用数形结合的方法解题
高考数学运用数形结合的思想方法解题专项练习(含答案解析)
高考数学运用数形结合的思想方法解题专项练习(含答案解析)一、单选题1.(2023春·江苏盐城·高三盐城中学校考)若直线():40l x m y +−=与曲线x =有两个交点,则实数m 的取值范围是( )A .0m <<B .0m ≤<C .0m <≤D .0m ≤【答案】B【解析】x =()0,0,半径为2的圆在y 轴以及右侧的部分,如图所示:直线():40l x m y +−=必过定点()0,4, 当直线l 与圆相切时,直线和圆恰有一个交点,2=,结合直线与半圆的相切可得m =当直l 的斜率不存在时,即0m =时,直线和曲线恰有两个交点, 所以要使直线和曲线有两个交点,则0m ≤故选:B.2.(2023春·湖北随州·高三随州市曾都区第一中学校考阶段练习)已知x ,y 是实数,且22410x y x +−+=,则21y x ++的最大值是( )A B .116C .336D 【答案】D【解析】方程可化为()223x y −+=,表示以()2,021y x ++的几何意义是圆上一点与点A ()1,2−−连线的斜率,设21k y x =++,即()21y k x +=+,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB 时斜率最大.=k =,所以21y x ++故选:D .3.(2023春·陕西渭南·高一统考)已知函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()24f x x x =−.若函数()()()R g x f x m m =+∈,则函数()g x 的零点个数不可能是( )A .1B .2C .3D .4【答案】A【解析】函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()224(2)4f x x x x =−=−−,作出()f x 的图像如图:,故当0m =时,()()g x f x =有3个零点;当0m <或4m =时,()()g x f x m =+的图像与x 轴有两个交点,则函数有2个零点; 当04m <<时,()()g x f x m =+的图像与x 轴有4个交点,则函数有4个零点;由于()()g x f x m =+也为偶函数,结合()f x 图像可知,()()g x f x m =+不可能有1个零点, 故选:A4.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨−<⎩, 若函数()()()g x f x f x =−−,则函数()g x 的零点个数为( ) A .1 B .3 C .4 D .5【答案】D【解析】当0x >时,0x −<,()3f x x −=当0x <时,0x −>,()e xf x −−=()()()3e ,00,0e 3,0x x x x g x f x f x x x x −⎧−>⎪∴=−−==⎨⎪+<⎩,()()()()g x f x f x g x −=−−=−,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =−>,()3e 0x g x '=−>,令()3e 0x g x '=−>,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln3)3ln330g =−>,而()226e 0g =−<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=−< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞−上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.5.(2023春·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)若函数()f x 的定义域为(),1f x −R 为偶函数,当1x ≥−时,()31xf x −=−,则函数()()12g x f x =−的零点个数为( )A .0B .1C .2D .4【答案】D【解析】令310x −−≥解得0x ≤,令310x −−<解得0x >, 所以当1x ≥−时,()11,1033111,03xxxx f x x −⎧⎛⎫−−≤≤⎪ ⎪⎪⎝⎭=−=⎨⎛⎫⎪−+> ⎪⎪⎝⎭⎩, ()1f x −为偶函数,所以()1f x −的图像关于y 轴对称,所以()f x 的图像关于直线=1x −轴对称, 故作出()f x 的图像如下,令()()102g x f x =−=,即()12f x =, 由图像可知,()f x 的图像与12y =的图像共有四个交点, 所以函数()()12g x f x =−的零点个数为4个.故选:D.6.(2023·山东潍坊·统考模拟预测)已知函数()f x 是定义域为R 的偶函数,且(1)f x −是奇函数,当01x 剟时,有()f x =()(2021)y f x k x =−−的零点个数为5,则实数k 取值范围是( ) A .15<2<1kB .16<3<1kC k k =D .k <k 【答案】C【解析】∵偶函数()f x ,()()f x f x ∴−=,(1)f x −是奇函数,得(1)(1)f x f x −=−−−,即 ()(2)f x f x =−−−,(2)()f x f x −−−=−,得4T =,()(2021)0f x k x −−=,即()y f x =与(2021)y k x =−的图像交点的个数,因为4T =,即为()y f x =与(1)y k x =−的图像交点的个数,因为()f x =k 应该在1k 与2k 之间或为3k ,213k k k ==k k =故选:C.7.(2023·全国·高三专题练习)已知函数()()ln2,01ln 2ln 2,12xx f x x x ⎧<<⎪=⎨−+≤<⎪⎩,若存在02a b c <<<<使得()()()f a f b f c ==,则111ab bc ca++的取值范围是( ) A .20,93⎛⎫⎪⎝⎭B .20,3⎛⎫+∞ ⎪⎝⎭C .∞⎫+⎪⎪⎣⎭ D .⎫⎪⎪⎣⎭【答案】A【解析】∵()()ln 2ln2ln 22x x ⎡⎤−+=−⎣⎦,∴ln 2y x =与()ln 2ln2y x =−+的图像关于直线1x =对称,作出()f x 的大致图像如图所示,易知2b c +=,由ln2ln2a b =,即ln 2ln 2a b −=,ln 40ab =,得14ab =, ∵112b <<,∴11124a<<,得1142a <<,∴()()421621112181244a a a a b c a c ab bc ca abc a a+++++++====−−. 设81t a =−, 则()1,3t ∈,111117184t ab bc ca t ⎛⎫++=++ ⎪⎝⎭. 17t t+≥=t 故当()1,3t ∈时,令()1718h t t t +=+,()h t 单减,()()80136,33h h ==, 故1172018,943t t ⎛⎫⎛⎫++∈ ⎪ ⎪⎝⎭⎝⎭. 故选:A 二、多选题8.(2023·全国·高三专题练习)已知1F ,2F 是双曲线()2222:10,0x yE a b a b−=>>的左、右焦点,过1F 作倾斜角为30的直线分别交y 轴与双曲线右支于点,M P ,1PM MF =,下列判断正确的是( )A .2160PF F ∠=,B .2112MF PF =C .ED .E的渐近线方程为y =【答案】BCD【解析】如下图所示,因为1PM MF =,即M 为1PF 中点,O 为12F F 中点,所以2//OM PF ,因为12OM F F ⊥,所以212PF F F ⊥,所以212PF F π∠=,2112MF PF =,A 错误,B 正确; 由212PF F F ⊥知:22b PF a=,又122F F c =,1230PF F ∠=,2c =)222c a ac −=220e −,解得:e =C 正确;所以==c e a 223c a =,所以22222b c a a =−=,所以ba= 所以E 的渐近线方程为y =,D 正确.故选:BCD .9.(2023·全国·高三专题练习)已知直线l 过抛物线2:8C y x =的焦点F l 与抛物线交于,P Q 两点(P 在第一象限),以,PF QF 为直径的圆分别与y 轴相切于,A B 两点,则下列结论正确的是( ) A .32||3PQ =B .AB =C .若M 为抛物线C 上的动点,(2,1)N ,则min (||||)4MF MN +=D .若0(,M x 为抛物线C 上的点,则9MF = 【答案】ABC【解析】设直线PQ 的方程为:y x ﹣2),与28y x =联立整理可得:3x 2﹣20x +12=0,解得:x 23=或6,则P (6,,Q (23,;所以|PQ |=623++4323=,选项A 正确;因为F (2,0),所以PF ,QF 的中点分别为:(4,,(43,,所以A (0,,B (0,,所以|AB =, 选项B 正确;如图M 在抛物线上,ME 垂直于准线交于E ,可得|MF |=|ME |, 所以|MF |+|MN |=|ME |+|MN |≥NE =2+2=4,当N ,M ,E 三点共线时, |MF |+|MN |最小,且最小值为4,选项C 正确;对于选项D ,若0(M x 为抛物线C 上的点,则05x =,又4p =, 所以072pMF x =+=,选项D 错误. 故选:ABC.10.(2023春·河南·高三校联考)在三棱锥A BCD −中,平面ABD ⊥平面BCD ,BD CD ⊥,2BD CD ==,ABD △为等边三角形,E 是棱AC 的中点,F 是棱AD 上一点,若异面直线DE与BF AF 的值可能为( ) A .23B .1C .43D .53【答案】AC【解析】由ABD △为等边三角形,取BD 的中点O ,连接AO ,则AO BD ⊥ 又平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD = 所以AO ⊥平面BCD ,由BD CD ⊥过O 作与CD 平行的直线为y 轴,分别以,OB OA 为,x z 轴建立如图所示的空间直角坐标系,因为2BD CD ==,则()1,0,0B ,()()(1,0,0,1,2,0,D C A −−,所以12E ⎛− ⎝⎭.设()F a ,则12DE ⎛= ⎝⎭,()BF a =−,则28=13a =−或23a =−, 故1233AF AD ==或2433AF AD ==.故选:AC11.(2023秋·福建三明·高一福建省宁化第一中学校考阶段练习)已知G 为ABC 的重心,60BAC ∠=︒,2AB AC ⋅=,则||AG uuu r的可能取值为( )A .23B .1CD .32【答案】CD【解析】如图,G 是ABC 的重心,记,,AB c AC b AB a ===, 则2211()()3323AG AD AB AC AB AC ==⨯+=+, 222222111()(2)(4)999AG AB AC AB AB AC AC b c =+=+⋅+=++,又1cos6022AB AC bc bc ⋅=︒==,即4bc =,所以2228b c bc +≥=,当且仅当2b c ==时等号成立,所以214(84)93AG ≥⨯+=.即233AG ≥CD 满足. 故选:CD .12.