北师大版八年级数学下册期末试题-综合复习题

合集下载

北师大版八年级下册数学期末考试试题附答案

北师大版八年级下册数学期末考试试题附答案

北师大版八年级下册数学期末考试试卷一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.要使分式32x 有意义,则x的取值范围是()A.x>2B.x<2C.x≠2D.任意实数3.下列不等式变形正确的是()A.由4x﹣1>0得:4x>1B.由5x>3得:x>3C.由y2>0得:y<0D.由﹣2x<4得:x<﹣24.如图,在△ABC中,点D、E分别是AB、AC的中点、DE=3,那么BC的长为()A.4B.5C.6D.75.下列因式分解正确的是()A.x2﹣x=x(x2﹣1)B.x2+y2=(x+y)(x﹣y)C.(a+4)(a﹣4)=a2﹣16D.m2+4m+4=(m+2)26.如图,在▱ABCD中,对角线AC、BD交于点O,下列式子中不一定成立的是()A.AB∥CD B.OA=OC C.∠ABC+∠BCD=180°D.AB=BC 7.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17B.22C.17或22D.398.如图,在ABC 中,DC AC ⊥于C ,DE AB ⊥于E ,并且DE DC =,F 为AC 上一点.则下列结论中正确的是()A .DE DF =B .BD FD =C .12∠=∠D .AB AC =9.如图,Rt ABC 沿直线边BC 所在的直线向右平移得到DEF ,下列结论中不一定正确的是()A .90DEF ∠=︒B .BE CF =C .CE CF =D .ABEH DHCFS S =四边形四边形10.一次函数1y ax b =+与2y cx d =+的图象如图所示,下列说法:①对于函数1y ax b =+来说,y 随x 的增大而增大.②函数y ax d =+不经过第二象限.③不等式ax d cx b -≥-的解集是4x ≥.④()14a c d b -=-,其中正确的是()A .①②③B .①③④C .②③④D .①②④二、填空题11.分解因式:x 2﹣5x+6=___.12.在平面直角坐标系中,将点A (﹣1,2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点C 的坐标是__.13.如图,菱形ABCD 的周长为16,∠ABC =120°,则AC 的长为_______________.14.已知直线y 1=x+32与y 2=﹣4x ﹣1相交于点P ,则满足y 1>y 2的x 的取值范围是___.15.如果一个正多边形的每个内角为150︒,则这个正多边形的边数是___________.16.如图,在△ABC 中,AB=AC ,∠A=42°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE 的度数为____度.三、解答题17.因式分解:(1)﹣10a 2bc+15bc 2﹣20ab 2c ;(2)(x 2+1)2﹣4x 2.18.化简:(1)(x 2﹣4y 2)÷21(2)y x xy x y x +⋅-;(2)22142x x x ---.19.先化简,再求值:2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭,然后在22x -<≤的范围内选取一个合适的x 的整数值代入求值.20.解方程:11222xx x-+=--.21.解不等式1431263x x--->,并把解集在数轴上表示出来.22.解不等式组3(2)156+4xx x⎧-<⎪⎨⎪≥⎩,并把解集在数轴上表示出来.23.如图,已知△ABC三个顶点的坐标分别是A(﹣3,1),B(﹣1,﹣1),C(﹣2,2).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点B逆时针旋转90°所得到的△A2B2C2,并写出C2的坐标.24.2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购买甲、乙两种树苗,用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元?(2)若准备用3800元购买甲、乙两种树苗共100棵,则至少要购买乙种树苗多少棵?25.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F,(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.26.如图,在四边形ABCD 中,AD //BC ,AB =BC ,对角线AC ,BD 交于点O ,BD 平分∠ABC ,过点D 作DE ⊥BC 交BC 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若BE =5,OE =3,求线段DE 的长.27.如图,已知AC ⊥BC ,垂足为C ,AC =4,BC =3AC 绕点A 按逆时针方向旋转60°,得到线段AD ,连接DC 、DB .(1)线段DC =;(2)求线段DB 的长度.28.如图,AD 是ABC 的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点,求证:12AF CF .参考答案1.A【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.不是轴对称图形,是中心对称图形,故本选项不符合题意;C.是轴对称图形,不是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:A【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.C【解析】【分析】分式有意义,分母不等于零.【详解】解:当分母x-2≠0即x≠2时,分式32x 有意义.故选:C.【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.A【解析】【分析】根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A、由4x-1>0得:4x>1,变形正确,故本选项符合题意;B、由5x>3得:x>35,故本选项不符合题意;C、由y2>0得:y>0,故本选项不符合题意;D、由-2x<4得:x>-2,故本选项不符合题意;故选:A.【点睛】本题主要考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.4.C【解析】【分析】根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有DE=12BC,从而求出BC.【详解】解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=3,∴BC=2×3=6.故选C.【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.5.D【解析】【分析】各项分解得到结果,即可作出判断.【详解】解:A、原式=x(x-1),不符合题意;B、原式不能分解,不符合题意;C、原式不是分解因式,不符合题意;D、原式=(m+2)2,符合题意,故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.D【解析】【分析】根据平行四边形的性质分析即可.【详解】解:由平行四边形的性质可知:平行四边形对边平行,故A一定成立,不符合题意;平行四边形的对角线互相平分;故B一定成立,不符合题意;平行四边形对边平行,所以邻角互补,故C一定成立,不符合题意;平行四边形的邻边不一定相等,只有为菱形或正方形时才相等,故D不一定成立,符合题意.故选D.【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的性质是解决问题的关键.7.B【解析】【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:B .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.8.C【解析】【分析】根据角平分线的判定定理即可解决问题.【详解】解:∵DC ⊥AC 于C ,DE ⊥AB 于E ,并且DE=DC ,∴∠1=∠2(到角的两边距离相等的点在这个角的平分线上)故选:C .【点睛】本题考查角平分线的判定定理,解题的关键是熟练掌握基本知识,属于中考常考题型.9.C【解析】【分析】由平移的性质,结合图形,对选项进行一一分析,选择正确答案.【详解】Rt ABC Q V 沿直线边BC 所在的直线向右平移得到DEF ,90DEF ABC ︒∴∠=∠=,BC EF =,ABC DEF S S = ,BC EC EF EC ∴-=-,ABC HEC DEF HEC S S S S -=- ,BE CF ∴=,ABEH DHCF S S =四边形四边形,但不能得出CE CF =,故选C .【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.B【解析】【分析】根据图象交点横坐标是4,和图象所经过象限可以判断.【详解】解:由图象可得:对于函数1y ax b =+来说,从左到右,图象上升,y 随x 的增大而增大,故①正确;由图象可知,a >0,d >0,所以函数y ax d =+的图象经过第一,二,三象限,即不经过第四象限,故②错误,由图象可得当4x ≥时,一次函数1y ax b =+图象在2y cx d =+的图象上方,不等式ax b cx d +≥+的解集是4x ≥,移项可得,ax d cx b -≥-,解集是4x ≥,故③正确;∵一次函数1y ax b =+与2y cx d =+的图象的交点的横坐标为4,∴44a b c d+=+∴44a c d b -=-,∴()14a c db -=-,故④正确,故选:B .【点睛】本题考查了一次函数图象的性质和一次函数与不等式的关系,解题关键是树立数形结合思想,理解图象反应的信息,综合一次函数、不等式、方程解决问题.11.(x-2)(x-3)【解析】【分析】原式利用十字相乘法分解即可.【详解】解:原式=(x-2)(x-3),故答案为:(x-2)(x-3).【点睛】此题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键.12.(2,﹣2).【解析】【详解】试题分析:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2).故答案是(2,﹣2).考点:1.坐标与图形变化-平移2.关于x轴、y轴对称的点的坐标.13.【解析】【分析】设AC与BD交于点E,则∠ABE=60°,根据菱形的周长求出AB的长度,在RT△ABE中,求出AE,继而可得出AC的长.【详解】解:在菱形ABCD中,∠ABC=120°,∴∠ABE=60°,AC⊥BD,∵菱形ABCD的周长为16,∴AB=4,在RT△ABE中,AE=ABsin∠ABE=4故可得AC=2AE=2⨯故答案为【点睛】此题考查了菱形的性质,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.14.x>12-##12x-<【解析】【分析】根据y1>y2得到有关x的不等式,求解即可得到答案.【详解】解:∵y1>y2,∴x+32>-4x-1,解得:x>1 2-,故答案为:x>1 2-.【点睛】本题考查了一次函数与一元一次不等式及一次函数的性质的知识,解题的关键是根据题意列出不等式,难度不大.15.12【解析】【分析】首先根据内角度数计算出外角度数,再用外角和360︒除以外角度数即可.【详解】解:∵一个正多边形的每个内角为150︒∴它的外角为30°,3603012︒÷︒=,故答案为:12.【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.16.27【解析】【分析】根据等腰三角形的性质求出∠ABC=∠C=69°,根据线段的垂直平分线的性质得到EA=EB,计算即可.【详解】∵AB=AC ,∠A=42°,∴∠ABC=∠C=69°,∵DE 是AB 的垂直平分线,∴EA=EB ,∴∠EBA=∠A=42°,∴∠CBE=∠ABC-∠EBA=27°,故答案为:27.【点睛】本题考查的是线段的垂直平分线的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.17.(1)()25234bc a c ab --+;(2)()()2211x x +-【解析】【分析】(1)提公因式-5bc 即可分解;(2)先利用平方差公式分解,再利用完全平方公式分解.【详解】解:(1)222101520a bc bc ab c-+-=()25234bc a c ab --+;(2)()22214x x +-=()()221212x x x x +++-=()()2211x x +-【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.18.(1)y -;(2)12x +【解析】【分析】(1)原式利用除法法则变形,约分即可得到结果.(2)原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【详解】解:(1)()2221(2)4y x x x y y x y x +--÷⋅=()()2)212(2xy y x x x x x y y y ⋅+--+-⨯=y -;(2)22142x x x ---=()()()()222222x x x x x x -+-++-=()()2222x x x x --+-=12x +【点睛】本题考查分式的加减法和乘除法运算,熟练掌握运算法则是解本题的关键.19.2,41x x -【解析】【分析】先将小括号内的式子进行通分计算,然后算括号外面的除法,再根据分式有意义的条件选取合适的x 的值代入求值.【详解】解:原式2(1)21[](1)(1)(1)x x x x x x x x x +-=÷----2(1)21(1)(1)x x x x x x x +-+=÷--2(1)(1)(1)1x x x x x x +-=⋅-+21x x =-,(1)0x x -≠ ,且10x +≠,0x ∴≠且1x ≠±,∴整数x 可以取2,当2x =时,原式22421==-.【点睛】本题考查分式的化简求值,解题的关键是理解分式有意义的条件,掌握分式混合运算的运算顺序(先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的)和计算法则.20.无解【解析】【分析】去分母化为整式方程,再求解.【详解】解:去分母得:()122=1x x +--,去括号得:1+2x-4=x-1,移项合并得:x=2,经检验:x=2是原方程的增根,故方程无解.【点睛】本题考查了分式方程,解题的关键是掌握分式方程的解法,同时注意检验.21.2x <-,数轴表示见解析【解析】【分析】不等式去分母,去括号,移项合并,把x 系数化为1,求出解集,表示在数轴上即可.【详解】解:1431263x x --->,去分母得:()()31432x x --->,去括号得:33432x x --+>,移项合并得:2x ->,解得:2x <-,在数轴上表示如下:【点睛】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键.22.13<x≤2,数轴表示见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:3(2)1564x x x ⎧-<⎪⎨⎪+≥⎩①②,解不等式①得:x >13,解不等式②得:x≤2,故此不等式组的解集为:13<x≤2,在数轴上表示为:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)画图见解析,A 1(3,1);(2)画图见解析,C 2(-4,-2)【解析】【分析】(1)根据题意画出即可;关于y 轴对称点的坐标纵坐标不变,横坐标互为相反数;(2)根据网格结构找出点A 、B 、C 以点B 为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.【详解】解:(1)如图,△A 1B 1C 1为所作;点A 1的坐标为(3,1);(2)如图,△A 2B 2C 2为所作,C 2的坐标为(-4,-2).【点睛】本题考查了利用轴对称、旋转变换作图等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.(1)甲种树苗每棵40元;(2)至少要购买乙种树苗34棵.【解析】【分析】(1)根据题意列出分式方程求解即可;(2)根据题意列出不等式求解即可.【详解】(1)设甲种树苗每棵x 元,根据题意得:8006806x x =-,解得:x =40,经检验:x =40是原方程的解,答:甲种树苗每棵40元;(2)设购买乙中树苗y 棵,根据题意得:40(100﹣y )+34y≤3800,解得:y≥3313,∵y 是正整数,∴y 最小取34,答:至少要购买乙种树苗34棵.本题考查了分式方程的应用及一元一次不等式的应用,解题的关键是根据题意找到等量关系,难度不大.25.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【详解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,{AED CFB A CAD BC∠=∠∠=∠=,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.【点睛】本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.26.(1)见解析(2【分析】(1)由平行线的性质和角平分线得出∠ADB=∠ABD,证出AD=AB,由AB=BC得出AD=BC,即可得出结论;(2)根据直角三角形的性质求出BD,在Rt△BDE中,由勾股定理即可求解.【详解】(1)证明:∵AD//BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD//BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BC∴△BDE是直角三角形,∵四边形ABCD是菱形∴O点是BD的中点∴BD=2OE=6∴DE=【点睛】本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.27.(1)4;【分析】(1)证明△ACD 是等边三角形,据此求解;(2)作DE ⊥BC 于点E ,首先在Rt △CDE 中利用勾股定理求得DE 和CE 的长,然后在Rt △BDE 中利用勾股定理求解.(1)解:由旋转可得:AC AD =,60CAD ∠=︒,ΔACD ∴是等边三角形,4DC AC ∴==.故答案是:4;(2)作DE BC ⊥于点E .ΔACD 是等边三角形,60ACD ∴∠=︒,又AC BC ⊥Q ,906030DCE ACB ACD ∴∠=∠-∠=︒-︒=︒,Rt CDE ∴ 中,122DE DC ==,4CE DC ===BE BC CE =∴-==.Rt BDE ∴△中,BD =【点睛】本题考查了旋转的性质以及勾股定理的应用,正确作出辅助线,转化为直角三角形的计算是关键.28.见解析【解析】【分析】过D 作//DG AC ,可证明AEF DEG ≅ ,可得AF DG =,由三角形中位线定理可得12DG CF =,可证得结论.【详解】证明:如图,过D 作//DG AC ,则EAF EDG ∠=∠,∵AD 是ABC 的中线,∴D 为BC 中点,∴G 为BF 中点,∴12DG CF =,∵E 为AD 中点,∴AE DE =,在AEF 和DEG △中,EAF EDG AE DE AEF DEG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AEF DEG ASA ≅ (),∴DG AF =,∴12AF CF =.【点睛】本题主要考查三角形中位线定理,作辅助线构造三角形中位线找到GD 和AF 、CF 的关系是解题的关键.。

