导数综合练习题最新版

合集下载

(完整版)导数的计算练习题

(完整版)导数的计算练习题

导数的计算练习题【知识点】1、基本初等函数的导数公式:()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=; ()3若()sin f x x =,则()cos f x x '=;()4若()cos f x x =,则()sin f x x '=-; ()5若()x f x a =,则()ln x f x a a '=;()6若()x f x e =,则()x f x e '=;()7若()log a f x x =,则()1ln f x x a '=;()8若()ln f x x =,则()1f x x'=. 2、导数运算法则: ()1;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.()()()()f x g x f x g x '''±=±⎡⎤⎣⎦ 3、复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是:x u x y y u '''=⋅.【习题】1、已知()2f x x =,则()3f '等于( ) A .0 B .2x C .6 D .92、()0f x =的导数是( )A .0B .1C .不存在D .不确定 3、y 的导数是( ) A .23x B .213x C .12- D4、曲线n y x =在2x =处的导数是12,则n 等于___________________.5、若()f x =()1f '等于( )A .0B .13-C .3D .13 6、2y x =的斜率等于2的切线方程是( )A .210x y -+=B .210x y -+=或210x y --=C .210x y --=D .20x y -=7、在曲线2y x =上的切线的倾斜角为4π的点是( ) A .()0,0 B .()2,4 C .11,416⎛⎫ ⎪⎝⎭ D .11,24⎛⎫ ⎪⎝⎭ 8、已知()53sin f x x x -=+,则()f x '等于( )A .653cos x x ---B .63cos x x -+C .653cos x x --+D .63cos x x --9、函数()22423y x x =-+的导数是( )A .()2823x x -+B .()2216x -+C .()()282361x x x -+-D .()()242361x x x -+- 10、曲线34y x x =-在点()1,3--处的切线方程是________________________.11、已知a 为实数,()()()24f x x x a =--,且()10f '-=,则a =___________.12、函数lg y x =在点()1,0处的切线方程是__________________________.13、函数()()211y x x =+-在1x =处的导数等于___________. 14、函数x y x e =-上某点的切线平行于x 轴,则这点的坐标为__________.15、在曲线323610y x x x =++-的切线中,斜率最小的切线方程是____________.16、曲线21y x =-与31y x =+在0x x =处的切线互相垂直,则0x 等于__________.17、22sin 35cos y x x =+的导数是_________________________.。

导数的运算专项练习(含答案)

导数的运算专项练习(含答案)

导数的运算一、单选题(共33题;共66分)′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为()A. 0B.3 C.4 D. -2.函数的导数为()A. B.C. D.3.设函数,若,则等于()A. B.C.D.4.设则等于( )A. B.C. D.5.已知函数的导函数,且满足,则=( )A.B.C. 1D.6.已知函数的导函数为,且,则()A. 2B. 3C. 4D. 57.下列求导运算的正确是()A. 为常数B. C. D.8.已知函数的值为()A.B. C .D.9.下列求导运算正确的是()A. B.C. D.10.已知函数f(x)=sinx-cosx,则f'()=()A. B.C. D .11.若函数f(x)=2+xcos2x,则f'(x)=()A. cos 2x-xsin 2xB. x-sin2x C. 1-2sin2x D. cos2x-2sin2x12.函数的导数为()A. =2B. =C. =2D.=13.设函数的导函数为,且,则=( )A. 0B.-4 C. -2 D. 2 14.设,若,则()C.D.15.已知函数,则其导数()A. B.C.D.16.若函数,则的值为()A. 0 B . 2 C.1 D.-117.已知函数,且,则的值为()A. B.C.D.18.已知函数,为的导函数,则的值为()A.B.C.D.19.下列求导运算正确的是()A. B.C. D.20.已知函数的导函数为,且满足,则()A. B . C.21.若,则函数的导函数()A. B.C. D.22.函数的导数为()A. B.C.D.23.下列导数式子正确的是()A. B.C. D.24.已知,则等于()A. -2B. 0C. 2D. 425.已知函数,则()A. B.C.D.26.已知,则()A.B.C.D.27.设,,则x0=( )A. e2B.e C.D. ln 228.下列求导数运算正确的是()A. B.C. D.29.若f(x)=x2-2x-4ln x,则f′(x)>0的解集为()A. (0,+∞)B. (-1,0)∪(2,+∞) C. (-1,0) D. (2,+∞)30.下列求导运算正确的是( )A. B. C.D.31.已知,则( )A. B.C.D. 以上都不正确32.设f(x)=xln x,若f′(x0)=2,则x0等于( )A. e2B.e C.D. ln 233.下列导数运算正确的是()A. B.C. D.二、填空题(共11题;共11分)34.已知函数的导函数为,若,则的值为________.35.若函数,则的值为________.36.已知,则________.37.若函数,则________.38.已知函数,则________.39.已知函数,是的导函数,则________.40.若f(x)=x3,f′(x0)=3,则x0的值为________.41.已知在上可导,,则________.42.已知函数的导函数为,且,则________.43.已知f(x)=2x+3xf′(0),则f′(1)=________.44.已知函数f(x)=2e x﹣x的导数为,则的值是________.三、解答题(共6题;共60分)45.求下列函数的导函数.①②③④⑤⑥46.求下列函数的导函数①②③④⑤⑥47.求下列函数的导数:(1);(2).48.求下列函数的导数:(1);(2);(3);(4).49.求下列函数的导数.(1);(2).50.求下列函数的导数.(1)y=3x2+xcos x;(2)y=lgx-;答案解析部分一、单选题1.【答案】 B【考点】导数的运算【解析】【解答】解:因为,则,所以,故答案为:B.【分析】先由函数,求得导函数,再求即可得解.2.【答案】 D【考点】导数的运算【解析】【解答】因为,则函数的导函数,故答案为:D.【分析】先根据完全平方公式对展开,再运用常见初等函数的求导公式和求导运算法则可求解.3.【答案】 D【考点】导数的运算【解析】【解答】,,,解得,故答案为:D,【分析】对函数求导,再由可求出实数的值.4.【答案】 D【考点】导数的运算【解析】【解答】由,得.故答案为:D.【分析】由已知利用导数的运算性质进行计算,即可得结果.5.【答案】 B【考点】导数的运算【解析】【解答】对函数进行求导,得把代入得,直接可求得。

导数综合练习题(详细解答)

导数综合练习题(详细解答)

导数练习题(B )1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=.(I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=.(I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分)已知2x =是函数2()(23)xf x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ).(I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值. 7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间;(II )求函数)(x f 在区间],[2e e 上的最小值. 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 9.(本小题满分12分) 已知函数.1,ln )1(21)(2>-+-=a x a ax x x f (I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-. (I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围; (II )若(1,](2.71828a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数.(I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.导数练习题(B )答案1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f得 ⎩⎨⎧==⇒⎩⎨⎧=--++=03023233c d b a c b a d …………(4分)(II )依题意 3)2('-=f 且5)2(=f解得 6,1-==b a所以396)(23++-=x x x x f …………(8分)(III )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723与x 轴有三个交点; 42381432--=+-='x x x x x g ,()m g m g --=-=⎪⎭⎫ ⎝⎛164,273. …………(10分)当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点,故而,276816<<-m 为所求. …………(12分)2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=.(I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.解:(I ))0()1()('>-=x xx a x f(2分) 当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a 当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a 当a=1时,)(x f 不是单调函数 (5分)(II )32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x mx x g (6分)⎩⎨⎧><∴.0)3(',0)1('g g (8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m(12分)3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 解:(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值, 所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ; …………(4分)(II依题意得:9)32(272-=+a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-=…………(10分)(III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间[-2,2]有:230368)2(,7)1(,7430368)2(=+-==-=---=-f f f函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .…………(14分)4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.解:(I )01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分)∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分)(II )ax a x a x x g )22)(22(22)(-+=-=',由0)(='x g ,得2a x =,列表当2x )222( …………(6分)由(I )a e a >,∵⎪⎩⎪⎨⎧>>22a a e e aa ,∴22a e a>,∴22a e a >01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a …………(8分)(i )当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点 (ii )当122>a,即2>a 时若0)2ln 1(2>-aa ,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点若0)2ln 1(2=-aa ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-aa ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点;综上所述,)(x g y =在(1,)ae 上,我们有结论: 当02a e <<时,函数()f x 无零点; 当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.…………(12分) 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围;解:(I )当1k =时,2()1xf x x -'=-)(x f 定义域为(1,+∞),令()0,2f x x '==得, ………………(2分) ∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<, ∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = ………………(4分) (II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点,∴函数()f x 有零点,不合要求; ………………(8分)②当0k >时,1()11()111k k x k kx k f x k x x x +-+-'=-==---- ………………(6分)令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k '∈++∞<时, ∴1()(1,1)f x k +在内是增函数,1[1,)k++∞在上是减函数,∴()f x 的最大值是1(1)ln f k k+=-,∵函数()f x 没有零点,∴ln 0k -<,1k >,因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞.………………(10分) 6.(本小题满分12分)已知2x =是函数2()(23)xf x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.解:(I )由2()(23)xf x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分)∵2x =是函数()f x 的一个极值点,∴(2)0f '=∴2(5)0a e +=,解得5a =- ……………(6分) (II )由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在]3,23[∈x 的最小值; ……………(8分)2347)23(e f =,3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=- ∴()f x 在]3,23[∈x 的最大值是3)3(e f =. ……………(12分)7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间;(II )求函数)(x f 在区间],[2e e 上的最小值. 解:(Ⅰ)x x x xf ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= 2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x 注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4, 注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(. 综上所述,函数)(x f 的单调增区间是(4,+∞),单调减区间是]4,0(6分(Ⅱ)在],[2e e x ∈时,x a x x x f ln )2(4)(2-+-=所以xax x x a x x f -+-=-+-=242242)('2, 设a x x x g -+-=242)(2当0<a 时,有△=16+4×208)2(<=-a a ,此时0)(>x g ,所以0)('>x f ,)(x f 在],[2e e 上单调递增,所以a e e e f x f -+-==24)()(2min 8分当0>a 时,△=08)2(2416>=-⨯-a a ,令0)('>x f ,即02422>-+-a x x ,解得221a x +>或221a x -<;令0)('<x f ,即02422<-+-a x x , 解得221a -221ax +<<. ①若221a +≥2e ,即a ≥22)1(2-e 时, )(x f 在区间],[2e e 单调递减,所以a e e e f x f 244)()(242min -+-==.②若2221e ae <+<,即222)1(2)1(2-<<-e a e 时间, )(x f 在区间]221,[a e +上单调递减,在区间],221[2e a +上单调递增, 所以min )(xf )221(a f +=)221ln()2(322a a a a +-+--=. ③若221a +≤e ,即a <0≤22)1(-e 时,)(x f 在区间],[2e e 单调递增,所以a e e e f x f -+-==24)()(2min综上所述,当a ≥222)1(-e 时,a e a x f 244)(24min -+-=;当222)1(2)1(2-<<-e a e 时,)221ln()2(322)(min aa a a x f +-+--=; 当a ≤2)1(2-e 时,a e e x f -+-=24)(2min 14分8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x'=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 解:(I )226()26a x x af x x x x-+'=-+=, ………………(2分)∵()f x 在(2,)x ∈+∞上不具有...单调性,∴在(2,)x ∈+∞上()f x '有正也有负也有0, 即二次函数226y x x a =-+在(2,)x ∈+∞上有零点 ………………(4分)∵226y x x a =-+是对称轴是32x =,开口向上的抛物线,∴222620y a =⋅-⋅+< 的实数a 的取值范围(,4)-∞ ………………(6分)(II )由(I )22()2a g x x x x =+-,方法1:2222()()62(0)a g x f x x x x x x'=-+=+->,∵4a <,∴323233444244()22a x x g x x x x x x -+'=-+>-+=,…………(8分)设2344()2h x x x =-+,3448124(23)()x h x x x x -'=-=()h x 在3(0,)2是减函数,在3(,)2+∞增函数,当32x =时,()h x 取最小值3827 ∴从而()g x '3827>,∴38(())027g x x '->,函数38()27y g x x =-是增函数,12x x 、是两个不相等正数,不妨设12x x <,则22113838()()2727g x x g x x ->-∴212138()()()27g x g x x x ->-,∵210x x ->,∴1212()()3827g x g x x x ->- ∴1212()()g x g x x x --3827>,即121238|()()|||27g x g x x x ->- ………………(12分) 方法2: 11(,())M x g x 、22(,())N x g x 是曲线()y g x =上任意两相异点,121222121212()()2()2g x g x x x ax x x x x x -+=+--,12x x +>4a <12221212122()22x x a a x x x x x x +∴+->1242x x >+ ………(8分)设0t t =>,令32()244MN k u t t t ==+-,()4(32)u t t t '=-, 由()0u t '>,得2,3t >由()0u t '<得20,3t << ()u t ∴在)32,0(上是减函数,在),32(+∞上是增函数,)(t u ∴在32=t 处取极小值2738,38()27u t ∴≥,∴所以1212()()g x g x x x --3827>即121238|()()|||27g x g x x x ->- ………………(12分) 9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f (I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意(1))(x f 的定义域为),0(+∞,xa x x x a ax x x a a x x f )1)(1(11)('2-+-=-+-=-+-= 2分(i )若2,11==-a a 即,则 .)1()('2xx x f -=故)(x f 在),0(+∞单调增加. (ii )若.0)(',)1,1(,21,1,11<-∈<<><-x f a x a a a 时则当故而)1,1()(,0)(',),1()1,0(->+∞∈-∈a x f x f x a x 在故时及当单调减少,在(0,a-1), ),1(+∞单调增加.(iii )若),1(),1,0(,)1,1()(,2,11+∞-->>-a a x f a a 在单调减少在同理可得即单调增加.(II )考虑函数x x f x g +=)()( .ln )1(212x x a ax x +-+-=由 .)11(1)1(121)1()('2---=---⋅≥-+--=a a xa x x a a x x g 由于单调增加在即故),0()(,0)(',5+∞><x g x g a a ,从而当021>>x x 时有故1)()(2121->--x x x f x f ,当210x x <<时,有1)()()()(12122121->--=--x x x f x f x x x f x f 10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-. (I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,](2.71828a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.解:(I )(),()1af x xg x a x''=+=+, ……………(2分)∵函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,∴当[1,3]x ∈时,2(1)()()()0a x a f x g x x++''⋅=≥恒成立, ……………(4分) 即2(1)()0a x a ++≥恒成立, ∴21a a x >-⎧⎨≥-⎩在[1,3]x ∈时恒成立,或21a a x<-⎧⎨≤-⎩在[1,3]x ∈时恒成立, ∵91x -≤≤-,∴1a >-或9a ≤- ………………(6分)(II )21()ln ,(1)2F x x a x a x =+-+,()(1)()(1)a x a x F x x a x x--'=+-+=∵()F x 定义域是(0,)+∞,(1,]a e ∈,即1a >∴()F x 在(0,1)是增函数,在(1,)a 实际减函数,在(,)a +∞是增函数∴当1x =时,()F x 取极大值1(1)2M F a ==--,当x a =时,()F x 取极小值21()ln 2m F a a a a a ==--, ………………(8分)∵12,[1,]x x a ∈,∴12|()()|||F x F x M m M m -≤-=- ………………(10分)设211()ln 22G a M m a a a =-=--,则()ln 1G a a a '=--, ∴1[()]1G a a''=-,∵(1,]a e ∈,∴[()]0G a ''> ∴()ln 1G a a a '=--在(1,]a e ∈是增函数,∴()(1)0G a G ''>=∴211()ln 22G a a a a =--在(1,]a e ∈也是增函数 ………………(12分)∴()()G a G e ≤,即2211(1)()1222e G a e e -≤--=-, 而22211(1)(31)1112222e e e ----=-<-=,∴()1G a M m =-< ∴当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. ………………(14分)11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数.(I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 解:(I )11()0ex f x e x x -'=-==,得1x e= 当x 变化时,()f x '与()f x 变化情况如下表:∴当1x e=时,()f x 取得极大值()2f e =-,没有极小值; …………(4分)(II )(方法1)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,∴21201ln 0x x x x x --=即20211ln()0x x x x x --=,设2211()ln ()xg x x x x x =-- 211211()ln ()x g x x x x x =--,1/211()ln 10x x g x x =->,1()g x 是1x 的增函数,∵12x x <,∴2122222()()ln ()0xg x g x x x x x <=--=;222211()ln ()x g x x x x x =--,2/221()ln 10x x g x x =->,2()g x 是2x 的增函数,∵12x x <,∴1211111()()ln ()0xg x g x x x x x >=--=,∴函数2211()ln ()xg x x x x x =--在12(,)x x 内有零点0x , …………(10分)又∵22111,ln 0x x x x >∴>,函数2211()ln ()xg x x x x x =--在12(,)x x 是增函数,∴函数2121()ln x x xg x x x -=-在12(,)x x 内有唯一零点0x ,命题成立…………(12分) (方法2)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-, 即020112ln ln 0x x x x x x -+-=,012(,)x x x ∈,且0x 唯一设2112()ln ln g x x x x x x x =-+-,则1121112()ln ln g x x x x x x x =-+-, 再设22()ln ln h x x x x x x x =-+-,20x x <<,∴2()ln ln 0h x x x '=-> ∴22()ln ln h x x x x x x x =-+-在20x x <<是增函数 ∴112()()()0g x h x h x =<=,同理2()0g x >∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有解 …………(10分) ∵一次函数在12(,)x x 2112()(ln ln )g x x x x x x =-+-是增函数∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有唯一解,命题成立………(12分) 注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.解:(I )22log (24)0x x -+>,即2241x x -+> ……………………(2分)得函数()f x 的定义域是(1,3)-, ……………………(4分) (II )22322()(1,log (1))1,g x F x ax bx x ax bx =+++=+++设曲线00(41)C x x -<<-在处有斜率为-8的切线,又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++∴存在实数b 使得⎪⎩⎪⎨⎧>+++-<<--=++1114823020300020bx ax x x b ax x 有解, ……………………(6分)由①得,238020ax x b ---=代入③得082020<---ax x ,①②③200028041x ax x ⎧++>⎪∴⎨-<<-⎪⎩由有解, ……………………(8分) 方法1:0082()()a x x <-+-,因为041x -<<-,所以0082()[8,10)()x x -+∈-,当10a <时,存在实数b ,使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线………………(10分)方法2:得08)1()1(208)4()4(222>+-⨯+-⨯>+-⨯+-⨯a a 或,1010,10.a a a ∴<<∴<或 ………………(10分)方法3:是222(4)(4)802(1)(1)80a a ⎧⨯-+⨯-+≤⎪⎨⨯-+⨯-+≤⎪⎩的补集,即10a < ………………(10分) (III )令2)1ln(1)(,1,)1ln()(xx x xx h x x x x h +-+='≥+=由 又令,0),1ln(1)(>+-+=x x xxx p 0)1(11)1(1)(22<+-=+-+='∴x x x x x p , ),0[)(+∞∴在x p 单调递减. ……………………(12)分 ),1[)(+∞∴在x h 单调递减,x y y x y x x y yy x x y x )1()1(),1ln()1ln(,)1ln()1ln(,1+>+∴+>+∴+>+<≤∴有时,).,(),(,x y F y x F y x N y x ><∈∴*时且当 ………………(14分)。

求导练习题带答案

求导练习题带答案

求导练习题带答案求导是微积分中的一项基本技能,它可以帮助我们理解函数的变化率以及找到函数的极值点。

以下是一些求导的练习题及其答案,适合初学者练习。

练习题1:求函数 f(x) = x^3 的导数。

解:根据幂函数的求导法则,对于函数 f(x) = x^n,其导数为 f'(x) = n * x^(n-1)。

因此,对于 f(x) = x^3,我们有 f'(x) = 3 *x^(3-1) = 3x^2。

练习题2:求函数 g(x) = sin(x) 的导数。

解:根据三角函数的求导法则,sin(x) 的导数是 cos(x)。

所以,g'(x) = cos(x)。

练习题3:求函数 h(x) = 2x^2 + 3x - 1 的导数。

解:根据多项式的求导法则,我们可以分别对每一项求导,然后将结果相加。

对于 h(x) = 2x^2 + 3x - 1,我们有 h'(x) = 2 * 2x^(2-1) + 3 * 1x^(1-1) - 0 = 4x + 3。

练习题4:求函数 k(x) = (x^2 - 1)^3 的导数。

解:这里我们使用链式法则和幂函数的求导法则。

首先,设 u = x^2- 1,那么 k(x) = u^3。

u 的导数是 u' = 2x,而 u^3 的导数是3u^2。

应用链式法则,我们得到 k'(x) = 3u^2 * u' = 3(x^2 - 1)^2 * 2x = 6x(x^2 - 1)。

练习题5:求函数 m(x) = e^x 的导数。

解:根据指数函数的求导法则,e^x 的导数是它自身。

所以,m'(x) = e^x。

练习题6:求函数 n(x) = ln(x) 的导数。

解:自然对数函数 ln(x) 的导数是 1/x。

因此,n'(x) = 1/x。

练习题7:求函数 p(x) = (3x - 2)^5 的导数。

解:使用链式法则和幂函数的求导法则。

导数大题综合(含答案)