(2023春·湖北黄冈·高三校考开学考试)已知ABC 的重心为G ,过G 点的直线与边AB ,AC 的交点分别为M ,N ,若AM MB λ=,且AMN 与ABC 的面积之比为920,则λ的可能取值为( )A .43B .32C .53D .3【答案】BD【解析】如图,()AM MB AB AM λλ==−,1AM AB λλ∴=+,即1AB AM λλ+=,设AC t AN =,则11()333tAG AB AC AM AN λλ+=+=+, M G N 、、三点共线,1=133t λλ+∴+,12t λ∴=−, 所以12AC AN λ⎛⎫=− ⎪⎝⎭,AMN ∴与ABC 的面积之比为920,191sin sin 2202AM AN A AB AC A ∴=⨯⨯, 即112029λλλ+⎛⎫⎛⎫−=⎪⎪⎝⎭⎝⎭,化简得22990λλ−+=,解得32λ=或3. 故选:BD13.(2023春·湖南长沙·高三长沙一中校联考)在三维空间中,定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件:①()a a b ⊥⨯,()b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量的方向依次与右手的拇指、食指、中指的指向一致,如图所示);②a b ⨯的模sin ,a b a b a b ⨯=,(,a b 表示向量a ,b 的夹角). 在正方体1111ABCD A B C D −中,有以下四个结论,正确的有( )A .11AB AC AD DB ⨯=⨯ B .111AC A D ⨯与1BD 共线C .AB AD AD AB ⨯=⨯ D .6BC AC ⨯与正方体表面积的数值相等【答案】ABD【解析】对于A ,设正方体的棱长为1,在正方体中1,60AB AC =︒,则111sin ,2AB AC AB AC AB AC ⨯===, 因为11//BD B D ,且1160AD B ∠=︒,所以1,120AD DB =︒,所以111sin ,2AD DB AD DB AD DB ⨯=== 所以11AB AC AD DB ⨯=⨯,所以A 正确;对于B ,1111AC B D ⊥,111AC BB ⊥,1111B B B D B ⋂=,111,B B B D ⊂平面11BB D D ,11AC ⊥平面11BB D D ,因为1BD ⊂平面11BB D D ,所以111BD AC ⊥,同理可证11BD A D ⊥, 再由右手系知,111AC A D ⨯与1BD 同向,所以B 正确;对于C ,由a ,b 和a b ⨯构成右手系知,a b ⨯与b a ⨯方向相反, 又由a b ⨯模的定义知,sin ,sin ,a b a b a b b a a b b a ⨯===⨯, 所以a b ba ⨯=−⨯,则AB AD AD AB ⨯=−⨯,所以C 错误; 对于D ,正方体棱长为a ,266sin 456BC AC BC AC a a ⨯=⋅︒=⨯, 正方体表面积为26a ,所以D 对. 故选:ABD .三、填空题14.(2023·全国·高三专题练习)已知函数243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩.若关于x 的方程()()()2[]2110f x m f x m +−−+=有6个不同的实数根,则m 的取值范围___________.【答案】7,5⎛− ⎝⎭【解析】因为243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩,所以当0x ≤时,()243f x x x =++开口向上,对称轴为2x =−,()()min 21f x f =−=−,两零点为1,3x x =−=−;当0x >时,()411f x x =−+,则()f x 在()0,∞+上单调递减,零点为3x =,且()1f x >−; 由此作出()f x 的图像如图,.令()t f x =,则当13t −<<时,()t f x =有三个实数根,因为()()()2[]2110f x m f x m +−−+=有6个不同的实数根,所以()22110t m t m +−−+=必须有两个不等实根12,t t ,且()21,1,3t t ∈−,令()()2211g t t m t m =+−−+,则()()103021132Δ0g g m ⎧−>⎪>⎪⎪⎨−−<−<⎪⎪>⎪⎩,即()()()()212110932110621221410m m m m m m m ⎧−−−+>⎪+−−+>⎪⎨−<−<⎪⎪−−−+>⎩,解得75m −<<7,5m ⎛∈− ⎝⎭.故答案为:7,5⎛− ⎝⎭. 15.(2023春·全国·高一期末)已知函数241,1()log 3,1xx f x x x ⎧−⎪=⎨+>⎪⎩…集合21()2()02M x f x t f x t ⎧⎫⎛⎫=−++=⎨⎬ ⎪⎝⎭⎩⎭∣,若集合M 中有3个元素,则实数t 的取值范围为________.【答案】{|0t t =或1}2t ≥【解析】令()f x m =,记21()(2)2g m m t m t =−++的零点为12,m m ,因为集合M 中有3个元素,所以()f x 的图像与直线12,y m y m ==共有三个交点,则,12001m m =⎧⎨<<⎩或12101m m =⎧⎨<<⎩或12001m m >⎧⎨<<⎩当10m =时,得0=t ,212m =,满足题意; 当11m =时,得12t =,212m =,满足题意;当12001m m >⎧⎨<<⎩时,(0)01(1)1202g t g t t =>⎧⎪⎨=−−+<⎪⎩,解得12t >. 综上,t 的取值范围为{|0t t =或1}2t ≥.故答案为:{|0t t =或1}2t ≥16.(2023秋·黑龙江绥化·高一校考期末)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知30,12=︒=A b ,若ABC 有两解,写出a 的一个可能的值为__________.【答案】7(满足(612)a ∈,均可,答案不唯一) 【解析】由于满足条件的ABC 有两个,则sin b A a b <<,即612a <<.故答案为:7(满足(612)a ∈,均可,答案不唯一).17.(2023·海南·统考模拟预测)已知函数()314f x x m π⎛⎫=++− ⎪⎝⎭在3,04π⎡⎤−⎢⎥⎣⎦上有3个零点1x ,2x ,3x ,其中123x x x <<,则1232x x x ++=______. 【答案】53π−【解析】令()0f x =314x m π⎛⎫++= ⎪⎝⎭,故()314f x x m π⎛⎫++− ⎪⎝⎭的零点为函数()314g x x π⎛⎫++ ⎪⎝⎭与函数y =m 交点的横坐标,作出函数g (x )在3,04π⎡⎤−⎢⎥⎣⎦上的大致图像:令3()42x k k πππ+=+∈Z ,解得()123k x k ππ=+∈Z , 令1k =−,得4x π=−,则由图知2322=4x x ππ⎛⎫+=⨯−− ⎪⎝⎭,令2k =−,得712x π=−,则由图知12772=126x x ππ⎛⎫+=⨯−− ⎪⎝⎭, 故123752263x x x πππ++=−−=−. 故答案为:53π−﹒18.(2023春·辽宁沈阳·高三沈阳市第一二〇中学校考阶段练习)已知双曲线22:14x y C m −=与直线2y x =无交点,则m 的取值范围是_____. 【答案】(]0,16【解析】依题意,由22:14x y C m −=可得0m >,双曲线C 的渐近线方程为y =,因为双曲线C 与直线2y x =无交点,所以直线2y x =应在两条渐近线上下两部分之间,2≤,解得016m <≤,即(]0,16m ∈. 故答案为:(]0,16..。
数形结合的几个经典题
数形结合1.如图1,大长方形的面积从整体看为S=m(a+b+c),同时这个大长方形的面积也可以从局部表示成:S=S1+S2+S3=ma+mb+mc;于是有m(a+b+c)=ma+mb+mc。
2.如图2,大长方形的面积从整体可以表示成(a+b)(m+n),同时这个大长方形的面积也可以从局部表示成S=S1+S2+S3+S4=ma+mb+na+nb;于是有(a+b)(m+n)=ma+mb+na+nb.。
3.如图3,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;若把小长方形S4旋转到小长方形S3的位置,则此时的阴影部分的面积又可以看成S1+S2+ S3=(a+b)(a-b)。
于是有(a+b)(a-b)=a2-b2。
4.如图4:将边长为b的小正方形放到边长为a的正方形的一角,空白部分的面积从整体计算为a2-b2;而如果从局部考虑,其面积可以看作为两个梯形S1+S2之和,其面积为()()()()))((22babababababa-+=-++-+。
于是有(a+b)(a-b)=a2-b2。
5.如图5,大正方形的面积从整体可以表示为(a+b)2,从局部可以表示为也可以表示为S=S1+ S2+ S3+S4,同时S=a2+ab+ab+b2=a2+2ab+b2,于是有(a+b)2=a2+2ab+b2。
6.如图6,从整体看,这个图形的面积为(a+b)(a+2b),从局部我们可以看出,它分为6部分,这6部分的面积之和为a2+3ab+2b2,所以(a+b)(a+2b)= a2+3ab+2b2。
数形结合例题例1在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2析解:图1的阴影部分面积等于边长为a的正方形面积与边长为b的正方形的面积差,表示为a2-b2.图2中阴影部分是长方形,其中长为a+b,宽为a-b,其面积为(a+b)(a-b).根据两个图形中阴影部分的面积相等,有a2-b2=(a+b)(a-b).故选C.例2如图3是四张全等的长方形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式________.析解:空白部分的面积可看成是一个正方形,它的边长为a-b,所以面积为(a-b)2;空白部分面积又可看成大正方形面积与四个长方形面积的差,大正方形的面积为(a+b)2,a ba -baba -b甲乙每个长方形的面积为ab ,所以空白部分面积为(a +b )2-4ab .因此有恒等式(a +b )2-4ab =(a -b )2成立.故填(a +b )2-4ab =(a -b )2.例3 图4是由一个边长为a 的正方形与两个长、宽分别为a 、b 的小长方形拼接而成的长方形ABCD ,则整个图形可表达出一些等式,请你写出其中任意三个等式______、______、_______.析解:读懂题意,观察图中数据关系是关键,其次利用面积写出代数式,.根据图形的组合特点,由面积间的相等关系,写出符合要求的等式,如: a 2+2ab =a (a +2b );a (a +b )+ab =a (a +2b ); a (a +2b )-a (a +b )=ab ;a (a +2b )-ab =a (a +b ); a (a +2b )-a 2=2ab ;a (a +2b )-2ab =a 2.数形结合解题1.将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个关于a 、b 的恒等式为( )A()222b 2ab a b a +-=- B.()2222b ab a b a ++=+C()()22b a b -a b a -=+D.()ab a b a a -=-22.图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )A .22()()4m n m n mn +--= B .222()()2m n m n mn +-+= C .222()2m n mn m n -+=+ D .22()()m n m n m n +-=-3.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .2m +3B .2m +6C .m +3D .m +64.七年级学生小明剪出了多张如图⑴中的正方形和长方形的卡片,利用这些卡片他拼成了如图⑵中的大正方形,由此验证了我们学过的公式:2222)(b ab a b a ++=+.现在请你选取图⑴中的卡片(各种卡片的张数不限),并利用它们在图⑶中拼出一个长方形,由此来验证等式:2232)2)((b ab a b a b a ++=++.(请按照图⑴中卡片的形状来画图5.数形结合是一种重要的数学方法,,你能利用这种方法把算式(2a+b)(a+2b)=2a 2+5ab+2b 2的合理性解释清楚吗?aab b⑴(2)(3)。