北师大版八年级下册数学期末考试试题及答案

北师大版八年级下册数学期末考试试题及答案

北师大版八年级下册数学期末考试试卷一、单选题1.下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .2.已知m n >,则下列不等式中不正确的是()A .77m n +>+B .55m n >C .44m n -<-D .66m n -<-3.如图,在ABC 中,AB AC =,点D 是边AC 上一点,BC BD AD ==,则A ∠的大小是()A .72°B .54°C .38°D .36°4.一次函数y =ax+b 的图象如图所示,则不等式ax+b≥0的解集是()A .2x ≥B .2x ≤C .4x ≥D .4x ≤5.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是()A .-2B .2C .-50D .506.若代数式4xx -有意义,则实数x 的取值范围是()A .x =0B .x =4C .x ≠0D .x ≠47.在下列条件中,能判定四边形ABCD 是平行四边形的是()A .,AB BC AD DC==B .//,AB CD AD BC =C .//,AB CD AB CD =D .,A B C D∠=∠∠=∠8.如图,Rt △ABC 中,∠C=90°,AB 的垂直平分线DE 交AC 于点E ,连接BE ,若∠A=40°,则∠CBE 的度数为()A .10°B .15°C .20°D .25°9.若24x mx ++是完全平方式,则m 的值为()A .4m =B .2m =C .4m =-或4m =D .4m =-10.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC .其中正确结论的个数为()A .1B .2C .3D .4二、填空题11.若分式241x x -+的值为0,则x 的值为_______.12.多项式34a a -分解因式的结果是______.13.如图,将 ABC 绕点B 顺时针旋转60°得 DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .若AB =5,则AD =_______________________.14.如图,已知ABC 中,,AB AC AD =平分,BAC E ∠是AB 的中点,若6,AB =则DE 的长为_______________________.15.若一个多边形的每一个外角都等于30°,则这个多边形的边数为_________.16.若不等式组841x x x m +<-⎧⎨>⎩的解集为x >3,则m 的取值范围___.17.已知1213435241110,S ,1,,1,a S S S S S S a S S >==--==-=,·……,(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2020S =_______________________.三、解答题18.解不等式组()12214x x -<-⎧⎨+>⎩,并求出它的最小整数解.19.先化简,21111x x x ⎛⎫-÷ ⎪+-⎝⎭,再从1,0,1-,2中选择一个合适的数代入求值.20.如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:(1)ABC ∆的顶点都在方格纸的格点上,先将ABC ∆向右平移2个单位,再向上平移3个单位,得到111A B C ∆,其中点1A 、1B 、1C 分别是A 、B 、C 的对应点,试画出111A B C ∆;(2)连接11AA BB 、,则线段11AA BB 、的位置关系为____,线段11AA BB 、的数量关系为___;(3)平移过程中,线段AB 扫过部分的面积_____.(平方单位)21.如图,在 ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=12BC ,连结DE ,CF .(1)求证:四边形CEDF 是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE 的长.22.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?23.如图,在Rt ABC 中,90,ACB D ∠= 是BC 延长线上的一点,线段BD 的垂直平分线EG 交AB 于点,E 交BD 于点G .()130B ∠= 时,AE 和EF 有什么关系?请说明理由.()2当点D 在BC 的延长线上()CD BC <运动时,点E 是否在线段AF 的垂直平分线上?24.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…(1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立;(3)利用等式计算:11(1)(1)(2)x x x x++++11(2)(3)(3)(4)x x x x++++++.25.如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O 出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少.参考答案1.A【详解】轴对称图形一个图形沿某一直线对折后图形与自身重合的图形;中心对称图形是指一个图形沿某一点旋转180°后图形能与自身重合,只有A图符合题中条件.故应选A.2.D【分析】根据不等式的性质逐项分析即可.【详解】A.∵m n>,∴77m n+>+,故正确;B.∵m n>,∴55>,故正确;m nC.∵m n>,∴44m n-<-,故正确;D.∵m n>,∴66->-,故不正确;m n故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.3.D【解析】【分析】由BD=BC=AD,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC,则∠ABC=∠C=2x,在△ABC中,根据三角形的内角和定理列方程求解.【详解】解:∵BD=BC=AD,∴设∠A=∠ABD=x,则∠C=∠CDB=2x,又∵AB=AC,∴∠ABC=∠C=2x,在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得x=36°,即∠A=36°.故选:D.【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的等边对等角的性质,三角形外角的性质,三角形内角和定理列方程求解.4.B【解析】【分析】利用函数图象,写出函数图象不在x轴下方所对应的自变量的范围即可.【详解】解:不等式ax+b≥0的解集为x≤2.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.5.A【解析】【详解】试题分析:先提取公因式ab,整理后再把a+b的值代入计算即可.当a+b=5时,a2b+ab2=ab(a+b)=5ab=-10,解得:ab=-2.考点:因式分解的应用.6.D【解析】【详解】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.7.C【解析】【分析】根据平行四边形的判定定理:对角线互相平分的四边形是平行四边形可得答案.【详解】解:A、AB=BC,AD=DC,不能判定四边形ABCD是平行四边形,故此选项错误;B、AB∥CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;C、AB∥CD,AB=CD能判定四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),故此选项正确;D、∠A=∠B,∠C=∠D不能判定四边形ABCD是平行四边形,故此选项错误;故选:C.【点睛】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.8.A【解析】【分析】根据垂直平分线的性质和等边对等角即可计算.【详解】∵∠C=90°,∠A=40°,∴∠ABC=90°-40°=50°.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=50°-40°=10°.故选A.9.C【解析】【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】解:∵x2+mx+4=x2+mx+22是完全平方式,∴m=±4,故选:C.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.a2+2ab+b2和a2-2ab+b2都是完全平方式,注意不要漏解.10.D【解析】【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【详解】解;∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点睛】此题主要考查了平行四边形的性质、线段垂直平分线的性质、以及等腰三角形的判定与性质等知识,正确应用等腰三角形的判定与性质是解题关键.11.2.【解析】【详解】试题分析:由分式的值为0时,分母不能为0,分子为0,可得2x-4=0,x+1≠0,解得x=2.考点:分式的值为0的条件.12.(2)(2)a a a +-【解析】【分析】先提出公因式a ,再利用平方差公式因式分解.【详解】解:a 3-4a=a (a 2-4)=a (a+2)(a-2).故答案为a (a+2)(a-2).【点睛】本题考查提公因式法和公式法进行因式分解,解题的关键是熟记提公因式法和公式法.13.5【解析】【分析】由旋转可得AB =BD ,∠ABD =60°,可得 ABD 为等边三角形,则可得出答案.【详解】解:∵将 ABC 绕点B 顺时针旋转60°得 DBE ,∴AB =BD ,∠ABD =60°,∴ ADB 是等边三角形,∴AB =AD =5.故答案为:5.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,关键是灵活运用旋转性质解决问题.14.3【解析】【分析】根据等腰三角形的性质可得AD ⊥BC ,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】解:∵AB =AC ,AD 平分∠BAC ,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=12AC=3.故答案为:3.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.15.12【解析】【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的外角,关键是明确多边形的外角和为360°.16.m≤3【解析】【分析】先将每一个不等式解出,然后根据不等式的解集是x>3求出m的范围.【详解】解:解不等式x+8<4x−1,得:x>3,∵不等式组的解集为x>3,∴m≤3,故答案为:m≤3.【点睛】本题考查的是解一元一次不等式组,解题的关键是正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.17.11a -+【解析】【分析】根据Sn 数的变化找出Sn 的值每6个一循环,结合2020=336×6+4,即可得出S 2020=S 4,此题得解.【详解】解:S 1=1a ,S 2=﹣S 1﹣1=﹣1a ﹣1=﹣1a a+,S 3=21S =﹣1a a +,S 4=﹣S 3﹣1=1a a +﹣1=﹣11a +,S 5=41S =﹣(a+1),S 6=﹣S 5﹣1=(a+1)﹣1=a ,S 7=61S =1a,…,∴Sn 的值每6个一循环.∵2020=336×6+4,∴S 2020=S 4=﹣11a +故答案为:﹣11a +【点睛】本题考查了规律型中数字的变化类,根据数值的变化找出Sn 的值,每6个一循环是解题的关键.18.不等式组的解集为3,x >最小整数解是4x =.【解析】【分析】先分别求出两个不等式的解集,然后求出公共解集,进而可得最小整数解.【详解】()12214x x -<-⎧⎪⎨+>⎪⎩①②,解不等式①,得3x >,解不等式②,得1x >,∴不等式组的解集为3,x >则它的最小整数解是4x =.【点睛】本题主要考查了解一元一次不等式组,根据“同大取大”求出公共解集是关键.19.x -1,1【解析】【分析】先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个合适的数代入求值.【详解】解:原式21111x x x x+--=⨯+()()111x x x x x+-=⨯+1x =-;x 取1,0和1-时分式无意义,x \取2,当2x =时,原式211=-=.【点睛】本题考查了分式的化简求值,解题的关键是分子、分母的因式分解,以及通分、约分.20.(1)见解析;(2)平行,相等;(3)15.【解析】【分析】(1)直接利用平移的性质分别得出对应点位置进而得出答案;(2)利用平移的性质得出线段AA 1、BB 1的位置与数量关系;(3)利用三角形面积求法进而得出答案.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)线段AA1、BB1的位置关系为平行,线段AA1、BB1的数量关系为:相等.故答案为:平行,相等;(3)平移过程中,线段AB扫过部分的面积为:2×12×3×5=15.故答案为:15.【点睛】此题考查平移变换以及三角形面积求法,正确得出对应点位置是解题关键.21.(1)见解析(213【解析】【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【详解】(1)证明:在▱ABCD中,AD BC,且AD=BC∵F是AD的中点∴DF=12 AD又∵CE=12 BC∴DF=CE,且DF CE∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在▱ABCD 中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=12CD=2,3在▱CEDF 中,CE=DF=12AD=3,则EH=1.∴在Rt △DHE 中,根据勾股定理知2(23)113+=.22.(1)2元;(2)至少购进玫瑰200枝.【解析】【详解】试题分析:(1)设降价后每枝玫瑰的售价是x 元,然后根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,列分式方程求解即可,注意检验结果;(2)根据店主用不多于900元的资金再次购进两种鲜花共500枝,列不等式求解即可.试题解析:(1)设降价后每枝玫瑰的售价是x 元,依题意有=×1.5.解得x =2.经检验,x =2是原方程的解,且符合题意.答:降价后每枝玫瑰的售价是2元.(2)设购进玫瑰y 枝,依题意有2(500-y)+1.5y≤900.解得y≥200.答:至少购进玫瑰200枝.23.(1)AE=EF ,理由详见解析;(2)点E 是在线段AF 的垂直平分线上,理由详见解析【解析】(1)根据线段垂直平分线性质得出DE=BE,求出∠D=∠B=30°,根据三角形内角和定理和三角形外角性质求出∠A=∠DEA=60°,即可得出答案;(2)求出∠A=∠AFE,根据线段垂直平分线性质得出即可.【详解】解:(1)AE=EF,理由是:∵线段BD的垂直平分线EG交AB于点E,交BD于点G,∴DE=BE,∵∠B=30°,∴∠D=∠B=30°,∴∠DEA=∠D+∠B=60°,∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∴∠A=∠DEA=60°,∴△AEF是等边三角形,∴AE=EF;(2)点E是在线段AF的垂直平分线,理由是:∵∠B=∠D,∠ACB=90°=∠FCD,∴∠A=∠DFC,∵∠DFC=∠AFE,∴∠A=∠AFE,∴EF=AE,∴点E是在线段AF的垂直平分线.【点睛】本题考查了线段垂直平分线性质,等腰三角形的性质,等边三角形的性质和判定的应用,能熟记线段垂直平分线内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.24.(1)一般性等式为111=(+11n n n n-+);(2)原式成立;详见解析;(3)244x x+.【解析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…,知它的一般性等式为111=(+11n n n n -+);(2)1111(1)(1)n n n n n n n n +-=-+++ 111(1)1n n n n ==++,∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++1111112x x x x =-+-+++11112334x x x x +-+-++++114x x =-+244x x=+.【点睛】解答此题关键是找出规律,再根据规律进行逆向运算.25.(1)证明见解析;(2)四边形ADEC 的周长为+.【解析】【分析】(1)连接CD 交AE 于F ,根据平行四边形的性质得到CF=DP ,OF=PF ,根据题意得到AF=EF ,又CF=DP ,根据平行四边形的判定定理证明即可;(2)根据题意计算出OC 、OP 的长,根据勾股定理求出AC 、CE ,根据平行四边形的周长公式计算即可.【详解】(1)证明:如答图,连接CD 交AE 于F.∵四边形PCOD 是平行四边形,∴CF =DF ,OF =PF.∵PE =AO ,∴AF =EF.又∵CF =DF ,∴四边形ADEC 为平行四边形.(2)解:当点P 运动的时间为32秒时,OP =32,OC =3,则OE =92.由勾股定理,得AC 22OA OC +3,CE 22OC OE +3132.∵四边形ADEC 为平行四边形,∴四边形ADEC 的周长为(33132)×2=6+13【点睛】本题考查的知识点是平行四边形的性质和判定、勾股定理的应用,解题关键是掌握对角线互相平分的四边形是平行四边形.。

北师大版初中数学八年级下册期末综合测试卷附参考答案

北师大版初中数学八年级下册期末综合测试卷附参考答案

八年级数学下册期末综合测试(北师大版)一、填空题(每题 2 分,共 20 分)1. x_______时,分式 5x3存心义;4x 5x2.请在下边横线上填上适合的内容,?使其成为一道正确而且完好的分式加减的运算_________= ;x13.若 a= 2 ,则 a22a3的值等于 ________.3a 27a 124.假如反比率函数的图象经过点( ?1,?-?2) ?,?那么这个反比率函数的分析式为________.5 .已知一组数据:-2 , -2 , 3 , -2 , x , -1 ,若这组数据的均匀数是 0.5 , ? 则这组数据的中位数是________. b5E2RGbCAP6.如图 1,P 是反比率函数图象在第二象限上的一点,且矩形 PEOF 的面积为 3,?则反比率函数的表达式是________. p1EanqFDPwADEFBC(1)(2)(3)DXDiTa9E3d7.如图 2, E 、 F 是 ABCD 对角线 BD 上的两点,请你增加一个适合的条件:______?使四边形 AECF 是平行四边形. RTCrpUDGiT8.如图 3,正方形 ABCD 中, AB=1,点 P 是对角线 AC 上的一点,分别以 AP 、PC?为对角线作正方形,则两个小正方形的周长的和是 ________. 5PCzVD7HxA(4)(5)(6)jLBHrnAILg9.如图 4,梯形纸片 ABCD ,∠ B=60°,AD ∥BC , AB=AD=2,BC=6,将纸片折叠,使点 B?与点D 重合,折痕为 AE ,则 CE=_______. xHAQX74J0X10 .如图 5,是依据四边形的不稳固性制作的边长均为 15cm 的可活动菱形衣架, ?若墙上钉子间的距离AB=BC=15cm ,则∠ 1=______度. LDAYtRyKfE 二、选择题(每题3 分,共 15 分)11.在一次射击练习中,甲、乙两人前5 次射击的成绩分别为(单位:环)甲: 10810107乙: 710 99 10则此次练习中,甲、乙两人方差的大小关系是().A . S2 甲>S 2 乙 B .S 2 甲<S 2 乙C . S 2 甲=S 2 乙D .没法确立12.某省某市 2005 年 4 月 1 日至 7 日每日的降水百分率以下表:日期(日) 1 2 3 4 5 6 7降水百分率30% 10% 10% 40% 30% 10% 40% 则这七天降水的百分率的众数和中位数分别为().A. 30%, 30% B. 30%, 10% C. 10%, 30% D. 10%, 40%13.反比率函数y= kx2与正比率函数y=2kx 在同一坐标系中的图象不行能是().14.将一张矩形纸片ABCD如图 6 那样折起,使极点 C 落在 C′处,此中 AB=4,若∠ C?′ ED=30,°则折痕 ED 的长为(). Zzz6ZB2LtkA. 4 B. 4 3 C. 8 D. 5 315.在四边形 ABCD中, O 是对角线的交点,能判断这个四边形是正方形的条件是(? ).A. AC=BD, AD // CD; B. AD∥ BC,∠ A=∠C; C. AO=BO=OC=DO; D. AO=CO, BO=DO, AB=BC dvzfvkwMI1 三、解答题(每题8 分,共 16 分)x 2 4x)÷1,此中“x=- 3”,小玲做题时把“x=- 3 ”错抄成16.有一道题“先化简”,再求值:(2 + 2 2x x 4 x 4了“x= 3”,但她的计算结果也是正确的,请你解说这是怎么回事?rqyn14ZNXI17.某市举行一次少年溜冰竞赛,各年纪组的参赛人数以下表所示:年纪组13 岁14 岁15 岁16 岁参赛人数 5 19 12 14( 1)求全体参赛选手年纪的众数、中位数;( 2)小明说,他所在年纪组的参赛人数占全体参赛人数的28%,你以为小明是哪个年纪组的选手?请说明原因.EmxvxOtOco四、证明题(10 分)18.如右图,已知ABCD中, E 为 AD 的中点, CE的延伸线交BA 的延伸线于点F.(1)求证: CD=FA(2)若使∠ F=∠ BCF, ABCD 的边长之间还需再增加一个什么条件?请你补上这个条件,并进行证明(不要再增加协助线) SixE2yXPq5五、探究题(10 分)19.你吃过拉面吗?实质上在做拉面的过程中就浸透着数学知识: ?必定体积的面团做成拉面,面条的总长度y( m)是面条的粗细(横截面积) S( mm 2)的反比率函数, ?其图象以下图.6ewMyirQFL (1)写出 y 与 S 的函数关系式;(2)求当面条粗 1.6mm 2时,面条的总长度是多少?y(m)100806040P(4,32)20s(mm2)O 12345六、列分式方程解应用题(10 分)20.甲、乙两地相距50km,A 骑自行车从甲地到乙地,出发 1 小时乙地,已知 B 的速度是 A 的速度的 2.5 倍,而且 B 比 A 早 1 小时抵达,30 ?求分钟后, B?骑摩托车也从甲地去AB 两人的速度.kavU42VRUs七、解答题(第21 题10 分,第22 题9 分,共19 分)21.如右图,反比率函数y= k的图象经过点A( - 3 ,b),过点 A 作AB⊥ x 轴于点B,△ AOB?的面积x为 3 .(1)求 k 和 b 的值.(2)若一次函数 y=ax+1 的图象经过 A 点,而且与 x 轴订交于点 M ,求 AO: AM 的值.22.如图,正方形ABCD的边 CD 在正方形ECGF的边 CE上,连结BE、 DG.( 1)察看猜想BE 与 DG 之间的大小关系,并证明你的结论;( 2)图中能否存在经过旋转可以相互重合的两个三角形?若存在,?请说出旋转过程;若不存在,请说明原因.参照答案 :5 1 2 3 31. x≠- 2.略 3.- 4. y=- 5. -6.y=-x4 2 x 27.略 8.4 9. 4 10. 120 11. A 12.?C 13. D 14. C 15. C y6v3ALoS8916.原式可化简为 x2+4,∵ x2均为 3,不会影响结果17.( 1) ?众数是: 14 岁,中位数是:15 岁,( 2) 16 岁年纪组的选手18.在ABCD中,只需 BC=2AB,就能使∠ F=∠ BCF,证:∵ AB=CD=FA, BC=2AB,∴BC=AB+AF=BF,∴∠ F=∠ BCF19.( 1) y= 128, ?( ?2) 80m520. 12km/ 时, 30km/ 时21. b=2, k=-2 3 ,(2)7 :4;22.( 1) BE=DG,( 2)存在,是 Rt△ BCE和 Rt△ DCG,将 Rt△ BCE绕C 顺时针旋转90°,可与Rt△ DCG完好重合.M2ub6vSTnP点。