导数大题综合(含答案)

导数大题综合1.(2022春·广东东莞·高二校联考期中)已知函数()2395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 的极值.2.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数()ln f x ax x x =-,且()f x 在e x =处的切线方程是0x y b ++=.(1)求实数a ,b 的值;(2)求函数()f x 的极值.3.(2022春·广东佛山·高二佛山一中校考期中)已知函数()2ln f x x a x bx =++在()()1,1f 处的切线方程为30x y ++=.(1)求a 、b 的值;(2)求()f x 的极值点,并计算两个极值之和.4.(2022春·广东深圳·高二校考期中)已知=1x -是函数()323f x x x ax =-++的一个极值点.(1)求()f x 的单调区间;(2)求()f x 在区间[]4,4-上的最大值.5.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()ln 2f x x x =+.(1)求函数()f x 的极值;(2)证明:2()f x x x>-.6.(2022春·广东深圳·高二校考期中)已知函数()2ln f x x a x =-.(1)若函数()f x 在点()()3,3f 处切线的斜率为4,求实数a 的值;(2)若函数()()21ln 222a ag x x f x x ⎛⎫=--- ⎪⎝⎭在[]1,4上是减函数,求实数a 的取值范围.7.(2022春·广东深圳·高二深圳市高级中学校考期中)已知函数()2ln f x ax x =+.(1)讨论()f x 的单调性;(2)设函数()2g x x =-+,若任意31,e x ⎡⎤∈⎣⎦,使得()()f x g x ≤,求a 的取值范围.8.(2022春·广东江门·高二校联考期中)已知函数()32f x x ax bx c =+++的图象在点()1,1P -处的切线斜率为12-,且()f x 在=1x -处取得极值.(1)求()f x 的解析式;(2)当[]2,2x ∈-时,求()f x 的最大值与最小值.9.(2022春·广东广州·高二校考期中)已知函数()1ln f x x a x =--(其中a 为参数).(1)求函数()f x 的单调区间:(2)若对任意()0,x ∈+∞都有()0f x ≥成立,求实数a 的取值集合.10.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()2cos sin f x ax ax x x =--(1)当1a =时,求()f x 在[],ππ-上的值域;(2)当0x >时,()0f x ≥,求实数a 的取值范围.11.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数2()ln (1)()2=+-+∈R a f x x x a x a ,2()()(1)2=-++a g x f x x a x .(1)讨论()f x 的单调性;(2)任取两个正数12,x x ,当12x x <时,求证:()()()1212122--<+x x g x g x x x .12.(2022春·广东深圳·高二校考期中)已知函数()1ln f x a x bx x=++且曲线()y f x =在点()()1,1f 处的切线方程为210x y -+=.(1)求实数,a b 的值;(2)若关于x 的不等式()3222m f x x x-≥+恒成立,求实数m 的取值范围.13.(2022春·广东广州·高二广州市第十六中学校考期中)已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间;(2)若2a =,求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最值;(3)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围.(参考数据:ln 20.693≈)14.(2022春·广东佛山·高二顺德一中校考期中)已知函数()e ln =--x af x a xx x(1)当0a =时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最值;(2)讨论函数()f x 的单调性.15.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()ln (2)f x x ax a x =-+-.(1)讨论()f x 的单调性;(2)若函数()y f x =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明:()00f x '<.16.(2022春·广东佛山·高二佛山市顺德区郑裕彤中学校考期中)已知函数()2sin cos 2a f x x x x =++,R a ∈.(1)当0a =时,求函数()f x 在x π=处的切线方程;(2)当12a =-时,求函数()f x 在[],x ππ∈-上的最值.17.(2022春·广东佛山·高二佛山一中校考期中)已知函数21()ln 2f x x ax a =-+,(1)当1a =时,求()f x 的最值;(2)若ln 2()2f x £恒成立,求a 的取值范围.18.(2022春·广东江门·高二江门市第二中学校考期中)已知函数()e xf x ax =-,R a ∈.(1)若e a =,证明:当1x >时,()0f x >;(2)讨论()f x 零点的个数19.(2022春·广东深圳·高二深圳市高级中学校考期中)已知函数()2sin 1,R f x x a x a =++∈.(1)设函数()()g x f x '=,若()y g x =在区间0,2π⎡⎤⎢⎣⎦上是增函数,求a 的取值范围;(2)当2a =-时,证明函数()f x 在区间()0,π上无零点.20.(2022春·广东东莞·高二校联考期中)已知函数()()22ln f x ax a x x=-++(1)若1x =函数的极值点,求a 的值;(2)若1a ≥,求证:当[]1,e x ∈时,()0f x '≥,其中e 为自然对数的底数.21.(2022春·广东清远·高二统考期中)已知函数()e 1xxf x =-.(1)求证:()f x 在()1,+∞上单调递减(2)若对于任意()0,x ∈+∞,都有()2e x af x a≥+恒成立,求正实数a 的取值范围.22.(2022春·广东佛山·高二校考期中)已知函数()()ln af x x a R x=+∈.(1)判断函数()f x 在区间)2,e -⎡+∞⎣上的零点个数;(2)若函数()f x 在1x =处的切线平行于直线20x y -=,且在[]()1,271828e e =.上存在一点0x ,使得()0001x mf x x +<成立,求实数m .23.(2022春·广东广州·高二广州市第七中学校考期中)已知函数21()e (,)2xf x a x b a b R =--∈.(1)若函数()f x 在0x =处的切线方程为1y x =-,求实数a ,b 的值;(2)若函数()f x 在1x x =和2x x =两处取得极值,求实数a 的取值范围.24.(2022春·广东广州·高二广州市玉岩中学校考期中)已知2()e (2)e (R)x x f x a a x a =+--∈(1)当1a =时,求证:()0f x ≥;(2)若()f x 有两个零点,求a 的取值范围.25.(2022春·广东深圳·高二校考期中)已知函数()21ln 2f x x mx x =-+,m ∈R .(1)当2m =时,求函数()f x 的单调区间;(2)若2m =-,正实数a 、b 满足()()0f a f b ab ++=,求证:a b +≥26.(2022春·广东江门·高二江门市新会东方红中学校考期中)已知函数e ()ln e x f x x x x -=--,2e 1()e ()2x g x ax a a R -=-++∈.(1)求函数e ()()e x x f x ϕ-=+的最小值;(2)设函数()()()F x f x g x =+的两个不同极值点分别为12,x x ()12x x <,求实数a 的取值范围.27.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)设函数()()()ln 12af x x a x x =+-+.(1)若0a =,求()f x 的单调区间;(2)若()f x 在区间(2,)+∞单调递增,求整数a 的最大值.28.(2022春·广东广州·高二校考期中)已知函数()sin x x x f -=.(1)判断函数()f x 是否存在极值,并说明理由;(2)设函数()()ln F x f x m x =-,若存在两个不相等的正数1x ,2x ,使得()()1122F x x F x x +=+,证明:212x x m <.29.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()2ln =++f x x ax bx (其中,a b 为常数且0a ≠)在1x =处取得极值.(1)当12a =时,求()f x 的单调区间;(2)若()f x 在(]0,e 上的最大值为1,求a 的值.30.(2022春·广东佛山·高二校联考期中)已知函数()e ()=-∈R x f x ax a .(1)讨论()f x 的单调性.(2)若0a =,证明:对任意的1x >,都有432()3ln f x x x x x ≥-+.导数大题综合答案1.(2022春·广东东莞·高二校联考期中)已知函数()2395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 的极值.的切线方程是0x y b ++=.(1)求实数a ,b 的值;(2)求函数()f x 的极值.3.(2022春·广东佛山·高二佛山一中校考期中)已知函数()2ln f x x a x bx =++在()()1,1f 处的切线方程为30x y ++=.(1)求a 、b 的值;(2)求()f x 的极值点,并计算两个极值之和.所以,函数()f x 的极大值点为12x =,极大值为2ln 224f ⎛⎫=-- ⎪⎝⎭,极小值点为22x =,极小值为()22ln 26f =-,所以,函数()f x 的极大值和极小值为()133224f f ⎛⎫+=-⎪⎝⎭.4.(2022春·广东深圳·高二校考期中)已知=1x -是函数()323f x x x ax =-++的一个极值点.(1)求()f x 的单调区间;(2)求()f x 在区间[]4,4-上的最大值.(1)()'236f x x x a =-++, =1x -是函数()f x 的一个极值点∴()'190f a -=-+=,∴9a =,∴()'2369f x x x =-++,令()'0f x <,解得1x <-或3x >;令()'0f x >,解得13x -<<.所以函数()f x 的减区间为()(),1,3,∞∞--+,增区间为()1,3-.(2)由(1)()3239f x x x x =-++,又 ()f x 在[]4,1--上单调递减,在[]1,3-上单调递增,在[]3,4上单调递减∴函数()f x 在的极大值为()327f =,又()476f -=,∴函数()f x 在区间[]4,4-上的最大值为()476f -=.5.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()ln 2f x x x =+.(1)求函数()f x 的极值;(2)证明:2()f x x x>-.(1)若函数()f x 在点()()3,3f 处切线的斜率为4,求实数a 的值;(2)若函数()()21ln 222a ag x x f x x ⎛⎫=--- ⎪⎝⎭在[]1,4上是减函数,求实数a 的取值范围..(1)讨论()f x 的单调性;(2)设函数()2g x x =-+,若任意31,e x ⎡⎤∈⎣⎦,使得()()f x g x ≤,求a 的取值范围.的图象在点1,1P -处的切线斜率为12-,且()f x 在=1x -处取得极值.(1)求()f x 的解析式;(2)当[]2,2x ∈-时,求()f x 的最大值与最小值.(2)由(1)可知,()f x 在[)2,1--上单调递增,在(]1,2-上单调递减,且()115f -=,()212f =-,()28f -=,∴()max 15f x =,()min 12f x =-.9.(2022春·广东广州·高二校考期中)已知函数()1ln f x x a x =--(其中a 为参数).(1)求函数()f x 的单调区间:(2)若对任意()0,x ∈+∞都有()0f x ≥成立,求实数a 的取值集合.(1)当1a =时,求()f x 在[],ππ-上的值域;(2)当0x >时,()0f x ≥,求实数a 的取值范围.【详解】(1)由题意知()2cos sin f x x x x x =--,()()21cos sin f x x x x '=-+,[],x ππ∈-时,1cos 0x -≥,sin 0x x ≥,[],x ∴∈-ππ时,()0f x '≥恒成立,所以()f x 单调递增,∴()()()f f x f ππ-≤≤,即()33f x -π≤≤π所以()f x 的值域为[]3,3ππ-.(2)注意到()00f =,()2cos sin cos f x a a x ax x x '=-+-,若1a ≥,()()2cos sin 2cos sin f x ax x x x x x x =--≥--,由(1)知,当[]0,x π∈时,()()00f x f ≥=;当(),x π∈+∞时,2cos sin 2110x x x x x x x -->--=->,所以()0f x ≥恒成立,符合题意;若0a ≤,()()2cos sin f x ax x x =--,当[]0,x π∈时,()0f x ≤,不合题意,舍去;11.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数2()ln (1)()2=+-+∈R f x x x a x a ,2()()(1)2=-++a g x f x x a x .(1)讨论()f x 的单调性;(2)任取两个正数12,x x ,当12x x <时,求证:()()()1212122--<+x x g x g x x x .12.(2022春·广东深圳·高二校考期中)已知函数()ln f x ax bx x=++且曲线()y f x =在点()()1,1f 处的切线方程为210x y -+=.(1)求实数,a b 的值;(2)若关于x 的不等式()3222mf x x x-≥+恒成立,求实数m 的取值范围.∴()()min 11g x g ==-⎡⎤⎣⎦,即1m ≤-所以实数m 的取值范围为(],1-∞-.13.(2022春·广东广州·高二广州市第十六中学校考期中)已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间;(2)若2a =,求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最值;(3)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围.(参考数据:ln 20.693≈)14.(2022春·广东佛山·高二顺德一中校考期中)已知函数()ln =--f x a xx x(1)当0a =时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最值;(2)讨论函数()f x 的单调性.当1e a <<时,当ln 1a x <<时,()0f x '<,()f x 单调递减;当0ln x a <<或1x >时,()0f x ¢>,()f x 单调递增;当e a =时,()0f x ¢>在定义域上恒成立,()f x 单调递增;当e a >时,当1ln x a <<时,()0f x '<,()f x 单调递减;当01x <<或ln x a >时,()0f x ¢>,()f x 单调递增;综上:当1a ≤时,()f x 的单调递增区间为()1,+∞,单调递减区间为()0,1;当1e a <<时,()f x 的单调递增区间为()0,ln a ,()1,+∞,单调递减区间为()ln ,1a ;当e a =时,()f x 的单调递增区间为()0,∞+;当e a >时,()f x 的单调递增区间为()0,1,()ln ,a +∞;单调递减区间为()1,ln a .15.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()ln (2)f x x ax a x =-+-.(1)讨论()f x 的单调性;(2)若函数()y f x =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明:()00f x '<.16.(2022春·广东佛山·高二佛山市顺德区郑裕彤中学校考期中)已知函数()2sin cos 2f x x x x =++,R a ∈.(1)当0a =时,求函数()f x 在x π=处的切线方程;(2)当12a =-时,求函数()f x 在[],x ππ∈-上的最值.∵21336362f f πππ⎛⎫⎛⎫-==-+ ⎪ ⎝⎭⎝⎭,∴()2max 16362f x π=-+.∵()()214f f πππ-==--,()01f =,∴()2min14f x π=--.17.(2022春·广东佛山·高二佛山一中校考期中)已知函数21()ln 2f x x ax a =-+,(1)当1a =时,求()f x 的最值;(2)若ln 2()2f x £恒成立,求a 的取值范围.(1)若e a =,证明:当1x >时,()0f x >;(2)讨论()f x 零点的个数(1)设函数()()g x f x '=,若()y g x =在区间0,2π⎡⎤⎢⎣⎦上是增函数,求a 的取值范围;(2)当2a =-时,证明函数()f x 在区间()0,π上无零点.(1)若1x =函数的极值点,求a 的值;(2)若1a ≥,求证:当[]1,e x ∈时,()0f x '≥,其中e 为自然对数的底数.21.(2022春·广东清远·高二统考期中)已知函数()e 1x f x =-.(1)求证:()f x 在()1,+∞上单调递减(2)若对于任意()0,x ∈+∞,都有()2e x af x a≥+恒成立,求正实数a 的取值范围.22.(2022春·广东佛山·高二校考期中)已知函数()()ln f x x a R x=+∈.(1)判断函数()f x 在区间)2,e -⎡+∞⎣上的零点个数;(2)若函数()f x 在1x =处的切线平行于直线20x y -=,且在[]()1,271828e e =.上存在一点0x ,使得()0001x mf x x +<成立,求实数m .23.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()e (,)2xf x a x b a b R =--∈.(1)若函数()f x 在0x =处的切线方程为1y x =-,求实数a ,b 的值;(2)若函数()f x 在1x x =和2x x =两处取得极值,求实数a 的取值范围.(1)解:()e '=-x f x a x ,因为函数()f x 在0x =处的切线方程为1y x =-,所以(0)1f '=,即1a =,(1)当1a =时,求证:()0f x ≥;(2)若()f x 有两个零点,求a 的取值范围.观察图象知,当且仅当01a <<时,直线y 所以a 的取值范围是01a <<.25.(2022春·广东深圳·高二校考期中)已知函数()2ln 2f x x mx x =-+,m ∈R .(1)当2m =时,求函数()f x 的单调区间;(2)若2m =-,正实数a 、b 满足()()0f a f b ab ++=,求证:a b +≥,2e 1()e ()2x g x ax a a R -=-++∈.(1)求函数e ()()e x x f x ϕ-=+的最小值;(2)设函数()()()F x f x g x =+的两个不同极值点分别为12,x x ()12x x <,求实数a 的取值范围.27.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)设函数()()()ln 12f x x a x x =+-+.(1)若0a =,求()f x 的单调区间;(2)若()f x 在区间(2,)+∞单调递增,求整数a 的最大值.(1)判断函数()f x 是否存在极值,并说明理由;(2)设函数()()ln F x f x m x =-,若存在两个不相等的正数1x ,2x ,使得()()1122F x x F x x +=+,证明:212x x m <.为常数且0a ≠)在1x =处取得极值.(1)当12a =时,求()f x 的单调区间;(2)若()f x 在(]0,e 上的最大值为1,求a 的值.(1)讨论()f x 的单调性.(2)若0a =,证明:对任意的1x >,都有432()3ln f x x x x x ≥-+.。

导数练习题(含答案)

导数练习题(含答案)

导数概念及其几何意义、导数的运算一、选择题:1 已知32()32f x ax x =++,若(1)4f '-=,则a 的值等于A193B103C163D1332 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为 A3B-3C 5D -53 函数2y x a a =+2()(x-)的导数为 A222()x a -B223()x a +C223()x a -D 222()x a +4 曲线313y x x =+在点4(1,)3处的切线与坐标轴围成的三角形的面积为 A19B 29C 13D 235 已知二次函数2y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为 A3B52C 2 D326 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B()2(1)f x x =-C2()2(1)f x x =-D ()1f x x =-7 下列求导数运算正确的是 A 211()1x x x'+=+B21(log )ln 2x x '=C3(3)3log x x e '=⋅D 2(cos )2sin x x x x '=-8 曲线32153y x x =-+在1x =处的切线的倾斜角为 A6π B 34π C 4π D 3π9 曲线3231y x x =-+在点(1,1)-处的切线方程为 A34y x =-B32y x =-+C43y x =-+ D 45y x =-10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为11 一质点的运动方程为253s t =-,则在一段时间[1,1]t +∆内相应的平均速度为 A36t ∆+B36t -∆+C36t ∆- D 36t -∆-12 曲线()ln(21)f x x =-上的点到直线230x y -+=的最短距离是ABCD 013 过曲线32y x x =+-上的点0P 的切线平行于直线41y x =-,则切点0P 的坐标为 A (0,1)(1,0)-或B(1,4)(1,0)--或C(1,4)(0,2)---或D (2,8)(1,0)或14 点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是 A[0,]2πB3[0,)[,)24πππ C 3[,)4ππ D 3(,]24ππ二、填空题15 设()y f x =是二次函数,方程()0f x =有两个相等实根,且()22f x x '=+,则()y f x =的表达式是______________16 函数2sin x y x=的导数为_________________________________17 已知函数()y f x =的图像在点(1,(1))M f 处的切线方程是122y x =+,则(1)(1)f f '+=_________ 18 已知直线y kx =与曲线ln y x =有公共点,则k 的最大值为___________________________ 三、解答题19 求下列函数的导数(1)1sin 1cos x y x-=+ (2) 52sin x x y x +=(3) y = (4) tan y x x =⋅ 20 已知曲线21:C y x =与22:(2)C y x =--,直线l 与12,C C 都相切,求直线l 的方程21 设函数()bf x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --= (1)求()f x 的解析式(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值。

导数综合练习(含答案)

导数综合练习(含答案)

导数综合练习(含答案)主要内容一览导数练习(1)一、选择题1、曲线42y x =上的点到直线1y x =--的距离的最小值为( )A.2 B .22 C.32 D .21652、已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( )A.3 B .52C.2 D .323、点P 在曲线323+-=x x y 上移动,设点P 处切线的倾斜角为α,则α的取值范围是( )A.),65[]2,0[πππ⋃B .3[0,)[,)24πππ⋃C.),43[ππ D .]43,0[π4、函数123+--=x x x y 在闭区间[-1,1]上的最大值是( ) A.2732 B .2726 C. 0 D .-27325、函数36y x x =-在闭区间⎡⎣上的最大值为( )A. 42 B .32 C. 26 D .66、已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A.()0()0f x g x ''>>,B .()0()0f x g x ''><,C.()0()0f x g x ''<>, D .()0()0f x g x ''<<,二、填空题7、与函数123+-=x x y 的图象相切,切线斜率为1的切线方程是_______ 。