例说数形结合解决求函数最值问题
例说数形结合解决求函数最值问题数形结合就是将抽象的数的方式与直观图形结合起来,既分析其代数含义又分析其几何含义。
在数与形的结合上往往采用“以形助数”或“以数辅形”的手段寻找解题的思路。
求函数的最值是中学数学的重要内容之一,题型多变,解法灵活,也是历年高考的必考内容,下面仅就这一方面利用数形结合的技巧举例说明。
例1:求函数的值域。
分析:我们可以先进行换元,去掉根号,然后在寻找解决问题的突破口。
解:令则原函数表达式等价转化为,即为过点和点的直线的斜率。
作出示意图像,经观察,计算可知的变化范围为。
评注:此题若采取代数方法,比较繁琐,但是给代数问题赋以一个合适的几何意义,问题就变得鲜活,简单。
例2:已知,求的最小值。
【分析】将看成是直线上的点A(x,y)与定点B(1,1)间的距离,则的最小值也就是点B(1,1)到直线的距离。
解:是由直线上动点与定点间的距离,显然的最小值是点到直线的距离,即例3.求函数的最值。
分析:等式右边根号内同为的一次式,如简单的换元无法转化为二次函数求最值,故用常规方法比较难。
如能联想到直线的截距,数形结合换元后,以形助数,则可轻松解决。
令则则所函数化为以为参数的直线族,它与椭圆在第一象限的部分有公共点又例4:对于任意函数f(x)、g(x),在公共定义域内,规定f(x)*g(x)=min{ f(x)、g(x)},若f(x)=,g(x)=,求f(x)*g(x)的最大值。
分析:本题可首先确定函数的定义域,然后作出函数的图像,由图像可求出解析式,最后求最大值。
解:由题意得:的解为x=2故其图象如图,显然在点P时f(x)*g(x)取最大值,最大值为1。
例5.甲、乙两地相距S千米,汽车从甲地匀速驶到乙地,速度不得超过c 千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v(km/h)的平方成正比,比例系数为b,固定部分为a 元(1)把全程运输成本y(元)表示为v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?分析:本题可根据实际问题抽象出函数模型,然后根据不等式性质、最值等知识,结合函数的图像,即可求解。
巧用数形结合思想求函数最值
巧用数形结合思想求函数最值六招破解函数最值及巧用数形结合求参数问题一、六招破解函数最值问题函数最值问题一直是高考的一个重要的热点问题,在高考中占有极其重要的地位.为了让大家能够更加系统、全面地掌握函数最值问题的解决方法,下面就其问题的常用解法,分类浅析如下:1.配方法配方法是求二次函数最值的基本方法,如函数F(x)=6z/(x)2+/7/(x)+c(qHO)的最值问题,可以考虑用配方法.[例 1]已知函数 =(eA—a)2+(e A—tz)2(tzeR, aHO),求函数 y 的最小值.2.换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和-:角换元,我们可以根据具体问题及题目形式灵活选择换元的方法,以便将复杂的函数最值问题转化为简单的函数最值问题.如可用三角换元解决形如/+/=1及部分根式函数形式的最值问题.3・不等式法利用不等式法求解函数最值,主要是指运用基本不等式及其变形公式來解决函数最值问题的一-种方法.常常使用的基本不等式有以下几种:aIb#a|b。
er2ab(a, b 为实数),° ^y[ab(a0, b20), abW。
J 些艺(a, b为实数).14[例3]函数fix) =-+t^(O<x< 1)的最小值为・兀1X4.函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种方法在高考屮是必考的,多在解答题中的某一问出现.[例4]已知函数»=xln x,则函数心)在也r+2](r>0)上的最小值为.5.导数法设函数兀Q在区间[a, b]上连续,在区间(a, b)内可导,则的在[a, b]上的最大值和最小值应为兀0在(d, b)内的各极值与», fib) 中的最大值和最小值.利用这种方法求函数最值的方法就是导数法.[例5]函数»=x3-3x+l在闭区间[—3,0]上的最大值,最小值分别是,•6.数形结合法数形结合法是指利用函数所表示的几何意义,借助几何方法及函数的图象求函数最值的…种常用的方法.这种方法借助儿何意义,以形助数,不仅可以简捷地解决问题,还可以避免诸多失误,是我们开阔思路、正确解题、提高能力的-种重要途径.[a,[例 6]对 a, bWR,记 max|d, b\=\i1 函数=max||x+l|, |x—2||(x£R)的最小值是.二、巧用数形结合妙解3类求参数问题通过以下三个方面体会数形结合思想的运用.1.通过基本函数模型及变式的图象求参数的取值范围或值|lg x|, OvxWlO,若a,b,c互不相等,[例1]已知函数fix)=<1—2^+6,兀>10,_!»=»=»,则abc的取值范围是(2•通过函数的零点与方程的解的相互关系求函数零点和方程的解及参数的范围[例2]已知mGR,函数/(x)=x2+2(m2+l)x+7,g(x)=-(2m2—m+2)x+m.(1)设函数p(x)=/U)+g(x)・如果p(x)=0在区间(1,5)内有解但无重根,求实数加的取值范围;d,总存在唯一非零实数b(bHa),使得/2(d)=/z(b)成立?若存在,求加的值;若不存在,请说明理由.3.通过圆或圆锥曲线的部分图形与函数图象的关系来求参数的范围[例3]如果函数y=l+p4—F(|x|W2)的图象与函数2)。
数形结合解题方法和技巧
数形结合解题方法和技巧
本文介绍数形结合解题方法和技巧,帮助读者更好地理解和应用这一方法,提高数学解题能力。
数形结合是一种常用的数学解题方法,它将数学问题与几何图形相结合,通过直观的几何图形来帮助解决复杂的数学问题。
下面,我们介绍一些数形结合解题的方法和技巧。
一、利用几何图形的性质
几何图形具有许多特定的性质,如线段长度、角度大小、平行关系等。
在解题时,我们可以利用这些性质来帮助我们理解问题,甚至可以通过这些性质来推导出未知数的值。
例如,在一道求解三角形题目中,我们可以利用三角形的边角关系,通过余弦定理或正弦定理来求解未知角度或边长。
二、利用几何图形的变换
几何图形可以通过平移、旋转、翻折等变换来改变形态,而这些变换并不改变图形的本质属性。
在解题时,我们可以利用这些变换来帮助我们理解问题。
例如,在一道求解相似三角形题目中,我们可以
通过旋转或翻折等变换将原图形变换成易于求解的图形,然后再进行计算。
三、利用几何图形的切分
几何图形可以通过切分来将复杂的问题分解成简单的问题。
在解题时,我们可以利用这些切分来帮助我们理解问题。
例如,在一道求解曲线图形题目中,我们可以通过切分将曲线分割成一些简单的线段或曲线,然后再分别进行计算,最后再将结果相加得到答案。
数形结合是一种非常有用的解题方法,可以帮助我们更好地理解和解决数学问题。
数形结合思想在解题中的应用(包含30例子)
数形结合思想在解题中的应用(包含30例子)数形结合思想在解题中的应用(包含30例子)一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
22-+-=214x y如等式()()3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析 例1.的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2.解不等式x x +>2解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222法二、数形结合解法:令,,则不等式的解,就是使的图象y x y x x x yx 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
“数形结合”巧解小学数学思维题
9(a+b+c)<70
a+b+c<70÷9
a+b+c< 8
a+b+c大于6小于8,所以a+b+c=7
例4: 计算:
我们用一个大正方形 表示整数1,依次表示出 、 、 ……
从图中可以 ,所以:
=1-
=
例5:计算:6²+8²+14²+22²+36²+58²
6、8、14、22、35、58这个数列是斐波那契数列,6²可以看作是边长为6的正方形,依次类推。
不难看出:6²+8²+14²+22²+36²+58²
=(36+58)×58-(8-6)×6
=5452-12
=5440
例6:甲、乙两站相距610千米,两站之间有丙站。快车从甲站开往丙站,已经行驶了90千米,慢车从乙站开往丙站,已经行驶了它全部路程的 ,这时丙站正好处在快慢两车中间的位置上,求甲站到丙站的距离。
例2:(16+△)÷(20-△)=3
根据题意有(16+△)是(20-△)的3倍,把(20-△)看作一份,(16+△)有这样的3份。由此画出线段图:
20- △:
16+△:
一份(20-△)就是36÷(1+3)=9 △=20-9=11
例3:9a+10b+11c=70(五年级思维题)
(a,b,c是非0的自然数)
求a+b+c=
先画长9、宽a的长方形,再画长10、宽b的长方形,最后画长11、宽c的长方形。
把这个图形补成一条边长11、一条边长(a+b+c)的长方形。由图可知,这个长方形的面积一定小于70,即:
用数形结合思想方法解题时的常见错误分析
像的延伸趋势不 同, 例 如 当 a= 2时 ,
原方程 无实 数解 :
/
g o
而 当 a=、 / 2时 ,
=
2便是 原方程的
/ f x 、
图1
o 。 时, g ( ) 一一 , 即直 线x = O 和y = l 是 函数 g ( x ) 的两条 渐近
察却 看不 出什么规 律来 ,这 时就需要 给 图形赋值 ,如 边长 、 角度等等 ,特别是在做选择题 时,只有一个答案是 正确答案 ,
用此种方法就 可能起到意想不到 的效果 .“ 以形 助数 ”是指把
0 ,o ≠1 )的图像 ,当 a 非常小时它们有 三个交点 ,此 时 ,方
程a  ̄ = l o g 解 的有 3 个.
e
错解 :在 同一坐标系中 ,分 别画出函数 ’ , = ( a > 1 )及 y = l o g ( a > 1 )的图像 ,如图 1 所示 ,可见它们没有公共点 ,所
以方程确无实数解 .
z :y = k x - 1 与曲线 y ) 没有公共点 ,求 k的最大值.