北师大版八年级下册数学期末考试试题附答案

北师大版八年级下册数学期末考试试题附答案

北师大版八年级下册数学期末考试试卷一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A .A .B .C .D .2.不等式2x -2<3x -3的解集在数轴上表示正确的是()A .B .C .D .3.下列因式分解正确的是()A .x 2﹣y 2=(x ﹣y )2B .a 2+a+1=(a+1)2C .xy ﹣x=x (y ﹣1)D .2x+y=2(x+y )4.若分式34x x -+的值为0,则x 的值是()A .3x =B .0x =C .3x =-D .4x =-5.如图,将ABC ∆绕点A 按逆时针方向旋转120︒得到''AB C ∆(点B 的对应点是点'B ,点C 的对应点是点'C ),连接'BB ,若'//'AC BB ,则C'AB'∠的度数为()A .15︒B .30°C .45︒D .60︒6.一个多边形的内角和与外角和相等,则这个多边形的边数为()A .8B .6C .5D .47.多项式2mx m -与多项式221x x -+的公因式是()A .1x -B .1x +C .21x -D .()21x -8.在平行四边形ABCD 中,∠BAD=110°,∠ABD=30°,则∠CBD 度数为()A .30°B .40°C .70°D .50°9.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是()A .∠ABC =∠ADC ,∠BAD =∠DCB B .AB ∥DC ,AB =DC C .AB ∥DC ,AD ∥BCD .AC =BDC10.如图,在ABC 中,AB AC =,36A ∠=︒,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,下列结论错误的是()A .BD 平分ABC ∠B .BCD △的周长等于AB BC +C .AD BD BC ==D .点D 是线段AC 的中点二、填空题11.不等式组21040x x -≥⎧⎨->⎩的解集为_________.12.分解因式:244b -=_________.13.若关于x 的方程122x mx x +=--有增根,则m 的值是________.14.如图,已知等边ABC ∆的边长为8,E 是中线AD 上一点,以CE 为一边在CE 下方作等边CEF ∆,连接BF 并延长至点,N M 为BN 上一点,且5CM CN ==,则MN 的长为_________.15.如图,AB CD ∥,E 、F 分别是AC 、BD 的中点,若AB =5,CD =3,则EF 的长为______________.16.如图,在△ABC 中,∠BAC =60°,AD 平分∠BAC ,若AD =6,DE ⊥AB ,则DE 的长为_____________.三、解答题17.如图,等腰Rt △ABC 中,BA=BC ,∠ABC=90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE (1)求∠DCE 的度数;(2)若AB=4,CD=3AD ,求DE 的长.18.已知关于x 的分式方程1-1x k kx x +-+=1的解为负数,求k 的取值范围.19.如图,在边长为1个单位长度的小正方形组成的两个中,点、、A B C 都是格点.(1)将ABC ∆向左平移6个单位长度得到111B C ∆A .请画出111B C ∆A ;(2)将ABC ∆绕点O 按逆时针方向旋转180︒得到222A B C ∆,请画出222A B C ∆.20.先化简,再求值:211224x x x x ⎛⎫-÷ -+-⎝⎭,其中21x .21.阅读材料:分解因式:x 2+2x-3解:原式=x 2+2x+1-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x 2-2x-3=_______;a 2-4ab-5b 2=_______;(2)无论m 取何值,代数式m 2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;22.如图,□ABCD 中,BD 是它的一条对角线,过A 、C 两点作AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F ,延长AE 、CF 分别交CD 、AB 于M 、N .(1)求证:四边形CMAN是平行四边形.(2)已知DE=4,FN=3,求BN的长.23.蔬菜基地种植了娃娃菜和油菜两种蔬菜共30亩,设种植娃娃菜x亩,总收益为y万元,有关数据见下表:成本(单位:万元/亩)销售额(单位:万元/亩)娃娃菜 2.43油菜2 2.5(1)求y关于x的函数关系式(收益=销售额–成本);(2)若计划投入的总成本不超过70万元,要使获得的总收益最大,基地应种植娃娃菜和油菜各多少亩?(3)已知娃娃菜每亩地需要化肥400kg,油菜每亩地需要化肥600kg,根据(2)中的种植亩数,基地计划运送所需全部化肥,为了提高效率,实际每次运送化肥的总量是原计划的1.25倍,结果运送完全部化肥的次数比原计划少1次,求基地原计划每次运送多少化肥.24.如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;(2)若点A的坐标为(5,0),求直线AB的解析式;(3)在(2)的条件下,求四边形BODC的面积.25.如图,已知G 、H 是△ABC 的边AC 的三等分点,GE ∥BH ,交AB 于点E ,HF ∥BG 交BC 于点F ,延长EG 、FH 交于点D ,连接AD 、DC ,设AC 和BD 交于点O ,求证:四边形ABCD 是平行四边形.26.已知,如图,在三角形ABC ∆中,20AB AC cm ==,BD AC ⊥于D ,且16BD cm =.点M 从点A 出发,沿AC 方向匀速运动,速度为4/cm s ;同时点P 由B 点出发,沿BA 方向匀速运动,速度为1/cm s ,过点P 的动直线//PQ AC ,交BC 于点Q ,连结PM ,设运动时间为()t s ()05t <<,解答下列问题:(1)线段AD =_________cm ;(2)求证:PB PQ =;(3)当t 为何值时,以P Q D M 、、、为顶点的四边形为平行四边形?参考答案1.D【详解】解:A选项不是轴对称图形,是中心对称图形,不符合题意;B选项不是轴对称图形,是中心对称图形,不符合题意;C选项既是轴对称图形,不是中心对称图形,不符合题意;D选项是轴对称图形,是中心对称图形,符合题意;故选:D.2.B【详解】解:解不等式2x-2<3x-3,得:x>1,不等式的解集表示在数轴上如图:故选:B.【点睛】本题主要考查解不等式得基本能力及在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.C【详解】解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),故此选项正确;D、2x+y无法因式分解,故此选项错误.故选C.【点睛】本题考查因式分解.4.A【解析】【详解】解:根据题意得:30{40x x -=+≠解得:3{4x x =≠-,即3x =.故选A 5.B 【解析】【分析】根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质即可得∠C′AB′=∠AB′B=30°.【详解】解:如图示,将△ABC 绕点A 按逆时针方向旋转l20°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴()1180120302AB B ∠'=︒-︒=︒,∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,故选:B .【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.6.D 【解析】【分析】利用多边形的内角和与外角和公式列出方程,然后解方程即可.【详解】设多边形的边数为n ,根据题意(n-2)•180°=360°,解得n=4.故选D .【点睛】本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.7.A 【解析】【详解】试题分析:把多项式分别进行因式分解,多项式2mx m -=m (x+1)(x-1),多项式221x x -+=()21x -,因此可以求得它们的公因式为(x-1).故选A考点:因式分解8.B 【解析】【详解】解:在△ABD 中,根据三角形内角和定理可求出∠ADB=40°,在根据两线平行内错角相等即可得∠CBD=∠ADB=40°.故选B .【点睛】本题考查三角形内角和定理;平行四边形的性质;平行线的性质.9.D 【解析】【详解】分析:本题根据平行四边形的判定定理即可得出答案.详解:A 根据两组对角相等可以得出平行四边形;B 根据一组对边平行且相等可以得出平行四边形;C 根据两组对边分别平行可以得出平行四边形;D 无法判定,故选D .点睛:本题主要考查的是平行四边形的判定定理,属于基础题型.明确判定定理是解决这个问题的关键.10.D【解析】【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC 与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC;可得△BCD的周长等于AB+BC,又可求得∠BDC的度数,求得AD=BD=BC,则可求得答案;注意排除法在解选择题中的应用.【详解】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C=180362︒-︒=72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC-∠ABD=72°-36°=36°=∠ABD,∴BD平分∠ABC,故A正确;∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故B正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°-∠DBC-∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故C正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故D错误.故选:D.【点睛】此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.11.142x ≤<【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【详解】解:21040x x -≥⎧⎨->⎩①②解不等式①得:12x ≥,解不等式②得:4x <,∴不等式组的解集为142x ≤<,故答案为:142x ≤<.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).12.()()411b b +-【解析】【分析】首先提取公因式,再进一步利用平方差公式因式分解即可.【详解】解:4b 2-4=4(b 2-1)=4(b+1)(b-1).故答案为:4(b+1)(b-1).【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13.3【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】解:方程两边都乘x-2,得1x m+=∵方程有增根,∴最简公分母x-2=0,即增根是x=2,把x=2代入整式方程,得3m =.故答案为:3m =.【点睛】考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.6【解析】【分析】作CG ⊥MN 于G ,证△ACE ≌△BCF ,求出∠CBF=∠CAE=30°,则可以得出124CG BC ==,在Rt △CMG 中,由勾股定理求出MG ,即可得到MN 的长.【详解】解:如图示:作CG ⊥MN 于G ,∵△ABC 和△CEF 是等边三角形,∴AC=BC ,CE=CF ,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE ,即∠ACE=∠BCF ,在△ACE 与△BCF 中AC BC ACE BCF CE CF =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BCF (SAS ),又∵AD 是三角形△ABC 的中线∴∠CBF=∠CAE=30°,∴124CG BC ==,在Rt △CMG中,3MG ==,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF ≌△BCF .15.1【解析】【分析】连接DE 并延长交AB 于H ,证明△DCE ≌△HAE ,根据全等三角形的性质可得DE=HE ,DC=AH ,则EF 是△DHB 的中位线,再根据中位线的性质可得答案.【详解】解:连接DE 并延长交AB 于H.∵CD AB ∥,∴∠C=∠A ,∵E是AC中点,∴AE=EC,在△DCE和△HAE中,∠C=∠A,CE=AE,∠CED=∠AEH,∴△DCE≌△HAE(ASA),∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=12 BH,∴BH=AB-AH=AB-DC=2,∴EF=1.【点睛】此题主要考查了全等三角形的判定与性质,以及三角形中位线性质,关键是正确画出辅助线,证明△DCE≌△HAE.16.3【解析】【详解】分析:根据角平分线的性质求出∠DAC=30°,根据直角三角形的性质得出CD的长度,最后根据角平分线的性质得出DE的长度.详解:∵∠BAC=60°,AD平分∠BAC,∴∠DAC=30°,∵AD=6,∴CD=3,又∵DE⊥AB,∴DE=DC=3.点睛:本题主要考查的是直角三角形的性质以及角平分线的性质,属于基础题型.合理利用角平分线的性质是解题的关键.17.解:(1)90°;(2)【解析】【分析】(1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.【详解】解:(1)∵△ABCD 为等腰直角三角形,∴∠BAD=∠BCD=45°.由旋转的性质可知∠BAD=∠BCE=45°.∴∠DCE=∠BCE+∠BCA=45°+45°=90°.(2)∵BA=BC ,∠ABC=90°,∴=.∵CD=3AD ,∴,由旋转的性质可知:.∴=【点睛】本题考查旋转的性质.18.k>12且k≠1【解析】【分析】首先根据解分式方程的步骤,求出关于x 的分式方程1-1x k k x x +-+=1的解,然后根据分式方程的解为负数,求出k 的取值范围即可.【详解】解:去分母,得(x+k)(x-1)-k(x+1)=x 2-1,去括号,得x 2-x+kx-k-kx-k=x 2-1,移项、合并同类项,得x=1-2k,根据题意,得1-2k<0且1-2k≠1,1-2k≠-1解得k>12且k≠1,∴k 的取值范围是k>12且k≠1.【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.19.(1)图见详解;(2)图见详解.【解析】【分析】(1)将点A 、B 、C 分别向左平移6个单位长度,得出对应点,即可得出△A 1B 1C 1;(2)将点A 、B 、C 分别绕点O 按逆时针方向旋转180°,得出对应点,即可得出△A 2B 2C 2.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求.【点睛】此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.20.4x ,4.【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值.【详解】解:211224x x x x ⎛⎫-÷ -+-⎝⎭()()()()22242222x x x x x x x x ⎡⎤+--=-⎢⎥-+-+⎣⎦ ()()()()22422x x x x x -+=-+ 4x =当1x =时,原式4==.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(1)(x-3)(x+1);(a+b )(a-5b );(2)代数式m 2+6m+13的最小值是4【解析】【分析】(1)二次三项式是完全平方式,则常数项是一次项系数一半的平方;(2)利用配方法将代数式m 2+6m+13转化为完全平方与和的形,然后利用非负数的性质进行解答.【详解】(1)x 2-2x-3,=x 2-2x+1-1-3,=(x-1)2-4,=(x-1+2)(x-1-2),=(x-3)(x+1);a 2-4ab-5b 2,=a 2-4ab+4b 2-4b 2-5b 2,=(a-2b )2-9b 2,=(a-2b-3b )(a-2b+3b ),=(a+b )(a-5b );故答案为(x-3)(x+1);(a+b )(a-5b );(2)m 2+6m+13=m 2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m 2+6m+13的最小值是4.【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.22.(1)见解析;(2)5【解析】【分析】(1)只要证明//CM AN ,//AM CN 即可.(2)先证明DEM BFN ∆≅∆得BN DM =,再在Rt DEM ∆中,利用勾股定理即可解决问题.【详解】解:(1)证明: 四边形ABCD 是平行四边形,//CD AB ∴,AM BD ⊥ ,CN BD ⊥,//AM CN ∴,//CM AN ∴,//AM CN ,∴四边形AMCN 是平行四边形.(2) 四边形AMCN 是平行四边形,CM AN ∴=,四边形ABCD 是平行四边形,CD AB ∴=,//CD AB ,DM BN ∴=,MDE NBF ∠=∠,在MDE ∆和NBF ∆中,90MDE NBF DEM NFB DM BN ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()MDE NBF AAS ∴∆≅∆,3ME NF ∴==,在Rt DME 中,90DEM ∠=︒ ,4DE =,3ME =,5DM ∴==,5BN DM ∴==.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是记住平行四边形的判定方法和性质,正确寻找全等三角形解决问题,属于中考常考题型.23.(1)0.115y x =+;(2)基地应种植娃娃菜25亩,种植油菜5亩;(3)基地原计划每次运送化肥2600kg ·【解析】【分析】(1)根据种植郁金香和玫瑰两种花卉共30亩,可得出种植玫瑰30-x 亩,再根据“总收益=郁金香每亩收益×种植亩数+玫瑰每亩收益×种植亩数”即可得出y 关于x 的函数关系式;(2)根据“投入成本=郁金香每亩成本×种植亩数+玫瑰每亩成本×种植亩数”以及总成本不超过70万元,可得出关于x 的一元一次不等式,解不等式即可得出x 的取值范围,再根据一次函数的性质即可解决最值问题;(3)设原计划每次运送化肥mkg ,实际每次运送1.25mkg ,根据原计划运送次数比实际次数多1,可得出关于m 的分式方程,解分式方程即可得出结论.【详解】解:(1)由题意得()()()3 2.4 2.52300.115y x x x =-+--=+;(2)由题意知()2.423070x x +-≤,解得25x ≤对于0.115y x =+,∵0.10>,∴y 随x 的增大而增大,∴当25x =时,所获总收益最大,此时305x -=.答:基地应种植娃娃菜25亩,种植油菜5亩;(3)设原计划每次运送化肥zkg ,实际每次运送1.25zkg ,需要运送的化肥总量是40025600513000kg ⨯+⨯=(),由题意可得130001300011.25z z=+解得2600z =.经检验,2600z =是原分式方程的解.答:基地原计划每次运送化肥2600kg ·【点睛】考查了一次函数的应用、解一元一次不等式以及分式方程的应用,解题的关键是:(1)根据数量关系找出y 关于x 的函数关系式;(2)根据一次函数的性质解决最值问题;(3)根据数量关系得出分式方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.24.(1)x >3(2)y=-x+5(3)9.5【解析】【分析】(1)根据C 点坐标结合图象可直接得到答案;(2)利用待定系数法把点A (5,0),C (3,2)代入y=kx+b 可得关于k 、b 得方程组,再解方程组即可;(3)由直线解析式求得点A 、点B 和点D 的坐标,进而根据S 四边形BODC =S △AOB -S △ACD 进行求解即可得.【详解】(1)根据图象可得不等式2x-4>kx+b 的解集为:x >3;(2)把点A (5,0),C (3,2)代入y=kx+b 可得:5032k b k b +=⎧⎨+=⎩,解得:15k b =-⎧⎨=⎩,所以解析式为:y=-x+5;(3)把x=0代入y=-x+5得:y=5,所以点B (0,5),把y=0代入y=-x+5得:x=2,所以点A (5,0),把y=0代入y=2x-4得:x=2,所以点D (2,0),所以DA=3,所以S 四边形BODC =S △AOB -S △ACD =11553222⨯⨯-⨯⨯=9.5.【点睛】本题考查了待定系数法求一次函数解析式,直线与坐标轴的交点,一次函数与一元一次不等式的关系,不规则图形的面积等,熟练掌握待定系数法、注意数形结合思想的运用是解题的关键.25.证明见解析.【解析】【详解】分析:根据题意得出EG、FH分别是△ABH和△CBG的中位线,从而得出ED∥BH,FD∥BG,即四边形BHDG是平行四边形,从而得出OB=OD,OG=OH,结合AG=CH得出OA=OC,从而根据对角线互相平分的四边形是平行四边形得出答案.详解:证明:∵G、H是AC的三等分点且GE∥BH,HF∥BG,∴AG=GH=HC,EG、FH分别是△ABH和△CBG的中位线,∴ED∥BH,FD∥BG,∴四边形BHDG是平行四边形,∴OB=OD,OG=OH,OA=OG+AG=OH+CH=OC,∴四边形ABCD是平行四边形.点睛:本题主要考查的是平行四边形的性质与判定,属于中等难度的题型.根据中位线的性质得出四边形BHDG是平行四边形是解决这个问题的关键.26.(1)12;(2)证明见详解;(3)125t s=或t=4s.【解析】【分析】(1)由勾股定理求出AD即可;(2)由等腰三角形的性质和平行线的性质得出∠PBQ=∠PQB,再由等腰三角形的判定定理即可得出结论;(3)分两种情况:①当点M在点D的上方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AD-AM=12-4t,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可;②当点M在点D的下方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AM-AD=4t-12,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可.【详解】(1)解:∵BD⊥AC,∴∠ADB=90°,∴12AD=(cm),(2)如图所示:∵AB=AC,∴∠ABC=∠C,即∠PBQ=∠C,∵PQ∥AC,∴∠PQB=∠C,∴∠PBQ=∠PQB,∴PB=PQ;(3)分两种情况:①当点M在点D的上方时,如图2所示:根据题意得:PQ=BP=t,AM=4t,AD=12,∴MD=AD-AM=12-4t,∵PQ∥AC,∴PQ∥MD,∴当PQ=MD时,四边形PQDM是平行四边形,即:当t=12-4t,时,四边形PQDM是平行四边形,解得:125t (s);②当点M在点D的下方时,如图3所示:根据题意得:PQ=BP=t,AM=4t,AD=12,∴MD=AM-AD=4t-12,∵PQ∥AC,∴PQ∥MD,∴当PQ=MD时,四边形PQDM是平行四边形,即:当t=4t-12时,四边形PQDM是平行四边形,解得:t=4(s);综上所述,当125t s或t=4s时,以P、Q、D、M为顶点的四边形为平行四边形.【点睛】本题是四边形综合题目,考查了平行四边形的判定、等腰三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握平行四边形的判定方法,进行分类讨论是解决问题(3)的关键.。