8、若函数322()f x x ax bx a =+++在1x =处有极值为10,则a = ,b = 。

9、函数59323+--=x x x y 的单调递减区间是______________。

(完整版)导数练习题(含答案)

(完整版)导数练习题(含答案)

导数概念及其几何意义、导数的运算一、选择题:1 已知,若,则a 的值等于32()32f x ax x =++(1)4f '-=ABCD1931031631332 已知直线与曲线,则b 的值为1y kx =+3y x ax b =++切于点(1,3)A3B-3C5D-53 函数的导数为2y x a a =+2()(x-)ABCD 222()x a -223()x a +223()x a -222()x a +4 曲线在点处的切线与坐标轴围成的三角形的面积为313y x x =+4(1,)3A B C D192913235已知二次函数的导数为,对于任意实数x ,有,则2y ax bx c =++(),(0)0f x f ''>()0f x ≥的最小值为(1)(0)f f 'A3BC 2 D52326 已知函数在处的导数为3,则的解析式可能为()f x 1x =()f x A B2()(1)3(1)f x x x =-+-()2(1)f x x =-CD 2()2(1)f x x =-()1f x x =-7 下列求导数运算正确的是AB211(1x x x'+=+21(log )ln 2x x '=CD 3(3)3log x x e '=⋅2(cos )2sin x x x x'=-8 曲线在处的切线的倾斜角为32153y x x =-+1x =AB C D6π34π4π3π9 曲线在点处的切线方程为3231y x x =-+(1,1)-A BCD 34y x =-32y x =-+43y x =-+45y x =-10设函数的图像上的点处的切线斜率为k ,若,则函数的sin cos y x x x =+(,)x y ()k g x =()k g x =图像大致为11 一质点的运动方程为,则在一段时间内相应的平均速度为253s t =-[1,1]t +∆ABCD 36t ∆+36t -∆+36t ∆-36t -∆-12 曲线上的点到直线的最短距离是()ln(21)f x x =-230x y -+=ABCD 013 过曲线上的点的切线平行于直线,则切点的坐标为32y x x =+-0P 41y x =-0P A B(0,1)(1,0)-或(1,4)(1,0)--或CD (1,4)(0,2)---或(2,8)(1,0)或14 点P 在曲线上移动,设点P 处切线的倾斜角为,则角的取值范围是323y x x =-+ααABC D [0,]2π3[0,)[,)24πππ 3[,)4ππ3(,]24ππ二、填空题15 设是二次函数,方程有两个相等实根,且,则的表达式()y f x =()0f x =()22f x x '=+()y f x =是______________16 函数的导数为_________________________________2sin x y x=17 已知函数的图像在点处的切线方程是,则_________()y f x =(1,(1))M f 122y x =+(1)(1)f f '+=18 已知直线与曲线有公共点,则k 的最大值为___________________________y kx =ln y x =三、解答题19 求下列函数的导数(1)(2) (3)(4) 1sin 1cos xy x-=+y =y =+tan y x x =⋅20 已知曲线与,直线与都相切,求直线的方程21:C y x =22:(2)C y x =--l 12,C C l 21 设函数,曲线在点处的切线方程为()bf x ax x=-()y f x =(2,(2))f74120x y --=(1)求的解析式()f x(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并()y f x =0x =y x =求此定值。

导数综合练习题.docx

导数综合练习题.docx

导数练习题( B)1.(本题满分 12 分)已知函数 f ( x)ax3bx2(c3a2b) x d 的图象如图所示.( I)求c, d的值;( II )若函数 f (x)在x 2处的切线方程为3x y110 ,求函数 f (x) 的解析式;( III )在( II )的条件下,函数y f (x) 与 y 1f ( x)5x m 的图象有三个不同的交点,求 m 的取值范围.32.(本小题满分 12 分)已知函数 f ( x) a ln x ax3(a R) .( I)求函数f (x)的单调区间;( II )函数f (x)的图象的在x4处切线的斜率为3若函数132m23)上不是单调函数,求m 的取值范围.323.(本小题满分 14 分)已知函数 f ( x) x3ax2bx c 的图象经过坐标原点,且在x 1 处取得极大值.( I)求实数a的取值范围;( II )若方程 f ( x)(2a3)2恰好有两个不同的根,求 f ( x) 的解析式;9( III )对于( II )中的函数 f (x) ,对任意、R ,求证: | f ( 2sin ) f ( 2sin ) | 81 .4.(本小题满分 12 分)已知常数 a0 ,e为自然对数的底数,函数 f ( x) e x x , g( x) x 2aln x .( I)写出 f (x) 的单调递增区间,并证明 e a a ;( II )讨论函数y g (x) 在区间 (1,e a ) 上零点的个数.5.(本小题满分14 分)已知函数 f ( x) ln( x 1) k( x 1) 1 .(I)当k 1时,求函数 f (x)的最大值;(II )若函数 f ( x)没有零点,求实数k的取值范围;6.(本小题满分 12 分)( x2ax 2a 3)e x的一个极值点( e 2.718已知 x 2 是函数 f ( x)).( I)求实数a的值;( II )求函数f ( x)在x[ 3,3] 的最大值和最小值.27.(本小题满分14 分)已知函数 f ( x) x24x (2 a) ln x,( a R, a 0)(I)当 a=18 时,求函数f ( x)的单调区间;(I I )求函数f (x)在区间[e,e2]上的最小值.8.(本小题满分 12 分)已知函数f ( x) x( x6)aln x 在x (2,)上不具有单调性....( I)求实数a的取值范围;( II )若f( x) 是 f (x)的导函数,设g( x)f(x) 62x1、 x2,x2,试证明:对任意两个不相等正数不等式 | g (x1 )g (x2 ) | 38| x1x2 | 恒成立.279.(本小题满分12 分)已知函数 f ( x) 1 x2ax ( a 1) ln x, a 1.2(I )讨论函数f ( x)的单调性;(II )证明:若a5, 则对任意 x1 , x2 (0,), x1x2f ( x1 ) f ( x2 ),有 1.x1x210.(本小题满分14 分)已知函数 f (x)1x2 a ln x, g( x)(a 1)x, a1.2( I )若函数f ( x),g ( x) 在区间[1,3]上都是单调函数且它们的单调性相同,求实数 a 的取值范围;( II )若a(1, e] (e 2.71828L ) ,设 F ( x) f ( x)g( x) ,求证:当 x1 ,x2[1,a] 时,不等式| F (x1 ) F (x2 ) |1成立.11.(本小题满分12 分)设曲线 C :f (x)ln x ex (e 2.71828),f ( x)表示 f ( x)导函数.( I)求函数 f (x) 的极值;( II )对于曲线C 上的不同两点A( x1 , y1 ) , B( x2 , y2 ) , x1x2,求证:存在唯一的x0(x1, x2 ) ,使直线 AB的斜率等于 f ( x0 ) .12.(本小题满分14 分)定义 F (x, y) (1 x) y , x, y (0,) ,( I)令函数 f (x) F (3,log 2 (2 x x24)) ,写出函数 f ( x) 的定义域;( II )令函数g( x) F (1,log2( x3ax2bx 1))的图象为曲线 C ,若存在实数 b 使得曲线 C 在x0 ( 4 x0 1) 处有斜率为-8的切线,求实数a的取值范围;( III )当x, y N * 且 x y 时,求证 F ( x, y) F ( y, x) .导数练习题( B )答案1.(本 分 12 分)已知函数 f ( x) ax 3bx 2(c3a 2b) xd 的 象如 所示.( I )求 c, d 的 ;( II )若函数 f (x) 在 x2 的切 方程 3xy 11 0 ,求函数 f (x) 的解析式;( III )在( II )的条件下,函数yf (x) 与 y1f ( x) 5x m 的 象有三m 的取 范 .3个不同的交点,求解:函数 f (x) 的 函数 f ' ( x) 3ax 22bx c 3a 2b⋯⋯⋯⋯ ( 2 分)( I )由 可知函数 f (x) 的 象 点(0, 3),且 f ' (1)得d 3d 3⋯⋯⋯⋯ (4 分)3a 2b c3a 2bc( II )依 意f ' ( 2)3 且 f ( 2)512a 4b 3a 2b 3 8a 4b 6a 4b3 5解得 a 1, b 6 所以 f ( x) x 3 6x 2 9x 3⋯⋯⋯⋯ ( 8 分)( III ) f(x)3x 212x9 .可 化 : x 36x 29x 3x 24x 35x m 有三个不等 根,即: g xx 37 x 2 8xm 与 x 有三个交点;g x 3x 214 x 8 3x 2 x 4 ,x22 2,4 4, ,3433g x+-+g x增极大减极小增268 m,g 416m .⋯⋯⋯⋯ ( 10 分)g273当且 当 g2 68 m 0且g 416 m0 ,有三个交点,327故而,16m 68⋯⋯⋯⋯ ( 12 分)所求.272.(本小 分 12 分)已知函数 f ( x)a ln x ax 3(a R) .( I )求函数 f (x) 的 区 ;( II )函数f (x)的 象的在x 4 切 的斜率3 若函数 1 32m2323)上不是 函数,求 m 的取 范 .解:(I ) f '( x)a(1 x)( x 0) (2 分)x当 a 0时 , f ( x)的单调增区间为 0,1 ,减区间为 1,当 a 0时, f ( x)的单调增区间为 1, , 减区间为 0,1 ;当 a=1 , f ( x) 不是 函数(5 分)(II ) f ' (4)3a 3 2, f ( x)2 ln x 2x 34得 a2g( x)1 x 3 ( m2)x 2 2x, g' (x) x 2 (m 4)x 2 ( 6 分)3 2g( x)在区间 (1,3)上不是单调函数 , 且 g' (0) 2g' (1) 0,m3,19 ,(8 分)19 ( 10 分) m( 3)(12分)g' (3)0.m, 333.(本小 分 14 分)已知函数 f ( x)x 3 ax 2bx c 的 象 坐 原点,且在x 1 取得极大 .( I )求 数 a 的取 范 ;( II )若方程 f ( x)(2a 3)2恰好有两个不同的根,求f ( x) 的解析式;9( III ) 于( II )中的函数f (x) , 任意 、 R ,求 : | f ( 2sin ) f ( 2sin ) | 81 .解:(I ) f (0) 0 c 0,f ( x ) 3 x 2 2 ax ,(1) 0 b 2a 3b f f ( x)3x 2 2ax (2a 3) ( x 1)(3x 2a 3),由 f ( x)0 x 1或x 2a 3 1 取得极大 ,3 ,因 当 x2a 3所以1 a3 ,所以 a 的取值范围是 : (, 3);3⋯⋯⋯⋯ (4分)( II )由下表:x(,1)1(1, 2a 3) 2a 3( 2a 3, )f (x)3 33+- 0-f ( x)极大值极小值递增递减a 6(2a 3)2递增a227依 意得:a6( 2a 3) 2(2a 3)2 ,解得: a 9279 所以函数 f ( x) 的解析式是:f ( x) x 3 9x 2 15x,22sin2, 2 2 sin2,⋯⋯⋯⋯ (10分)( III ) 任意的 数都有在区 [-2, 2]有: f (2)8 36 30 74, f (1) 7, f (2) 8 36 30 2f ( x)的最大值是 f (1) 7, f (x)的最小值是 f ( 2) 8 36 3074函数 f ( x)在区间 [ 2,2] 上的最大 与最小 的差等于 81,所以 | f ( 2sin) f ( 2sin ) | 81 .⋯⋯⋯⋯ (14分)4.(本小 分 12 分)已知常数 a0 , e 自然 数的底数,函数f ( x) e xx , g( x) x 2aln x .( I )写出 f (x) 的 增区 ,并 明e a a ;( II ) 函数y g (x) 在区 (1,e a ) 上零点的个数.解:(I ) f ( x)e x 1 0 ,得f (x) 的 增区 是(0, ) , ⋯⋯⋯⋯ (2分)∵ a0 ,∴ f (a) f (0) 1 ,∴ e a a 1 a ,即 e a a . ⋯⋯⋯⋯ (4 分)a 2( x2a)( x2a )2a2 2( II ) g ( x)2x,由 g ( x)0 ,得 xxx,列表2x ( 0,2a ) 2a (2a , )222g ( x)-0 +g( x)减极小增当 x2a ,函数 y g(x) 取极小 g(2a ) a(1 ln a) ,无极大 .2222⋯⋯⋯⋯ ( 6分)e 2 ae aa,∴ e a2a由( I ) e aa ,∵a ,∴ e 2 aa222g(1) 1 0 , g(e a ) e 2 aa 2 ( e a a)(e aa) 0 ⋯⋯⋯⋯ ( 8 分)( i )当2a 1,即 0 a 2 ,函数 yg (x) 在区 (1,e a ) 不存在零点2( ii )当2a1 ,即 a22若 a(1 ln a)0,即 2a 2e ,函数 yg(x) 在区 (1,e a ) 不存在零点22若 a(1 ln a ) 0 ,即 a 2e ,函数 yg (x) 在区 (1,e a ) 存在一个零点 xe ;22若 a(1 ln a )0 ,即 a2e ,函数 yg(x) 在区 (1,e a ) 存在两个零点;22上所述, yg (x) 在 (1, a)上,我 有 :e当 0a 2e ,函数 f (x) 无零点;当 a 2e ,函数 f ( x) 有一个零点;当 a 2e ,函数 f (x) 有两个零点.⋯⋯⋯⋯ ( 12分)5.(本小 分 14 分)已知函数 f ( x) ln( x 1)k( x 1) 1 .( I )当 k 1 ,求函数f (x) 的最大 ;( II )若函数 f ( x) 没有零点,求 数k 的取 范 ;解:(I )当 k 1 , f(x)2 xx 1f ( x)1+2),令 f ( x) 0,得 x 2,⋯⋯⋯⋯⋯⋯ (分)定 域 ( ,∵当 x (1,2)时 , f ( x) 0 ,当 x(2, )时, f ( x) 0 ,∴ f ( x) 在(1,2) 内是增函数, 在(2,) 上是减函数∴当 x2 , f ( x) 取最大 f (2)⋯⋯⋯⋯⋯⋯ ( 4 分)( II )①当 k0时 ,函数 yln( x 1) 象与函数 yk( x 1) 1 象有公共点,∴函数 f ( x) 有零点,不合要求;⋯⋯⋯⋯⋯⋯ ( 8 分)②当 k0时 , f ( x)1k1 k kxk ( x 1 kk )⋯⋯⋯⋯⋯⋯ ( 6 分)x 1x 1x 1令 f (x)0,得 xk 1 ,∵ x (1,k1)时, f ( x) 0, x(1 1 ,)时, f ( x)0 ,k kk∴ f ( x) 在(1,11) 内是增函数, 在[11 , ) 上是减函数,kk∴ f ( x) 的最大 是 f (1 1 ) ln k ,k∵函数 f ( x) 没有零点,∴ ln k 0 , k1 ,因此,若函数f ( x) 没有零点, 数k 的取 范 k(1, ) . ⋯⋯⋯⋯⋯⋯ (10 分)6.(本小 分 12 分)已知 x2 是函数 f ( x) ( x 2 ax 2a 3)e x 的一个极 点( e2.718 ).( I )求 数 a 的 ;( II )求函数f ( x) 在 x [ 3,3] 的最大 和最小 .(x 223)e x 可得解:(I )由 f ( x)ax 2af (x)(2 x a)e x (x 2 ax 2a3)e x [ x 2 (2 a)x a 3]e x ⋯⋯ ( 4 分) ∵ x2 是函数 f ( x) 的一个极 点,∴ f (2) 0∴ (a 5)e 20 ,解得 a5⋯⋯⋯⋯⋯ ( 6 分)( II )由 f( x) ( x 2)( x1) e x0 ,得 f ( x) 在 ( ,1) 增,在 (2,) 增,由 f (x) 0 ,得 f ( x) 在在 (1,2) 减∴ f ( 2)e 2是 f ( x) 在 x[ 3,3] 的最小 ;7 e 232e 37 e 23f ( 3), f (3) e 3 ∵ f (3) f ( 3) 2 4 3,3] 的最大 是 2 4∴ f ( x) 在 x [ f (3) e 3 .2 7.(本小 分 14 分)已知函数 f ( x) x 2 4x (2 a) ln x,( a R, a 0)( I )当 a=18 ,求函数 f ( x) 的 区 ;( II )求函数 f (x) 在区 [e,e 2 ] 上的最小 .解:(Ⅰ) f ( x)x 2 4x 16 ln x ,f ' (x) 2 x416 2(x 2)( x 4)x x⋯⋯⋯⋯⋯ ( 8 分)1e 23( 4e e 7) 0, f ( 3) f ( 3)42⋯⋯⋯⋯⋯ ( 12 分)2 分由 f ' ( x) 0 得 ( x 2)( x 4) 0 ,解得 x 4 或 x 2注意到 x 0,所以函数 f (x) 的 增区 是( 4, +∞) 由 f '( x) 0 得 ( x 2)( x 4) 0 ,解得 -2< x < 4,注意到 x 0,所以函数f (x) 的 减区 是 (0,4] .上所述,函数f (x) 的 增区 是(4, +∞), 减区 是 (0,4]6 分(Ⅱ)在 x[e, e 2 ] , f ( x) x 2 4 x (2 a) ln x所以 f ' ( x) 2x 2 a 2x 2 4x 2 a4 x ,2x 2 xg( x) 4x 2 a当 a 0 ,有 △ =16+4 ×2 (2 a)8a 0 ,此g(x)0 ,所以 f ' (x)0 , f (x) 在 [e, e 2 ] 上 增,所以 f ( x) min f (e)e 2 4e 2 a 8 分当 a0 , △=164 2(2a)8a0 ,令 f ' ( x)0 ,即 2x 24x2 a 0 ,解得 x 12a 或 x 12a ;22令 f '( x)0 ,即 2 x 24x 2 a 0 ,解得 12a x 12a .22①若 12a ≥ 2,即 a ≥2(e 21)2 ,2ef (x) 在区 [e,e 2] 减,所以f ( x) minf (e 2 )e 4 4e 24 2a .②若 e 12a e 2 ,即 2(e 1)2a2(e 2 1) 2 ,2f (x) 在区 [e,12a [12a , e 2 ] 上 增, 2 ] 上 减,在区2所以 f (x) minf (12a ) a2a 3 ( 2 a) ln(12a) .222③若 12a ≤e ,即 0a ≤2(e1) 2, f ( x) 在区 [ e, e 2 ] 增,2e 2所以 f ( x) min f (e)4e 2 a上所述,当 a ≥2(e 2 1) 2 , f (x)min a 4 4e 24 2a ;当 2(e 1) 2a2( e 2 1) 2 , f ( x) mina 2a 3 ( 2 a) ln(12a ) ;1) 2, f ( x) min e 22 2当 a ≤2(e 4e 2a14 分8.(本小 分 12 分)已知函数 f ( x) x( x 6)aln x 在 x (2, ) 上不具有 性....( I )求 数 a 的取 范 ;( II )若 f( x) 是 f (x) 的 函数, g( x)f (x) 62 , 明: 任意两个不相等正数 x 1、 x 2 ,x 2不等式 | g (x 1 ) g (x 2 ) |38| x 1 x 2 | 恒成立.27 2x 2解:(I ) f ( x)2x 6a6xa,⋯⋯⋯⋯⋯⋯ ( 2 分)xx∵ f ( x) 在 x(2,) 上不具有 性,∴在x (2,) 上 f (x) 有正也有 也有0,...即二次函数 y 2x26x a 在 x (2, ) 上有零点⋯⋯⋯⋯⋯⋯ ( 4 分)∵ y2x 2 6x a 是 称 是 x3 ,开口向上的抛物 ,∴ y2 22 6 2a 0的 数 a 的取 范 (,4) 2⋯⋯⋯⋯⋯⋯ ( 6 分)(II )由( I )g( x) 2xa2xx2 ,方法 1: g( x)f ( x)2 6a 2(x 0) ,x22xx2x2x 3∵ a4 ,∴ g (x)2 a4 2 4 4 4x 4 ,⋯⋯⋯⋯ (8 分)x 2 x 3x 2x 3x 3h( x) 24 48 12 4(2 x 3)x 2x 3 , h (x)x 3 x 4x 4h( x) 在 (0, 3) 是减函数,在 (3,) 增函数,当 x3, h( x) 取最小382 2227∴从而 g ( x)38 ,∴ ( g( x) 38 x) 0 ,函数 y g( x) 38x 是增函数,2727 38 27 38x 1、 x 2 是两个不相等正数,不妨x 1x 2 , g( x 2 ) x 2 g ( x 1 ) x 127 27 ∴ g( x 2 ) g( x 1 )38(x 2 x 1 ) ,∵ x 2 x 10 ,∴ g (x 1 ) g( x 2 ) 3827x 1 x 227∴ g( x 1 ) g (x 2 ) 38 ,即 | g( x 1 ) g( x 2 ) | 38 | x 1 x 2 |⋯⋯⋯⋯⋯⋯ (12 分)x 1 x 2 2727方法 2: M ( x 1 ,g (x 1)) 、 N (x 2 , g( x 2 )) 是曲 yg( x) 上任意两相异点,g (x 1 ) g( x 2 )2( x 1 x 2 )a , Q x 1x 2 2 x 1 x 2 ,x 1 x 22x 1 x 2 a 4x 12 x 222( x 1 x 2 )a4a44 2x 12 x 222( x 1 x 2 )3 x 1 x 22⋯⋯⋯ (8 分)x 1 x 2( x 1 x 2 )3x 1 x 2t1 , t 0 ,令 k MN u(t)2 4t 34t 2 , u (t ) 4t(3t 2) ,x 1x 2由 u (t)0 ,得 t2, 由 u (t) 0 得 0 t2 ,33u(t) 在 (0, 2) 上是减函数,在( 2, ) 上是增函数,33u(t) 在 t2 取极小 38 , u(t )38 ,∴所以 g( x 1 ) g( x 2 )3832727x 1 x 2 27即 | g( x 1 ) g( x 2 ) |38 x 2 |⋯⋯⋯⋯⋯⋯ ( 12 分)| x 1279.(本小 分12 分)已知函数 f ( x)1 x2 ax ( a 1) ln x, a 1.2(I ) 函数 f ( x) 的 性;(II ) 明:若 a5, 则对任意 x 1 , x 2(0, ), x 1f ( x 1 ) f ( x 2 )x 2 ,有x 2x 1 ( 1) f ( x) 的定 域 (0,) , f '( x)x aa 1 x 2ax a 1 ( x 1)( x xxx2 分( i )若 a1 1,即 a 2,f ' (x)( x 1)2 . 故 f ( x) 在 (0,) 增加.x( ii )若 a1 1, 而 a 1, 故1 a 2,则当 x (a 1,1)时 , f ' (x) 0.当 x (0, a 1)及 x (1, )时, f '( x) 0,故 f ( x)在 (a 1,1) 减少,在( (1, ) 增加. ( iii )若 a 1 1,即 a 2,同理可得 f ( x)在 (1,a 1)单调减少 , 在 (0,1), (a 1,增加.1.1 a)0, a-1),)( II )考 函数 g (x) f ( x)x1 x2 ax (a 1) ln x x.2由 g ' ( x) x (a 1)a 1 2 x a1( a 1) 1 ( a 1 1)2 .x x由于 a a5,故 g' (x)0,即 g(x)在 (0,)单调增加 ,从而当 x 1g( x 1 ) g ( x 2 ) 0,即 f ( x 1 ) f (x 2 ) x 1 x 2 0, f ( x 1 ) f ( x 2 ) 1,当 0f (x 1 ) f (x 2 ) 故 x 2x 1 x 2 ,有 x 2 x 1x 1 10.(本小 分14 分)x 2 0 有f (x 2 ) f ( x 1 )x 2x 11已知函数 f (x) 1 x 2 a ln x, g( x) (a 1)x , a 1 .2( I )若函数 f ( x), g ( x) 在区 [1,3] 上都是 函数且它 的 性相同,求 数a 的取 范 ;( II )若 a(1, e] (e 2.71828L ) , F ( x)f ( x) g( x) ,求 :当 x 1 ,x 2[1,a] ,不等式| F (x 1 ) F (x 2 ) | 1成立.解:(I )f ( ) x a ,g ( x ) a 1 ,⋯⋯⋯⋯⋯ ( 2 分)x x∵函数 f (x), g( x) 在区 [1,3] 上都是 函数且它 的 性相同,∴当 x[1,3] , f ( x)g (x)(a 1)(x 2a)0 恒成立,⋯⋯⋯⋯⋯ ( 4 分)x即 ( a 1)(x 2a) 0 恒成立,a 1x [1,3] a1 在 x [1,3] 恒成立,∴a在 恒成立,或x 2x 2a∵ 9x1 ,∴ a1 或 a9⋯⋯⋯⋯⋯⋯ ( 6 分)( II ) F ( x)1 x2 a ln x, (a 1)x , F ( x) x a ( a 1) ( x a)( x 1)2 xx ∵ F ( x) 定 域是 (0, ) , a (1, e ] ,即 a 1∴ F ( x) 在 (0,1) 是增函数,在 (1,a) 减函数,在 ( a, ) 是增函数∴当 x1 , F ( x) 取极大 MF(1)a 1 ,2当 xa , F ( x) 取极小 mF ( a)a ln a 1 a 2 a ,⋯⋯⋯⋯⋯⋯ ( 8 分)2∵ x 1 , x 2 [1,a] ,∴ | F ( x 1 ) F ( x 2 ) | | M m | M m⋯⋯⋯⋯⋯⋯ ( 10 分)G (a) Mm 1 a 2 aln a1, G ( a) a ln a 1 ,1 2 2∴ [ G (a)] 1 ,∵ a (1, e] ,∴ [ G (a)] 0a∴ G (a) a ln a 1 在 a (1, e] 是增函数,∴ G (a) G (1) 0∴ G (a)1 a2 a ln a 1 在 a (1, e] 也是增函数⋯⋯⋯⋯⋯⋯ ( 12 分)2 2∴ G (a) G (e) ,即 G (a)1 e2 e 1 (e 1)21,2 2 2而 1e 2e 1 (e 1)21 (3 1)21 1,∴ G (a) M m 122 22∴当 x 1 ,x 2[1,a] ,不等式 | F (x 1)F (x 2 ) |1成立.⋯⋯⋯⋯⋯⋯ ( 14 分)11.(本小 分12 分)ex ( e2.71828曲 C : f (x) ln x ), f ( x) 表示 f ( x) 函数.( I )求函数 f (x) 的极 ;( II ) 于曲 C 上的不同两点A( x 1 , y 1 ) , B( x 2 , y 2 ) , x 1 x 2 ,求 :存在唯一的 x 0(x 1, x 2 ) ,使直 AB 的斜率等于 f ( x 0 ) .解:(I ) f( x) 1 1 ex,得 x1xe0 ex当 x 化 , f( x) 与 f ( x) 化情况如下表:x(0, 11 1)e( , )eef (x)+ 0 -f (x)增极大减∴当 x1 , f ( x) 取得极大 f ( 1)2 ,没有极小 ;⋯⋯⋯⋯ ( 4 分)ee( II )(方法 1)∵ f (x 0 )即 x 0lnx2(x 2 x 1 )x 1g( x 1 ) x 1 lnx 2(x 2x 1∵ x 1x 2 ,∴ g( x 1 )k AB ,∴ 1e ln x 2 ln x 1 e( x 2x 1 ),∴x 2x1lnx2x 0 x 2 x 1x 0x 10 , g (x) x lnx 2(x 2 x 1 )x 1x 1) , g( x 1 )/ ln x 21 0 , g (x 1) 是 x 1 的增函数,x 1x 1g( x 2 ) x 2 lnx 2(x 2 x 2 ) 0;x 2x 2 lnx 2/lnx 2g( x 2 )( x 2x 1 ) ,g (x 2 )x 21 0 , g( x2 ) 是 x 2 的增函数,x 1x 1∵ x 1x 2 ,∴ g( x 2 ) g( x 1 ) x 1 lnx 1(x 1 x 1) 0 ,x 1∴函数 g (x)x lnx 2( x 2 x 1 ) 在 ( x 1, x 2 ) 内有零点 x 0 ,⋯⋯⋯⋯ ( 10 分)x 1又∵x21, ln x20 ,函数 g (x)x lnx 2( x 2 x 1 ) 在 (x 1, x 2 ) 是增函数,x 1x 1x 1∴函数 g (x)x 2 x 1 lnx2在 (x 1, x 2 ) 内有唯一零点 x 0 ,命 成立 ⋯⋯⋯⋯ (12 分)xx 1(方法2)∵ f ( x 0 )k AB ,∴ 1 e ln x 2 ln x 1 e( x 2 x 1) ,x 0 x 2 x 1即 x 0 ln x 2x 0 ln x 1 x 1 x 2 0 , x 0 ( x 1 , x 2 ) ,且 x 0 唯一g( x) xln x 2x ln x 1 x 1 x 2 , g (x 1) x 1 ln x 2 x 1 ln x 1x 1 x 2 , 再 h(x) xln x 2 x ln x x x 2 , 0 xx 2 ,∴ h (x) ln x 2 ln x 0∴ h( x)x ln x 2 x ln x x x 2 在 0 xx 2 是增函数∴ g( x 1 ) h( x 1 ) h(x 2 ) 0 ,同理 g( x 2 ) 0∴方程 x ln x 2x ln x 1x 1 x 2 0 在 x 0 ( x 1 , x 2 ) 有解⋯⋯⋯⋯ (10 分)∵一次函数在 (x 1 , x 2 ) g( x)(ln x 2 ln x 1) x x 1 x 2 是增函数∴方程 x ln x 2 x ln x 1x 1 x 2 0 在 x 0 ( x 1 , x 2 ) 有唯一解,命 成立 ⋯⋯⋯ ( 12 分)注: 用函数 性 明,没有去 明曲C 不存在拐点,不 分.12.(本小 分 14 分)定 F (x, y)(1 x) y , x, y(0, ) ,( I )令函数 f (x)F (3,log 2 (2 x x 24)) ,写出函数 f ( x) 的定 域;( II )令函数g( x)F (1,log 2 ( x 3 ax 2 bx 1)) 的 象 曲C ,若存在 数b 使得曲C 在x 0 ( 4 x 01) 有斜率 -8 的切 ,求 数 a 的取 范 ;( III )当 x, yN * 且 x y ,求 F ( x, y)F ( y, x) .解:(I ) log 2 (2 xx 24) 0 ,即2 x x 2 4 1⋯⋯⋯⋯⋯⋯⋯⋯ ( 2 分)得函数 f ( x) 的定 域是 ( 1,3) ,⋯⋯⋯⋯⋯⋯⋯⋯ ( 4 分)( II ) g ( x) F (1,log 2 ( x 2ax 2 bx 1)) x 3 ax 2bx 1,曲 C 在x 0 ( 4 x 0 1)有斜率 - 8 的切 ,又由 log2 ( x3 ax2bx1) 0,g ( x ) 3 x 22 ax,b3x 02 2ax 0b 8①∴存在 数 b 使得4x 01② 有解,⋯⋯⋯⋯⋯⋯⋯⋯ ( 6 分)x 03ax 02bx 01 1 ③由①得b8 3x2 2,代入③得 2ax 08 0 ,ax 02x 0由 2x 02ax 0 8 0有解,⋯⋯⋯⋯⋯⋯⋯⋯ ( 8 分)4 x 0 1方法 1: a 2( x 0 ) 8 ,因 4 x 01 ,所以 2(x 0 )8 ( x 0 )[8,10) ,( x 0 )当 a 10 ,存在 数 b ,使得曲 C 在 x 0 (4x 01) 有斜率 - 8 的切方法 2:得 2 ( 4)20或2 ( 1)2⋯⋯⋯⋯⋯⋯ (10 分)a (4) 8a ( 1) 80 ,a 10或a 10, a 10.⋯⋯⋯⋯⋯⋯ ( 10 分) 方法 3:是2 ( 4)2a ( 4) 8 0的 集,即 a 10⋯⋯⋯⋯⋯⋯ (10 分)2 ( 1)2 a( 1) 8 0( III )令 h(x)ln(1 x) , xx又令 p(x)xln(1 1 xp( x)在[ 0, ) 减当 x 0时有 p( x) p(0)xx)ln(11,由 h (x)1 x2x11 xx), x 0,p ( x)0 ,(1 x)21 x(1 x)2.⋯⋯⋯⋯⋯⋯⋯⋯ ( 12)分0, 当x1时有 h( x)0,h( x)在[1, ) 减,1 xy 时,有 ln(1 x)ln(1y), y ln(1 x)x ln(1 y), (1 x) y(1 y) x ,xy当 x, y N 且 x y 时 F ( x, y) F ( y, x).⋯⋯⋯⋯⋯⋯ (14 分)。