故命题正确.
解是因为没有充分注意到两 图像 的递增 “ 速度 ” !要 比较两个 图像的递增 速度 ,确实很难 由图像直观而得 . 本题 可以先猜想 ,
后用数学归纳法证 明. 本题的正确答案是 当 n = 2 .4时 2 n = n : ,
例1 . 判断命题 “ 当a > l 时 ,关 于 的方程 a  ̄ = l o g 。 无实
误差 ,或者 “ 无 中生有” 的不 准确 .有 时可能会 出现一些错 误. 本文就运用数形结合 时容易出现 的失误做个 简单的归类分 析 ,希望 引起你的重视.
数形结合思想方法在解题中妙用论文
浅谈数形结合思想方法在解题中的妙用数学研究的对象是客观世界的空间形式和数量关系,即研究“数”与“形”的科学,因此数形结合思想贯穿于整个数学知识体系当中。
数形结合的思想方法应用广泛,巧妙运用数形结合的思想方法对解决一些抽象的数学问题,不仅直观而且易于发现解题途径,还能避免复杂的计算与推理,大大简化了解题过程,可起到事半功倍的效果。
本文结合笔者的教学实践从以下几个方面阐述数形结合思想方法在解题中的妙用。
一、解决集合问题利用韦恩图法解决集合之间的关系问题。
一般用圆来表示集合,两圆相交则表示两集合有公共元素,两圆相离则表示两个集合没有公共元素。
利用韦恩图法能直观地解答有关集合之间的关系从而使问题得以简化,使运算快捷明了。
例1、有48名学生,每人至少参加一个活动小组,参加数理化小组的人数分别为28,25,15,同时参加数理小组的8人,同时参加数化小组的6人,同时参加理化小组的7人,问同时参加数理化小组的有多少人?分析:我们可用圆a、b、c分别表示参加数理化小组的人数(如右图),则三圆的公共部分正好表示同时参加数理化小组的人数。
用n表示集合的元素,则有:即:∴,即同时参加数理化小组的有1人.二、解决不等式问题1.求不等式的解集例2.解:法一、常规解法:法二、数形结合解法:显然,利用函数的图像可以使解题过程免去分类讨论,学生较易理解。
2.证明不等式例3.求证:(a与c、b与d不同时相等)分析:考察不等号两边特点为,其形式类同平面上两点间距离公式.用两点间距离公式模型构造辅助图形,找出其蕴含几何关系,使证明变得简单多了。
在平面直角坐标系中设a(a,b),b(c,d),o(0,0).如图|ab|=,|ao|=,|bo|=,当a、b、o三点不共线时,|ab|<|ao|+|bo|.当a、b、o三点共线,且a、b在o点同侧时,|ab|<|ao|+|bo|.当a、b、o三点共线,且a、b在o点异侧时,或a、b之一与原点o重合时,|ab|=|ao|+|bo|综上说明不等式成立.三、解决函数问题在函数教学中,函数及其图象为数形结合的教学开辟了广阔的天地。
初二数形结合题解题技巧
初二数形结合题解题技巧
1. 观察图形特点:首先要仔细观察数形结合题中的图形,寻找图形的特点和规律。
例如,图形的对称性、重复性、变化规律等。
2. 运用数学知识:根据题目所给条件和图形的特点,运用基本的几何知识和数学公式进行推理和计算。
如长度、面积、角度的计算等。
3. 利用图形的辅助线:当图形较为复杂时,可以尝试画一些辅助线来辅助解题。
通过引入辅助线,可以将问题转化为更简单的几何问题或代数问题解答。
4. 运用逻辑思维:通过分析题目中的条件和信息,利用逻辑推理思维,找到图形之间的联系和规律,从而推导出答案。
5. 多角度思考:解题时不要固守一种思维方式,可以尝试从不同角度思考问题,寻找多种可能性和解题思路。
6. 锻炼空间想象力:数形结合题通常涉及到对图形的空间变换和投影等概念,因此锻炼空间想象力能够帮助更好地理解和解决问题。
总之,解答数形结合题需要考虑到数学知识的应用,观察和分析图形特点,灵活运用解题技巧和思维方式,以及锻炼创造性和逻辑思维能力。
解析几何解题技巧之“数”“形”结合策略份
解析几何解题技巧之“数”“形”结合策略(一)份解析几何解题技巧之“数”“形”结合策略 1解析几何解题技巧之“数”“形”结合策略一、“数”“形”结合解题法的理论概述(一)方法释义首先,关于解析几何的释义,其泛指几何学上一个小分支,主要用代数方法研究集合对象之间的关系和性质,因此也称作“坐标几何”。
其包括平面解析几何和立体解析几何两部分,其中,平面解析几何是二维空间上的解析几何;立体解析几何是三维空间上的解析几何,而立体解析几何则比平面解析几何更加复杂、抽象。
其次,关于数形结合的.释义,即是把题目所给条件中的“数”与“形”一一对应,用简单的、直观的几何图形以及条件之间的位置关系把复杂的、抽象的数学语言以及条件之间的数量关系结合起来,通过形象思维与抽象思维之间的结合,以形助数,或以数解形,从而使复杂的问题简单化,抽象的问题具体化,以起到优化解题途径的目的。
(二)解题思路在遇到解析几何时,能清楚条件与问题之间的数量关系与位置关系,将“数”与“形”一一对应,便能够快速找到解题突破点。
事实上,当熟练掌握到数形结合方法,能够举一反三时,遇到的所有题目都将是同一题目了。
因此,掌握数形结合思,就必须厘清下列关系:第一点,复数、三角函数等以几何条件和几何元素为背景建立的概念;第二点,题目所给的等式或代数方程式的结构中所含明显的几何意义;第三点,函数与图象的对应关系;第四点曲线与方程的对应关系;第五点,实数与数轴上的点的对应关系。
二、“数”“形”结合法在几何解题中的实例解析(一)解析几何中圆类问题实践证明,数形结合对速解圆类问题的帮助很大,因为在一般解题过程中,解析几何圆类问题主要围绕求圆与圆之间的位置关系、圆与直线的位置关系、圆的标准方程等几方面展开。
比如在判断圆与直线的位置关系时,通过建立直角坐标系,便可以直观地观察到直线在圆外,但是答题需要写出确切的答题步骤才能得分。
这时就需要有“数”“形”结合解题思想的辅导——以数解形:通过计算圆心到直线的距离,距离比圆的半径大即表明直线在圆外。
中职数学解题技巧之“数”“形”结合———以高教版教材为例
㊀㊀解题技巧与方法㊀㊀122数学学习与研究㊀2023 16中职数学解题技巧之 结合中职数学解题技巧之 数 形 结合㊀㊀㊀ 以高教版教材为例Һ张泽润㊀(安徽亳州新能源学校,安徽㊀亳州㊀236700)㊀㊀ʌ摘要ɔ解题教学一直都是中职数学教学的重中之重.在解题教学中渗透数学思想有利于增进学生对数学解题技巧的感悟,进一步提高学生审题㊁解题的效率.文章基于中职数学解题教学实际教情对应用数形结合思想传授学生解题技巧展开研究,在指出 数 形 定义㊁介绍数形结合思想的同时,结合高教版课程教学案例指出教师可以从以形助数㊁以数解形㊁数形结合三个层面出发落实解题教学工作,希望为提升中职数学解题教学质量提供参考.ʌ关键词ɔ中职数学;解题;数形结合;技巧中职数学解题教学中,教师应认识到 数 与 形 的教育价值,同时结合中职数学解题教学的根本需求合理设计解题教学方案,引导学生在以形助数㊁以数解形㊁数形结合的过程中体会化简问题㊁转换问题的方法,进一步丰富学生的解题技巧.一㊁ 数 与 形 的定义及数形结合思想的应用价值(一) 数 与 形 的定义数 是一种抽象的概念,用于表示长短㊁多少㊁高低等,本质上是一种度量符号.在数学研究中, 数 的定义十分广泛,包括整数㊁分数㊁小数㊁无理数㊁负数㊁用字母表示的数㊁方程㊁函数㊁代数等. 形 是一种直观概念,指的是可以看得见的图形.在数学研究中, 形 可以指代直线㊁圆㊁三角形㊁球㊁正方体㊁双曲线㊁正方形等多种可以用肉眼直接观察的图形.(二)数形结合思想的应用价值数 与 形 相互依存,也可以相互转化.数形结合思想的应用价值主要体现在以下两方面:一方面,有助于加深学生对数学解题理论的理解.数学解题理论包括数学概念㊁数学性质㊁数学方法等多项内容.中职数学教学内容具有一定的抽象性,直接为学生讲解的话,无法使其在第一时间领会解题理论,会限制其解题能力的形成与发展.借助数形结合思想,教师可以用直观的图示将复杂㊁抽象的数学理论展示出来,增进学生对数学理论的理解,进一步提升学生的解题能力.另一方面,有利于提升学生数学解题思维的灵活性.中职数学解题教学涉及一些形式新颖㊁内容复杂的数学习题.常规思路无法快速㊁高效地解决此类问题,容易使学生产生负面的解题情绪.将数形结合思想用于中职数学解题教学中,有利于引导学生从 数 形 两个角度分析数学问题,让其在形转数㊁数转形的过程中开展一系列的思维活动,增强学生的思维灵活性,使学生总结出更多的解题技巧.二㊁ 数 形 结合解决中职数学问题的基本技巧(一)以形助数,加强直观,快速解决问题中职数学解题教学中的代数问题具有抽象性强㊁复杂程度高的特征.应用以数解数的方法可以解决大部分代数问题,但其解题过程复杂,错误率高.在解决代数问题时,教师可以指导学生应用以形助数的方法解决代数问题,将代数问题转化为直观㊁具体的图形简化问题,帮助学生快速确定解题思路,快速解决代数问题.1.用 形 助力集合问题求解,提高学生审题能力审题是解决数学问题的第一项程序,也是正确解题的关键.让学生掌握审题技巧可以极大程度地缩短学生的审题时间,从而提高学生的解题效率.集合问题看似抽象,但应用数形结合思想却可以快速提炼题目的主干信息,从而确定解题思路,加快解题步伐.解决集合问题时,教师可以指导学生根据题意绘制数轴图㊁文氏图等多种图形,让学生在绘图㊁看图的过程中明确题目关键信息,确定问题求解思路,为高效解题奠定基础.