北师大版八年级数学下册几何综合复习练习题(有答案)

北师大版八年级数学下册几何综合复习练习题(有答案)

几何练习题一.选择题1.如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC 的长等于()A.12B.10C.8D.62.下列图形既是轴对称图形,又是中心对称图形的是()A.线段B.等腰三角形C.平行四边形D.等边三角形3.已知A(a,1)与B(5,b)关于原点对称,则a b的值为()A.B.C.﹣5D.54.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB的面积是16.则以上结论正确的个数是()A.1个B.2个C.3个D.4个5.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.46.若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A.4B.5C.6D.8二.填空题7.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是(填序号)8.如图,等腰△ABC中,AB=AC=10,∠B=15°,则S△ABC=.9.如图,已知动点P可在射线OB上运动,∠AOB=40°,当∠A=°时,△AOP为直角三角形.10.如图,AB=AC,AC的垂直平分线MN交AB于点D交AC于点E,若AE=5,△BCD的周长为17,则△ABC的周长为.11.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于.12.在正方形、长方形、线段、等边三角形和平行四边形这五种图形中,是旋转对称图形不是中心对称图形的是.13.如图,▱ABCD中,EF过对角线的交点O如果AB=4cm,AD=3cm,OF=1cm,则四边形BCEF的周长为.14.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EF A.其中正确结论的序号是.15.在Rt△ABC中,∠C=90°,AC=3,BC=4,点D、E、F是三边的中点,则△DEF的周长是.16.如图,已知在等边△ABC中,沿图中虚线剪去∠C,则∠1+∠2=.三.解答题17.已知:如图,∠ACD是△ABC的一个外角,CE、CF分别平分∠ACB、∠ACD,EH∥BC,分别交AC、CF于点G、H.求证:GE=GH.18.如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,且BE=CF,∠BDE=30°,求证:△ABC是等边三角形.19.如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=6cm,求AD的长.20.如图,在△ABC中,AB=AC,作AB边的垂直平分线交直线BC于M,交AB于点N.(1)如图(1),若∠A=40°,则∠NMB=度;(2)如图(2),若∠A=70°,则∠NMB=度;(3)如图(3),若∠A=120,则∠NMB=度;(4)由(1)(2)(3)问,你能发现∠NMB与∠A有什么关系?写出猜想,并证明.21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,点B,C分别在∠A的两边上,点D是∠A内一点,DE⊥AB,DF⊥AC,垂足分别为E,F,且AB=AC,DE=DF.求证:BD=CD.23.如图,△ABC是等边三角形,△ABP旋转后能与△CBP′重合.(1)旋转中心是哪一点?(2)旋转角度是多少度?(3)连结PP′后,△BPP′是什么三角形?简单说明理由.24.一个多边形的每个内角都相等,并且其中一个内角比它相邻的外角大100°,求这个多边形的边数.25.如图,在四边形ABCD中,AD=BC,E,F,G,H分别是AB,CD,AC,EF的中点,求证:GH⊥EF.26.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.27.已知:如图是某城市部分街道示意图,AF∥BC,且AF⊥CE,AB=DC,AB∥DE,BD∥AE.甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路车,路线是B→D→C→F,假设两车速度相同,途中耽误时间相同,那么谁先到达F站?说明理由.28.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,BE=CF.(1)求证:四边形DEFC是平行四边形;(2)若∠ABC=60°,BD=4,求四边形DEFC的面积.29.如图,已知在等边△ABC中,AD,CF分别为边CB,BA上的中线,以AD为边作等边△ADE.求证:(1)四边形CDEF是平行四边形;(2)EF平分∠AED.30.如图,在△ABC中,D,E,F分别为边BC,AB,AC上的点,ED∥AF且ED=AF,延长FD到点G,使DG=FD,求证:ED,AG互相平分.答案一.选择题1.B.2.A.3.B.4.C.5.C.6.B.二.填空题7.①②③.8.25.9.50°或90°.10.27.11.32.12.等边三角形.13.9cm.14.①②③④.15.6.16.240°.三.解答题7.解:∵EH∥BC,∴∠BCE=∠GEC,∠GHC=∠DCH,∵∠GCE=∠BCE,∠GCH=∠DCH,∴∠GEC=∠GCE,∠GCH=∠GHC,∴EG=GC=GH,∴GE=GH.18.证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在△BED和△CFD中,,∴△BED≌△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).∵∠BDE=30°,DE⊥AB,∴∠B=60°,∴△ABC是等边三角形.19.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=6cm,∴AD=2cm.20.解:(1)如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣40°)=70°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=20°,故答案为20.(2)如图2中,∵AB=AC,∴∠B=∠ACB=(180°﹣70°)=55°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=35°,故答案为35.(3)如图3中,如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣120°)=30°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=60°,故答案为60.(4)结论:∠NMB=∠A.理由:如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣∠A)∵MN⊥AB,∴∠MNB=90°,∴∠NMB=90°﹣(90°﹣∠A)=∠A.21.解:如图,点P为所作.22.证明:连接AD,∵DE⊥AB,DF⊥AC,DE=DF,∴∠BAD=∠CAD,在△ABD和△ACD中,∴△ABD≌△ACD,(SAS),∴BD=CD.23.解:(1)∵△ABP旋转后能与△P'BC重合,点B是对应点,没有改变,∴点B是旋转中心;(2)AB与BC是旋转前后对应边,旋转角=∠ABC,∵△ABC是等边三角形,∴∠ABC=60°,∴旋转角是60°;(3)连结PP′后,△BPP′是等边三角形,理由:∵旋转角是60°,∴∠PBP′=60°,又∵BP=BP′,∴△BPP′是等边三角形.24.解:设每个内角度数为x度,则与它相邻的外角度数为180°﹣x°,根据题意可得x﹣(180﹣x)=100,解得x=140.所以每个外角为40°,所以这个多边形的边数为360÷40=9.答:这个多边形的边数为9.25.证明:∵E,F,G分别是AB,CD,AC的中点,∴FG=AD,EG=BC,∵AD=BC,∴FG=GE,∵H是EF的中点,∴GH⊥EF.26.证明:连接BD,交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.27.解:同时到达,理由如下:连接AC,如图,∵AF∥BC,AB=CD,∴四边形ABCD为等腰梯形,∴AC=BD,∵AB∥DE,BD∥AE,∴四边形ABDE为平行四边形,∴AE=BD=AC,AB=DE,∵AF⊥CE,∴AF为线段CE的垂直平分线,∴CF=EF,∴甲乘1路车,路程=BA+AE+EF=CD+BD+CF,乙乘2路车,路程=BD+DC+CF,∴两人同时到达.28.解:(1)∵ED∥BC,∴∠BDE=∠DBC.∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠BDE=∠ABD,∴BE=DE.∵BE=CF,∴DE=CF.又∵ED∥BC,∴四边形DEFC是平行四边形;(2)如图所示:过点B作BG⊥DE,垂足为G.由(1)可知∠EDB=∠ABC.∵∠ABC=60°.∴∠EDB=30°.又∵∠G=90°.∴BG=BD=2.∵ED∥FC,∴∠AED=∠ABC=60°.∴∠GEB=60°.∴ED=BE=BG÷=.∴平行四边形EDCF的面积=ED•BG=.29.证明:(1)∵△ABC是等边三角形,AD,CF分别为边CB,BA上的中线,∴AD=CF,AD⊥BC,∠BCF=30°,∵△ADE是等边三角形,∴DE=AD,∠ADE=60°,∴∠BDE=90°﹣60°=30°=∠BCF,∴DE=CF,DE∥CF,∴四边形CDEF是平行四边形;(2)∵四边形CDEF是平行四边形,∴EF∥CD,∴∠FED=∠BCF=30°,∵△ADE是等边三角形,∴∠AED=60°,∴∠AEF=30°=∠DEF,∴EF平分∠AED.30.证明:连接EG、AD,如图所示:∵ED∥AF,且ED=AF,∴四边形AEDF是平行四边形,∴AE=DF,又DG=DF,∴AE=DG,∴四边形AEGD是平行四边形,∴ED,AG互相平分.。

最新北师大版八年级下册数学期末考试复习试卷以及答案

最新北师大版八年级下册数学期末考试复习试卷以及答案

x 2-4x 4 ( x- 2)2 ;乙
x 2-9 ( x- 3)2 ;丙 2x2-8x 2x 2x( x-4);丁: x 2 6x 5 ( x 1)( x 5),则奋
斗组得(

A、0.5 分
B、1 分
C、1.5 分
D、 2 分
2
3
12、如图,在菱形 ABCD 中, AB=2,∠ A=120°,点 P、 Q、 K 分别是线
八年级下册数学期末测试试卷
一、选择题。(共 12 道选择题,每道选择题只有一个正确答案)
4 、已知关于 (
x 的方程 x 2- kx-5 0 的一个根是 )
5 ,则另一个根是
A、﹣ 1 B、 4
C、﹣ 4
1
D、 2
5、八年级一班实行高效课堂教学, 四人一组, 每做对一道题得 0.5 分,
奋斗组的四个同学做了四道因式分解题,甲:
段 BC、 CD、 BD 上任意一点ห้องสมุดไป่ตู้则 PK+QK的最小值是(

A、1 B、 2 C、 3 D、 3 +1
4
二、填空题。(共 6 道填空题)
17、如图,在平行四边形 ABCD 中, O 是对角线的交点, E 是 AB 的中
点,且 AE+EO=4,则平行四边形 ABCD的周长为

三、解答题。
5
6
7
8
9
10
11
12
13
14

北师大版八年级下册数学期末测试卷(含答案)

北师大版八年级下册数学期末测试卷(含答案)

北师大版八年级数学下册期末复习训练卷一、选择题(共10小题,3*10=30)1. 下列四个图形中,既是轴对称图形又是中心对称图形的是( )A B C D2. 若分式x 2-4x的值为0,则x 的值是( ) A .2或-2 B .2C .-2D .03. 不等式组⎩⎪⎨⎪⎧x >-2x≤1的解集在数轴上表示正确的是( )4. 如果关于x 的不等式(a +1)x >a +1的解集为x <1,则a 的取值范围是( )A .a <0B .a <-1C .a >1D .a >-15. 凸n 边形的内角和是540°,则它是( )A .三角形B .四边形C .五边形D .六边形6. 某次知识竞赛共有20道题,每答对一道题得10分,答错或不答都扣5分.娜娜得分要超过90分,设她答对了x 道题,则根据题意可列不等式为( )A .10x -5(20-x)≥90B .10x -5(20-x)>90C .20×10-5x >90D .20×10-5x≥907. 在平面直角坐标系中,已知线段AB 的两个端点分别是A(4,-1),B(1,1).将线段AB 平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为( )A .(-5,4)B .(4,3)C .(-1,-2)D .(-2,-1)8. 如图,△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为24,则BC 的长为( )A .18B .14C .12D .69. 如图,点I 为△ABC 角平分线交点,AB =8,AC =6,BC =4,将∠ACB 平移使其顶点C 与I 重合,则图中阴影部分的周长为( )A .9B .8C .6D .410. 如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q.若BF =2,则PE 的长为( )A .2B .2 3C . 3D .3二.填空题(共8小题,3*8=24)11. 函数y =x -1x +1中,自变量x 的取值范围是__ __. 12. 分解因式:2a 3b -4a 2b 2+2ab 3=_________.13. 若分式x 2-2x x -2的值为0,则x 的值为__ __ . 14. 如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,DE 是AB 边的垂直平分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为________.15. 如图,在Rt △ABC 中,∠B =90°,AB =4,BC =3,AC 的垂直平分线DE 分别交AB ,AC 于D ,E 两点,则CD 的长为________.16. 如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP ∥OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于__ __.17. “五四”青年节,市团委组织部分中学的团员去西山植树.某校九年级(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有________棵.18. 如图,在等腰Rt △ABC 中,∠ABC =90°,AB =BC =4.点P 是△ABC 内的一点,连接PC ,以PC 为直角边在PC 的右上方作等腰直角三角形PCD ,连接AD.若AD ∥BC ,且四边形ABCD 的面积为12,则BP 的长为__ __.三.解答题(共7小题, 66分)19.(8分) 把下列各式分解因式:(1)(m +n)3+2m(m +n)2+m 2(m +n);(2)(a 2+b 2)2-4a 2b 2.20.(8分) 解不等式组⎩⎪⎨⎪⎧3x +3≤2x +7①,5(x -1)>3x -1②, 并把它的解集在数轴上表示出来.21.(8分) 化简分式(a2-3aa2-6a+9+23-a)÷a-2a2-9,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.22.(8分) 在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2,C2的坐标.23.(10分) 如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3.求△ABC的周长.24. (12分) 某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种,已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元.(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1 500元,那么他们最多可购买多少棵乙种树苗?25. (12分) 如图,在▱ABCD 中,AE ⊥BC ,垂足为点E ,CE =CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF ,EG ,AG ,∠1=∠2.(1)若CF =2,AE =3,求BE 的长;(2)求证:∠CEG =12∠AGE.参考答案1-5DACBC 6-10BAABC11. x≥112. 2ab(a -b)213. 014.1615. 25816. 217.121 18. 219. 解:(1)(m +n)3+2m(m +n)2+m 2(m +n)=(m +n)[(m +n)2+2m(m +n)+m 2]=(m +n)(2m +n)2;(2)(a 2+b 2)2-4a 2b 2=(a 2+b 2)2-(2ab)2=(a 2+b 2+2ab)(a 2+b 2-2ab)=(a +b)2(a -b)2.20. 解:不等式组的解集为2<x≤4,解集在数轴上表示为:21. 解:原式=[a (a -3)(a -3)2-2a -3]÷a -2(a +3)(a -3)=(a a -3-2a -3)·(a +3)(a -3)a -2=a -2a -3·(a +3)(a -3)a -2=a +3,∵a≠-3,2,3,∴a =4或a =5,当a =4时,原式=7 22. 解:(1)如图,△A 1B 1C 1即为所求.(2)如图,△AB 2C 2即为所求.(3)点B 2(4,-2),C 2(1,-3).23. 解:在△ABN 和△ADN 中,∵⎩⎪⎨⎪⎧∠BAN =∠DAN ,AN =AN ,∠ANB =∠AND ,∴△ABN ≌△ADN ,∴BN =DN ,AB =AD.又∵点M 是BC 中点,∴MN 是△BDC 的中位线,∴CD =2MN =6,故C △ABC =AB +BC +CD +AD =10+15+6+10=4124. 解:(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x +10)元.依题意有480x +10=360x,解得x =30.经检验,x =30是原方程的解,且符合题意.x +10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y 棵乙种树苗,依题意有30×(1-10%)(50-y)+40y≤1 500,解得y≤11713,∵y 为整数,∴y 最大为11.答:他们最多可购买11棵乙种树苗.25. 解:(1)∵点F 为CE 的中点,∴CE =CD =2CF =4.又∵四边形ABCD 为平行四边形,∴AB =CD =4.在Rt △ABE 中,由勾股定理,得BE =AB 2-AE 2=7(2)延长AG ,BC 交于点H.∵∠2=∠1,∠ECG =∠DCF ,CE =CD ,∴△CEG ≌△CDF(AAS),∴CG =CF.∵CD =CE =2CF ,∴CG =GD.∵在▱ABCD 中,AD ∥BC ,∴∠DAG =∠CHG ,∠ADG =∠HCG.∴△ADG ≌△HCG(AAS),∴AG =HG.∵∠AEH =90°,∴EG =AG =HG.∴∠CEG =∠H.∵∠AGE =∠CEG +∠H ,∴∠AGE =2∠CEG ,即∠CEG =12∠AGE。

北师大版八年级下册数学期末考试卷(含答案)及复习提纲+练习题

北师大版八年级下册数学期末考试卷(含答案)及复习提纲+练习题

八年级下册数学期末测试题一.选择题1、-3x <-1的解集是( )A 、x <31B 、x <-31C 、x >31D 、x >-312、下列从左到右的变形是分解因式的是( )A 、(x -4)(x +4)=x 2-16B 、x 2-y 2+2=(x +y )(x -y )+2C 、2ab +2ac =2a (b +c )D 、(x -1)(x -2)=(x -2)(x -1) 3、下列命题是真命题的是( )A 、相等的角是对顶角B 、两直线被第三条直线所截,内错角相等C 、若n m n m ==则,22D 、有一角对应相等的两个菱形相似4、分式222b ab a a +-,22b a b -,2222b ab a b ++的最简公分母是( )A 、(a²-2ab+b²)(a²-b²)(a²+2ab+b²)B 、(a+b )²(a -b )²C 、(a+b )²(a-b )²(a²-b²)D 、44b a -5、人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差如下:2212128686259186.x x s s ====,,, 则成绩较为稳定的班级是( )A 、八(1)班B 、八(2)班C 、两个班成绩一样稳定D 、无法确定6、如图1,能使BF∥DG 的条件是( ) A 、∠1=∠3 B 、∠2=∠4 C 、∠2=∠3 D 、∠1=∠47、如图2,四边形木框ABCD 在灯泡发出的光照射下形成的影子是四边形A B C D '''',若:1:2AB A B ''=,则四边形ABCD 的面积∶四边形A B C D ''''的面积为( )A 、4:1B .2:1C .1:2D .1:4图1图28、如图3,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使DEF △与ABC △相似,则点F 应是G ,H ,M ,N 四点中的( )A 、H 或MB 、G 或HC 、M 或ND 、G 或M9、如图4,DE∥BC,则下列不成立的等式是( )A 、EC AE BD AD = B 、AE ACAD AB = C 、DBEC AB AC = D 、BC DEBD AD =10、直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图5所示,则关于x 的不等式12k x b k x +>的解为( )A 、x >-1B 、x <-1C 、x <-2D 、无法确定二.填空题11、计算:(1)(-x )²÷y·y1=____________。