导数的综合应用练习题及答案

导数的综合应用练习题及答案

导数应用练习题答案1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ξ。

2(1)()23[1,1.5]f x x x =---; 21(2)()[2,2]1f x x =-+;(3)()[0,3]f x =; 2(4)()1[1,1]x f x e =--解:2(1)()23[1,1.5]f x x x =---该函数在给定闭区间上连续,其导数为()41f x x '=-,在开区间上可导,而且(1)0f -=,(1.5)0f =,满足罗尔定理,至少有一点(1,1.5)ξ∈-, 使()410f ξξ'=-=,解出14ξ=。

解:21(2)()[2,2]1f x x =-+该函数在给定闭区间上连续,其导数为222()(1)x f x x -'=+,在开区间上可导,而且1(2)5f -=,1(2)5f =,满足罗尔定理,至少有一点(2,2)ξ∈-, 使222()0(1)f ξξξ-'==+,解出0ξ=。

解:(3)()[0,3]f x =该函数在给定闭区间上连续,其导数为()f x '=,在开区间上可导,而且(0)0f =,(3)0f =,满足罗尔定理,至少有一点(0,3)ξ∈,使()0f ξ'==,解出2ξ=。

解:2(4)()e 1[1,1]x f x =--该函数在给定闭区间上连续,其导数为2()2e x f x x '=,在开区间上可导,而且(1)e 1f -=-,(1)e 1f =-,满足罗尔定理,至少有一点ξ,使2()2e 0f ξξξ'==,解出0ξ=。

2.下列函数在给定区域上是否满足拉格朗日定理的所有条件?如满足,请求出定理中的数值ξ。

3(1)()[0,](0)f x x a a =>; (2)()ln [1,2]f x x=;32(3)()52[1,0]f x x x x =-+--解:3(1)()[0,](0)f x xa a =>该函数在给定闭区间上连续,其导数为2()3f x x '=,在开区间上可导,满足拉格朗日定理条件,至少有一点(0,)a ξ∈,使()(0)()(0)f a f f a ξ'-=-,即3203(0)a a ξ-=-,解出ξ=。

(完整版)导数测试题(含答案)

(完整版)导数测试题(含答案)

B.(0,3)
C.(1,4)
D.(2,+∞)
解析:选 D.f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex,
令 f′(x)>0,解得 x>2,故选 D. 8.“函数 y=f(x)在一点的导数值为 0”是“函数 y=f(x)在这点取极值”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选 B.对于 f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出 f(x)在 x=0 处取极值,反之 成立.故选 B. 9.函数 f(x)的定义域为开区间(a,b),导函数 f′(x)在(a,b)内的图象如图所示,则函数 f(x)在开区间(a,b)内的极小值点有( )
B.(2,4)
11
11
C.(4,16) 故选 D.
1
D.(2,4)
6.已知函数 f(x)=x,则 f′(-3)=( ) 1
A.4 1
B.9 1
C.-4
D.-9
1
1
解析:选 D.∵f′(x)=-x2,∴f′(-3)=-9. 7.函数 f(x)=(x-3)ex 的单调递增区间是( )
A.(-∞,2)
三、解答题 x
17.求下列函数的导数:(1)y=3x2+xcosx; (2)y=1+x; (3)y=lgx-ex.
18.已知抛物线 y=x2+4 与直线 y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程.
1 19.已知函数 f(x)=3x3-4x+4.(1)求函数的极值; (2)求函数在区间[-3,4]上的最大值和最小值.
解析:令 y′=(x+1)ex=0,得 x=-1. 当 x<-1 时,y′<0;当 x>-1 时,y′>0.

导数练习题及答案

导数练习题及答案

导数练习题及答案导数练习题及答案导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

以下是导数练习题及答案,欢迎阅读。

一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的`瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx=4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。

2025新高考数学计算题型精练专题03 导数计算(解析版)

2025新高考数学计算题型精练专题03 导数计算(解析版)

