流为20mA 。

则 R1=mAV V 205.15-=175 ῼ取R1=200ῼ,其中5V 是电源电压,1.5V 是红外发光管的正向压降。

根据红外对管的计数手册可知:使红外发光管的正向电流为20mA,当有遮挡时,光敏三极管Iceo=100nA ;无遮挡时,光敏三极管的Ic=0.7mA.为了使光敏三极管能工作在开关状态,则R2=mA V V 7.04.05-=6.7K ῼ取R2=10K ῼ,其中5V 是电源电压,0.4V 是光敏三极管的饱和压降。

红外对管的输出脉冲信号加到一个迟滞比较器(或者称作施密特触发器)。

它有两个门限电压,分别称作上门限电压V1和下门限电压V2,两者的差值称为门限宽度获迟滞宽度,即:ΔV=V1-V2假设比较器输出高电平V3,则V3和Vcc 共同加到同向输入端的合成电压:V=533R R R +V3+535R R R +Vcc 当比较器输出为低电平V4时,按同样的分析求得加到同向输入端的合成电压为:V5=533R R R +V4+535R R R +Vcc若Vi 有大减小的通过V5时,则Vo 由Vo1上跃到Vo2。

可见,上式所示的V5就是比较器的下门限电压,即V2=V5.相应的迟滞宽度为:ΔV=V1-V2=535R R R +(Vo1-Vo2)调节R1和R2,可以改变ΔV.同时Tw=2ln (1+352R R )在实际应用中,利用迟滞比较器可以有效的克服噪声和干扰的影响,利用迟滞比较器,只要噪声和干扰的大小处在迟滞宽度内,就不会引起错误的阶跃。

因此,当被测物每遮挡一次红外对管时,施密特触发器输出一个宽度为Tw 的脉冲,该脉冲送到计数器去计数和显示。

C4是滤波电容,可提高单稳态触发器的工作稳定性。

2、单片机系统模块以及计数显示模块XTAL218XTAL119ALE 30EA31PSEN 29RST 9P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P1.0/T21P1.1/T2EX 2P1.23P1.34P1.45P1.56P1.67P1.78P3.0/RXD 10P3.1/TXD 11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD17P3.6/WR 16P3.5/T115P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427U1AT89C52SRCFILE=C:\Documents and Settings\Administrator\桌面\光电计数\我.hexR1560R R2470R R3470R R4470R R5470R R6470RR7470R R8470RR94k7R104k7R114k7Q1PNPQ2PNPQ3PNPD2LED-BLUER141kX1CRYSTALC11nFC21nFC31nFR154k7当向P3.2口输入低电平时,经内部程序运算后进行加法处理,其结果通过三个数码管显示出来。

相关文档
最新文档