北师大版八年级下期末数学考试试卷及答案(解析版5套试题) (3)

北师大版八年级下期末数学考试试卷及答案(解析版5套试题)  (3)

八年级(下)期末数学试卷(解析版)一、选择题(共6小题,每小题3分,满分18分)1.计算(﹣)(+)的结果是()A.﹣3 B.3 C.7 D.42.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是()A.3 B.4 C.5 D.63.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AD∥BC,AD=BC D.∠BAD=∠BCD,AB∥CD4.如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm5.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7 B.7,7 C.9,9 D.9,76.在平面直角坐标系中,点P(x,﹣x+3)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(本大题共有8小题,每小题4分,共32分)7.计算:=.8.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是(填“平均数”或“中位数”)9.已知a、b、c是三角形的三边长,如果满足(a﹣6)2++|c﹣10|=0,则三角形的形状是.10.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C 的坐标为.11.如图,在矩形ABCD中,AB=6cm,点E、F分别是边BC、AD上一点,将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处.若C′E⊥AD,则EF的长为cm.12.如图,正方形ABCD中,对角线BD长为15cm.P是线段AB上任意一点,则点P到AC,BD的距离之和等于cm.13.直线y=x+2与两坐标轴所围成的三角形面积为.14.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=kx上,则(1)k=,(2)A2015的坐标是.三、解答题(本大题共有4小题,共20分)15.计算:3﹣+﹣.16.已知:在Rt△ABC中,∠C=90°,,∠A=60°,求b、c.17.如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).(1)求这个一次函数的表达式.(2)判断点C(﹣1,4)是否在该函数图象上.18.已知,如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BEDF是平行四边形.四、解答题(本大题共有2小题,共14分)19.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.20.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;2,(2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2哪个大;s乙(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.五、解答题(本大题共有2小题,共16分)21.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)当4≤x≤12时,求y关于x的函数解析式;(2)直接写出每分进水,出水各多少升.22.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.六、解答题(本大题共有2小题,共20分)23.如图,在Rt△ABC中,∠ACB=90°,AC=4cm,动点F在线段BC的垂直平分线DG上,垂足为D,DG交AB于E,连接CE,AF,动点F从D点出发以1cm/s的速度移动,设运动时间为t(s).(1)当t=6s时,求证:四边形ACEF是平行四边形;(2)①在(1)的条件下,当∠B=°时,四边形ACEF是菱形;②当t=s时,四边形ACDF是矩形.24.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.计算(﹣)(+)的结果是()A.﹣3 B.3 C.7 D.4【分析】利用平方差公式进行计算即可.【解答】解:(﹣)(+),=()2+()2,=2﹣5,=﹣3,故选:A.【点评】此题主要考查了二次根式的运算,关键是掌握平方差公式(a+b)(a﹣b)=a2﹣b2.2.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是()A.3 B.4 C.5 D.6【分析】根据勾股定理,可得答案.【解答】解:PO==5,故选:C.【点评】本题考查了点的坐标,利用勾股定理是解题关键.3.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AD∥BC,AD=BC D.∠BAD=∠BCD,AB∥CD【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,可以证明四边形ABCD是平行四边形,故本选项错误;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项正确;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形,故本选项错误;D、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定,故本选项错误;故选:B.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.4.如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm【分析】先由平行四边形的性质和周长求出AD+DC=10,再根据线段垂直平分线的性质得出AE=CE,即可得出△CDE的周长=AD+DC.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AD=BC,OA=OC,∵▱ABCD的周长为20cm,∴AD+DC=10cm,又∵OE⊥AC,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=10cm;故选:C.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形周长的计算;熟练掌握平行四边形的性质,运用线段垂直平分线的性质得出AE=CE是解决问题的关键.5.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7 B.7,7 C.9,9 D.9,7【分析】根据众数与中位数的定义分别进行解答即可.【解答】解:由条形统计图给出的数据可得:9出现了6次,出现的次数最多,则众数是9;把这组数据从小到达排列,最中间的数是7,则中位数是7.故选D.【点评】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.在平面直角坐标系中,点P(x,﹣x+3)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】分x是正数和负数两种情况讨论求解.【解答】解:x>0时,﹣x+3可以是负数也可以是正数,∴点P可以在第一象限也可以在第四象限,x<0时,﹣x+3>0,∴点P在第二象限,不在第三象限.故选C.【点评】本题考查了点的坐标,根据x的情况确定出﹣x+3的正负情况是解题的关键.二、填空题(本大题共有8小题,每小题4分,共32分)7.计算:=.【分析】二次根式的除法运算,先运用法则,再化简.【解答】解:原式=2=.【点评】二次根式的乘除法运算,把有理数因数与有理数因数运算,二次根式与二次根式运算,结果要化简.8.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数(填“平均数”或“中位数”)【分析】由于比赛设置了8个获奖名额,共有15名选手参加,故应根据中位数的意义分析.【解答】解:因为8位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故答案为:中位数.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9.已知a、b、c是三角形的三边长,如果满足(a﹣6)2++|c﹣10|=0,则三角形的形状是直角三角形.【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.【解答】解:∵(a﹣6)2≥0,≥0,|c﹣10|≥0,又∵(a﹣b)2+=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得:a=6,b=8,c=10,∵62+82=36+64=100=102,∴是直角三角形.故答案为:直角三角形.【点评】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.10.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C 的坐标为(4,4).【分析】连接AC、BD交于点E,由菱形的性质得出AC⊥BD,AE=CE=AC,BE=DE=BD,由点B 的坐标和点D的坐标得出OD=2,求出DE=4,AC=4,即可得出点C的坐标.【解答】解:连接AC、BD交于点E,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AE=CE=AC,BE=DE=BD,∵点B的坐标为(8,2),点D的坐标为(0,2),∴OD=2,BD=8,∴AE=OD=2,DE=4,∴AC=4,∴点C的坐标为:(4,4);故答案为:(4,4).【点评】本题考查了菱形的性质、坐标与图形性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.11.如图,在矩形ABCD中,AB=6cm,点E、F分别是边BC、AD上一点,将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处.若C′E⊥AD,则EF的长为6cm.【分析】根据矩形的性质和折叠的性质,由C′E⊥AD,可得四边形ABEG和四边形C′D′FG是矩形,根据矩形的性质可得EG和FG的长,再根据勾股定理可得EF的长.【解答】解:如图所示:∵将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处,C′E⊥AD,∴四边形ABEG和四边形C′D′FG是矩形,∴EG=FG=AB=6cm,∴在Rt△EGF中,EF==6cm.故答案为:6cm.【点评】考查了翻折变换(折叠问题),矩形的判定和性质,勾股定理,根据关键是得到EG和FG的长.12.如图,正方形ABCD中,对角线BD长为15cm.P是线段AB上任意一点,则点P到AC,BD的距离之和等于cm.【分析】作PE⊥OA于E,PF⊥OB于F,连结OP,如图,先根据正方形的性质得OA=OC=OB=OD=BD=,OA⊥OB,然后根据三角形面积公式得到PEOA+PFOB=OAOB,则变形后可得PE+PF=OA=cm.【解答】解:作PE⊥OA于E,PF⊥OB于F,连结OP,如图,∵四边形ABCD为正方形,∴OA=OC=OB=OD=BD=,OA⊥OB,∵S△OPA+S△OPB=S△OAB,∴PEOA+PFOB=OAOB,∴PE+PF=OA=cm.故答案为.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.13.直线y=x+2与两坐标轴所围成的三角形面积为2.【分析】易得此直线与坐标轴的两个交点坐标,与坐标轴围成的三角形的面积等于×与x轴交点的横坐标的绝对值×与y轴交点的纵坐标.【解答】解:当x=0时,y=2,当y=0时,x=﹣2,∴所求三角形的面积=×2×|﹣2|=2.故答案为:2.【点评】考查的知识点为:某条直线与x轴,y轴围成三角形的面积为:×直线与x轴的交点坐标的横坐标的绝对值×直线与y轴的交点坐标的纵坐标的绝对值.14.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=kx上,则(1)k=,(2)A2015的坐标是(2015,2017).【分析】(1)先根据等边三角形的性质求出∠1的度数,过B1向x轴作垂线B1C,垂足为C,求出B1点的坐标.利用待定系数法求出直线y=kx的解析式即可;(2)根据题意得出直线AA1的解析式为:y=x+2,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:(1)∵△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,∴∠1=30°.过B1向x轴作垂线B1C,垂足为C,∵OB1=2,∴CB1=1,OC=,∴B1(,1),∴1=k,解得k=.故答案为:;(2)∵由(1)知,点B1,B2,B3,…都在直线y=x上,∴A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2015(2015,2017).故答案为:(2015,2017).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共有4小题,共20分)15.计算:3﹣+﹣.【分析】先进行二次根式的化简,然后合并.【解答】解:原式=3﹣2+﹣3=﹣.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及合并.16.已知:在Rt△ABC中,∠C=90°,,∠A=60°,求b、c.【分析】根据三角函数关系即可求解a、c的值.在Rt△ABC中,∠C=90°,∠A=60°,所以b=atanB,c=,代入数据即可.【解答】解:在Rt△ABC中,∠C=90°,∠A=60°,∴∠B=30°,∴b=atanB=×=,c===2.即,.【点评】这道题目简单的考查了三角函数知识在解直角三角形中的一般应用,属于基础题,要求熟练掌握特殊角的三角函数值及其计算.17.如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).(1)求这个一次函数的表达式.(2)判断点C(﹣1,4)是否在该函数图象上.【分析】(1)设一次函数解析式为y=kx+b,把A与B坐标代入求出k与b的值,即可确定出一次函数解析式;(2)把x=﹣1代入一次函数解析式求出y,即可做出判断.【解答】解:(1)设一次函数解析式为y=kx+b,把A(6,﹣3)与B(﹣2,5)代入得:,解得:,则一次函数解析式为y=﹣x+3;(2)把x=﹣1代入一次函数解析式得:y=1+3=4,则点C在该函数图象上.【点评】此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.18.已知,如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BEDF是平行四边形.【分析】连结BD,与AC交于点O,根据四边形ABCD是平行四边形可得AO=CO,BO=DO,再由AE=CF,可得EO=FO,进而得到四边形BEDF为平行四边形.【解答】证明:连结BD,与AC交于点O,如图所示:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,又∵AE=CF,∴AO﹣AE=CO﹣CF,∴EO=FO,∴四边形BEDF为平行四边形.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对角线互相平分;对角线互相平分的四边形是平行四边形.四、解答题(本大题共有2小题,共14分)19.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.【分析】(1)根据勾股定理,结合网格结构,作出两边分别为的等腰三角形即可;(2)根据勾股定理逆定理,结合网格结构,作出边长为的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.【解答】解:(1)如图①,符合条件的C点有5个:;(2)如图②,正方形ABCD即为满足条件的图形:;(3)如图③,边长为的正方形ABCD的面积最大..【点评】本题考查了作图﹣应用与设计作图.熟记勾股定理,等腰三角形的性质以及正方形的性质是解题的关键所在.20.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.【分析】(1)根据平均数的计算公式和折线统计图给出的数据即可得出答案;(2)根据图形波动的大小可直接得出答案;(3)根据射击成绩都在7环左右的多少可得出乙参赛更合适;根据射击成绩都在9环左右的多少可得出甲参赛更合适.【解答】解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);(2)根据图象可知:甲的波动大于乙的波动,则s甲2>s乙2;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.故答案为:乙,甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.五、解答题(本大题共有2小题,共16分)21.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)当4≤x≤12时,求y关于x的函数解析式;(2)直接写出每分进水,出水各多少升.【分析】(1)用待定系数法求对应的函数关系式;(2)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解.【解答】解:(1)设当4≤x≤12时的直线方程为:y=kx+b(k≠0).∵图象过(4,20)、(12,30),∴,解得:,∴y=x+15 (4≤x≤12);(2)根据图象,每分钟进水20÷4=5升,设每分钟出水m升,则5×8﹣8m=30﹣20,解得:m=.故每分钟进水、出水各是5升、升.【点评】此题考查了一次函数的应用,解题时首先正确理解题意,然后根据题意利用待定系数法确定函数的解析式,接着利用函数的性质即可解决问题.22.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.【分析】(1)根据折叠的性质得OA=OC,EF⊥AC,EA=EC,再利用AD∥AC得到∠FAC=∠ECA,则可根据“ASA”判断△AOF≌△COE,得到OF=OE,加上OA=OC,AC⊥EF,于是可根据菱形的判定方法得到四边形AECF为菱形;(2)设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中根据勾股定理得(8﹣x)2+42=x2,然后解方程即可得到菱形的边长;(3)先在Rt△ABC中,利用勾股定理计算出AC=4,则OA=AC=2,然后在Rt△AOE中,利用勾股定理计算出OE=,所以EF=2OE=2.【解答】(1)证明:∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)解:设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;(3)解:在Rt△ABC中,AC===4,∴OA=AC=2,在Rt△AOE中,OE===,∴EF=2OE=2.【点评】本题考查了菱形的判定与性质:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.也考查了折叠的性质.六、解答题(本大题共有2小题,共20分)23.如图,在Rt△ABC中,∠ACB=90°,AC=4cm,动点F在线段BC的垂直平分线DG上,垂足为D,DG交AB于E,连接CE,AF,动点F从D点出发以1cm/s的速度移动,设运动时间为t(s).(1)当t=6s时,求证:四边形ACEF是平行四边形;(2)①在(1)的条件下,当∠B=30°时,四边形ACEF是菱形;②当t=4s时,四边形ACDF是矩形.【分析】(1)根据垂直平分线的性质找出∠BDE=∠BCA=90°,进而得出DE∥AC,再根据三角形中位线的性质可得出DE的长度,根据边与边之间的关系可得出EF=AC,从而可证出四边形ACEF是平行四边形;(2)①根据垂直平分线的性质可得出BE=EC=AB,再根据菱形的性质可得出AC=CE=AB,利用特殊角的正弦值即可得出∠B的度数;②根据矩形的性质可得出DF=AC,再根据运动时间=路程÷速度即可得出结论.【解答】(1)证明:当t=6时,DF=6cm.∵DG是BC的垂直平分线,∠ACB=90°,∴∠BDE=∠BCA=90°,∴DE∥AC,DE为△BAC的中位线,∴DE=AC=2.∵EF=DF﹣DE=4=AC,EF∥AC,∴四边形ACEF是平行四边形.(2)①∵DG是BC的垂直平分线,∴BE=EC=AB,∵四边形ACEF是菱形,∴AC=CE=AB,∴sin∠B==,∴∠B=30°.故答案为:30°.②∵四边形ACDF是矩形,∴DF=AC=4,∵动点F从D点出发以1cm/s的速度移动,∴t=4÷1=4(秒).故答案为:4.【点评】本题考查了平行四边形的判定、菱形的性质、特殊角的三角函数值以及矩形的性质,解题的关键是:(1)找出EF=AC,且EF∥AC;(2)①找出sin∠B==;②根据数量关系算出时间t.本题属于中档题,难度不大,解决该题型题目时,根据平行四边形(菱形或矩形)的性质找出相等的边角关系是关键.24.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.【分析】(1)求出P的坐标,当P在第一、二象限时,根据三角形的面积公式求出面积即可;当P在第三象限时,根据三角形的面积公式求出解析式即可;(2)把s的值代入解析式,求出即可;(3)根据全等求出OC、OD的值,如图①所示,求出C、D的坐标,设直线CD的解析式是y=kx+b,把C(﹣6,0),D(0,﹣8)代入,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可;如图②所示,求出C、D的坐标,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可.【解答】解:(1)∵P(x,y)代入y=x+6得:y=x+6,∴P(x,x+6),当P在第一、二象限时,△OPA的面积是s=OA×y=×|﹣6|×(x+6)=x+18(x>﹣8)当P在第三象限时,△OPA的面积是s=OA×(﹣y)=﹣x﹣18(x<﹣8)答:在点P运动过程中,△OPA的面积s与x的函数关系式是s=x+18(x>﹣8)或s=﹣x﹣18(x<﹣8).解:(2)把s=代入得:=x+18或=﹣x﹣18,解得:x=﹣6.5或x=﹣9.5,x=﹣6.5时,y=,x=﹣9.5时,y=﹣1.125,∴P点的坐标是(﹣6.5,)或(﹣9.5,﹣1.125).(3)解:假设存在P点,使△COD≌△FOE,①如图所示:P的坐标是(﹣,);②如图所示:P的坐标是(,)存在P点,使△COD≌△FOE,P的坐标是(﹣,)或(,).【点评】本题综合考查了三角形的面积,解二元一次方程组,全等三角形的性质和判定,用待定系数法求一次函数的解析式等知识点,此题综合性比较强,用的数学思想是分类讨论思想和数形结合思想,难度较大,对学生有较高的要求.八年级期末学业水平测试数学试题(卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。

2022-2023学年北师大新版八年级下册数学期末复习试卷(含解析)

2022-2023学年北师大新版八年级下册数学期末复习试卷(含解析)