2025新高考数学计算题型精练导数计算1.求下列函数的导数:(1)cos sin cos xy x x -=;(2)221e x y x +=.【答案】(1)()21sin cos x x --;(2)()222141exx ++【详解】(1)()()()()22sin sin cos cos sin cos 1sin cos sin cos x x x x x xy x x x x ---+'==---;(2)()()22221221221e 21e 41e xx x y x x x +++''=++=+.2.求下列函数的导数.(1)()()221f x x =-+;(2)()()ln 41f x x =-;(3)()322x f x +=;(4)()f x =;【答案】(1)84x -(2)441x -(3)3232ln2x +⨯【详解】(1)因为()()2221441f x x x x =-+=-+,所以()84f x x '=-.(2)因为()()ln 41f x x =-,所以()441f x x '=-.(3)因为()322x f x +=,所以()3232ln2x f x +'=⨯(4)因为()f x =,所以()f x '==3.求下列函数的导数:(1)32235y x x =-+;(2)241y x x =++;(3)2log y x =;(4)e n xy x =;(5)31sin x y x-=;(6)sin sin cos xy x x=+.【答案】(1)266x x -(2)()22241x x ----+(3)1ln 2x (4)()1e n xx n x -+(5)()2323sin 1cos sin x x x x x--(6)11sin 2x+【详解】(1)()()32223566y x x x x ''''=-+=-.(2)()()()22242411y x x x x ''--'=+=+++()22241x x --=--+.(3)()21log ln 2y x x ''==.(4)()()()11e e e e e n x n x n x n x n x y x x nx x x n x --'''=+=+=+.(5)()()()()33321sin 1sin 1sin sin x x x x x y x x '''---⎛⎫-'== ⎪⎝⎭()2323sin 1cos sin x x x x x --=.(6)()sin sin cos x y x x ''=+()()()()2sin sin cos sin sin cos sin cos x x x x x x x x ''+-+=+()()()2cos sin cos sin cos sin sin cos x x x x x x x x +--=+()2111sin 2sin cos x x x ==++.4.求下列函数的导数:(1)1)1y ⎫=+-⎪⎭;(2)3ln (0,1)x y x a a a =+>≠;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭(4)2ln(23)1x y x +=+.【答案】(1)11y x ⎫'=+⎪⎭;(2)3ln (0xy a a a x '=+>且1)a ≠;(3)1sin 42cos 42y x x x --'=;(4)y '()()222212(23)ln(23)(23)1x x x x x x +-++=++【详解】(1)1)11y ⎫==-=⎪⎭,11y x '⎛⎫'∴===+⎪⎭⎝.(2)()'33ln ln (0,1)xxy x aa a a a x=+=+>≠'.(3)11sin 2cos 2sin(4)sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭ ,111sin 44cos 4sin 42cos 4222x x x x x x y '∴=--⋅=--.(4)()()()2222[ln(23)]1ln(23)11x x x x y x ''++-++'=+()()222(23)12ln(23)231x x x x x x '+⋅+-++=+()()222212(23)ln(23)(23)1x x x x x x +-++=++.5.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;(3)sin cos 22x y xx =-;【答案】(1)6sin =-'y x x ;(2)1ln +='+x y x x ;(3)11cos 2y x '=-.【详解】(1)因为23cos =+y x x ,所以6sin =-'y x x ;(2)因为()1ln =+y x x ,所以1ln +='+x y x x;(3)因为1sin cos sin 222y x x x x x =-=-,所以11cos 2y x '=-;6.求下列函数的导数.(1)22y x x -=+;(2)2ln 1xy x =+【答案】(1)322y x x -=-';(2)()()22112ln 1x x xy x-+'=+【详解】(1)322y x x -=-';(2)()()()()()22222212ln ln 1ln 111x x xx x x x x y xx ⎛⎫+-'' ⎪+-+⎝⎭'==++()()()2222112ln 12ln 11x x x x x x x x x -+-+==++.7.求下列函数的导数:(1)2()(1sin )(1)f x x x =+-;(2)()31x xf x x =-+.【答案】(1)()2cos 12(1sin )x x x x --+;(2)213ln 3(1)x x -+.【详解】(1)22()(1sin )(1)(1sin )(1)f x x x x x '''=+-++-2cos (1)(1sin )(2)x x x x =-++-()2cos 12(1sin )x x x x =--+(2)()((3)1x xf x x '''=-+2()(1)(1)3ln 3(1)x x x x x x ''+-+=-+213ln 3(1)x x =-+.8.求下列函数的导数:(1)22log (3);y x x =(2)cos(21).x y x+=【答案】(1)22log (3).ln 2x y x x '=+(2)()22sin 21cos(21).x x x y x -+-+'=【详解】(1)[]2222()log (3)log (3)y x x x x '''=+2232log (3)3ln 2x x xx =+22log (3)ln 2xx x =+.(2)[]2cos(21)cos(21)x x x x y x''+-+'=()22sin 21cos(21)x x x x -+-+=.9.求下列函数的导数:(1)111x y x x+=+-;(2)ln(21)y x x =+.【答案】(1)22221(1)x x y x x +-'=-(2)2ln(21)21xy x x '=+++.【详解】(1)2222(1)(1)(1)121(1)(1)x x y x x x x --+⨯-'=-=---22221(1)x x x x +-=-;(2)12ln(21)2ln(21)2121xy x x x x x '=++⋅⋅=++++.10.求下列函数的导数:(1)()ln 21x y x+=;(2)()ln 25y x =-;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎝⎭⎝⎭.【答案】(1)()()()2221ln 2121x x x y x x-++'=+(2)225y x '=-(3)1sin 42cos 42y x x x --'=【详解】(1)()()()()()2221ln21ln 21ln 21ln 2121x x x x x x x x x y x x x '+'⋅-+''+-+⎡⎤+⎡⎤⎣⎦+'===⎢⎥⎣⎦()()()()222ln 21221ln 212121xx x x x x x x x -+-+++==+.(2)令25u x =-,ln y u =,则()112ln 222525y u u u x x '''=⋅=⋅=⋅=--.(3)因为()11sin 2cos 2sin 4sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭,所以()11111sin 4sin 4sin 44cos 4sin 42cos 422222y x x x x x x x x x x''⎛⎫⎛⎫=-+-=--⋅=-- ⎪ ⎪⎝⎭⎝⎭'.11.求下列函数的导函数.(1)324ln 1y x x x =+-+;(2)24cos 2xy x -=+;(3)21e sin +=x y x .【答案】(1)21122x x x +-(2)()()2222sin 2cos 82x x x x x x ++-+(3)()212sin cos e x x x ++【详解】(1)'21122y x x x=+-;(2)()()()()()22'2222sin 224cos 2sin 2cos 822x x x x xx x x xy xx+--++-==++;(3)()'2121212e sin e cos 2sin cos e x x x y x x x x +++=+=+.12.求下列函数的导数.(1)(11y⎛=+ ⎝;(2)ln xy x=.【答案】(1)'y =,(2)'21ln x y x -=【详解】解:(1)因为(11221111y x x-⎛=+==- ⎝,所以31'22211111)22222x y x x x --+=--=-=-,(2)由ln x y x =,得'21ln x y x -=13.求下列函数的导数:(1)5log 2y x =;(2)8x y =;(3)cos 2y x =;(4)()432y x =.【答案】(1)1ln 5y x '=(2)8ln8x y '=(3)2sin 2y x '=-(4)1013323y x =【详解】(1)555log 2log 2log x x =+ 1ln 5y x '∴=(2)8ln8x y '=(3)令2,t x =则cos y t =()()()cos 2cos 2sin 22sin 2x t x y y t x t x t x''''''∴=⋅⇒=⋅=-⨯=-,故2sin 2y x '=-(4)()10444414313333334222233y x x y xx -'==⋅∴=⨯= 14.求下列函数的导数:(1)8y x =;(2)4x y =;(3)3log y x =;(4)sin(2y x π=+;(5)2e y =.【答案】(1)'78y x =;(2)'4ln 4x y =⋅;(3)'1ln 3y x =⋅;(4)'sin y x =-;(5)'0y =.【详解】(1)8y x =,'78y x =;(2)4x y =,'4ln 4x y =⋅;(3)3log y x =,'1ln 3y x =⋅;(4)sin()cos 2y x x π=+=,'sin y x =-;(5)2e y =,'0y =.15.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)ln y x =;(5)cos y x =.【答案】(1)1112y x '=(2)54y x'=-(3)3ln 3xy '=(4)1y x '=(5)sin y x '=-【详解】(1)()121112y x x ''==(2)()4545144y x x x x --'⎛⎫''===-=- ⎪⎝⎭(3)()ln 333x x y ''==(4)()1ln y x x''==(5)()cos sin y x x''==-16.求下列函数的导函数(1)4235+6y x x x =--;(2)21y x x=+;(3)2cos y x x =;(4)tan y x =【答案】(1)3465y x x =--';(2)321y x '=-;(3)22cos sin y x x x x -'=;(4)21cos y x'=【详解】(1)由4235+6y x x x =--,则3465y x x =--';(2)由21y x x =+,则321y x '=-;(3)由2cos y x x =,则22cos sin y x x x x -'=;(4)由sin tan cos x y x x ==,则2222cos sin 1cos cos x x y x x+'==.17.求下列函数的导函数.(1)()3224f x x x =-+;(2)()32113f x x x ax =-++(3)()cos ,(0,1)f x x x x =+∈;(4)2()3ln f x x x x =-+-(5)sin y x =;(6)11x y x +=-【答案】(1)2()68f x x x =-+(2)2()2f x x x a'=-+(3)()sin 1f x x '=-+(4)1()23f x x x'=--+(5)cos y x '=(6)22(1)y x '=--【详解】解:(1)由()3224f x x x =-+,则()'268f x x x =-+;(2)由()32113f x x x ax =-++,则()'22f x x x a =-+;(3)由()cos ,(0,1)f x x x x =+∈,则()1sin ,(0,1)f x x x =-∈;(4)由2()3ln f x x x x =-+-,则'1()23f x x x=-+-;(5)由sin y x =,则'cos y x =;(6)由11x y x +=-,则'''22(1)(1)(1)(1)2(1)(1)x x x x y x x +⨯--+⨯-==---.18.求下列函数的导数:(1)221()(31)y x x =-+;(2)cos x y e x =;【答案】(1)y ′=18x 2+4x -3;(2)y ′=ex (cos x -sin x ).【详解】(1)2222(21)(31)(21)(31)4(31)3(21)1843y x x x x x x x x x '''=-++-+=++-=+-,(2)()cos (cos )cos sin (cos sin )x x x x x y e x e x e x e x e x x '''=+=-=-.19.求下列函数在指定点处的导数.(1)()πf x x =,1x =;(2)()sin f x x =,π2x =.【答案】(1)π(2)0【详解】(1)解:因为()πf x x =,所以()1f x x ππ-'=,所以()1f π'=.(2)解:因为()sin f x x =,所以()cos f x x '=,所以cos 022f ππ⎛⎫'== ⎪⎝⎭.20.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)5log y x =.【答案】(1)1112y x '=(2)54y x '=-(3)3ln3xy '=(4)1=ln5y x '【详解】(1)12y x =,则1112y x '=(2)441y x x -==,则41544y x x --'-==-(3)3x y =,则3ln3x y '=(4)5log y x =,则1=ln 5y x '21.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;【答案】(1)6sin =-'y x x ;(2)1ln 1y x x'=++【详解】解:(1)因为23cos =+y x x所以()()23cos 6sin y x x x x '''=+=-,即6sin =-'y x x(2)因为()1ln =+y x x所以()()()()111ln 1ln ln 1ln 1y x x x x x x x x x '''=+++=++⋅=++,即1ln 1y x x'=++22.求下列函数的导数.(1)()()22331y x x =+-;(2)1sin 1cos xy x-=+.【答案】(1)21849y x x '=-+(2)21cos sin (1cos )'--+=+x x y x 【详解】(1)解:因为326293y x x x =-+-,所以21849y x x '=-+(2)()()2cos (1cos )1sin sin (1cos )x x x x y x -+---=+',21cos sin (1cos )x xx --+=+.23.求下列函数的导数.(1)()()ln sin f x x x x =+;(2)()()521exx f x +=.【答案】(1)()ln sin cos 1f x x x x x '=+++(2)()()()42192e xx x f x +-'=【详解】(1)()()()1ln sin ln sin ln sin cos f x x x x x x x x x x x x ⎛⎫'''=+++=+++ ⎪⎝⎭ln sin cos 1x x x x =+++.(2)()()()()()()454525e 212121e 102121e e x x x xx x x x x f x '++-++-+'==()()()()442110212192e ex xx x x x +--+-==.24.求下列函数的导数:(1)()2sin 2x f x x x=+(2)()()3e ln 24xf x x =+【答案】(1)()()()()222cos 2sin 222x x x x x f x x x +-+'=+(2)()()33e 3e ln 224xxf x x x =+++'【详解】(1)()2sin 2xf x x x=+,()()()()222cos 2sin 222x x x x x f x xx +-+'=+(2)()()3e ln 24xf x x =+,()()()3333e 3e ln 242242e 3e ln 24x xxxx f x x x x '=++++=++.25.求下列函数的导数:(1)()f x =(2)()cos 21x y x+=.【答案】(1)21x x +(2)()()22sin 21cos 21x x x x -+-+(2)求商的导数,[]2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦,由复合函数的的导数得[]cos(21)sin(21)(21)2sin(21)x x x x ''+=-++=-+ .【详解】(1)因为()f x =所以()()122'211221x x x f x x -+⋅===+'.(2)()()()'2cos 21cos 21x x x x f x x ⎡⎤+-+⎣⎦''=()22sin 21cos(21)x x x x -+-+=.26.求下列函数的导函数.(1)()()22331y x x =+-;(2)233x y x +=+.【答案】(1)21849x x -+(2)()222633x x x--++【详解】(1)()()22331y x x =+- ,()()()()()()2222233123314313231849y x x x x x x x x x '''∴=+-++-=-++=-+;(2)233x x y +=+ ,()()()()()()()()()2222222222333332363333x x x x x x x x x xxxy ''∴++-+++-+--+=='=+++.27.求下列函数的导数:(1)32234y x x =--;(2)ln xy x=.【答案】(1)266x x -(2)21ln x x -【详解】(1)322(2)(3)(4)66y x x x x ''''=--=-(2)()2221ln ln ln ()1ln x xx x x x x x y x x x ⋅-''⋅-⋅-'===28.求下列函数的导数:(1)31x x y e-=(2)ln(52)y x =+(3)cos(21)x y x +=【答案】(1)3231e x x x y -+'+=(2)552y x '=+(3)22sin(21)cos(21)x x x y x +++'=-【详解】(1)∵31xx y e-=,则()()()()()()''333232221e 1e 31e 31e e e x xxxx xx x xx x x y ----++-++===',故3231e xx x y -+'+=.(2)设52u x =+,则ln ,52u y u u x ==+,则()()()()''''15ln 52552u y y u u x u x '==+=⨯=+,故552y x '=+.(3)∵cos(21)x y x+=,则[]()2222sin(21)cos(21)2sin(21)cos(cos(21)cos 2121)x x x x x x y x x x x x x x ''+⋅-+⋅⎡⎤⎣⎦'==-+-++++=-,故22sin(21)cos(21)x x x y x +++'=-.29.求下列函数的导数.(1)n 1l y x x =+;(2)sin cos 22x y x x =-;(3)cos ex xy =【答案】(1)211y x x '=-.(2)11cos 2y x '=-(3)sin cos e x x x y +'=-.【详解】(1)22111(ln )(y x x x x''=+=-;(2)由已知1sin 2y x x =-,所以11cos 2y x '=-;(3)22(cos )e cos (e )sin e cos e sin cos (e )e e x x x x x x xx x x x x xy ''--⋅-⋅+'===-.30.求下列函数的导数:(1)21y x x=+;(2)e sin x y x =;(3)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()e sin cos x y x x '=+(3)y '=()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x(2)解:()()()e sin e sin e sin e cos e sin cos x x x x x y x x x x x x '''=+=+=+(3)解:()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .31.()2ln 3=+y x x x .【答案】y '=()223ln 33x x x x ++++【详解】()()22ln 3ln 3y x x x x x x '⎡⎤''=+++⎣⎦()()221ln 3233x x x x x x =++⋅⋅++()223ln 33x x x x +=+++.32.21y x x =+;【答案】312y x -=-'【详解】221y x x x x-=+=+,()2312y x x x --'''=+=-.33.求下列函数的导数(1)2(2)(31)y x x =-+;(2)2cos 2x y x=【答案】(1)2272411y x x '=--(2)y '222cos(2)2sin(2)(cos 2)x x x x x +=【详解】(1)因为2232(2)(31)(2)(961)912112y x x x x x x x x =-+=-++=---,所以()()()32291211272411y x x x x x ''''=--=--(2)222222()cos 2(cos 2)2cos 2(2sin 2)cos 2(cos 2)(cos 2)x x x x x x x x x y x x x '''⎛⎫---'=== ⎪⎝⎭222cos(2)2sin(2)(cos 2)x x x x x +=34.求下列函数的导数(1)()2112f x x x x=--;(2)()e ln sin x f x x x =++【答案】(1)()3221x x f x x -+'=;(2)()1e cos xf x x x '=++【详解】(1)解:因为()2112f x x x x =--,则()3222111x x f x x x x -+=-+='.(2)解:因为()e ln sin x f x x x =++,则()1e cos xf x x x'=++.35.求下列函数的导数.(1)ln(21)y x =+;(2)sin cos x y x=;(3)()2ln 1y x x =+;(4)1()23()()y x x x =+++.【答案】(1)221y x '=+;(2)21cos y x =';(3)()2222ln 11x x xy +++'=;(4)231211y x x =++'.【详解】(1)函数ln(21)y x =+,所以()12212121y x x x '=⋅+=++'.(2)函数sin cos x y x =,所以()()''22222sin cos sin cos cos sin 1cos cos cos x x x x x x y x x x -+=='=.(3)函数2)ln(1y x x =+,所以22222212ln(1(1)())ln 111x x x x x x y x '++⋅⋅+=++++'=.(4)依题意,32123()()()6116y x x x x x x ==++++++,所以231211y x x =++'.36.求下列函数的导函数.(1)()4ln =+f x x x ;(2)()sin cos =-x f x x x;(3)()21e xf x -=.【答案】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+;(3)21()2e x f x '-=.【详解】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+.(3)2121(21()e )e 2x x x x f --'==⋅-'.37.求下列函数的导数.(1)y =(2)()()()123y x x x =+++;(3)y =【答案】(1)52322332sin cos 2x x x x x x y ---=-+-+';(2)231211y x x =++';(3)()221y x '=-【详解】(1) 13523222sin sin x x x x y x x x x -++==++∴()()3322sin y x x x x --'⎛⎫'''=++ ⎪⎝⎭52322332sin cos 2x x x x x x ---=-+-+.(2) ()()2323236116y x x x xx x =+++=+++,∴231211y x x =++'.(3)21y x===-∴()()()222122111y x x x '-'⨯-⎛⎫=== ⎪-⎝⎭--.38.求下列函数的导数:(1)()()311y x x =--;(2)sin 3y x =;(3)21ex x y +=.【答案】(1)32431y x x =--';(2)3cos 3y x =';(3)221e xx x y -+'=-【详解】(1)()()()()()()''3332321111131431y x x x x x x x x x =--+--=-+--'=-;(2)令3u x =,则sin y u =,所以()()''3sin 3cos 3cos3y x u u x =⋅==';(3)()()()()()()''2222221e 1e 2e 1e 21e e e x xx xxx xxx x x x x y +-+-+-+=='=-.39.求下列函数的导数:(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)()2ln 35y x =+.【答案】(1)21πcos 0,cos 2y x x x ⎛⎫'=+∈ ⎪⎝⎭;(2)()2223563535x x y x x '+'==++【详解】(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭()()()22cos cos sin sin sin 1πsin cos cos ,0,cos cos 2cos x x x x x y x x x x x x x '⋅-⋅-⎛⎫⎛⎫''=+=+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)()2ln 35y x =+()2223563535x xy x x '+'==++40.求下列函数的导数:(1)21y x x =+;(2)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x ;(2)()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .41.求下列函数的导数.(1)()2ln 2xx f x x +=;(2)()()3ln 45f x x =+.【答案】(1)()312ln ln 222xx x x -+-;(2)1245x +【详解】(1)函数()2ln 2xx f x x +=的定义域为()0+∞,.所以()()()()()()22232ln 2ln 212ln ln 222xxxx x x x x x f x x x ''+-+-+-'==(2)函数()()()3ln 453ln 45f x x x =+=+的定义域为54⎛⎫-+∞ ⎪⎝⎭,.所以()()'345124545x f x x x +==++'42.求下列函数的导数:(1)()2321cos y x x x =++;(2)2y =(3)18sin ln y x x x =+-;(4)32cos 3log xy x x x =-;(5)33sin 3log xy x x =-;(6)e cos tan x y x x =+.【答案】(1)()2(62)cos 321sin x x x x x +-++;(2)132291122x x --+;(3)17118cos x x x+-;(4)()332ln 2cos 2sin 3log 3log e x x x x x ---;(5)()313ln 3sin 3cos 3log e x x x x x +-⋅;(6)21e cos e sin cos x xx x x-+.【详解】(1)()()()22321cos 321cos y x x x x x x '''=+++++⋅()2(62)cos 321sin x x x x x =+-++.(2)3122235y x x x -==+-+,所以1222213331311222912y x x x x --'=⨯⋅+-⋅=-+.(3)17118cos y x x x'=+-.(4)()()()()332cos 2cos 3log log x x y x x x x x x'⎡⎤''''=+-+⎢⎥⎣⎦()332ln 2cos 2sin 3log 3log e x x x x x =---.(5)()()13sin 3sin 3ln 3x xy x x x '''=+-⋅()313ln 3sin 3cos 3log e x x x x x=+-⋅.(6)sin e cos tan e cos cos x xxy x x x x=+=+,故()()()()2sin cos cos sin e cos e cos cos x x x x x xy x x x''-'''=+⋅+21=e cos e sin cos x x x x x-+.43.求下列函数的导数:(1)2e axbxy -+=;(2)2sin(13)y x =-;(3)y(4)y =(5)2lg sin 2x y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦;(6)221cos e x x y ⎛⎫+= ⎪⎝⎭.【答案】(1)2(2)eax bxax b -+-+(2)6cos(13)x --(3)()()()231cos 2sin 22ln 213x x x x x --+⋅+⋅+(4)cos 2(1sin )x x +(5)22cos 122lg e 2sin 2x x x x x ⎛⎫+ ⎪⎛⎫⎝⎭+⋅⋅ ⎪⎛⎫⎝⎭+ ⎪⎝⎭(6)22(1)1sin 2e e x x x x ⎛⎫-+ ⎪⎝⎭【详解】(1)因为函数2e axbxy -+=可以看做函数e u y =和2u ax bx =-+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2e u ax bx ''=⋅-+()e 2u ax b =⨯-+2(2)e axbxax b -+=-+;(2)因为函数2sin(13)y x =-可以看做函数2sin y μ=和13u x =-的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2sin 13x μ''=⋅-()2cos 3μ=⨯-6cos(13)x =--;(3)因为函数y =y =()cos 2xu x =+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅,又因为函数()cos 2xu x =+可以看做函数cos t μ=和2x t x =+的复合函数,根据复合函数求导公式可得,xt x t μμ'''=⋅所以x u t xy y u t ''''=⋅⋅()()cos2xt x'''=⋅⋅+()()231sin2ln213xtμ-⎛⎫=⨯-⨯+⎪⎝⎭()()()231cos2sin22ln213x x xx x-⎡⎤=+-+⨯+⎣⎦()()()231cos2sin22ln213x x xx x-=-+⋅+⋅+;(4)函数y=()1ln1sin2y x=+因为函数()1ln1sin2y x=+可以看做函数1ln2yμ=和1sinu x=+的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,所以x u xy y u'''=⋅()1ln1sin2xμ'⎛⎫'=⋅+⎪⎝⎭1cos2xμ⎛⎫=⨯⎪⎝⎭cos2(1sin)xx=+;(5)因为函数2lg sin2xy x⎡⎤⎛⎫=+⎪⎢⎥⎝⎭⎣⎦可以看做函数lgy u=和2sin2xu x⎛⎫=+⎪⎝⎭的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,又因为函数2sin2xu x⎛⎫=+⎪⎝⎭可以看做函数sin tμ=和22xt x=+的复合函数,根据复合函数求导公式可得,x t xtμμ'''=⋅所以x u t xy y u t''''=⋅⋅()()2lg sin2xt xμ'⎛⎫''=⋅⋅+⎪⎝⎭()11cos2ln102t xμ⎛⎫⎛⎫=⨯⨯+⎪⎪⎝⎭⎝⎭22cos122lg e2sin2x xxx x⎛⎫+⎪⎛⎫⎝⎭=+⋅⋅⎪⎛⎫⎝⎭+⎪⎝⎭;(6)函数221cos e x x y ⎛⎫+= ⎪⎝⎭可化为211cos 2e 2x x y ⎛⎫++ ⎪⎝⎭=,因为函数2221cos e 2xx y ⎛⎫++ ⎪⎝⎭=可以看做函数1cos 2y μ+=和222e xx u +=的复合函数,根据复合函数求导公式可得,x u x y y u '''=⋅,所以xu x y y u '''=⋅21cos 222e xx μ''⎛⎫++⎛⎫= ⎪ ⎪⎝⎭⎝⎭()224e e 221sin 2e x x x x x μ⎡⎤-+⎢⎥=-⋅⎢⎥⎣⎦21242sin 2e x x x μ⎛⎫-+-=-⋅ ⎪⎝⎭22(1)1sin 2e e x x x x ⎛⎫-+= ⎪⎝⎭.44.求下列函数的导数.(1)()()1ln 2y x x =+;(2)21e x y x+=.【答案】(1)y '()1ln 21x x =++(2)212122e ex x x y x ++-='【详解】(1)()()()()()()()111ln 21ln 2ln 21ln 21y x x x x x x x x x'=+++=++⋅=++⎡⎤⎣'⎦'(2)()2121212122e e 2e e x x x x x x x y x x ++++'⋅-⋅-==''45.求下列函数的导数.(1)y =(2)()621e 1x y x -+=-【答案】(1)()241y x -'=-;(2)()()521e 182x y x x -+'=--【详解】(1)2211221x y x ++===-()()()()()22212212211x x x x x y x x '''+--+-+⎛⎫'== ⎪-⎝⎭-()()()()222122411x x x x --+-==--(2)()()()()666212121e 1e 1e 1x x x y x x x -+-+-+'''⎡⎤⎡⎤'=-=-+-⎣⎦⎣⎦()()()()6552121212e 1e 61e 182x x x x x x x -+-+-+=--+⋅-=--46.求下列函数的导数.(1)52234y x x =--;(2)e sin xy x=.【答案】(1)4106y x x '=-;(2)2e sin e cos sin x x x xy x-'=【详解】(1)()()()5252423423106y x x x x x x ''''-==--=-(2)()()2e sin sin e e sin sin x x xx x y x x '''-⎛⎫'== ⎪⎝⎭2e sin e cos sin x x x x x -47.求下列函数的导数:(1)2sin y x x =;(2)n 1l y x x=+;(3)tan y x x =⋅;(4)()()()123y x x x =+++;(5)()()22332y x x =+-;(6)cos e xxy =.【答案】(1)22sin cos y x x x x '=+(2)211y x x'=-(3)2tan cos x y x x '=+(4)231211y x x =++'(5)21889y x x '=-+(6)sin cos e xx xy +'=-【详解】(1)()()()2222sin sin sin 2sin cos y x x x x x x x x x x ''''==+=+;(2)()21111ln ln y x x x x x x''⎛⎫⎛⎫''=+=+=- ⎪ ⎪⎝⎭⎝⎭;(3)()()222sin cos sin tan tan tan tan tan cos cos x x x y x x x x x x x x x x x x '+⎛⎫'''=⋅=+=+⋅=+⋅ ⎪⎝⎭2tan cos x x x =+;(4)()()()()()()123123y x x x x x x '''=+++++++⎡⎤⎡⎤⎣⎦⎣⎦()()()()()()()()()123123123x x x x x x x x x '''=+++++++++++()()()()()()231312x x x x x x =++++++++231211x x =++.(5)()()()()()()2222233223324323231889y x x x x x x x x x '''=+-+++=-++=-+;(6)()2cos 1111sin cos cos cos sin cos e e e e e e e x x x x x x xx x x y x x x x ''+⎛⎫⎛⎫⎛⎫''==+=-⋅+⋅-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.。