以高教版 集合的运算 一课的解题教学为例,教师可以先应用多媒体课件呈现典型例题,再指导学生用以形助数的方式解决问题.㊀㊀㊀解题技巧与方法123㊀数学学习与研究㊀2023 16例1㊀设集合A={x|1<x<4},集合B={x|x2-2x-3ɤ0},则Aɘ(∁RB)=(㊀㊀).A.(1,4)㊀B.(3,4)㊀C.(1,3)㊀D.(1,2)ɣ(3,4)这一问题的正确答案为B,主要考查学生对求不等式型集合的交㊁并集方法的掌握情况.在解决这一问题时,教师可以指导学生通过绘制数轴图的方式将复杂问题直观呈现出来,让学生在观察图形㊁分析图形的过程中确定正确答案.求解这一例题的思路如下:求出集合B中x的取值范围,即B={x|x2-2x-3ɤ0}={x|-1ɤxɤ3};绘制数轴图,并根据计算求值结果在数轴图上画出x的范围;接着,将求值结果代入原问题中,根据所求内容,推理出Aɘ(∁RB)={x|1<x<4}ɘ{x|x<-1或x>3}.这时,学生将这一步骤的计算结果同样表现在数轴图上,即可直观观察出问题答案为{x|3<x<4},最终得到正确答案.2.用 形 助力不等式问题求解,提高学生解题效率不等式问题是中职数学解题教学中的常见问题.很多学生在解不等式问题时习惯性地使用作差法㊁作比法等代数方法.然而,此类方法的计算量较大,对学生的运算能力要求较高.部分学生存在运算能力差㊁马虎的问题,得出的运算结果准确率不高,继而影响不等式问题的求解质量.为此,教师可以指导学生应用 形 解决不等式问题,让学生在直观看图的过程中比较大小,从而提高学生的解题效率.以高教版 一元二次不等式 一课的解题教学为例,有问题如下:例2㊀设函数f(x)=12æèçöø÷1+x,xɤ0,x,x>0,ìîíïïïï若f(x0)>1,则x0的取值范围是(㊀㊀).A.(-1,1)㊀㊀㊀㊀㊀㊀B.(-1,+ɕ)C.(-ɕ,-2)ɣ(0,+ɕ)D.(-ɕ,-1)ɣ(1,+ɕ)这一问题是典型的求不等式解集的问题,不仅考查了不等式的基本知识,还考查了函数㊁利用函数的单调性解不等式等知识.解这一题时,教师可以指导学生借助数形结合思想解决问题,用以形助数的方式简化问题.比如,教师可以根据原题信息,在平面直角坐标系中绘制出函数图像,并在图像中绘制直线y=1,直线y=1与函数图像分别交于点(-1,1)与(1,1).这时,教师再指导学生观察图像,就可以由f(x)>1推理出x<-1或x>1,从而确定问题的正确选项为D选项.这样,学生就能在解题学习中体会到以形助数方法的优越性,不仅丰富了解题方法,还锻炼了数学联想㊁几何直观㊁逻辑推理等综合能力.(二)以数解形,细致入微,巧妙解决问题中职数学解题教学中的几何问题具有直观性强的特征.但是,直观性强并不意味着题目简单.很多学生在解决几何问题时缺乏解题思路,最终解题失败.对此,教师可以指导学生应用以数解形的方法解决此类问题,通过为图形赋值等方式帮助学生理解图形的真正含义,从而帮助学生确定解题方向,巧妙解决几何问题.1.用 数 助力立体几何问题求解,培养学生直观想象素养立体几何问题看似简单,实则不易解决.由于部分学生缺乏良好的几何直观㊁数学联想㊁数学抽象等能力,不能在解题时快速找到 题眼 ,导致几何问题解决效率低下.为此,教师可以将数形结合思想用于立体几何解题教学中,通过指导学生应用代数的方法解决立体几何问题,为学生指明解决立体几何问题的方向,从而提升其数学直观水平,使学生能够巧妙地解决立体几何难题.以高教版 柱㊁锥㊁球及其简单组合体 一课的解题教学为例,有问题如下:例3㊀әABC的平面直观图әAᶄBᶄCᶄ是边长为a的正三角形,那么әABC的面积是(㊀㊀).A.32a2㊀㊀B.34a2㊀㊀C.62a2㊀㊀D.6a2这一问题是典型的立体几何直观图问题.在这一问题中,已知信息只有 әABC的平面直观图әAᶄBᶄCᶄ是边长为a的正三角形 这一句话,部分学生很容易陷入解题的迷雾中.这时,教师可以应用以数解形的思想方法,指导学生解题.比如,先绘制әABC的直观图әAᶄBᶄCᶄ,取BᶄCᶄ所在的直线为xᶄ轴,BᶄCᶄ的中点为Oᶄ,以过Oᶄ与Oᶄxᶄ成45ʎ角的直线为yᶄ轴,过Aᶄ作MᶄAᶄʊOᶄyᶄ,交xᶄ轴于点Mᶄ,则在RtәAᶄOᶄMᶄ中,OᶄAᶄ=32a,øAᶄMᶄOᶄ=45ʎ,接着展开相应的推理与运算,即可得到正确答案为C选项.2.用 数 助力解析几何问题求解,培养学生逻辑推理素养解析几何具有点与实数对一一对应㊁曲线与方程㊀㊀解题技巧与方法㊀㊀124数学学习与研究㊀2023 16一一对应的特征,是中职数学几何教学的重点内容.在中职数学解题教学中,解析几何问题多体现为求直线与圆的位置关系㊁圆与圆的位置关系,等等.同时,受题目信息限制,很多时候学生无法应用几何方法求证直线与圆㊁圆与圆的位置关系,不能正确解答数学题目.为此,教师可以在教学中渗透数形结合思想,指导学生应用代数的方式进行逻辑推理,构建数学模型,以此求解出问题答案.以高教版 两点间的距离与线段中点的坐标 一课的解题教学为例,例4㊀已知әABC的三个顶点分别为A(1,0),B(-2,1),C(0,3),试求BC边上的中线AD的长度.针对这一问题进行解题教学时,教师可以适时渗透以数解形的数学思想方法,先根据原题绘制出解题示意图,再指导学生假设BC的中点D的坐标为(xD,yD),进行推理:解㊀由B(-2,1),C(0,3)得到xD=(-2)+02=-1,yD=1+32=2,故:|AD|=(-1-1)2+(2-0)2=22,则BC边上的中线AD的长度为22.(三)数形结合,综合应用,高效解决问题数形结合百般好,隔离分家万事休.我国数学家华罗庚的这句名言说明了 数 形 结合的重要性.在中职数学解题教学中,很多学生在解题时存在解题视野局限㊁解题思路单一的问题,不能高效解决数学问题.为此,教师可以在解题教学中渗透数形结合思想,指导学生综合代数㊁几何的相关知识解决问题,从而提高学生灵活解决数学应用问题的能力.以高教版 函数的应用 一课的解题教学为例,教师可以为学生呈现典型例题:例5㊀已知f(x)=x2+3x-5,xɪ[t,t+1],若f(x)的最小值记为h(t),请写出h(t)的表达式.针对这一例题进行解题教学时,教师可以先给学生3 5分钟的时间自主思考,之后应用数形结合思想进行思路点拨:依据函数f(x)=x2+3x-5的对称轴与区间的位置关系,结合函数图像确定f(x)在xɪ[t,t+1]上的增减情况,进而可以明确在何处取最小值.之后,教师可以在黑板上演绎解题过程,让学生学习更加新颖的解题方法:解㊀由于f(x)=x2+3x-5=x+32æèçöø÷2-294,所以抛物线f(x)的对称轴为直线x=-32,开口向上(如图1).图1根据图像推导可得:h(t)=t2+5t-1,tɤ-52,-294,-52<tɤ-32,t2+3t-5,t>-32.ìîíïïïïïïï通过解题可以发现,将数形结合思想用于函数问题的求解,可以使函数问题变得清晰㊁直观,有利于学生明确自身解题思路,从而快速求解函数问题.解题教学中,教师应抓住数形结合思想的渗透时机,同时不断组织类似的演绎教学活动,以此加深学生对数形结合思想的认识,提升学生的数学解题思维水平.结束语中职数学教学以培养学生的数学抽象㊁建模应用㊁几何直观等核心素养为主要教学追求,将更多教学资源融入数学解题教学是非常有必要的.在具体的解题教学过程中,教师应把握 数 形 的本质,根据 数 形 之间的具体关联合理开展解题教学工作,以此锻炼学生的审题㊁析题㊁解题能力,有效培养中职学生的数学学科综合素养.ʌ参考文献ɔ[1]袁亮驹.关于中职数学解题教学的思考[J].数理化解题研究,2022(27):65-67.[2]星蓉生.浅谈核心素养视角下的中职数学解题策略 直线与圆的方程 示例[J].数学大世界(上旬),2022(07):68-70.[3]成江涛.中职数学应用题解题策略[J].数学大世界(中旬),2020(09):77.[4]洪巧云.中职数学学生常用解题方法[J].试题与研究,2018(32):62-63.。
十种应用数形结合思想解题的方法
3
应用数形结合思想解题——十种典型题型
题型四、利用方程的根的关系解题
1 1 1、设 a,b,c 均为正数,且 2 = log 1 a , = log 1 b , = log 2 c .则( 2 2 2 2
a
b
c
)
A. a < b < c
B. c < b < a
C. c < a < b
A. 2a − 1 B. 1 − 2a C. 2− a − 1 D. 1 − 2− a
2、已知定义在 R 上的函数 f ( x) =
2 2x + 5 x + 2, x ∈ [0,1) f x ( ) ,且 f ( x + 2) = , g ( x) = , 2 x + 2 − ∈ − 2 x , x [ 1, 0) 0 在区间 [−5,1] 上的所有实根之和为( ) 则方程 f ( x) − g ( x) = B、 −6 C、 −7 D、 −8 A、 −5
应用数形结合思想解题——十种典型题型
题型一、求函数零点的个数或者图象交点的个数
= ) 2 − x ,则函数 y = 1、已知 f ( x
x 2
f ( x) 的零点个数是
.