2022-2023学年北师大新版八年级下册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.下列图形:①等边三角形;②正方形;③平行四边形;④圆,既是中心对称图形又是轴对称图形的有( )个A.1B.2C.3D.42.下列因式分解变形正确的是( )A.2a2﹣4a=2(a2﹣2a)B.a2﹣2a+1=(a﹣1)2C.﹣a2+4=(a+2)(a﹣2)D.a2﹣5a﹣6=(a﹣2)(a﹣3)3.已知等腰三角形的两边长为x、y,且满足|x﹣4|+(x﹣y+4)2=0,则三角形的周长为( )A.12B.16C.20D.16或204.下面说法正确的个数有( )①如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形;②三条线段组成的图形叫三角形;③对顶角相等;④面积相等的两个三角形全等;⑤两个角和其中一角的对边对应相等的两个三角形全等;⑥两直线平行,同旁内角互补.A.3个B.4个C.5个D.6个5.下列命题不正确的是( )A.等腰三角形的两底角相等B.平行四边形的对角线互相平分C.角平分线上的点到角两边的距离相等D.三个角分别对应相等的两个三角形全等6.如图所示,一次函数y=ax+b与y=cx+d的图象如图所示,下列说法:①对于函数y=﹣ax,y随x的增大而减小;②函数y=ax﹣d不经过第四象限;③不等式ax﹣d≥cx﹣b 的解集是x≥4.其中正确的是( )A.①②③B.①③C.②③D.①②7.如图,对于分式中的四个符号,任意改变其中的两个,分式的值不变的是( )A.①②B.②③C.①③D.②④8.某种商品的进价为160元,出售时标价240元,由于春节临近商场准备打折销售,但要保持利润不低于20%,那么至多打( )A.6折B.7折C.8折D.9折9.如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则BE的长是( )A.2+2B.3+2C.2+2D.3+210.在平行四边形ABCD中,AD=8,AF平分∠BAD交直线BC于点F,DF平分∠ADC 交直线BC于点F,且EF=2,则AB的长为( )A.3B.5C.2或3D.3或5二.填空题(共5小题,满分15分,每小题3分)11.一副常用的三角板,如图所示拼在一起,F、A、C、D四点共线,点B在边AE上,那么图中∠ABF= .12.因式分解:2a2(a﹣b)﹣8(b﹣a)= .13.关于x的分式方程的解为正整数,则满足条件的整数a的值为 .14.如下图△ABC中,AB、AC的垂直平分线分别交BC于D、E,BC=11cm,△ADE周长是 .15.等边三角形的边长为4,则其面积为 .三.解答题(共7小题,满分75分)16.(1)解方程:+=4.(2)解不等式组:.17.先化简再求值:÷(+m+3),其中1<m<5,且m是整数.18.如图,在平面直角坐标系中,点A的坐标是(1,4),点B的坐标是(3,0),点C 的坐标是(5,5).(1)请在如图中作出△ABC关于x轴对称的△A1B1C1;(2)在(1)的基础上,作出△A1B1C1水平向左平移7个单位长度所得的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)点P是y轴上的一个动点,且A,B,C三点不在同一条直线上,求△ABP的周长最小时点P的坐标.19.如图,平行四边形ABCD,对角线AC、BD交于点O,点E在AO上,点F在CO上,DE∥BF.(1)求证:四边形DEBF是平行四边形;(2)若AD⊥BD,AD=3,AB=5.求AC的长.20.2020年春节期间,武汉爆发了新型冠状肺炎病毒感染,全国人民“万众一心,众志成城”.为了支援武汉抗击疫情,某企业用18万元购进了甲、乙两种原材料40吨加班加点生产医疗物资,购进甲种原材料的费用是购进乙种原材料费用的两倍,且甲种原材料的单价是乙种原材料单价的1.2倍.(1)求甲、乙两种原材料的单价各是多少?(2)为了扩大生产,企业计划再购进甲乙两种原材料共60吨,购进单价不变,且甲种原材料不少于乙种原材料的2倍,则企业最少筹集多少资金.21.如图,直线y=kx+b经过点A(﹣3,2),B(﹣1,4).(1)求直线AB的表达式;(2)在直角坐标系中画出y=﹣2x﹣4的图象,并求出该图象与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b≤﹣2x﹣4的解集.22.如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,∠BAC=30°,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE.(1)如图1,若点P与点C重合,求∠ABE的度数;(2)如图2,若P在C点上方,求证:PD+AC=CE;(3)若AC=6,CE=2,则PD的值为 (直接写出结果).参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:①等边三角形,是轴对称图形,不是中心对称图形,不合题意;②正方形既是中心对称图形又是轴对称图形,符合题意;③平行四边形是中心对称图形不是轴对称图形,不合题意;④圆既是中心对称图形又是轴对称图形,符合题意.故选:B.2.解:∵选项A提取公因式不彻底,2a2﹣4a=2a(a﹣2),故A错误;a2﹣2a+1=(a﹣1)2,故选项B正确;﹣a2+4=﹣(a2﹣4)=﹣(a+2)(a﹣2)≠(a+2)(a﹣2),故选项C错误;a2﹣5a﹣6=(a﹣6)(a+1)≠(a﹣2)(a﹣3),故选项D错误.故选:B.3.解:根据题意得x﹣4=0,x﹣y+4=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形;②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20.所以三角形的周长为20.故选:C.4.解:①如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形;正确.②三条线段组成的图形叫三角形;错误,应该是由3条线段首尾顺次连接组成的图形叫三角形.③对顶角相等;正确.④面积相等的两个三角形全等;错误,形状不一定相同.⑤两个角和其中一角的对边对应相等的两个三角形全等;正确.⑥两直线平行,同旁内角互补;正确,故选:B.5.解:A、等腰三角形的两底角相等,正确,不符合题意;B、平行四边形的对角线互相平分,正确,不符合题意;C、角平分线上的点到角两边的距离相等,正确,不符合题意;D、三个角分别对应相等的两个三角形相似但不一定全等,故错误,符合题意,故选:D.6.解:由图象可得,a>0,则﹣a<0,对于函数y=﹣ax来说,y随x的增大而减小,故①正确;d>0,则﹣d<0,则函数y=ax﹣d经过第一、三、四象限,不经过第二象限,故②错误;由ax﹣d≥cx﹣b可得ax+b≥cx+d,故不等式ax﹣d≥cx﹣b的解集是x≥4,故③正确;故选:B.7.解:因为分式本身的符号,分子的符号,分母的符号,改变其中的两个符号,分式本身的值不变,所以同时改变①(分式本身的符号)和②(分母的符号),分式的值不变,故选:A.8.解:设打x折销售,依题意得:240×﹣160≥160×20%,解得:x≥8.故选:C.9.解:连接CE,设BE与AC相交于点F,如下图所示,∵Rt△ABC中,AB=BC,∠ABC=90°,∴∠BCA=∠BAC=45°,∵Rt△ABC绕点A逆时针旋转60°与Rt△ADE重合,∴∠BAC=∠DAE=45°,AC=AE,又∵旋转角为60°,∴∠BAD=∠CAE=60°,∴△ACE是等边三角形,∴AC=CE=AE=4,在△ABE与△CBE中,,∴△ABE≌△CBE(SSS),∴∠ABE=∠CBE=45°,∠CEB=∠AEB=30°,∴在△ABF中,∠BFA=180°﹣45°﹣45°=90°,∴∠AFB=∠AFE=90°,在Rt△ABF中,由勾股定理得,BF=AF=AB=2,又在Rt△AFE中,∠AEF=30°,∠AFE=90°,FE=AF=2,∴BE=BF+FE=2+2,故选:C.10.解:①如图1,在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∵EF=2,∴BC=BE+CF﹣EF=2AB﹣EF=8,∴AB=5;②如图2:在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∵EF=2,∴BC=BE+CF=2AB+EF=8,∴AB=3;综上所述:AB的长为3或5,故选:D.二.填空题(共5小题,满分15分,每小题3分)11.解:根据题意得:∠ABC=180°﹣(∠BAC+∠BCA)=180°﹣(45°+60°)=75°,∴∠ABF=∠FBC﹣∠ABC=90°﹣75°=15°.故答案为:15°.12.解:2a2(a﹣b)﹣8(b﹣a)=2(a﹣b)(a2+4).故答案为:2(a﹣b)(a2+4).13.解:分式方程的解为:x=,∵分式方程有可能产生增根1,又∵关于x的分式方程的解为正整数,∴x=≠1,∴满足条件的所有整数a的值为:﹣3,∴a的值为:﹣3,故答案为:﹣3.14.解:在△ABC中,边AB、AC的垂直平分线分别交BC于D、E,∴AD=BD,AE=EC,∵BC=8,∴△ADE周长=AD+DE+AE=BD+DE+CE=BC=11(cm),故答案为:11cm.15.解:∵等边三角形中中线与高线重合,∴D为BC的中点,故BD=BC=2,在Rt△ABD中,AB=4,BD=2,则AD==2,∴等边△ABC的面积为BC•AD=4×=4.故答案为4.三.解答题(共7小题,满分75分)16.解:(1)去分母,得:x﹣5=4(2x﹣3),解得:x=1,检验:当x=1时,2x﹣3≠0,∴x=1是原分式方程的解;(2),解不等式①,得:x≤4,解不等式②,得:x>1,∴不等式组的解集为1<x≤4.17.解:原式====,∵m(m﹣2)(m﹣3)≠0,且1<m<5,m是整数,∴m可以取4,当m=4时,原式=.18.解:(1)如图所示:(2)如图所示:A2(﹣6,﹣4),B2(﹣4,0),C2(﹣2,﹣5);(3)如图所示:点P即为所求,P(0,3).19.(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,∵DE∥BF,∴∠ODE=∠OBF,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA),∴OE=OF,又∵OB=OD,∴四边形DEBF是平行四边形;(2)解:∵AD⊥BD,∴∠ADB=90°,∵AD=3,AB=5,∴BD===4,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD=2,在Rt△AOD中,由勾股定理得:OA===,∴AC=2OA=2,即AC的长为2.20.解:(1)设乙种原材料的单价为x元,则甲种原材料的单价为12x元,由题意得:+=40,解得:x=4000,经检验,x=4000是原方程的解,且符合题意,则1.2x=1.2×4000=4800,答:甲种原材料的单价为4800元,乙种原材料的单价为4000元;(2)设购进甲种原材料m吨,则购进乙种原材料(60﹣m)吨,由题意得:m≥2(60﹣m),解得:m≥40,∴40≤m≤60,设购进费用为y元,则y=4800m+4000(60﹣m)=800m+240000,∵800>0,∴y随m的增大而增大,∴当m=40时,费用最小,y的最小值=800×40+240000=272000(元),答:企业最少筹集272000元资金.21.解:(1)将A(﹣3,2),B(﹣1,4)代入y=kx+b得,解得,∴y=x+5.(2)设直线AB与y轴交于点E,直线y=﹣2x﹣4与y轴交于点F,将x=0代入y=x+5得y=5,∴点E坐标为(0,5),将x=0代入y=﹣2x﹣4得y=﹣4,∴点F坐标为(0,﹣4),令x+5=﹣2x﹣4,解得x=﹣3,∴直线y=x+5与直线y=﹣2x﹣4交于点A,如图,∴S△AEF=EF•|x A|=[5﹣(﹣4)]×3=.(3)由图象可得不等式kx+b≤﹣2x﹣4的解集为x≤﹣3.22.(1)解:如图1,∵点P与点C重合,CD是线段AB的垂直平分线,∴PA=PB,∴∠PAB=∠PBA=30°,∴∠BPE=∠PAB+∠PBA=60°,∵PB=PE,∴△BPE为等边三角形,∴∠CBE=60°,∴∠ABE=90°;(2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,∵CD垂直平分AB,∴CA=CB.∵∠BAC=30°,∴∠ACD=∠BCD=60°.∴∠GCP=∠HCP=∠BCE=∠ACD=∠BCD=60°.∴PG=PH,CG=CH=CP,CD=AC.在Rt△PGB和Rt△PHE中,.∴Rt△PGB≌Rt△PHE(HL).∴BG=EH,即CB+CG=CE﹣CH.∴CB+CP=CE﹣CP,即CB+CP=CE.又∵CB=AC,∴CP=PD﹣CD=PD﹣AC.∴PD+AC=CE;(3)如图3,过P作PH⊥AE于H,连BC,作PG⊥BC交BC于G,此时Rt△PGB≌Rt△PHE(HL).∴BG=EH,即CB﹣CG=CE+CH.∴CB﹣CP=CE+CP,即CP=CB﹣CE=6﹣2=4.又∵CB=AC,∴PD=CP﹣CD=4﹣3=1.如图4,同理,PC=EC+BC=8,PD=PC﹣CD=8﹣3=5.故答案是:1或5.。

北师大版八年级下册数学《期末》考试及答案【必考题】

北师大版八年级下册数学《期末》考试及答案【必考题】

北师大版八年级下册数学《期末》考试及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、D5、D6、C7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、13、如果两个角互为对顶角,那么这两个角相等4、a+c5、36、6三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、11a-,1.3、(1)略(2)1或24、(1)略;(2)4.5、CD的长为3cm.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

(北师大版)八年级数学下册期末考试卷汇总(共10套)

(北师大版)八年级数学下册期末考试卷汇总(共10套)

(北师大版)八年级数学下册期末考试卷汇总(共10套)(北师大版)2020-2021学年八年级数学下册期末模拟检测试卷及答案(4)(时间80分钟 满分120分)一、精心选一选,相信自己的判断力!( 每小题3分.共24分.每题只有一个正确答案,将正确答案填在下面的表格内) 题号 1 2 3 4 5 6 7 8 答案1.若不等式1)1(->-a x a 的解集是1<x ,则a 的取值范围是 A.1≤a B. 1>a C.1<a D.0<a2.下列多项式能因式分解的是A.x 2-y B.x 2+1 C.x 2+xy +y 2D.x 2-4x +43.某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82=甲x 分,82=乙x 分;2452=甲s ,1902=乙s ,那么成绩较为整齐的是A .乙班B .甲班C .两班一样整齐D .无法确定4.点P 为ABC ∆的边AB 上一点(AC AB >),下列条件中不一定能保证ACP ∆∽ABC ∆ 的是A. B ACP ∠=∠B.ACB APC ∠=∠C.AC AP AB AC = D. ABACBC PC =5.下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡是直角都相等。

其中真命题的个数的是A.1个B.2个C.3个D.4个6.如图,点C 是线段AB 的黄金分割点)(BC AC >,下列结论错误的是A.ACBC AB AC = B. BC 2=AB ·ACC.215-=AB AC D.618.0≈AC BC7.把一箱苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生的人数为 A.3人 B.4人 C.5人 D.6人 8.若分式yx yx -+中的x 、y 的值都变为原来的3倍,则此分式的值 A.不变 B.是原来的3倍 C.是原来的31 D.是原来的61二、耐心填一填:(每题3分,共24分)9.分式3223x x -+,当x=_______时无意义,当x=________值为零10.已知a b =2,则a bb+=__________11.一个样本含有20个数据:68、69、70、66、68、64、65、65、69、62、67、66、65、67、63、65、64、61、65、66.这组数据的极差为12. 命题:直角三角形两锐角互余,条件_____ __________,结论_______ ________ 13.在1:50000的南京市区地图上,南京地铁一号线全长约43.4cm ,那么南京地铁一号线实际全长约 km.14.如图,点P 是ABC ∆的内角平分线的交点,若︒=∠120BPC ,则=∠A ︒ . 15.如图,已知函数y = 3x + b 和y = ax - 3的图象交于点P( -2,-5) ,则根据图象可得不等式3x + b >ax - 3的解集是 .16.如图,正方形ABCD 内接于腰长为22的等腰直角ΔPQR,∠P=900,则AB=__________.6题图三、细心做一做:(共72分)17.把下列各式因式分解:(每小题4分,计8分)① 9-12t+4t 2②2x -4x 2x -23+18.解不等式组:⎪⎩⎪⎨⎧-<-+≤-453143)3(265x x x x (6分)19.解方程:)1(718++=+x x x x +x6(6分)20.已知x =13+,y =13-,求2222xy y x y x +-的值.(6分)21. (6分)在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形。

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷(含答卷和参考答案)

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷(含答卷和参考答案)

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、二十四节气是中国劳动人民独创的文化遗产,能反映季节的变化,指导农事活动.下面四副图片分别代表“芒种”、“白露”、“立夏”、“大雪”,其中是中心对称图形的是()A.B.C.D.2、若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b3、若点P(1﹣2a,a)在第二象限,那么a的取值范围是()A.B.C.D.4、将分式中的x,y的值同时扩大2倍,则分式的值()A.扩大2倍B.缩小到原来的C.保持不变D.无法确定5、下列命题中,假命题是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行且另一组对边相等的四边形是平行四边形C.两组对角相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6、如图,在Rt△ABC中,∠ACB=90°,DE垂直平分AB交BC于点D,若△ACD的周长为50cm,则AC+BC=()A.25cm B.45cm C.50cm D.55cm7、甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件,可列方程为()A.﹣=30B.﹣=30C.﹣=D.﹣=8、如图,在▱ABCD 中,点O 是BD 的中点,EF 过点O ,下列结论:①AB ∥DC ;②EO =ED ;③∠A =∠C ;④S 四边形ABOE =S 四边形CDOF ,其中正确结论的个数为( )A .1个B .2个C .3个D .4个9、如图,在Rt △ABC 中,∠C =90°,∠B =30°,BC =6,AD 平分∠CAB 交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A .B .C .2D .310、关于x 的不等式组整数解仅有4个,则m 的取值范围是( )A .﹣5≤m <﹣4B .﹣5<m ≤﹣4C .﹣4≤m <﹣3D .﹣4<m ≤﹣3二、填空题(每小题3分,满分18分)11、分解因式:3a 3﹣12a= .12、如果一个多边形的每一个外角都是40°,那么这个多边形的边数为 .13、如图,在△ABC 中,∠DCE =40°,AE =AC ,BC=BD ,则∠ACB 的度数为 .14、使得分式值为零的x 的值是 .15、如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1﹣∠2= °.16、若关于x 的方程﹣=1无解,则k 的值为 .2024—2025学年最新北师大新版八年级下学期数学期末考试试卷 第7题图 第8题图 第9题图考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、先化简,再求值:(+1)÷,其中x=﹣3.19、已知不等式组的解集是﹣1<x<1,求(a+b)2024的值20、已知方程组的解为正数.(1)求a的取值范围;(2)化简:.21、如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC.(1)求证:DE=CE;(2)若∠A=90°,AD=4,BC=12,求△BCD的面积.22、某商场购进A,B两种商品,已知购进3件A商品比购进4件B商品费用多60元;购进5件A商品和2件B商品总费用为620元.(1)求A,B两种商品每件进价各为多少元?(2)该商场计划购进A,B两种商品共60件,且购进B商品的件数不少于A 商品件数的2倍.若A商品按每件150元销售,B商品按每件80元销售,为满足销售完A,B两种商品后获得的总利润不低于1770元,则购进A商品的件数最多为多少?23、如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC.(1)求证:四边形ABCD为平行四边形;(2)点E为BC边的中点,连接AE,过E作EF⊥AE交边CD于点F,连接AF.①求证:AF=AB+CF;②若AF⊥CD,CF=3,DF=4,求AE与CE的值.24、如图,在△ABC中,∠ACB=90°,AB=5,AC<BC.以AC为边向形外作等边△ACD,以BC为边向形外作等边△BCE,以AB为边向上作等边△ABF,连接DF,EF.(1)记△ACD的面积为S1,△BCE的面积为S2,求S1+S2的值(2)求证:四边形CDFE是平行四边形.(3)连接CF,若CF⊥EF,求四边形CDFE的面积.25、如图,在平面直角坐标系中,直线y=﹣x+8与x轴交于点A,与y轴交于点B,直线y=kx+b经过点B,且与x轴交于点C(﹣6,0).(1)求直线BC的表达式;(2)点E为射线BC上一点,过点E作EF∥x轴交AB于点F,且EF=7,设点E的横坐标为m.①求m的值;②在y轴上取点M,在直线BC上取点N,在平面内取点Q,使得点E,M,N,Q构成的四边形是以EN为对角线的正方形,求出此正方形的面积.2024—2025学年最新北师大新版八年级下学期数学期末考试参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、3a(a+2)(a﹣2)12、9 13、100°14、2 15、7216、2或﹣1三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣<x≤4.18、,19、120、(1)﹣1<a<3;(2)3﹣a.21、(1)证明略(2)24.22、(1)A商品的进价是100元/件,B商品的进价是60元/件;(2)购进A商品的件数最多为20件.23、(1)证明略(2)①证明略②AE的长是5,CE的长是.24、(1);(2)证明略(3)四边形CDFE的面积=S=a2=.△ADC25、(1)直线BC的表达式:y=x+8(2)①m=﹣3②正方形的面积为:或450。