导数的测试题及答案

导数的测试题及答案

导数的测试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2的导数是:A. 2xB. x^2C. 2D. x答案:A2. 函数g(x)=sin(x)的导数是:A. cos(x)B. sin(x)C. xD. 1答案:A3. 函数h(x)=e^x的导数是:A. e^xB. e^(-x)C. xD. 1答案:A4. 函数k(x)=ln(x)的导数是:A. xB. 1/xC. ln(x)D. e^x答案:B二、填空题(每题5分,共20分)1. 函数f(x)=3x^2+2x-5的导数是______。

答案:6x+22. 函数g(x)=x^3-4x^2+7的导数是______。

答案:3x^2-8x3. 函数h(x)=1/x的导数是______。

答案:-1/x^24. 函数k(x)=sqrt(x)的导数是______。

答案:1/(2*sqrt(x))三、计算题(每题10分,共40分)1. 求函数f(x)=x^4-2x^3+3x^2-4x+5的导数。

答案:4x^3-6x^2+6x-42. 求函数g(x)=x^5+3x^4-2x^3+x^2-5的导数。

答案:5x^4+12x^3-6x^2+2x3. 求函数h(x)=e^(2x)-3e^x+2的导数。

答案:2e^(2x)-3e^x4. 求函数k(x)=ln(x^2)-2ln(x)+3的导数。

答案:2/x-2/x结束语:以上是导数的测试题及答案,希望同学们通过这些题目能够更好地理解和掌握导数的概念和计算方法。

导数综合强化训练(45题)(解析版)—2025年新高考数学一轮复习

导数综合强化训练(45题)(解析版)—2025年新高考数学一轮复习

导数综合强化训练一、单选题1.已知函数()e 2(0)1'x f x f x =++,则'(2)f 的值为( )A .1-B .2-C .2e 1-D .2e 2-【答案】D【详解】根据题意,()()()()()()0e 201e 200e 20x xf x f x f x f f f ¢¢¢¢=++Û=+Û=+¢Û()()()201e 22e 2x f f x f ¢¢¢=-Û=-Û=-.故选:D.2.已知12023ln 20242024a =+,12024ln 20252025b =+,12025ln 20262026c =+,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c b a >>D .c a b>>【答案】A【详解】构造函数()ln 1f x x x =+-,11()1x f x x x-=¢-=,当01x <<时,()0f x ¢>,()f x 单调递增,所以111202420252026f f f æöæöæö>>ç÷ç÷ç÷èøèøèø,a b c >>.故选:A.3.设曲线e ax y =在点(0,1)处的切线与直线230x y -+=平行,则a =( ).A .1B .2C .12D .12-【答案】B【详解】由函数e ax y =,可得e ax y a ¢=,则0|x y a =¢=,因为直线210x y -+=的斜率为2,可得2a =.故选:B.4.若对任意的1x ,(]21,3x Î,当12x x <时,1212ln ln 22a ax x x x ->-恒成立,则实数a 的取值范围是( )A .[)3,+¥B .()3,+¥C .[)6,+¥D .()6,+¥【答案】C【详解】当12x x <时,1212ln ln 22a a x x x x ->-恒成立,即当12x x <时,1122ln ln 22a ax x x x ->-恒成立,设()(]ln ,1,32af x x x x =-Î,则()f x 单调递减,而()102af x x¢=-£在(]1,3上恒成立,即2a x ³在(]1,3上恒成立,所以6a ³.故选:C.5.已知函数()()e xf x x a =+,a ÎR 有大于1-的极值点,则a 的取值范围为( )A .21,e æö-+¥ç÷èøB .21,e æö-¥-ç÷èøC .()0,¥+D .(),0-¥【答案】D【详解】因为()f x 的定义域为R ,且()()e e 1e x x xf x a x x a ¢=++=++,令()0f x ¢=,可得()1e xx a +=-,构建()()1e xg x x =+,由题意可知:()y g x =与y a =-在()1,-+¥有交点,则()()2e 0xg x x =+>¢对任意()1,x Î-+¥内恒成立,可知()y g x =在()1,-+¥内单调递增,则()()10g x g >-=,可得0a ->,即0a <,所以a 的取值范围为(),0-¥.故选:D.6.已知函数()2xf x ax x =-+,[1,)x Î+¥,()f x ¢是()f x 的导函数,且()0f x ¢£,则a 的最小值为( )A .23B .29C .13D .19【答案】B【详解】由题意得220(2())a x f x =-£+¢,则22max22(2)(2)a a x x éù³Û³êú++ëû.注意到()22y x =+在[1,)+¥上单调递增,()212y x =+在[1,)+¥上单调递减.则()()22max 2229212x éù==êú++êúëû,所以29a ³,即a 的最小值为29.故选:B7.如果()e xf x ax =-在区间()1,0-上是单调函数,那么实数a 的取值范围为( )A .1(,][1,)e -¥+¥U B .1[,1]eC .1(,e-¥D .[1,)+¥【答案】A【详解】由已知()()e ,e x xf x ax f x a ¢=-=-,因为()()e ,1,0xf x ax x =-Î-是单调函数,所以()()1,0,e 0x x f x a =-¢Î-³恒成立或()()1,0,e 0xx f x a =-¢Î-£恒成立,所以e x a ³恒成立或e x a £恒成立,所以0e =1a ³或11e =ea -£,所以1a ³或1ea £.故选:A.8.已知直线2y x a =-+与函数()24ln f x x x =-的图象有两个不同的交点,则实数a 的取值范围为( )A .()3,+¥B .[)3,+¥C .1,32æöç÷èøD .()2,3【答案】A【详解】因为()()22242x f x x x x=¢-=-,所以()f x在(上单调递减,在)¥+上单调递增.令()2f x ¢=-,得1x =,所以直线2y x a =-+与()f x 的图象相切时的切点为()1,1,此时3a =,所以当3a >时,直线2y x a =-+与()f x 的图象有两个不同的交点.故选:A.9.已知函数32()3f x x ax ax b =+++的图象在点(1,(1))f 处的切线方程为12y x m =-+.若函数()f x 至少有两个不同的零点,则实数b 的取值范围是( )A .(5,27)-B .[5,27]-C .(1,3]-D .[1,3]-【答案】B【详解】由题意,得2()323f x x ax a ¢=++,(1)3512f a ¢\=+=-,3a \=-,32()39f x x x x b \=--+.令2()3690f x x x ¢=--=,得11x =-,23x =.当1x <-或3x >时,()0f x ¢>,()f x \在(,1)¥--,(3,)+¥上单调递增;当13x -<<时,()0f x ¢<,()f x \在(1,3)-上单调递减\当1x =-时,()f x 有极大值(1)5f b -=+;当3x =时,()f x 有极小值(3)27f b =-.若要使()f x 至少有两个不同的零点,只需50270b b +³ìí-£î(等号不同时成立),解得527b -££.故选:B10.已知函数()f x 的导函数是()f x ¢,且311(),ln 3,log 3f x x p q ¢===,则下列命题正确的是( )A .()()f p f q -<B .()(2)f p f q >C .11()()f f p q >D .11(1)(f f p q+>【答案】B【详解】依题意,41()4f x x c =+(c 为常数),()f x 是偶函数,且在(0,)+¥上单调递增,又ln 31p =>,110log 31q <=<,则01q p <<<,对于A ,()()()f p f p f q -=>,A 错误;对于B ,1111112ln 32log 3ln 3log 9ln e log 110p q -=-=>-=,20p q >>,()(2)f p f q >,B 正确;对于C ,110q p >>,11()()f f q p>,C 错误;对于D ,3333113e1log e 1log 11log log 1011p q +-=+-=<=,111p q +<,11(1)()f f p q +<,D 错误.故选:B11.已知函数()2e x bf x x =×-有三个零点,则b 的取值范围是( )A .220,e æöç÷èøB .240,e æöç÷èøC .24,e æö-¥ç÷èøD .220,e éùêúëû【答案】B【详解】因为()2e xf x x b =×-有三个零点,所以20e x b x ×-=有三个根,所以y b =和()2e x g x x =×有三个交点,而()(2)e xg x x x +¢=,令()0g x ¢<,(2,0)x Î-,令()0g x ¢>,(,2)(0,)x Î-¥-È+¥,所以()g x 在(,2),(0,)-¥-+¥上分别单调递增,在(2,0)-上单调递减,所以()g x 极小值为()00g =,()g x 极大值为()242e g -=,当x ®+¥时,()g x ¥®+,x ®-¥时,()0g x ®,所以240,e b æöÎç÷èø,故B 正确.故选:B12.设函数()()sin f x x a ax =-,若存在0x 使得0x 既是()f x 的零点,也是()f x 的极值点,则a 的可能取值为( )A .0BC .πD .2π【答案】B【详解】由()()sin f x x a ax =-,得2()sin ()cos f x ax ax a ax ¢=+-,令000()()sin 0f x x a ax =-=,则0x a =或0sin 0ax =,当0x a =时,由20000()sin ()cos 0f x ax ax a ax ¢=+-=,得2sin 0a =,所以2π(N)a k k =Î,则N)a k =Î当0sin 0ax =时,由20000()sin ()cos 0f x ax ax a ax ¢=+-=,得200()cos 0ax a ax -=,由0cos 0ax ¹,得0a =或0x a =,当0a =时,()0f x =不存在极值点,当0x a =时,得N)a k =Î,综上,N)a k =Î,所以当1k =时,a =.故选:B13.设0.02e 1a =-,0.012(e 1)b =-,sin 0.01tan 0.01c =+,则( )A .c a b >>B .a b c >>C .c b a>>D .b a c>>【答案】B【详解】依题意,0.020.010.012e 2e 1(e 1)0a b -=-+=->,则a b >,0.012(e 1)sin 0.01tan 0.01b c -=---,令π()2e sin tan 2,(0,6x f x x x x =---Î,求导得21()2e cos cos xf x x x=--¢,令21π()2e cos ,(0,)cos 6xh x x x x =--Î,求导得32sin ()2e sin cos xx h x x x =+-¢,而2e sin 2xx +>,02sin 1x <<,311cos x <<于是32sin 2cos x x <<,即()0h x ¢>,函数()f x ¢在(0,)6π上单调递增,则()(0)0f x f ¢¢>=,因此函数()f x 在(0,)6π上单调递增,有(0.01)(0)0f f >=,即b c >,所以a b c >>.故选:B14.已知()f x 是定义在()0,¥+上的非负可导函数,且满足()()0xf x f x +£¢,对任意的正数a ,b ,若a b <,则必有( )A .()()bf b af a £B .()()bf a af b £C .()()af a bf b £D .()()af b bf a £【答案】A【详解】令()()g x xf x =,x ∈(0,+∞),则()g x ¢=()()0xf x f x +£¢,所以()g x 在x ∈(0,+∞)上单调递减,若0a b <<,则()()()()g b bf b g a af a =£=,故A 正确,C 错误;因为()()0xf x f x +£¢,且()f x 是定义在(0,+∞)上的非负可导函数,所以()()0xf x f x £-£¢,令()()f x h x x=,x ∈(0,+∞),则()h x ¢=()()20xf x f x x-£¢,所以ℎ(x )在x ∈(0,+∞)上单调递减,若0a b <<,则()()()()f a f b h a h b ab=>=,即()()bf a af b >,故BD 错误.故选:A.15.若正实数a ,b ,c 满足b a bc =,ln b a a c =,则( )A .a b ³B .a c ³C .b c ³D .c b³【答案】B【详解】b a bc =,ln b a a c =,则ln bc a c =,则ln 1b a =,则1e b a =.则1(e )e b b b a ==,则1(e )e=b b b a bc ==,则ec b=先比较a ,b :作差1e ba b b -=-,设1()e (0)xf x x x =->,求导121()e 10,(0)xf x x x¢=--<>,则1()e (0)x f x x x =->在(0,)+¥单调递减.(1)e 10f =->,(2)20f =-=<,故1()e (0)x f x x x =->有正负还有零.即a b -,a b 大小.故A 错误.再比较a ,c :作差1e e ba cb -=-,设1e ()e (0)x f x x x =->,求导112221e 1()e (e e )0xx f x x x x¢=-+=-=,则1x =由于11011e e 0()0x x f x x ¢<<Þ>Þ-<Þ<,则()f x 在(0,1)单调递减.1111e e 0()0x x f x x¢>Þ<Þ->Þ>,则()f x 在(1,)+¥单调递增.且(1)0f =,则()0f x ³,即1ee 0ba cb -=-³,即ac ³.故B 正确.最后比较b ,c ,由于ec b=,假设b c ==满足题意,假设b c >,即eb b>,即2e b >,即b >假设b c <,即eb b<,即2e b <,即0b <<也满足题意.则,b c 无法比较大小,故CD 错误.故选:B.16.已知不恒为0的函数()f x 的定义域为R,()e ()e ()y x f x y f x f y +=+,则不正确的( )A .(0)0f =B .()e xf x 是奇函数C .0x =是()f x 的极值点D .4(3)3e (1)f f =--【答案】C【详解】函数()f x 的定义域为()()(),e e y xf x y f x f y +=+R ,对于A ,令0x y ==,则(0)2(0)f f =,解得(0)0f =,A 正确;对于B ,x ∈R ,取y x =-,则(0)e ()e ()x x f f x f x -=+-,因此()()e e x x f x f x --=-,令()()e xf xg x =,即有()()g x g x -=-,因此函数()g x 是奇函数,即()e xf x 是奇函数,B 正确;对于C ,选项B 中,令()g x x =,则()e x f x x =,求导得()(1)e x f x x ¢=+,因为(0)10f ¢=¹,因此0x =不是()f x 的极值点,C 错误;对于D ,222e (1)e (2)e (1)e[e (1)e (1)]3e (1)(3)f f f f f f f +==++=,由()()e e x x f x f x --=-,得1(1)(1)e ef f --=-,即2(1)e (1)f f =--,因此4(3)3e (1)f f =--,D 正确.故选:C【点睛】关键点点睛:对于选项C :直接判断不容易说明时,可以通过举反例的方式说明,简化分析推理过程.二、多选题17.已知函数3211()2132f x x x x =+-+,若函数()f x 在(2,23)a a +上存在最小值,则a 的可能取值为( )A .12-B .12C .1-D .0【答案】AD 【详解】3211()2132f x x x x =+-+Q ,2()2(2)(1)f x x x x x ¢\=+-=+-,当2<<1x -时,()0f x ¢<,故()f x 在()2,1-上单调递减;当2x <-或1x >时,()0f x ¢>,故()f x 在()(),2,1,¥¥-+上单调递增,\函数()f x 在1x =处取得极小值,在2x =-处取得极大值.令)(()1f x f =,解得1x =或72x =-,Q 函数()f x 在(2,23)a a +上存在最小值,且(2,23)a a +为开区间,721232a a \-<<<+,解得112a -<<.故选:AD.18.已知函数()()()2ln f x x x a a =--ÎR 在区间[)1,+¥上单调递减,则实数a 可以是( )A .0B 1C .1D .12【答案】ABD 【详解】()()120f x x a x ¢=--£在区间[)1,+¥上恒成立,即12a x x£-在区间[)1,+¥上恒成立,令()1,12g x x x x=-³,则()21102g x x ¢=+>,所以()g x 在区间[)1,+¥上单调递增,所以()g x 的最小值为()112g =,所以a 的取值范围是12a £,对比选项可知,只有ABD 符合题意.故选:ABD.19.设函数32()1f x x x ax =-+-,则( )A .当1a =-时,()f x 有三个零点B .当13a ³时,()f x 无极值点C .a $ÎR ,使()f x 在R 上是减函数D .,()a f x "ÎR 图象对称中心的横坐标不变【答案】BD【详解】对于A ,当1a =-时,32()1f x x x x =---,求导得2()321f x x x ¢=--,令()0f x ¢=得13x =-或1x =,由()0f x ¢>,得13x <-或1x >,由()0f x ¢<,得113-<<x ,于是()f x 在1(,)3-¥-,(1,)+¥上单调递增,在1(,1)3-上单调递减,()f x 在13x =-处取得极大值1111(1032793f -=--+-<,因此()f x 最多有一个零点,A 错误;对于B ,2()32f x x x a ¢=-+,当13a ³时,4120a D =-£,即()0f x ¢³恒成立,函数()f x 在R 上单调递增,()f x 无极值点,B 正确;对于C ,要使()f x 在R 上是减函数,则2()320f x x x a ¢=-+£恒成立,而不等式2320x x a -+£的解集不可能为R ,C 错误;对于D ,由32322222258()()()()()113333327f x f x x x a x x x ax a -+=---+--+-+-=-,得()f x 图象对称中心坐标为129(,3327a -,D 正确.故选:BD20.已知,,,a b c d ÎR ,满足0a b c d >>>>,则( )A .a c b d ->-B .sin sin a a b b ->-C .a b d c>D .ad bc ab cd+>+【答案】BC【详解】对于A ,若65,4,1,====a b c d ,则24-=<-=a c b d ,故A 错误;对于B ,令()()sin 0f x x x x =->,则()1cos 0f x x ¢=-³,所以()f x 在()0,x Î+¥上单调递增,因为0a b >>,所以()()f a f b >,即sin sin a a b b ->-,故B 正确;对于C ,因为0a b c d >>>>,所以110d c >>,所以a bd c>,故C 正确; 对于D ,因为0a b c d >>>>,所以()()0+--=--<ad bc ab cd a c d b ,可得+<+ad bc ab cd ,故D 错误.故选:BC.21.已知定义在R 上的函数()y f x =满足132f x æö-ç÷èø为偶函数,()21f x +为奇函数,当10,2x éùÎêúëû时,()0f x ¢>,则下列说法正确的是( )A .()00f =B .函数()y f x =为周期函数C .函数()y f x =为R 上的偶函数D .4133f f æöæö>ç÷ç÷èøèø【答案】AB【详解】因为132f x æö-ç÷èø为偶函数,1111332222f x f x f x f x æöæöæöæö-=+Û-=+ç÷ç÷ç÷ç÷èøèøèøèø()()1f x f x Û=-,故函数图象关于直线12x =对称,f (2x +1)为奇函数,()()()21211(f x f x f x f x -+=-+Û-+=-+1),函数图象关于(1,0)对称,对于B ,()()()()()()11,21f x f x f x f x f x f x =-=-++=-+=,故2是函数的周期,函数为周期函数,故B 正确;对于A ,()()2121f x f x -+=-+,令()()0,11x f f ==-,故f (1)=0,又()()()01110f f f =-==,故A 正确;对于C ,131222f f f æöæöæö-==-ç÷ç÷ç÷èøèøèø,当10,2x æöÎç÷èø时,f ′(x )>0,即函数在10,2æöç÷èø上递增,函数图象关于(1,0)对称,故函数在13,22æöç÷èø上递减,故函数在11,22éù-êúëû上递增,所以1122f f æöæö-¹ç÷ç÷èøèø,故函数不是偶函数,故C 错误;对于D ,124333f f f æöæöæö=>ç÷ç÷ç÷èøèøèø,故D 错误,故选:AB.【点睛】抽象函数的判断一般会从函数奇偶性、周期性和对称性的定义推得相关的函数性质;22.已知函数()()2e xf x x =-,()lng x x x k =+,(R)k Î,则下列说法中正确的是( )A .函数()f x 只有1个零点,当1ek >时,函数()g x 只有1个零点.B .若关于x 的方程()f x a =有两个不相等的实数根,则实数()e,0a Î-.C .121,0,e x x æö"Îç÷èø,且12x x ¹,都有1212()()0g x g x x x ->-.D .1x "ÎR ,2(0,)x $Î+¥,使得()()12f x g x >成立,则实数)1,e e(k Î-¥-.【答案】BD【详解】由题意()()()e 2e 1e x x xf x x x ¢=+-=-,故当1x >时,()0f x ¢>,当1x <时,()0f x ¢<,所以()f x 在(),1-¥上单调递减,在()1,+¥上单调递增;()ln g x x x k =+定义域为()0,¥+,()ln 1g x x ¢=+,故当1ex >时,()0g x ¢>,当10e x <<时,()0g x ¢<,所以()g x 在10,e æöç÷èø上单调递减,在1,e æö+¥ç÷èø上单调递增.