2、函数 f ( x) = 2 ln x 的图象与函数 g ( x) = x 2 − 4 x + 5 的图象的交点个数为( A.3 B.2 C.1 D.0
x
取值范围是
.
2、已知函数 f ( x) = x − 2 + 1 , g ( x) = kx ,若方程 f(x)=g(x)有 两个不相等的实根,则实数 k 的取值范围是( ) 1 1 A. B. C. (1,2) 0,2 2,1
数形结合解题五例
数形结合解题五例“数形结合”是一门研究两类问题之间相互联系的学科,它是数学和几何学的实践性结合。
一个经典的数形结合解题模型是,利用数学分析的方法来解答具有几何关系的问题。
在这种情况下,解决问题的核心是发现数学模型,以及数学和几何知识之间的关系。
以下将介绍五个典型的数形结合解题案例。
第一个案例是:一只蚊子被困在圆柱形水桶内,现在要让它自由起飞,需要给桶中加多少水?这是一道数形结合案例,我们可以使用几何知识来解答这个问题。
首先,由于蚊子被困在圆柱形水桶内,我们可以确定桶的容积公式:容积=πr^2 h,其中r是桶的半径,h是桶的高度。
现在,我们需要确定桶中有多少水,因此需要求出桶中水的容积。
由于蚊子不能跨越水面,因此桶中水的容积必须超过蚊子跳过水面所需的高度,那么桶中水的容积就是h高度加上空气高度,因此总容积就是πr^2 (h+空气高度),空气高度可以根据蚊子跳出水面所必须的高度来计算。
最后,我们只需将总容积减去桶内现有水的容积,就可以得到桶中需要加的水的容积。
第二个案例是:在XY平面上,有一直角三角形ABC,AB=3,BC=4,求角A的大小。
这是一道解三角形的数形结合问题,我们可以使用勾股定理来解答,即a^2 + b^2 = c*2。
由此可知,a=3,b=4,那么角A的大小就是A=cos--1((a*2 - b*2)/2ab)=cos--1(-5/24)=90°-cos--1(5/24)。
通过以上的运算,可以知道 ABC的三角中,角A的大小是90°-cos--1(5/24)。
第三个案例是:以圆心A为原点,有一个半径为R的完整圆,两个圆心分别为B、C,B和C的距离为d,要求确定BC两点的坐标和圆心A的半径R。
这是一道数形结合问题,我们首先要求出圆心A的半径R,首先可以使用勾股定理求出R=√(d2-d2A)可以求得圆心A的半径R。
然后确定圆心B和C在XY平面上的坐标,我们需要知道圆心A的坐标,以及两个圆心B和C之间的夹角α,也就是两个圆心所在线段的切线夹角。
运用数形结合的思想方法解题1
运用数形结合的思想方法解题1【方法技巧与总结】1、以形助数(数题形解):借助形的生动性和直观性来阐述数与形之间的关系,把抽象问题具体化,把数转化为形,即以形作为手段,数作为目的解决数学问题的数学思想.2、以数辅形(形题数解):借助于数的精确性、规范性、严密性来阐明形的某些属性,把直观图形数量化,即以数作为手段,形作为目的解决问题的数学思想.【核心考点】核心考点一:研究函数的零点、方程的根、图象的交点【典型例题】例1.(2023·河北衡水·高三周测)设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x -=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,则在区间(]2,6-内关于x 的方程()()2log 20f x x -+=的根的个数为()A .1B .2C .3D .4【答案】D【解析】因为()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x -=+,所以(2)(2)(2)f x f x f x -=+=-,即()(4)f x f x =+,所以函数()f x 的周期为4,当[0,2]x ∈时,则[2,0]x -∈-,此时()()112xf x f x -⎛⎫-=-= ⎪⎝⎭,即()21,[0,2]xf x x =-∈,由()2log (2)0f x x -+=,(]2,6x ∈-,得()2log (2)f x x =+,分别作出函数()y f x =和2log (2)y x =+,(]2,6x ∈-的图象,如图所示,则由图象可知两个函数的图象的交点个数为4个,即方程()()2log 20f x x -+=的零点个数为4个.故选:D .例2.(2023·全国·高三专题练习)已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩ 的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-【答案】C【解析】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ',则00,12y y x x +==-,所以02y y =--,而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--,所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =,所以ln122AC k k =-=-=-;(2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得=1x -,所以2(1)31AB k k =-=-+=,故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点;在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-.故选:C .例3.(2023·上海·高三专题练习)已知函数f (x )=x 2+ex -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则实数a 的取值范围是()A .(-∞B .(-∞C .)+∞D .)+∞【答案】B【解析】()()2102xx e f x x =+-<关于y 轴对称得到的函数为()()2102x h x x e x -=+->,依题意可知()h x 与()g x 在()0,∞+上有公共点,由()()h x g x =得()221ln 2xx e x x a -+-=++,()11ln 2x x a e =++.对于函数1x y e=,在()0,∞+上单调递减,且()0,1y ∈.对于函数()1ln 2y x a =++,在()0,∞+上单调递增.当0a ≤时,1ln 2x +的图像向右平移a 个单位得到()1ln 2y x a =++,与1x y e=图像在()0,∞+上必有1个交点.当0a >时,1ln 2x +的图像向左平移a 个单位得到()1ln 2y x a =++,要使()1ln 2y x a =++与1x y e =图像在()0,∞+上有交点,则需当0x =时(也即y 轴上),()1ln 2y x a =++的函数值小于1x y e =的函数值,即0111ln ,ln 22a a e +<<,解得0a <<综上所述,a 的取值范围是(-∞.故选:B .例4.(2023·全国·高三专题练习)设()f x 是定义在R 上的偶函数,对任意的x R ∈,都有()()22f x f x -=+,且当[]2,0x ∈-时,()122xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()log 20(01)a f x x a -+=<<恰有三个不同的实数根,则实数a 的取值范围是()A .2142⎛⎫ ⎪ ⎪⎝⎭B .20,4⎛⎫⎪ ⎪⎝⎭C .10,2⎛⎫⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A【解析】 对于任意的x R ∈,都有(2)(2)f x f x -=+,∴函数()f x 关于直线2x =对称,又 当[2x ∈-,0]时,1()2()2xf x =-,且函数()f x 是定义在R 上的偶函数,故函数()f x 在区间(2-,6]上的图象如下图所示:若在区间(2-,6]内关于x 的方程()log (2)0a f x x -+=恰有3个不同的实数解则log 42a >-,log 82a <-,解得:21(,)42a ∈故选:A核心考点二:解不等式、求参数范围、最值问题【典型例题】例5.(2023春·山东枣庄·高三枣庄市第三中学校考阶段练习)设函数()()()222ln 2f x x a x a =-+-,其中0x >,a R ∈,若存在0x R ∈,使得()045f x ≤成立,则实数a 的值是A .15B .25C .35D .45【答案】A【解析】函数()f x 可以看作是动点2(,)M x lnx 与动点(,2)N a a 之间距离的平方,动点M 在函数2y lnx =的图象上,N 在直线2y x =的图象上,问题转化为求直线上的动点到曲线的最小距离,由2y lnx =得,22y x'==,解得1x =,∴曲线上点(1,0)M 到直线2y x =的距离最小,最小距离d ==则4()5f x ,根据题意,要使04()5f x ,则04()5f x =,此时N 恰好为垂足,由2021112MN a a k a a -===---,解得15a =.故选A .例6.(2023·全国·高三专题练习)m ≥对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是()A .1,2⎛⎤-∞⎥⎝⎦B .2⎛-∞⎝⎦C .(-∞D .(],2-∞【答案】B【解析】设T =T 的几何意义是直线y x =上的点(,)P a a 与曲线()ln f x x =上的点(,ln )Q b b 的距离,将直线y x =平移到与面线()ln f x x =相切时,切点Q 到直线y x =的距离最小.而()1f x x'=,令()0011f x x ='=,则01x =,可得(1,0)Q ,此时,Q到直线y x ==min ||PQ =所以2m ≤.故选:B例7.(2023春·黑龙江黑河·高三嫩江市高级中学校考期中)设函数()2x f x xe a =+,()x g x e ax =+,其中1a <,若存在唯一的整数0x 使得00()()f x g x <,则a 的取值范围是()A .3[2e-,1)B .3[2e,1)C .3[2e -,3)4D .3[2e ,3)4【答案】B【解析】由题意可知,存在唯一的整数x ,使得(21)x x e ax a -<-,构造函数()(21)x h x x e =-,则()(21)x h x x e '=+.当12x <-时,()0h x '<;当12x >-时,()0h x '>.所以,函数()(21)x h x x e =-的单调递减区间为1(,)2-∞-,单调递增区间为1(,)2-+∞.