2022-2023学年北师大新版八年级下册数学期末复习试卷(含答案)

2022-2023学年北师大新版八年级下册数学期末复习试卷(含答案)

2022-2023学年北师大新版八年级下册数学期末复习试卷一.选择题(共8小题,满分24分,每小题3分)1.下列图形中,是中心对称图形的是( )A.B.C.D.2.下列四个选项中是因式分解且分解正确的是( )A.2(x+y)=2x+2yB.am+bm﹣an﹣bn=(a+b)(m﹣n)C.x3﹣9x=x(x2﹣9)D.x2﹣3x+2=(x﹣1)(x+2)3.若将分式中的x与y的值都扩大为原来的2倍,则这个分式的值将( )A.扩大为原来的2倍B.不变C.扩大为原来的4倍D.无法确定4.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为( )A.4cm B.5cm C.6cm D.8cm5.如图,直线y1=kx+b与y2=mx的交点坐标为(2,﹣3),则使y1<y2<0的x的取值范围是( )A.x>2B.x<2C.0<x<2D.x<06.如图,△ABC中,∠A=90°,点M、N分别为边AB和AC的中点,若AB=2,AC=4,则MN的长度为( )A.2B.C.2D.7.如图,A,B的坐标分别为(4,1),(1,2),若将线段AB平移至A1B1,A1,B1分别在x轴和y轴上,则三角形OA1B1的面积为( )A.1B.1.5C.2D.2.58.若关于x的方程﹣1=的解为正数,则负整数m的值为( )A.﹣3,﹣2,﹣1B.﹣3,﹣2C.﹣3,﹣2,﹣1,0D.﹣3,﹣2,0二.填空题(共5小题,满分15分,每小题3分)9.因式分解:16x2﹣x2y2= .10.一个多边形的每一个外角都等于60°,则这个多边形的内角和为 度.11.在▱ABCD中,AB=14cm,两条对角线的长分别为16cm,18cm,则△AOB的周长为 cm.12.不等式2x﹣3≤4x+5的解集是 .13.如图,在等边三角形ABC中,AC=6,CD⊥AB,点E是线段CD上一动点,连接AE,将线段AE绕点A顺时针旋转60°,得到线段AP,连接DP,则DP长的最小值为 .三.解答题(共13小题,满分81分)14.(5分)解不等式组.15.(5分)计算:.16.(5分)解方程:.17.(5分)如图,在Rt△ABC中,∠C=90°,∠B=54°,AD是△ABC的角平分线.(1)请在AD上确定点E,使得EA=EB;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,求证:DE=DB.18.(5分)如图,在▱ABCD中,AB>AD,∠ABC为锐角,点O是对角线BD的中点.某数学学习小组要在BD上找两点E,F,使四边形AECF为平行四边形,现总结出甲、乙两种方案如下:请回答下列问题:(1)以上方案能得到四边形AECF为平行四边形的是 ;(2)请将(1)中方案的证明过程写下来(如果有多种只写一种即可).19.(5分)探究:利用多项式乘法证明以下立方和(差)公式:(1)a3+b3=(a+b)(a2﹣ab+b2).(2)a3﹣b3=(a﹣b)(a2+ab+b2).应用:利用以上立方和(差)公式对以下两个多项式因式分解:(3)a3+8b3.(4)a6﹣b6.20.(5分)如图,AB=AC,∠A=36°,AB的垂直平分线MN交AC于点D,求∠DBC 的度数.21.(6分)如图,在平面直角坐标系中,已知△BC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),画出△A1B1C1;(2)将△ABC绕着点O按顺时针方向旋转90°得到△A2B2C2,则点A2的坐标为 ,点C2的坐标为 .(3)点D是平面直角坐标系内一点,若以A、B、C、D为顶点的四边形为平行四边形,直接写出满足条件的D点坐标 .22.(7分)2020年初武汉爆发新冠肺炎疫情,使得口罩成为人们生活的必需品,爱民药店准备购进N95和普通医用两种类型的口罩,已知每个普通医用口罩的进价比每个N95口罩的进价少8元,且用300元购进普通医用口罩的数量与用1500元购进N95口罩的数量相同,设每个普通医用口罩进价为x元.(1)每个N95口罩的进价为 元,1500元购进N95口罩的数量为 个(用含x的式子表示);(2)求每个普通医用口罩、每个N95口罩的进价分别为多少元?(3)若爱民药店本次购进这两种口罩共800个,并将两种口罩均按进价加价50%全部售出,利润不少于1600元(不考虑其他因素),则这次至少购进N95口罩多少个?23.(7分)如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE 在AB边上,取AE的中点F,CD的中点G,连接GF.(1)FG与DC的位置关系是 ,FG与CD的数量关系是 ;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成图形,并判断(1)中的结论是否成立?请证明你的结论.24.(8分)2022年北京冬季奥运会和冬季残奥会备受关注,吉祥物“冰墩墩”、“雪容融”随之大卖,购买4个“冰墩墩”和2个“雪容融”共需480元,购买3个“冰墩墩”和4个“雪容融”共需510元.(1)分别求出“冰墩墩”和“雪容融”的销售单价.(2)若每个“冰墩墩”制作成本为60元,每个“雪容融”制作成本为40元,准备制作两种吉祥物共100个,总成本不超过5000元,且销售完该批次吉祥物,利润不低于2480元,请问有哪几种制作方案?25.(8分)我们知道,假分数可以化为带分数.例如:.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:,这样的分式就是假分式;,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式和的形式).例如:;.(1)将分式化为带分式;(2)若分式的值为整数,求x所有可能的整数值.26.(10分)如图,公园有一片绿地ABCD,它的形状是平行四边形,绿地上要修几条笔直的小路,已知AB=13m,BC=12m,AC⊥BC,求OC的长,并算出绿地的面积.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.2.解:A、2(x+y)=2x+2y,是整式的乘法,故此选项错误;B、am+bm﹣an﹣bn=(a+b)(m﹣n),是因式分解且分解正确,故此选项正确;C、x3﹣9x=x(x2﹣9),是因式分解,但是分解不完全,故此选项错误;D、x2﹣3x+2=(x﹣1)(x+2),是因式分解,但是分解错误,后面是﹣2,故此选项错误;故选:B.3.解:==,即分式的值不变,故选:B.4.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm,∴OA=OC=AC=5(cm),OB=OD=BD=3(cm),∵∠ODA=90°,∴AD===4(cm),∴BC=AD=4(cm),故选:A.5.解:如图所示:如图,直线y1=kx+b与y2=mx的交点坐标为(2,﹣3),则使y1<y2<0的x的取值范围是0<x<2.故选:C.6.解:在Rt△ABC中,∠A=90°,AB=2,AC=4,∴BC===2,∵点M、N分别为边AB和AC的中点,∴MN=BC=,故选:D.7.】解:由作图可知,线段AB向左平移1个单位,再向下平移1个单位得到线段A1B1,∵A(4,1),B(1,2),∴A1(3,0),B1(0,1),∴三角形OA1B1的面积为=.故选B.8.解:﹣1=,去分母得,1﹣(x﹣3)=﹣m,整理得,4﹣x=﹣m,解得,x=4+m,∵分式方程的解为正数,∴4+m>0,∴m>﹣4,当分式方程无意义时,4+m≠3,∴m≠﹣1,∴m>﹣4且m≠﹣1,则负整数m的值为:﹣3,﹣2.故选:B.二.填空题(共5小题,满分15分,每小题3分)9.解:原式=x2(16﹣y2)=x2(4+y)(4﹣y).故答案为:x2(4+y)(4﹣y).10.解:∵多边形的每一个外角都等于60°,∴它的边数为:360°÷60°=6,∴它的内角和:180°×(6﹣2)=720°,故答案为:720.11.解:∵平行四边形ABCD的对角线相交于点O,∴OB=OD=8cm,OA=OC=9cm,AB=CD=14cm,∴OB+OA+AB=8+9+14=31(cm),∴△AOB的周长为31cm,故答案为:31.12.解:移项,得:2x﹣4x≤5+3,合并同类项,得:﹣2x≤8,系数化为1,得:x≥﹣4,故答案为:x≥﹣4.13.解:取AC的中点K,连接DK,EK,如图:∵△ABC是等边三角形,AC=6,CD⊥AB,∴∠BAC=60°,AD=3=AK,∵将线段AE绕点A顺时针旋转60°,得到线段AP,∴∠PAE=60°,AE=AP,∴∠PAE=∠BAC=60°,∴∠PAD=∠EAK,在△APD和△AEK中,,∴△APD≌△AEK(SAS),∴DP=EK,∴当EK最小时,DP最小,此时EK⊥CD,而CD⊥AB,∴EK∥AD,∴EK是△ACD的中位线,∴EK=AD=,∴DP长的最小值为,故答案为:.三.解答题(共13小题,满分81分)14.解:解不等式2x+4≤3(x+2),得:x≥﹣2,解不等式3x﹣1<2,得:x<1,则不等式组的解集为﹣2≤x<1.15.解:原式=•+=+==1.16.解:去分母得x=3(2x﹣1)+8,去括号得x=6x﹣3+8,移项合并同类项得﹣5x=5,解得x=﹣1,检验:当x=﹣1时,2x﹣1≠0,所以x=﹣1是原方程的解.17.解:如图,(1)点E即为所求;(2)证明:在Rt△ABC中,∠C=90°,∠B=54°,∴∠CAB=90°﹣∠CBA=36°,∵AD是△ABC的角平分线,∴∠BAD=∠CAB=18°,∵点E在AB的垂直平分线上,∴EA=EB,∴∠EBA=∠CAB=18°,∴∠DEB=∠EBA+∠EAB=36°,∵∠DBE=∠CBA﹣∠EBA=36°,∴∠DEB=∠DBE,∴DE=DB.18.(1)解:以上方案都能得到四边形AECF为平行四边形,故答案为:甲、乙两种方案;(2)证明:甲方案,连接AC,如图所示:∵四边形ABCD是平行四边形,O为BD的中点,∴BO=DO,AO=CO,∵E、F分别为DO、BO的中点,OB=OD,∴EO=FO,∴四边形AECF为平行四边形;乙方案,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形.19.解:(1)(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b3,即:a3+b3=(a+b)(a2﹣ab+b2);(2)(a﹣b)(a2+ab+b2)=a3+a2b﹣ab2﹣a2b+ab2﹣b3=a3﹣b3,即:a3﹣b3=(a﹣b)(a2+ab+b2);(3)a3+8b3=a3+(2b)3=(a+2b)(a2﹣2ab+4b2);(4)a6﹣b6.=(a3)2﹣(b3)2=(a3+b3)(a3﹣b3)(a4+a2b2+b4)=(a+b)(a﹣b)(a2+ab+b2)(a2+ab+b2).20.解:∵DE是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=36°,∵AC=AB,∴∠C=∠ABC=(180°﹣∠A)=72°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°,答:∠DBC的度数是36°.21.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求,点A2的坐标为(5,3),点C2的坐标为(3,1).故答案为:(5,3),(3,1).(3)满足条件的D点坐标(﹣4,3),(﹣2,7),(0,﹣1).故答案为:(﹣4,3),(﹣2,7),(0,﹣1).22.解:(1)∵每个普通医用口罩的进价比每个N95口罩的进价少8元,∴每个N95口罩的进价为(x+8)元,∴1500元购进N95口罩的数量为个,故答案为:x+8,;(2)由题意得:,解得x=2,检验:x=2是原方程的解,∴每个N95口罩的进价为x+8=10(元),答:每个普通医用口罩进价为2元,每个N95口罩的进价为10元;(3)设购进N95口罩m个,则购进普通医用口罩(800﹣m)个,根据题意得:10×50%•m+2×50%•(800﹣m)≥1600,解得m≥200,∴m最小值为200,答:这次至少购进N95口罩200个.23.解:(1)如图1:延长DE交AC于M,连接FM、FC、FD,∴四边形BCMD是矩形,∴CM=BD.又△ABC和△BDE都是等腰直角三角形,∴ED=BD=CM.∵∠AEM=∠A=45°,∴△AEM是等腰直角三角形.又F是AE的中点,∴MF⊥AE,EF=MF,∠E=∠FMC.在△EFD和△MFC中,,∴△EFD≌△MFC(SAS).∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90°,∴∠MFC+∠DFM=90°.即△CDF是等腰直角三角形,又G是CD的中点,∴FG=CD,FG⊥CD,故答案为:FG⊥CD,FG=CD;(2)如图2:延长ED交AC的延长线于M,连接FC、FD、FM,∴四边形BCMD是矩形,∴CM=BD.又△ABC和△BDE都是等腰直角三角形,∴ED=BD=CM.∵∠AEM=∠A=45°,∴△AEM是等腰直角三角形.又F是AE的中点,∴MF⊥AE,EF=MF,∠E=∠FMC.在△EFD和△MFC中,,∴△EFD≌△MFC(SAS).∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90°,∴∠MFC+∠DFM=90°.即△CDF是等腰直角三角形,又G是CD的中点,∴FG=CD,FG⊥CD.24.解:(1)设“冰墩墩”的销售单价为x元,“雪容融”的销售单价为y元,依题意得:,解得:,答:“冰墩墩”的销售单价为90元,“雪容融”的销售单价为60元.(2)设制作m个“冰墩墩”,则制作(100﹣m)个“雪容融”,依题意得:,解得:48≤m≤50,∵m为正整数,∴m的值为48、49、50,∴有3种制作方案:①制作48个“冰墩墩”,52个“雪容融”;②制作49个“冰墩墩”,51个“雪容融”;③制作50个“冰墩墩”,50个“雪容融”.25.解:(1)==1+;(2)==2﹣,∵分式的值为整数,x为整数,∴x+1=1或﹣1或5或﹣5,解得:x=0或﹣2或4或﹣6,26.解:∵AC⊥BC,∴∠ACB=90°,∵AB=13m,BC=12m,∴AC===5(m),∵四边形ABCD是平行四边形,且AC、BD交于点O,∴OC=OA=AC=×5=(m),S平行四边形ABCD=BC•AC=12×5=60(m2),答:OC的长是m,绿地的面积是60m2.。

北师大版2020八年级数学下册期末复习综合训练题3(基础 含答案)

北师大版2020八年级数学下册期末复习综合训练题3(基础  含答案)