对于A ,令()02f x x =Þ=,故函数()f x 只有1个零点;当1e k >时,()110e e g x g k æö³=-+>ç÷èø,故()g x 没有零点,故A 错误;对于B ,()()1e f x f ³=-,1x <时,()0f x <,2x >时,()0f x >,故()f x a =有两个不相等的实数根,则实数()e,0a Î-,故B 正确;对于C ,()g x 在10,e æöç÷èø上单调递减,故C 错误;对于D ,1x "ÎR ,2(0,)x $Î+¥,()()12f x g x >成立,则()()min min f x g x >,所以()11e f g æö>ç÷èø,即11e e e e k k ->-+Þ<-,故D 正确.故选:BD.【点睛】思路点睛:恒成立和有解问题通常转化成最值问题来求解,解决本题可先利用导数求出函数的单调性,从而可求出函数值正负分布情况和最值,进而可依次求解各选项.三、填空题23.若曲线ln y x x =+在点()1,1处的切线与曲线2(2)1(0)y ax a x a =+++¹相切,则a = .【答案】8【详解】由ln y x x =+,所以1y x x¢=+,则1|2x y =¢=,所以曲线ln y x x =+在点()1,1处的切线为()121y x -=-,即21y x =-;又21y x =-与曲线2(2)1(0)y ax a x a =+++¹相切,由2(2)121y ax a x y x ì=+++í=-î,可得()2200ax ax a ++=¹,则280a a D =-=,解得8a =或0a =(舍去),故答案为:824.设函数3()31(1)f x ax x a =-+>,若对于任意的[1,1]x Î-,都有()0f x ³成立,则实数a 的值为 .【答案】4【详解】由题意得,()233(1)f x ax a =->¢,令()2330f x ax -¢==,解得x =[1,1]-.①当1x -£<()0f x ¢>,()f x 单调递增;②当x <<时,()0f x ¢<,()f x 单调递减;1x <£时,()0f x ¢>,()f x 单调递增.所以只需0f ³,且(1)0f -³即可,由10f =-³,可得4a ³,由(1)40f a -=-+³,可得4a £,综上可得,4a =.故答案为:4.25.函数()()2f x x x a =-的极小值点为2,则实数a 的值为 .【答案】2【详解】因为()()2f x x x a =-,得到()()()22343f x x ax a x a x a =-+=--¢,由题知()2(6)(2)0f a a =--=¢,解得6a =或2a =,当6a =时,()(36)(6)3(2)(6)f x x x x x =-=--¢-,由()0f x ¢>,得到2x <或6a >,由()0f x ¢<,得到26x <<,则()f x 在()(),2,6,-¥+¥上单调递增,在()2,6上单调递减,此时2x =当2a =时,()(32)(2)f x x x =--¢,由()0f x ¢>,得到23x <或2a >,由()0f x ¢<,223x <<,则f(x)在()2,,2,3æö-¥+¥ç÷èø上单调递增,在2,23æöç÷èø上单调递减,此时2x =是极小值点,符合题意,故答案为:2.26.已知函数()(e 1)x f x a =-,对任意(0,)x Î+¥,总有()2f x x ³成立,则实数a 的取值范围为 .【答案】[)2,+¥【详解】依题意,(0,)x "ÎÎ+¥,()2(e 1)2(e 1)20x x f x x a x a x ³Û-³Û--³,显然e 10x ->,则有0a >,于是2(e 1)20e 10x xa x x a--³Û--³,令2e 1,0()xg x x a x -->=,求导得2()e x g x a¢-=,当2a ³,即21a£时,()0g x ¢>,函数()g x 在(0,)+¥上单调递增,()(0)0g x g >=,即()2f x x ³;当02a <<,即21>a 时,当20ln x a<<时,()0g x ¢<,函数()g x 在2(0,ln )a上单调递减,2(0,ln )x aÎ,()(0)0g x g <=,此时()2f x x <,不符合题意,所以实数a 的取值范围为[)2,+¥.故答案为:[)2,+¥27.设函数()()e ln 0ax f x a a æö=>ç÷èø的零点为0x ,则当a 的取值为 时,0x 的最大值为 .【答案】 e1e【详解】由题意()00e ln 0ax f x a æö==ç÷èø,所以0e 1ax a =,即0e ax a =,所以0ln ax a =,即()0ln ,0ax a a=>,令()()ln ,0a g a a a=>,则()21ln ag a a -¢=,因为当0e a <<时,()0g a ¢>,当e a >时,()0g a ¢<,所以当0e a <<时,()g a 单调递增,当e a >时,()g a 单调递减,所以当e a =时,0x 有最大值()1e eg =.故答案为:e ,1e.【点睛】关键点点睛:关键在于得出()0ln ,0ax a a=>,从而构造函数即可顺利得解.28.定义在(0,)+¥上的函数()f x 满足2()10x f x ¢+<,5(2)2f =,则关于x 的不等式1(ln )2ln f x x>+的解集为.【答案】2(1,e )【详解】因(0,)x Î+¥时,2()10x f x ¢+<,即21()0f x x ¢+<,也即1(())0f x x¢-<,取1()()g x f x x =-,则()0g x ¢<,即()g x 在(0,)+¥上单调递减,又5(2)2f =,则151(2)(2)2222g f =-=-=,由1(ln )2ln f x x>+可得(ln )(2)g x g >,故得,0ln 2x <<,解得,2(1,e )x Î.故答案为:2(1,e ).29.已知函数()f x 的定义域为R ,且()()1f x f x ¢>+,(0)3f =,则不等式()2e 1x f x >+的解集为 .【答案】(,0)-¥【详解】设()1()e x f x g x -=,则()()()1e xf x f xg x -¢-¢=-,()()1f x f x ¢>+Q ,()()10f x f x ¢\-->,()0g x ¢\<,()g x \在R 上单调递减,()2e 1x f x >+Q ,()1()2e xf xg x -\=>,又0(0)1(0)2ef g -==,()(0)g x g \>,0x \<,()2e 1x f x \>+的解集为(,0)-¥.故答案为:(,0)-¥.30.已知函数()()24222x x f x a x ax =+-×-有4个不同的零点,则a 的取值范围为.【答案】()(),22,eln2¥--È--【详解】解:由题意可得方程()()2220x xax x +-=有4个不同的根,方程220x x -=的2个根为121,2x x ==,则方程20x ax +=有2个不同的根,且2a ¹-,即函数2x y =与函数y ax =-的图象有两个交点.当直线y ax =-与函数2x y =的图象相切时,设切点为()00,2x x ,因为2ln2xy ¢=,所以0002ln2,2,x x a ax ì-=ïí-=ïî解得021log e,eln2ln2x a ===-.要使函数2x y =与函数y ax =-的图象有两个交点,只需直线y ax =-的斜率大于eln2,故a 的取值范围为()(),22,eln2¥--È--.故答案为:()(),22,eln2¥--È--四、解答题31.已知函数()32691f x x x x =-++.(1)求函数()f x 在0x =处的切线方程;(2)当[]0,5x Î时,求函数()f x 的最大值.【答案】(1)91y x =+(2)21【详解】(1)因为()32691f x x x x =-++,所以()23129f x x x ¢=-+.()()09,01f f ==¢所以切线方程为()190y x -=-,即91y x =+.(2)令()21231290,1,3f x x x x x =-+¢===,因为[]0,5x Î,所以()f x 在][0,1,3,5éùëû单调递增,()1,3单调递减,所以()()(){}{}max max 1,5max 5,2121f x f f ===.32.已知函数()212ln 32f x x x x =-+.(1)求函数()f x 的极值;(2)解不等式:()6ln 28f x >+.【答案】(1)极大值为52-,极小值为2ln 24-(2)()8,+¥【详解】(1)函数()f x 的定义域为全体正实数,由()()()()212122ln 332x x f x x x x f x x x x--¢=-+Þ=-+=,令()1201,2f x x x ¢=Þ==,于是有x()0,11()1,22()2,+¥()f x ¢+-+()f x 单调递增52-单调递减2ln 24-单调递增因此,当1x =时,()f x 有极大值,并且极大值为()512f =-,2x =时,()f x 有极小值,并且极小值为()22ln 24f =-;(2)由(1)可知:函数()f x 在()0,1x Î时单调递增,而()5102f =-<,所以此时有()0f x <,在()1,2x Î时单调递减,所以有()0f x <,因此要想()6ln 28f x >+,有()0f x >,则必有2x >,当()2,x Î+¥时,函数单调递增,而()2182ln 83886ln 282f =-´+´=+,所以由()()()6ln 2888f x f x f x >+Þ>Þ>,因此不等式()6ln 28f x >+的解集为()8,+¥.33.已知函数()()e 211x xf x x -=-.(1)求()f x 的单调递增区间;(2)求出方程()()f x a a =ÎR 的解的个数.【答案】(1)(),0-¥,3,2æö+¥ç÷èø(2)答案见解析【详解】(1)函数()f x 的定义域为()(),11,¥¥-È+.()()22e 23(1)x x xf x x --¢=.令()0f x ¢=解得0x =或32x =.则x 、f ′(x )、()f x 的关系列表如下:x(),0¥-0(0,1)31,2æöç÷èø323,2¥æö+ç÷èøf ′(x )+--0+()f x 单调递增极大值单调递减单调递减极小值单调递增∴f (x )的单调递增区间为()3,0,,2¥¥æö-+ç÷èø.(2)方程()()f x a a =ÎR 的解的个数为函数y =f (x )的图象与直线y a =的交点个数.在(1)中可知:()f x 在区间()3,0,,2¥¥æö-+ç÷èø上单调递增,在()30,1,1,2æöç÷èø上单调递减,在0x =处取得极大值()01f =,在32x =处取得极小值3234e 2f æö=ç÷èø,令0y =,得12x =.当0x <时,0,y y >的图像过点()10,1,,02æöç÷èø.当x ®-¥时,0y ®,但始终在x 轴上方;当x 从1的左侧无限近于1时,y ®-¥;当x 从1的右侧无限近于1时,y ®+¥;当32x =时,324e y =;当x ®+¥时,y ®+¥.根据以上性质,作出函数的大致图象如图所示,\当3214e a <<时,y =f (x )与y a =没有交点,则方程()f x a =的解为0个;当0a <或1a =或324e a =时,y =f (x )与y a =有1个交点,则方程()f x a =的解为1个;当01a <<或324e a >时,y =f (x )与y a =有2个交点,则方程()f x a =的解为2个.34.设函数()y f x =,其中()()0ln f x a x =->,(1)求()f x ¢;(2)若()y f x =在[1,)+¥是严格增函数,求实数a 的取值范围;(3)若()y f x =在[2,4]上存在单调递减区间,求实数a 的取值范围.【答案】(1)()f x ¢=(2)[2,)+¥;(3)(.【详解】(1)由()()12ln ln 0f x x ax x a ==->,得()12112f x a x x -=×-¢,所以()f x =¢(2)由题意得,()0f x ¢³在[1,)+¥上恒成立,即a ³在[1,)+¥恒成立,因为y 在[1,)+¥上递减,所以y =2=,所以2a ³,即实数a 的取值范围为[2,)+¥;(3)由题意得,()0f x ¢<在[2,4]上有解,即a <[2,4]上有解,因为y 在[2,4]上递减,所以1££,所以0a <<,即实数a 的取值范围为(.35.已知函数()y f x =,其中()()()326,R f x x ax a x b a b =++++Î.(1)若函数()y f x =的图象过原点,且在原点处的切线斜率是3,求a 、b 的值;(2)若()y f x =在R 上是严格增函数,求实数a 的取值范围.【答案】(1)3a =-,0b =;(2)[]3,6a Î-.【详解】(1)由()()()326,R f x x ax a x b a b =++++Î,得()2326f x x ax a ¢=+++,由题意得,(0)0(0)3f f =ìí=¢î,即063b a =ìí+=î,解得3a =-,0b =;(2)()2326f x x ax a ¢=+++,由题意得,()0f x ¢³在R 上恒成立,则()2Δ41260a a =-+£,化简得23180a a --£,解得[]3,6a Î-.36.已知()()21ln 12f x ax x x =-+-+,其中0a >.(1)若函数()f x 在3x =处的切线与x 轴平行,求a 的值;(2)求()f x 的极值点;(3)若()f x 在[)0,+¥上的最大值是0,求a 的取值范围.【答案】(1)14a =;(2)答案见解析;(3)[)1,+¥.【详解】(1)函数()f x 的定义域为()1,-+¥,()111f x ax x¢=-+-+,因为函数()f x 在3x =处的切线与x 轴平行,所以()1331013f a ¢=-+-=+,解得14a =.(2)函数()f x 的定义域为()1,-+¥,()()()111111111ax x x x a ax f x ax x x x-+++---¢=-+-==+++.令()0f x ¢=得10x =或2111a x a a-==-,所以当110a-<,即1a >时,()0f x ¢>的解集为11,0a æö-ç÷èø,()0f x ¢<的解集为()11,10,a æö--+¥ç÷èøU ,所以函数()f x 在区间11,1a æö--ç÷èø和()0,¥+上严格减,在区间11,0a æö-ç÷èø上严格增,0x =是函数()f x 的极大值点,11=-x a 是函数()f x 的极小值点;当110a-=,即1a =时,()0f x ¢£在区间()1,-+¥上恒成立,此时函数()f x 在区间()1,-+¥上严格减,无极值点;当110a->,即01a <<时,()0f x ¢>的解集为10,1a æö-ç÷èø,()0f x ¢<的解集为()11,01,a æö--+¥ç÷èøU ,所以函数()f x 在区间()1,0-和11,a æö-+¥ç÷èø上严格减,在区间10,1a æö-ç÷èø上严格增,0x =是函数()f x 的极小值点,11=-x a是函数()f x 的极大值点;综上,当1a >时,0x =是函数()f x 的极大值点,11=-x a 是函数()f x 的极小值点;当1a =时,函数()f x 在区间()1,-+¥上严格减,无极值点;当01a <<时,0x =是函数()f x 的极小值点,11=-x a是函数()f x 的极大值点.(3)由(2)知,当01a <<时,函数()f x 在区间11,a æö-+¥ç÷èø上严格减,在区间10,1a æö-ç÷èø上严格增,故函数()f x 在[)0,+¥上的最大值是()1100f f a æö->=ç÷èø,与已知矛盾;当1a =时,函数()f x 在区间[)0,+¥上严格减,最大值()()max 00f x f ==,满足条件;当1a >时,函数()f x 在区间[)0,+¥上严格减,最大值是()()max 00f x f ==,满足条件;综上,a 的取值范围是[)1,+¥.37.曲线()3f x x =在点A 处的切线的斜率为3,求该曲线在点A 处的切线方程.【答案】320x y --=或320x y -+=【详解】求导得()23f x x ¢=.令233x =,则1x =±.当1x =时,切点A 为()1,1,所以该曲线在()1,1处的切线方程为()131,y x -=-即320x y --=;当=1x -时,切点A 为()1,1,--所以该曲线在()1,1--处的切线方程为()131,y x +=+即320.x y -+=综上知,曲线()3f x x =在点A 处的切线方程为320x y --=或320x y -+=.38.已知函数1()e ax f x x=+(0a ³).(1)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)设2()()g x f x x ¢=×,求函数()g x 的极大值.【答案】(1)3y x =-+(2)答案见解析【详解】(1)当0a =时,1()1f x x =+,()21f x x ¢=-,则()()11,12f f ¢=-=,所以曲线()y f x =在点(1,(1))f 处的切线方程为()21y x -=--,即3y x =-+;(2)函数()g x 的定义域为()(),00,-¥+¥U ,21()e ax f x a x ¢=-,则()22e 10()()ax ax g x x x f x ¢-=×=¹,则()()()222e e 2e 0ax ax ax g x ax a x ax ax x ¢=+=+¹,当0a =时,()1g x =-,此时函数()g x 无极值;当0a >时,令'()0g x >,则2x a<-或0x >;令()0g x ¢<,则20x a-<<,所以函数()g x 在()2,,0,a æö-¥-+¥ç÷èø上单调递增,在2,0a æö-ç÷èø上单调递减,所以()g x 的极大值为2241eg a a æö-=-ç÷èø;综上所述,当0a =时,函数()g x 无极大值;当0a >时,()g x 的极大值为241e a -.39.设函数()e x f x x a =-.(1)若直线2y x =--是曲线()y f x =的切线,求实数a 的值;(2)讨论()f x 的单调性;(3)当1a =时,记函数()()x g x e f x =,若0m n +>,证明:()()2g m g n +<-.【答案】(1)2a =(2)答案见解析(3)证明见解析【详解】(1)设切点为00(())x f x ,,()1e x f x a ¢=-,所以切线方程为()0000e 1e x x y x a a x x -+=--(),因为直线2y x =--是曲线()y f x =的切线,所以01e 1x a -=-,即0e 2x a =,化简切线方程得022y x x =-+-,所以0222x -=-,解得00x =,所以2a =.(2)()1e x f x a =¢-,当0a £时,()0f x ¢>,所以()f x 在(,)-¥+¥上单调递增,当0a >时,令()0f x ¢>,解得ln x a <-,所以()f x 在(,ln )a -¥-上单调递增,令()0f x ¢<,解得ln x a >-,所以()f x 在(ln ,)a -+¥上单调递减,综上可知,当0a £时,()f x 在(,)-¥+¥上单调递增,当0a >时,()f x 在(,ln )a -¥-上单调递增,在(ln ,)a -+¥上单调递减.(3)由题意知,()()e2e 1x x g x x -¢=+,令()2e 1x h x x =-+,由(1)知,()h x 在(,ln 2)-¥-上单调递增,在(ln 2,)-+¥上单调递减,所以()(ln 2)ln 20h x h -=-<≤,可得()0g x ¢<,所以()g x 在(,)-¥+¥上单调递减,因为0m n +>,所以m ,n 中至少有一个大于0(否则若0,0m n ££,有00m n n +£+£,这与0m n +>矛盾),不妨设0m >,n m >-,所以()()g n g m <-,所以()()()()g m g n g m g m +<+-,令()()()2212e e 2e e m m m mm m g m g m m j =+-+=---+()()2222e e 1e 1e m m m mm ---=()()()()()22222e 1e e 1e 11e e m m m m m m m g m --+-+==,因为0m >,所以()(0)1g m g <=-,即()10g m +<,又2e 10m ->,所以()0m j <,即()()20g m g m +-+<,可得()()2g m g m +-<-,所以()()2g m g n +<-.【点睛】关键点点睛:第三问的关键在于证明()()20g m g m +-+<即可,其中0m >,由此即可顺利得证.40.已知函数()()1ln R f x ax x a =--Î.(1)若2a =,求()f x 在1,e e éùêúëû上的最大值和最小值;(2)若1a =,当1x >时,证明:()ln x x f x >恒成立;(3)若函数()f x 在1x =处的切线与直线:1l x =垂直,且对()0,x ¥"Î+,()2f x bx ³-恒成立,求实数b 的取值范围.【答案】(1)最大值是2e 2-,最小值是ln 2(2)证明见解析(3)21,1e æù-¥-çúèû【详解】(1)当2a =时,()21ln f x x x =--,()21x f x x -¢=,令()0f x ¢=可得12x =,故当10,2x æöÎç÷èø时()0f x ¢<,()f x 在10,2æöç÷èø单调递减;当1,2x æöÎ+¥ç÷èø时()0f x ¢>,()f x 在1,2æö+¥ç÷èø单调递增;故()f x 递减区间为11,e 2éùêúëû,递增区间为1,e 2éùêúëû函数()f x 的极小值1ln 22f æö=ç÷èø是唯一的极小值,无极大值.又12e e f æö=ç÷èø,()1e 2e 2e f f æö=->ç÷èø()f x \在1,1e éùêúëû上的最大值是2e 2-,最小值是ln 2(2)因为1a =,所以令()()ln ln ln 1h x x x f x x x x x =-=-++,()1ln h x x x¢=+.当1x >时,()0f x ¢>,则()h x 在()1,¥+上单调递增,所以当1x >时,()()10h x h >=,所以()ln x x f x >恒成立.(3)因为函数()f x 的图象在1x =处的切线与直线:1l x =垂直,所以()10f ¢=,即10a -=,解得1a =所以()1ln f x x x =--.因为对()0,x "Î+¥,()2f x bx ³-恒成立,所以对()0,x "Î+¥,1ln 1x b x --£恒成立.令()1ln x g x x-=,则()2ln 2x g x x -¢=令()0g x ¢>,解得2e x >;令()0g x ¢<,解得20e x <<,所以函数()1ln x g x x-=在区间()20,e 上单调递减,在区间()2e ,+¥上单调递增,所以()()22min e e 1g x g ==-,则211e b -£-,解得:211e b £-.所以实数b 的取值范围为21,1e æù-¥-çúèû41.已知函数()e cos x f x a x =+在0x =处的切线方程为2y x =+.(1)求实数a 的值;(2)探究()f x 在区间3π,2öæ-+¥ç÷èø内的零点个数,并说明理由.。