函数()y h x =在12x =-处取得极小值1()2h -=如下图所示,由于(0)1h =-,3(1)h e-=-,所以,(1)(0)h h -<,结合图象可知,(0)0(1)(1)h a a h a a<⨯-⎧⎨-⨯--⎩ ,解得312a e <.故选:B核心考点三:解决以几何图形为背景的代数问题【典型例题】例8.(2023·全国·高三专题练习)已知3,||,||AB AC AB t AC t ⊥==,若点P 是ABC 所在平面内的一点,且3||||AB ACAP AB AC =-,则PB PC ⋅ 的最大值等于()A .8B .10C .12D .13【答案】C【解析】∵AB AC ⊥,∴可以A 为原点,,AB AC 所在直线为坐标轴建立平面直角坐标系;不妨设()30,,(,0)B t C t ,则(0,1)3(1,0)(3,1)AP =-=- ,故点P 坐标为(3,1)-则()33,1,(3,1)PB t PC t =--=-- ,∴()333(3)1310PB PC t t t t ⋅=---+-=-++ 令3()310,0f t t t t =-++>,则2()333(1)(1),0f t t t t t =-+=-+-≥',则当(0,1)t ∈时,()0f t '>,当(1,)t ∈+∞时,()0f t '<,则函数()f t 在[0,1)递增,在(1,)+∞上递减,则max ()(1)12f t f ==,即PB PC ⋅的最大值为12.故选:C .例9.(2023春·浙江杭州·高二学军中学阶段练习)222410282x x x x -+-+≤的解集为[],a b ,则ab 的值是()A .5B .42C .6D .7【答案】D【解析】设23y =,则3y =()()2222152x y x y -+-+≤.()()2222152x y x y -+-+=.()()2222152x y x y -+-+=±()()2222152x y x y -+=-+,两边平方可得,()()()22222215454x y x y x y -+=-+±-+,整理可得,()22527x y x ±-+=-,两边平方整理可得()22313y x --=.()()2222152x y x y -+-+=表示的点(),x y 在双曲线()22313y x --=上.()()2222152x y x y -+-+≤表示的点(),x y 在双曲线()22313y x --=上及其内部.222410282x x x x -+-+≤与不等式组()2223133y x y ⎧--≤⎪⎨⎪=⎩同解,整理可得2670x x -+≤.由已知可得,不等式2670x x -+≤的解集是[],a b ,所以2670x x -+=的两个解为a 、b ,根据韦达定理有7ab =.故选:D .例10.(2023春·安徽六安·(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,则k =()AB C D .2【答案】C【解析】如图所示:因为y =4为半径位于x 轴上方(含和x 轴交点)的半圆,(0)y kx k =>表示过坐标原点及第一三象限内的直线,(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,即半圆位于直线下方的区间长度为2,所以2,4a b ==,所以直线与半圆的交点(2,,所以k ==故选:C .。
浅谈用数形结合的数学思想方法解题
数学教学研究
第2 7卷第 1 期 2
2O O 8年 1 2月
浅谈 用数形 结合 的数 学思 想方 法解 题
高爱 军
甘 肃省 临洮 中学 70 0 3 50
分析 F -3 子联想 到直 线 的斜 率 再 联想  ̄b 式
一
数形结合 , 以形助数 , 以数 帮形 , 数具体 , 逻辑性
变式 求函数的值域 :
⑥[ ,) 一2 2. 运用数形结合 的 思想 方法 分析 解决 问题 时 , 需 把代数 问题进行变形 、 转化 , 利用 函数图像 的交 点或 几何 图形的距离 、 斜率可解. 运用数形 结合的思想 方
法分析解决问题 , 以提高解 题 速度 , 不 易想. 可 但 运 用数形结合的思 想方 法分 析解 决 问题时 , 把握 三 要 个原 则 : 一是 等 价性 原 则 , 注 意 由于 图形是 粗 略 要 的、 大致 的, 有时会有负面效应 ; 是双 向性原 则 , 二 既 进行几何 直观分析 , 又要进 行相应 的代数抽象探 索 , 仅对代数 问题 进行 几何 分析 容 易失真 ; 是简单 性 三
\
Y 一一丁
一— 一 ’
。 一4 + z一 2 + 5
=
z +堡
8 8 5
一4 井
+5
一 r 一百 一一 9
、
1 , 3
1
4× 1 3× 8 5— 6 4
‘——
一 :
广
1 3‘
9 4 1 × × 3
解 法 2 ( 形结 合 ) 数 先 变形, 让式子 有几何意 义 , 转
围— — .
≤i升号) 1 s( n ≤,
⑤不等式 2 +z >0成立 的 X的取值范 围是 一3
运用数形结合思想解题例析
、
利用数形结合的方法解决有关方程和不等式问题 y 十
例 1 若关 于 的方程 +2x+ k
( 1 A)
2
( )业 B
3
3 = 的两根都在区间 (1 3内, 、 I k0 一, )
求k 取 范 . 的 值 围
确 ,要
\ I
I /
图1
0
) ( )0 = 一 <, /
<3同 时成 立 ,
、丁 ( / 如图3 ,而上 = )
一
U
则表
图3
一
1 <一
示 圆上的点( , ,'与坐标原点( ,O ) 0 )
4 基 教 论 21年 期 2 础 育 坛[ 2 第1 j 0
一
【 明】 说 数形结合 法可以解决 一些既不是无理 方程 ,也 不是
二次或三次方程 的其 他方程或不 等式 ,也就是 超越 方程或者 不
等式. 例如本例题中。 :l g 的方程. l。 o I
二 、利用数 形结合法解决有关最大值最小值的问题 例 3 如果实数 , 满足 ( 一2 =3 )+ ,则 的最大值
( C)3 个
() 4 以几何元素和几何条件为背景建立起来 的概念 ,如三角
函数等 ;
( )1 D 个或 2 个或 3 个
解 :判 断方程 的根 的个 数
I l
() 5 所给 的等式或代数式的结构含 有明显 的几何意义 . 如等
式.
就 是 判 断 图 象 Y=Ⅱ 与 Y= ‘
有 2个实根 ,选 B .
j ,
图2
数形结合 的思想 方法应用广泛 ,常见 的如在 解方程和解不 等式 问题 中 ,在 求函数 的值域 、最值问题 中,在 三角函数解题 中,运用数形结 合思想 ,不仅直 观易发现解题途 径 ,而且能避
人教版五年级下册数学利用数形结合的方法解决问题教研活动记录
人教版五年级下册数学利用数形结合的方法解决问题教研活动记录人教版五年级下册数学利用数形结合的方法解决问题教研活动记录一、活动目标通过数学利用数形结合的方法解决问题的教研活动,旨在提高学生解决实际问题的能力和数形结合的思维能力。
通过本次活动,让学生了解数与形的关系,培养他们对问题的理解和思考能力,提升他们的综合运用能力。
二、活动过程1. 导入环节通过举例引导学生思考,如:根据给定的图形,画出相应的图形,并给出相应的数学问题。
然后组织学生进行小组讨论,分享并解决这些问题。
2. 模型讲解在导入环节的基础上,教师向学生介绍数形结合的概念和方法。
通过展示实际生活中的一些例子,让学生理解数形结合的重要性和应用价值。
教师以一个具体的问题为例,详细解释如何通过数学和图形的结合来解决问题。
学生跟随教师的讲解,逐步掌握数形结合的解题方法。
3. 分组探究教师将学生分成小组,每个小组的成员互相合作,通过观察、思考和实践解决不同类型的数学问题。
教师提供一些有挑战性的问题,并给予相应的指导,引导学生运用数形结合的方法进行解答。
同时,教师也鼓励学生自主提出问题,培养他们的创新思维和解决问题的能力。
4. 总结分享在小组探究的过程中,教师密切关注学生的学习情况,并及时给予指导和帮助。
活动结束后,组织学生进行总结分享,学生将自己的解题思路和方法分享给全班,让大家相互学习。
同时,教师在总结过程中指出学生存在的问题和不足之处,并提出相应的建议和学习计划。
三、活动效果经过本次教研活动,学生对数形结合的理解更加深入,并掌握了一定的运用能力。
他们能够通过数学和图形的结合解决实际问题,并且在实践中体会到了数学的美妙之处。
同学们的思维能力得到了发展,解题能力和表达能力也有了明显的提升。
四、教学反思通过本次活动,学生的学习热情得到了有效激发,并在实践中提升了数学思维能力和解题能力。
不过,在活动过程中,发现个别学生表现不够积极,可能是由于对数形结合还没有完全掌握,需要采取个别辅导和巩固。
中考代数几何-用数形结合的思想解题
中考用数形结合的思想解题1. 用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.方法点拨数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.类型一、利用数形结合探究数字的变化规律1. 如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A. 39SB. 36SC. 37SD. 43S答案与解析举一反三【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n 面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选 C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.【变式】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是______________.答案与解析【答案】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入 y=kx+b得:解得:则直线A1A2的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴A3C2=A3B3=B3C3=4,∴点B3的坐标为(7,4),∴B1的纵坐标是:1=20,B1的横坐标是:1=21-1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22-1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23-1,∴B n的纵坐标是:2n-1,横坐标是:2n-1,则 B n(2n-1,2n-1).∴B4的坐标是:(24-1,24-1),即(15,8).故答案为:(15,8).类型二、利用数形结合解决数与式的问题2. 已知实数a在数轴上的位置如图所示,则化简|2-a|+的结果为__________.答案与解析【思路点拨】由数轴可知,0<a<2,由此去绝对值,对二次根式化简.【答案与解析】解:∵0<a<2,∴|2-a|+=2-a+a=2.故答案为:2.【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言数与形是数学中最古老最基本的研究对象。