高中导数综合试题及答案

高中导数综合试题及答案

高中导数综合试题及答案一、选择题1. 函数y=x^3-3x^2+2的导数是()A. 3x^2-6xB. 3x^2-6x+2C. 3x^2-6x+1D. 3x^2-6x-2答案:A2. 函数y=sin(x)的导数是()A. cos(x)B. -sin(x)C. cos(x)-1D. -cos(x)答案:A3. 函数y=e^x的导数是()A. e^xB. -e^xC. e^(-x)D. -e^(-x)答案:A4. 函数y=ln(x)的导数是()A. 1/xB. -1/xC. xD. -x答案:A5. 函数y=x^2+2x+1的极值点是()A. x=-1B. x=1C. x=0D. x=2答案:A二、填空题6. 函数y=x^4-4x^3+6x^2-4x+1的导数是_________。

答案:4x^3-12x^2+12x-47. 函数y=cos(x)的导数是_________。

答案:-sin(x)8. 函数y=ln(x)+x的导数是_________。

答案:1/x+19. 函数y=e^(2x)的导数是_________。

答案:2e^(2x)10. 函数y=x^3-6x^2+9x+1的极值点是x=_________。

答案:x=1或x=3三、解答题11. 求函数y=x^2-4x+3的单调区间和极值点。

解答:首先求导数:y' = 2x - 4令y' = 0,解得x = 2,这是极值点。

当x < 2时,y' < 0,函数单调递减;当x > 2时,y' > 0,函数单调递增。

所以,函数在(-∞, 2)区间内单调递减,在(2, +∞)区间内单调递增。

极值点为x = 2。

12. 求函数y=e^x-x^2的单调区间和极值点。

解答:首先求导数:y' = e^x - 2x令y' = 0,解得x = ln(2),这是极值点。

当x < ln(2)时,y' < 0,函数单调递减;当x > ln(2)时,y' > 0,函数单调递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数练习题(B )1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=.(I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围. 3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值.(I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分)已知2x =是函数2()(23)xf x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ).(I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f(I )当a=18时,求函数)(x f 的单调区间;(II )求函数)(x f 在区间],[2e e 上的最小值. 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f (I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-. (I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围; (II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数.(I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.导数练习题(B )答案1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f得 ⎩⎨⎧==⇒⎩⎨⎧=--++=0323233c d b a c b a d …………(4分)(II )依题意 3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a 解得 6,1-==b a 所以396)(23++-=x x x x f …………(8分)(III )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723与x 轴有三个交点;()()()42381432--=+-='x x x x x g ,x⎪⎭⎫ ⎝⎛∞-32,32⎪⎭⎫⎝⎛432, 4()∞+,4()x g '+ 0 - 0 + ()x g增极大值减极小值增()m g m g --=-=⎪⎭⎫ ⎝⎛164,276832. …………(10分) 当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点,故而,276816<<-m 为所求. …………(12分)2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围. 解:(I ))0()1()('>-=x xx a x f (2分)当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a 当a=1时,)(x f 不是单调函数 (5分)(II )32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得 2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x mx x g (6分)2)0(',)3,1()(-=g x g 且上不是单调函数在区间⎩⎨⎧><∴.0)3(',0)1('g g (8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m(12分)3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 解:(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值, 所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ; …………(4分)(II依题意得:9)32()32(2762+-=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-=…………(10分)(III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间[-2,2]有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .…………(14分)4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=.(I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.解:(I )01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分)∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分) (II )a x a x a x x g )22)(22(22)(-+=-=',由0)(='x g ,得2a x =,列表当2x 222( …………(6分)由(I )a e a >,∵⎪⎩⎪⎨⎧>>22a a e e aa ,∴22a e a>,∴22a e a >01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a …………(8分)(i )当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点 (ii )当122>a,即2>a 时若0)2ln 1(2>-aa ,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点若0)2ln 1(2=-aa ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-aa ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点;综上所述,)(x g y =在(1,)ae 上,我们有结论: 当02a e <<时,函数()f x 无零点; 当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.…………(12分) 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围;解:(I )当1k =时,2()1xf x x -'=-)(x f 定义域为(1,+∞),令()0,2f x x '==得, ………………(2分) ∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<, ∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = ………………(4分) (II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点,∴函数()f x 有零点,不合要求; ………………(8分)②当0k >时,1()11()111k k x k kx k f x k x x x +-+-'=-==---- ………………(6分)令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k '∈++∞<时, ∴1()(1,1)f x k +在内是增函数,1[1,)k++∞在上是减函数,∴()f x 的最大值是1(1)ln f k k+=-,∵函数()f x 没有零点,∴ln 0k -<,1k >,因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞.………………(10分) 6.(本小题满分12分)已知2x =是函数2()(23)xf x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ).(I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值. 解:(I )由2()(23)xf x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分) ∵2x =是函数()f x 的一个极值点,∴(2)0f '=∴2(5)0a e +=,解得5a =- ……………(6分)(II )由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在]3,23[∈x 的最小值; ……………(8分)2347)23(e f =,3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=- ∴()f x 在]3,23[∈x 的最大值是3)3(e f =. ……………(12分)7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f(I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值.解:(Ⅰ)x x x x f ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= 2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x 注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4, 注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(. 综上所述,函数)(x f 的单调增区间是(4,+∞),单调减区间是]4,0(6分(Ⅱ)在],[2e e x ∈时,x a x x x f ln )2(4)(2-+-=所以xax x x a x x f -+-=-+-=242242)('2, 设a x x x g -+-=242)(2当0<a 时,有△=16+4×208)2(<=-a a ,此时0)(>x g ,所以0)('>x f ,)(x f 在],[2e e 上单调递增,所以a e e e f x f -+-==24)()(2min8分当0>a 时,△=08)2(2416>=-⨯-a a , 令0)('>x f ,即02422>-+-a x x ,解得221a x +>或221a x -<; 令0)('<x f ,即02422<-+-a x x , 解得221a -221ax +<<. ①若221a +≥2e ,即a ≥22)1(2-e 时, )(x f 在区间],[2e e 单调递减,所以a e e e f x f 244)()(242min -+-==.②若2221e ae <+<,即222)1(2)1(2-<<-e a e 时间, )(x f 在区间]221,[a e +上单调递减,在区间],221[2e a +上单调递增, 所以min )(xf )221(a f +=)221ln()2(322a a a a +-+--=. ③若221a +≤e ,即a <0≤22)1(-e 时,)(x f 在区间],[2e e 单调递增,所以a e e e f x f -+-==24)()(2min综上所述,当a ≥222)1(-e 时,a e a x f 244)(24min -+-=;当222)1(2)1(2-<<-e a e 时,)221ln()2(322)(min a a a a x f +-+--=;当a ≤2)1(2-e 时,a e e x f -+-=24)(2min14分8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x'=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 解:(I )226()26a x x af x x x x-+'=-+=, ………………(2分)∵()f x 在(2,)x ∈+∞上不具有...单调性,∴在(2,)x ∈+∞上()f x '有正也有负也有0, 即二次函数226y x x a =-+在(2,)x ∈+∞上有零点 ………………(4分)∵226y x x a =-+是对称轴是32x =,开口向上的抛物线,∴222620y a =⋅-⋅+< 的实数a 的取值范围(,4)-∞ ………………(6分)(II )由(I )22()2a g x x x x =+-,方法1:2222()()62(0)a g x f x x x x x x'=-+=+->,∵4a <,∴323233444244()22a x x g x x x x x x -+'=-+>-+=,…………(8分)设2344()2h x x x =-+,3448124(23)()x h x x x x -'=-= ()h x 在3(0,)2是减函数,在3(,)2+∞增函数,当32x =时,()h x 取最小值3827∴从而()g x '3827>,∴38(())027g x x '->,函数38()27y g x x =-是增函数,12x x 、是两个不相等正数,不妨设12x x <,则22113838()()2727g x x g x x ->-∴212138()()()27g x g x x x ->-,∵210x x ->,∴1212()()3827g x g x x x ->- ∴1212()()g x g x x x --3827>,即121238|()()|||27g x g x x x ->- ………………(12分) 方法2: 11(,())M x g x 、22(,())N x g x 是曲线()y g x =上任意两相异点,121222121212()()2()2g x g x x x ax x x x x x -+=+--,12x x +>4a <12221212122()22x x a a x x x x x x +∴+->+-1242x x >- ………(8分)设0t t =>,令32()244MN k u t t t ==+-,()4(32)u t t t '=-, 由()0u t '>,得2,3t >由()0u t '<得20,3t << ()u t ∴在)32,0(上是减函数,在),32(+∞上是增函数,)(t u ∴在32=t 处取极小值2738,38()27u t ∴≥,∴所以1212()()g x g x x x --3827>即121238|()()|||27g x g x x x ->- ………………(12分) 9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f (I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意(1))(x f 的定义域为),0(+∞,xa x x x a ax x x a a x x f )1)(1(11)('2-+-=-+-=-+-= 2分(i )若2,11==-a a 即,则 .)1()('2xx x f -=故)(x f 在),0(+∞单调增加. (ii )若.0)(',)1,1(,21,1,11<-∈<<><-x f a x a a a 时则当故而)1,1()(,0)(',),1()1,0(->+∞∈-∈a x f x f x a x 在故时及当单调减少,在(0,a-1), ),1(+∞单调增加.(iii )若),1(),1,0(,)1,1()(,2,11+∞-->>-a a x f a a 在单调减少在同理可得即单调增加.(II )考虑函数x x f x g +=)()( .ln )1(212x x a ax x +-+-=由 .)11(1)1(121)1()('2---=---⋅≥-+--=a a xa x x a a x x g 由于单调增加在即故),0()(,0)(',5+∞><x g x g a a ,从而当021>>x x 时有 ,0)()(,0)()(212121>-+->-x x x f x f x g x g 即故1)()(2121->--x x x f x f ,当210x x <<时,有1)()()()(12122121->--=--x x x f x f x x x f x f 10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-. (I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围; (II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.解:(I )(),()1af x xg x a x''=+=+, ……………(2分)∵函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,∴当[1,3]x ∈时,2(1)()()()0a x a f x g x x++''⋅=≥恒成立, ……………(4分) 即2(1)()0a x a ++≥恒成立, ∴21a a x >-⎧⎨≥-⎩在[1,3]x ∈时恒成立,或21a a x<-⎧⎨≤-⎩在[1,3]x ∈时恒成立, ∵91x -≤≤-,∴1a >-或9a ≤- ………………(6分)(II )21()ln ,(1)2F x x a x a x =+-+,()(1)()(1)a x a x F x x a x x--'=+-+=∵()F x 定义域是(0,)+∞,(1,]a e ∈,即1a >∴()F x 在(0,1)是增函数,在(1,)a 实际减函数,在(,)a +∞是增函数∴当1x =时,()F x 取极大值1(1)2M F a ==--,当x a =时,()F x 取极小值21()ln 2m F a a a a a ==--, ………………(8分)∵12,[1,]x x a ∈,∴12|()()|||F x F x M m M m -≤-=- ………………(10分)设211()ln 22G a M m a a a =-=--,则()ln 1G a a a '=--, ∴1[()]1G a a''=-,∵(1,]a e ∈,∴[()]0G a ''> ∴()ln 1G a a a '=--在(1,]a e ∈是增函数,∴()(1)0G a G ''>=∴211()ln 22G a a a a =--在(1,]a e ∈也是增函数 ………………(12分)∴()()G a G e ≤,即2211(1)()1222e G a e e -≤--=-, 而22211(1)(31)1112222e e e ----=-<-=,∴()1G a M m =-<∴当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. ………………(14分) 11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数.(I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 解:(I )11()0ex f x e x x -'=-==,得1x e= 当x 变化时,()f x '与()f x 变化情况如下表:∴当1x e=时,()f x 取得极大值()2f e =-,没有极小值; …………(4分)(II )(方法1)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,∴21201ln 0x x x x x --= 即20211ln ()0x x x x x --=,设2211()ln ()xg x x x x x =--211211()ln ()x g x x x x x =--,1/211()ln 10x x g x x =->,1()g x 是1x 的增函数,∵12x x <,∴2122222()()ln ()0xg x g x x x x x <=--=;222211()ln ()x g x x x x x =--,2/221()ln 10x x g x x =->,2()g x 是2x 的增函数,∵12x x <,∴1211111()()ln ()0xg x g x x x x x >=--=,∴函数2211()ln ()xg x x x x x =--在12(,)x x 内有零点0x , …………(10分)又∵22111,ln 0x x x x >∴>,函数2211()ln ()xg x x x x x =--在12(,)x x 是增函数,∴函数2121()ln x x xg x x x -=-在12(,)x x 内有唯一零点0x ,命题成立…………(12分) (方法2)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-, 即020112ln ln 0x x x x x x -+-=,012(,)x x x ∈,且0x 唯一设2112()ln ln g x x x x x x x =-+-,则1121112()ln ln g x x x x x x x =-+-, 再设22()ln ln h x x x x x x x =-+-,20x x <<,∴2()ln ln 0h x x x '=-> ∴22()ln ln h x x x x x x x =-+-在20x x <<是增函数 ∴112()()()0g x h x h x =<=,同理2()0g x >∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有解 …………(10分)∵一次函数在12(,)x x 2112()(ln ln )g x x x x x x =-+-是增函数∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有唯一解,命题成立………(12分)注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分.12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y, (I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.解:(I )22log (24)0x x -+>,即2241x x -+> ……………………(2分)得函数()f x 的定义域是(1,3)-, ……………………(4分)(II )22322()(1,log (1))1,g x F x ax bx x ax bx =+++=+++设曲线00(41)C x x -<<-在处有斜率为-8的切线,又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++ ∴存在实数b 使得⎪⎩⎪⎨⎧>+++-<<--=++1114823020300020bx ax x x b ax x 有解, ……………………(6分) 由①得,238020ax x b ---=代入③得082020<---ax x ,200028041x ax x ⎧++>⎪∴⎨-<<-⎪⎩由有解, ……………………(8分) 方法1:0082()()a x x <-+-,因为041x -<<-,所以0082()[8,10)()x x -+∈-, 当10a <时,存在实数b ,使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线………………(10分)方法2:得08)1()1(208)4()4(222>+-⨯+-⨯>+-⨯+-⨯a a 或,1010,10.a a a ∴<<∴<或 ………………(10分)方法3:是222(4)(4)802(1)(1)80a a ⎧⨯-+⨯-+≤⎪⎨⨯-+⨯-+≤⎪⎩的补集,即10a < ………………(10分) (III )令2)1ln(1)(,1,)1ln()(xx xx x h x x x x h +-+='≥+=由 又令,0),1ln(1)(>+-+=x x xx x p 0)1(11)1(1)(22<+-=+-+='∴x x x x x p , ),0[)(+∞∴在x p 单调递减. ……………………(12)分0()(0)0,1()0,x p x p x h x '∴><=∴≥<当时有当时有),1[)(+∞∴在x h 单调递减,x y y x y x x y yy x x y x )1()1(),1ln()1ln(,)1ln()1ln(,1+>+∴+>+∴+>+<≤∴有时, ).,(),(,x y F y x F y x N y x ><∈∴*时且当 ………………(14分)①②③(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。

相关文档
最新文档