华罗庚教授说过:“数缺形时少直观,形缺数时难入微。
”数与形各有特定的含义、但他们之间相辅相成、相互渗透、相互转化。
数形结合思想是重要的解题方法,是每年高考必考的重要内容,数形结合应用解题能力与学生成绩呈显著的正相关。
解题时将问题转化为与之等价的图形问题,可以直观的使问题简捷获解。
实现数形结合常与以下内容有关:①实数与数轴上的点的对应关系;②所给的等式或代数式的结构含有明显的几何意义;③以几何元素和几何条件为背景建立起的概念;④函数与图像的对应关系;⑤曲线与方程的对应关系。
应用数形结合思想不仅直观易发现解题途径,而且能避免复杂的计算推理,大大简化解题过程,这在解选择、填空题中更为显著,培养这种思想意识能开拓自己的思维视野。
2 文献综述2.1国内外研究现状数形结合作为高中数学中非常重要的思想方法,很早就引起了许多专家学者的关注。
自笛卡尔创造了平面直角坐标系,数形结合的思想得到了突飞猛进的发展。
文献[1]中叶立军谈到:“数缺形时少直观,形少数时难入微。
数形结合百般好,隔离分家万事休。
”近些年来,国内外仍有许多学者发表了对数形结合思想的应用研究,文献[2-3]中介绍了数形结合在概率统计和数列中的应用。
文献[4-6]通过总结图形结构与数式结构提出了数形结合的两个主要途径。
文献[7-10]认为数形结合可以直观快速解决很多问题,但转化时要遵循转化等价原则。
不过由于数形结合思想应用范围极其广泛,所以我认为目前对数形结合思想的研究仍有很大的空间。
2.2国内外研究现状评价文献[11-13]中介绍了许多数形结合的途径和方法,其中研究解决函数各类文章最多,集中于判断两函数图像交点个数及其他函数性质。
对于数形结合在高中数学各种问题的研究并不够全面。
2.3提出问题如今数形结合有着广泛的应用,即把数学与几何图形相结合,化繁为简,化抽象为具体,直观快速地抓住问题的本质与要害,可使解题起到事半功倍的效果。
然而一个不争的事实是—学生利用数形结合在高中数学解决问题的现状并不乐观。
因此对数形结合在高中数学各知识点进行全面研究是有必要的。
3 数形结合思想概述1、数形结合思想的概念数和形是高中数学研究的两大部分,他们之间相互转化,把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”和“以数助形”使复杂问题简单化,抽象问题具体化,从而提高解题效率。
以形助数通常是借助数轴、单位圆、函数图象数式的结构特征等。
以数助形通常是借助向量知识、几何图形表示的数量关系、几何定理等。
2、数形结合思想应遵守的原则(1)等价性原则。
数与形的相互转化要求所讨论的问题与数与形所反映的对应关系必需一致,即代数性质和几何性质的转换必须是等价的,否则会由于几何的局限性导致表示的数不完整。
(2)双向性质原则。
利用数形结合思想,一方面要对直观几何进行分析,另一方面要对代数抽象作探索,两方面相辅相成。
如只对几何问题进行代数分析或对代数问题进行几何分析,在很多时候是很难行得通的。
(3)简单性原则。
简单性原则就是用什么方法解题简单就用什么方法,不要刻意去追求某一种模式——代数问题用几何方法,几何问题用代数方法。
3、数形结合思想的的解题方法(1)图示法如集合运算中的韦恩图,它常常用来显示数学对象间的关系。
(2)区域法如用不等式的几何意义表示平面区间。
(3)坐标法如方程式图形和函数图象它常来表示二元变量坐标间的关系。
(4)特征法如借用连续函数图象显示数列,既求和公式的量化特征。
4 数形结合思想在解题中的应用4.1在集合中的应用集合是高中数学的第一个概念,也是很多数学概念建立的基础,对集合含义、交并补运算的考查是检验掌握知识的关键。
通过数轴平面直角坐标系以及韦恩图表示集合,利用数形结合能快速解决集合问题。
例1 若集合⎭⎬⎫⎩⎨⎧<<⎭⎬⎫⎩⎨⎧===)0(sin 5cos 5),(πθθθy x y x A |,集合{}b x y y x B +==|),(且φ≠B A ,则b 的取值范围为___.解析:集合A 可以变为{}50,25/),(22≤<=+=y y x y x A ,显然,A 表示以(0,0)为圆心,以5为半径的圆在X 轴的上方的部分,B 表示斜率为1=K ,纵截距为b 的直线,要使φ≠B A ,即使直线b x y +=与圆2522=+y x (x 轴上半部分)有公共点。
图1 由图1知25b 5-≤≤.4.2在函数中的应用函数问题是高中数学的一大重难点,然而若注重函数的几何特征,把函数求值的代数问题通过数形结合的运用转化为两点距离问题、斜率问题、直线的纵截距问题等,则可使问题迎刃而解。
例2 已知函数34F 2+-=x x x )(,求函数)(x F 的单调区间,并指出单调性。
解析:当034-2≥+x x 即1≤x 或3≥x 时,34-F 2+=x x x )(当034-2≤+x x 即31<<x 时,3-4-F 2x x x +=)( 所以⎪⎩⎪⎨⎧<<+≥≤-=)()(或)()(3112--)31(12-F 22x x x x x x 如图2所示图2所以函数)(x F 的单调区间有:(-∞,1],[1,2],[2,3],[3,+∞).其中增区间是[1,2]与[3,﹢∞﹚,减区间是﹙-∞,1]与[2,3].4.3在数列中的应用若加强数列中有关数形结合思想方法的应用,可加深对问题的认识,从而抓住问题的本质构造几何图形突破数列问题。
例3 若数列{}n a 为等差数列,p q q p ==a a ,求q p +a .解析:设q p <等差数列n a 关于n 的图象是一条直线上均匀排开的一群孤立的点,故三点)(q p ,、)(p q ,、)(m q p ,+共线,设m q p =+a ,由已知得三点)(q a p ,,)(p a q ,,)(q p a q p ++,共线。
如图3,则BC AB K K =,即p-q p p-m p -q q -p +=. 由图3知0=m ,即0p =+q a .4.4在不等式中的应用数形结合不仅是一种重要的解题方法,而且也是一种重要的数学思想。
应用数形结合思想解决不等式就是根据问题的内在联系或数式的结构特征,通过唤起表象和再造想象,赋予适当的几何意义,构造出与之相适应的几何图形,并利用图形的性质和图形之间的关系来解决问题。
例4 解不等式x x >2+.解析:常规方法:原不等式化为⎪⎩⎪⎨⎧>+≥+≥,,,22020x x x x (1)或⎩⎨⎧≥+<,,020x x (2)解(1)得20<≤x ;解(2)得02-<≤x .由(1)(2)可得{x |20<≤x 或02-<≤x }={x |22-<≤x }. 用数形结合方法可以很直观的从图4中得到答案,解法如下:图4令21+=x y ,x y =2,则不等式x x >2+的解就是使21+=x y 的图像在x y =2的上方的那段对应的坐标轴,如图4所示,不等式x x >2+的解集为{x |B A x x x <≤},由x x =+2可解得2B =x ,所以有-2A =x .故不等式的解集为{x |22-<≤x }.4.5在线性规划中的应用应用线性规划知识判断平面区域,求目标函数的最值、取值范围在高考中常以选择或填空的形式出现,都是以中档题为主,解决这类问题的关键是灵活运用数形结合的数学思想,将代数问题转化为几何问题,借助图像的生动直观来阐明枯燥的数的关系。
例 5 设关于x ,y 的不等式组⎪⎩⎪⎨⎧>-<+>+0001-2m y m x y x 表示的平面区域内存在点),(00y x p 满足22-00=y x ,求m 的取值范围。
图5解析:如图5要使可行域存在,必有12+-<m m ,要求可行域内包含直线1-21x y =上的点,只要边界点)21,(m m --在直线1-21x y =上方,且),(m m -在直线1-21x y =下方,解不等式组⎪⎪⎪⎩⎪⎪⎪⎨⎧--<><12121-2-12-1m m m m m m 得32-<m4.6在向量中的应用向量是沟通代数、几何与三角函数的一种工具,它有着极其丰富的实际背景,在数学学科中具有广泛的应用。
平面向量是高考中新增加的最重要内容,由于它的加入,代数和几何的研究全面改观。
数形结合是高考的重要思想之一,而平面向量则为数形结合铺就了道路。
例6 在平面上,21AB AB ⊥1==,21AB AB AP +=.的取值范围是( ).图6解析:根据已知条件,A ,1B ,p ,2B 构成一个矩形1AB 2PB ,1AB ,2AB 所在直线为坐标轴建立直角坐标系,如图6所示,设b 21==AB a AB ,点O 的坐标为),(y x ,则点P 的坐标为),(b a ,1==得⎪⎩⎪⎨⎧=-+=+-1)(12222b y x y a x )(,则⎪⎩⎪⎨⎧-=--=-22221)(1xb y ya x )(,21<,得,41)(22<-+-b y a x )(则411-122<-+y x ,即4722>+y x …………① 又由1)(22=+-y a x ,得22222121x a ax a y x ++≤+=++,则12≤y ;同理有1)(222=-+b y x ,得12≤x ,即有222≤+y x ………………………………………② 由①②知24722≤+<y x ,所以22722≤+<y x .22y x +=,所以227≤<. 4.7在概率统计中的应用概率统计由于其思维方式与以往的数学课程不同,并且它又蕴含了较广泛的数学知识,因此概率统计成为很多学生的学习障碍。
利用数形结合把线段、平面、空间图形能明确直观地分析、判断事件发生的概率大小。
而概率事件的计算正是依据图形的长度、面积和体积来完成的。
例7 有一容量为100的样本,数据的分组及各组的频率如下:[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5 ,24.5),22;[24.5 ,27.5),20;[27.5 ,30.5),10;[30.5,33.5),8. 求数据小于30.5的概率是多少? 解析:图7图8数据大于等于30.5的频率是0.08所以小于30.5的频率为:1.00-0.08=0.92.数据12.518.524.5例8 在长度为L 的线段AB 上任意作两点D C ,,求CA CD ≤的概率。
解析:将线段AB 放在数轴的正上方,以A 为原点,点B 的坐标为L ,设D C ,的坐标分别为),(y x 、),(y x []L ,0∈.而所有可能的结果都在如图9所示的正方形内,CA CD ≤,即x y x ≤-,故02≥≥y x .则所求概率为434-S S 222===L L L P 正方形梯形图94.8在导数中的应用导数是高中数学中重要部分,也是较难的一部分。