北师大版2020八年级数学下册期末复习综合训练题3(基础 含答案)1.上复习课时,李老师叫小聪举出一些分式的例子,他举出了:1x ,12,212x +,3xy π,3x y +,a +1m,其中正确的个数为( ) A .2 B .3 C .4 D .52.已知x y >,下列变形正确的是( )A .11x y -<-B .2121x y +<+C .x y -<-D .22x y < 3.如图,已知直线l 1:y =-2x +4与直线l 2:y =kx +b(k≠0)在第一象限交于点M(1,2),若直线l 2与x 轴的交点为A(-2,0),则-2x +4> kx +b>0的解集 ( )A .-2<xB .-2<x <1C .x <2D .-2<x <24.如图,DE 是△ABC 的中位线,若BC 的长为3cm ,则DE 的长是( )A .2cmB .1.5cmC .1.2cmD .1cm5.如图,点A 的坐标是()2,2,若点P 在x 轴上,且APO ∆是等腰三角形,则点P 的坐标不可能是( )A .()1,0B .()2,0C .()22,0-D .()4,06.下列角度中,是多边形内角和的只有( )A .270°B .560°C .630°D .1 800°7.观察图中的函数图象,则关于的不等式的解集为( )A .B .C .D .8.下列多项式中不能用平方差公式分解的是( )A .-a 2+b 2B .-x 2-y 2C .49x 2y 2-z 2D .16m 4-25n 2p 2 9.英国和新加坡研究人员制造出观测极限为0.00000005m 的光学显微镜,这是迄今为止观测能力最强的光学显微镜.将数据0.00000005用科学记数法表示为( )A .0.5×10-7B .5×10-8C .5×10-9D .50×10-6 10.下列各式: 116,,1,32b a x a b ++- 其中,分式有( ) A .1个 B .2个 C .3个 D .4个11.一年一度的“八中之星”校园民谣大赛是每年八中艺术节的重要活动之一,吸引了众多才华横溢的八中同学参赛.该比赛裁判小组由若干人组成,每名裁判员给选手的最高分不超过10分.今年大赛一名选手演唱后的得分情况是:全体裁判员所给分数的平均分是9.84分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分.那么,所有裁判员所给分数中的最低分最少可以是________分.12.如图,Rt ABC ∆中,ACB=90∠︒,AC=CB=42,BAD=ADE=60∠∠︒,AD=5,CE 平分ACB ∠,DE 与CE 相交于点E ,则DE 的长等于_____.13.如图,有边长为1的等边三角形ABC 和顶角为120°的等腰DBC ∆,以D 为顶点作60MDN ∠=︒角,两边分别交AB 、AC 于M 、N ,连结MN ,则AMN ∆的周长为________.14.如图,在矩形中,,,点为边上一点,且,点是的中点,点为的中点,则的长为______.15.如图,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,AB =2cm ,E 、F 分别是AB 、AC 的中点,动点P 从点E 出发,沿EF 方向匀速运动,速度为1cm /s ,同时动点Q 从点B 出发,沿BF 方向匀速运动,速度为2cm /s ,连接PQ ,设运动时间为ts (0<t <1),则当t =___时,△PQF 为等腰三角形.16.如图,在▱ABCD 中,AD =2AB ,点F 是BC 的中点,作AE ⊥CD 于点E ,点E 在线段CD 上,连接EF 、AF ,下列结论:①2∠BAF =∠C ;②EF =AF ;③S △ABF =S △AEF ;④∠BFE =3∠CEF .其中一定正确的是_____.17.直角△ABC 中,AC =3cm ,BC =4cm ,AB =5cm ,将△ABC 沿CB 方向平移3cm ,则边AB 所经过的平面面积为_______cm 2.18.分解因式:81x -=______.19.如果方程2a x -+3=12x x--有增根,那么a =________. 20.如图,在△ABC 中,∠C=70°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A'处,且A'C=A'E ,则∠A'ED=____°.21.某地组织20辆汽车装运A 、B 、C 三种苹果42吨到外地销售,按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2辆车.(1)设用x 辆车装运A 种苹果,用y 辆车装运B 种苹果,根据下表提供的信息,求y 与x 之间的函数关系式,并写出x 的取值范围; 苹果品种 A B C每辆汽车(吨) 2.2 2.1 2每吨苹果获利(百元) 6 8 5(2)设此次外销活动的利润为W 百元,求W 与x 之间的函数关系式,当x 为何值时,W (百元)取得最大利润,并安排此时相应的车辆调配方案.22.某市政部门为了保护生态环境,计划购买A ,B 两种型号的环保设备.已知购买一套A 型设备和三套B 型设备共需230万元,购买三套A 型设备和两套B 型设备共需340万元.(1)求A 型设备和B 型设备的单价各是多少万元;(2)根据需要市政部门采购A 型和B 型设备共50套,预算资金不超过3000万元,问最多可购买A 型设备多少套?23.如图,在等边三角形ABC 中,4AB =,点E 是AC 边上的一点,过点E 作//DE AB 交BC 于点D ,过点E 作EF DE ⊥,交BC 的延长线于点F .(1)求证:CEF ∆是等腰三角形;(2)点E 满足__________时,点D 是线段BF 的三等分点;并计算此时CEF ∆的面积.24.如图,四边形ABCD 是矩形(1)尺规作图:在图8中,求作AB 的中点E (保留作图痕迹,不写作法)(2)在(1)的条件下,连接CE ,DE ,若2,3AB AD ==, 求证:CE 平分∠BED25.如图,的三个顶点都在正方形网格的格点上(网格中每个小正方形的边长都为1个单位长度),将平移,使点到的位置.(1)画出平移后的; (2)连接、,则线段与的关系是______; (3)求的面积.26.阅读理解: 若一个整数能表示成a 2+b 2(a 、b 是整数)的形式,则称这个数为“平和数”,例如5是“平和数”,因为5=22+1,再如,M =x 2+2xy +2y 2=(x +y )2+y 2(x , y 是整数),我们称M 也是“平和数”.(1)请你写一个小于5的“平和数”,并判断34是否为“平和数”.(2)已知S =x 2+9y 2+6x ﹣6y +k (x ,y 是整数,k 是常数,要使S 为“平和数”,试求出符合条件的一个k 值,并说明理由.(3)如果数m ,n 都是“平和数”,试说明22()()4m n m n +--也是“平和数”. 27.分解因式:(1)22242x xy y -+. (2)()()229a b a b --+. 28.解不等式组3432(1)1x x x ①②>-⎧⎨+-≥⎩,并将解集在数轴上表示出来. 29.214416x x =--. 30.已知:∠AOB 和两点C 、D ,求作一点P ,使PC=PD ,且点P 到∠AOB 的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明)参考答案1.B【解析】【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式进行分析即可.【详解】1 x ,3x y, a+1m是分式,只有3个,故选B.【点睛】此题主要考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.C【解析】【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A、两边都减3,不等号的方向不变,故A错误;B、两边都乘以2,不等号的方向不变,两边再加1,不等号的方向不变,故B错误;C、两边都乘以-1,不等号的方向改变,故C正确;D、两边都除以2,不等号的方向不变,故D错误;故选C.【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.3.B【解析】【分析】观察函数图象得到当-2<x<1时,-2x+4> kx+b>0.【详解】根据图象可得不等式-2x+4> kx+b>0的解集为:-2<x<1;故选:B【点睛】此题主要考查了一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.4.B【解析】试题分析:三角形中位线的性质:三角形的中位线平行于第三边,且等于第三边的一半;本题利用定理计算即可由BC的长为3cm,得DE=1.5.故选B.考点:三角形中位线定理5.A【解析】【分析】∆是等腰三角形时P点的位本题可先根据勾股定理求出OA的长,然后结合选项分析APO置,然后用排除法求解.【详解】解:点A的坐标是(2,2),根据勾股定理:则OA=-,当OA=OP=,且点P在点O左侧时,P点坐标为:()4,0,当OA=AP时,由对称性可知P点坐标为:()2,0,当OP=AP时,则P点坐标为:()1,0∴点P的坐标不可能是()故选:A.【点睛】此题主要考查了坐标与图形的性质,勾股定理,等腰三角形的判定,关键是根据等腰三角形的判定和性质,分情况讨论.6.D【解析】【分析】n(n≥3)边形的内角和是(n-2)180°,因而多边形的内角和一定是180°的整数倍,由此即可求出答案.【详解】∵多边形的内角和是(n-2)180°(n≥3),∴多边形的内角和一定是180°的整数倍,四个选项中,只有1800°是180°的整数倍,故选D.【点睛】本题主要考查了多边形的内角和定理,多边形的内角和是(n-2)180°(n≥3),熟记定理并灵活运用是解题关键.7.D【解析】【分析】根据图象得出两图象的交点坐标是(1,2)和当x<1时,ax<bx+c,推出x<1时,ax<bx+c,即可得到答案.【详解】解:由图象可知,两图象的交点坐标是(1,2),当x>1时,ax>bx+c,∴关于x的不等式ax-bx>c的解集为x>1.故选:D.【点睛】本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.8.B【解析】【分析】根据平方差公式的特点:两平方项,符号相反,对各选项分析判断后利用排除法就可.【详解】A、-a2+b2=(b+a)(b-a);B、-x2-y2=-(x2+y2),提取公因式-1后是两数的平方和,不能用平方差公式分解因式;C、49x2y2-z2 =(7xy+z)(7xy-z);D、16m4-25n2p2=(4m2+5np)(4m2-5np),故选B.【点睛】本题考查用平方差公式分解因式的多项式的特点,熟记平方差公式结构是解题的关键. 9.B【解析】【分析】根据科学记数法的表示形式写出即可.【详解】解:数据0.00000005用科学记数法表示为:0.00000005=5×10-8.故选:B.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.10.B【解析】【分析】根据分式的概念判断即可.【详解】解:在116,,1,32b axa b++-中,是分式的有:1a和62ab+,共2个.故选:B.【点睛】本题考查了分式的定义,属于基础概念题,熟知分式的概念是关键.11.9.36【解析】【分析】设裁判员有x名,根据全体裁判员所给分数的平均分是9.84分可得总分为9.84x,如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分,可求出最高分的代数式从而列出不等式,得到最高分就能求出最低分.【详解】设裁判员有x名,那么总分为9.84x;去掉最高分后的总分为9.82(x-1),由此可知最高分为9.84x-9.82(x-1)=0.02x+9.82;去掉最低分后的总分为9.9(x-1),由此可知最低分为9.84x-9.9(x-1)=9.9-0.06x.因为最高分不超过10,所以0.02x+9.82≤10,即0.02x≤0.18,所以x≤9.当x取7时,最低分有最小值,则最低分为9.9-0.06x=9.9-0.54=9.36.故答案是:9.36.【点睛】考查理解题意的能力,关键是表示出最高分的代数式,列出不等式求出最高分,然后求出最低分,根据平均分求出人数.12.3【解析】【分析】如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解】如图,延长CE、DE,分别交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等边三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB=22AC CB=8,AG=12AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案为3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.13.2【解析】【分析】要求△AMN的周长,根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CND,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【详解】∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°,∵△ABC是边长为1的等边三角形,∴∠ABC=∠BAC=∠BCA=60°,∴∠DBA=∠DCA=90°,延长AB至F,使BF=CN,连接DF,在△BDF和△CND中,∵BF CNFBD DCN DB DC=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CND(SAS),∴∠BDF=∠CDN,DF=DN,∵∠MDN=60°,∴∠BDM+∠CDN=60°,∴∠BDM+∠BDF=60°,在△DMN和△DMF中,∵DM MDFDM MDN DF DN=⎧⎪∠=∠⎨⎪=⎩,∴△DMN≌△DMF(SAS)∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=1+1=2,故答案为:2【点睛】此题考查全等三角形的判定与性质,角平分线的性质,等边三角形的性质,解题关键在于掌握判定定理.14.5【解析】【分析】过G作GM⊥AD,延长MG交BC于N,根据矩形性质可得四边形MNCD是矩形,MD=NC,MN=CD,根据EC=2BE可求出CE的长,由三角形中位线的性质可求出NG、NC的长,进而可得MG、AM的长,利用勾股定理求出AG的长即可.【详解】过G作GM⊥AD,延长MG交BC于N,∴四边形MNCD是矩形,∴MD=NC,MN=CD,∵EC=2BE,BC=6,∴EC=4,∵F为CD的中点,CD=AB=4,∴CF=2,∵G为EF中点,MN//CD,∴NC=EC=2,NG=CF=1,∴MG=MN-NG=4-1=3,AM=AD-MD=6-2=4,∴AG===5.故答案为:5【点睛】本题考查矩形的判定与性质、三角形中位线的性质及勾股定理,三角形的中位线,平行于第三边,且等于第三边的一半;三角掌握相关性质是解题关键.15.2. 【解析】【分析】 由勾股定理和含30°角的直角三角形的性质先分别求出AC 和BC ,然后根据题意把PF 和FQ 表示出来,当△PQF 为等腰三角形时分三种情况讨论即可.【详解】解:∵∠ABC =90°,∠ACB =30°,AB =2cm ,∴AC =2AB =4cm ,BC =∵E 、F 分别是AB 、AC 的中点,∴EF =12BC ,BF =12AC =2cm , 由题意得:EP =t ,BQ =2t ,∴PF t ,FQ =2﹣2t ,分三种情况:①当PF =FQ 时,如图1,△PQF 为等腰三角形.t =2﹣2t ,t =2;②如图2,当PQ =FQ 时,△PQF 为等腰三角形,过Q 作QD ⊥EF 于D ,∴PF =2DF ,∵BF =CF ,∴∠FBC =∠C =30°,∵E 、F 分别是AB 、AC 的中点,∴EF ∥BC ,∴∠PFQ =∠FBC =30°,∵FQ =2﹣2t ,∴DQ =12FQ =1﹣t ,∴DF = 1﹣t ),∴PF=2DF=23(1﹣t),∵EF=EP+PF=3,∴t+23(1﹣t)=3,t=6+311;③因为当PF=PQ时,∠PFQ=∠PQF=30°,∴∠FPQ=120°,而在P、Q运动过程中,∠FPQ最大为90°,所以此种情况不成立;综上,当t=2﹣3或6+3时,△PQF为等腰三角形.故答案为:2﹣3或6+3.【点睛】勾股定理和含30°角的直角三角形的性质及等腰三角形的判定和性质都是本题的考点,本题需要注意的是分类讨论不要漏解.16.①②④.【解析】【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【详解】解:①∵F是BC的中点,∴BF=FC,∵在▱ABCD中,AD=2AB,∴BC=2AB=2CD,∴BF=FC=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠DAF,∴2∠BAF=∠BAD,∵∠BAD=∠C,∴∠BAF=2∠C故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,∠MBF=∠C,BF=CF,∠BFM=∠CFE,∴△MBF≌△ECF(ASA),∴FE=MF,∠CEF=∠M,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AEF=S△AFM,∴S△ABF<S△AEF,故③错误;④设∠FEA=x,则∠F AE=x,∴∠BAF=∠AFB=90°﹣x,∴∠EF A=180°﹣2x,∴∠EFB=90°﹣x+180°﹣2x=270°﹣3x,∵∠CEF =90°﹣x ,∴∠BFE =3∠CEF ,故④正确,故答案为:①②④.【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△AEF ≌△DME .17.9【解析】【分析】根据平移的性质,AB 经过的平面是底边长等于平移距离,高为AC 的平行四边形,然后根据平行四边形的面积公式列式计算即可得解.【详解】解:如图,边AB 所经过的平面是底边为3cm ,高为AC 的平行四边形,面积=3×3=9cm 2. 故答案为:9cm 2.【点睛】本题考查平移的性质,判断出AB 所经过的平面的形状是解题的关键.18.()()()()421111x x x x +++- 【解析】【分析】根据平方差公式因式分解即可.【详解】解:()()()()()()()()()844422421111111111x x x x x x x x x x -=+-=++-=+++- 故答案为:()()()()421111x x x x +++-. 【点睛】此题考查的是因式分解,掌握用平方差公式因式分解是解决此题的关键.19.1【解析】【分析】分式方程去分母转化为整式方程,根据分式方程有增根得到x=2,将x=2代入整式方程计算即可求出a 的值.【详解】解:分式方程去分母得:a+3(x-2)=x-1,根据分式方程有增根,得到x-2=0,即x=2,将x=2代入得:a=2-1=1,故答案为:1【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.55°【解析】【分析】根据等边对等角即可证出∠A'EC=∠C=70°,再根据翻折的性质即可求出∠A'ED.【详解】解:∵A'C=A'E∴∠A'EC=∠C=70°由翻折的性质可知:∠A'ED=∠AED=12(180°-∠A'EC )=55°. 【点睛】此题考查的是翻折的性质和等腰三角形的性质,根据翻折的性质找到相等的角和掌握等边对等角是解决此题的关键.21.(1)220y x =-+, 2≤x ≤9;(2)当2x =时,W 的值最大,315.2W =最大值(百元),安排车辆的方案如下:装运A 种苹果2车,B 种苹果16车,C 种苹果2车.【解析】【分析】(1)先表示出C 种苹果所用的车辆的数量,根据全部装满得到()2.2 2.122042x y x y ++--=,再由每种苹果不少于2辆车得到22202x x ≥⎧⎨-+≥⎩,解不等式组即可解题,(2)利用(1)中的数量关系表示出利润W 与x 之间的函数关系,再利用函数的增减性找到函数的最值即可解题.【详解】(1)根据题意,运A 种苹果x 车,B 种苹果y 车,∴运C 种苹果()20x y --车,由题意得:()2.2 2.122042x y x y ++--=,整理得220y x =-+由题意可知22202x x ≥⎧⎨-+≥⎩,解得2≤x ≤9 ∴y 与x 之间的函数关系式是220y x =-+,自变量x 的取值范围是2≤x ≤9.(2)由题意可知:W ()6 2.28 2.12205233610.4x x x x =⨯+⨯-++⨯=-∵10.40k =-<∴W 随x 的增大而减小∴当x 取最小值时,W 的值最大即当2x =时,W 的值最大,max 33610.42315.2W =-⨯=(百元)∴安排车辆的方案如下:装运A 种苹果2车,B 种苹果16车,C 种苹果2车.【点睛】本题考查了一次不等式与一次函数的实际应用,中等难度,综合性强,认真审题,找到题干中的等量关系是解题关键.22.(1)A 型设备的单价是80万元,B 型设备的单价是50万元;(2)最多可购买A 型设备16套.【解析】【分析】(1)设A 型设备的单价是x 万元,B 型设备的单价是y 万元,根据“购买一套A 型设备和三套B 型设备共需230万元,购买三套A 型设备和两套B 型设备共需340万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型设备m 套,则购进B 型设备(50-m )套,根据总价=单价×数量结合预算资金不超过3000万元,即可得出关于m 的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】(1)设A 型设备的单价是x 万元,B 型设备的单价是y 万元,依题意,得:323032340x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩. 答:A 型设备的单价是80万元,B 型设备的单价是50万元.(2)设购进A 型设备m 套,则购进B 型设备(50)m -套,依题意,得:8050(50)3000m m +-„, 解得:503m „. m Q 为整数,m ∴的最大值为16.答:最多可购买A 型设备16套.【点睛】此题考查二元一次方程组的应用,一元一次不等式的应用,解题关键在于根据题意列出方程.23.(1)见解析;(2)E 是AC 的中点,CEF S ∆.【解析】【分析】(1)根据等边三角形的性质以及平行线的性质得到60EDC B ∠=∠=︒,根据三角形的内角和求出30F ∠=︒,根据三角形外角的性质求出603030CEF ∠=︒-︒=︒,得到 CEF F ∠=∠,即可证明.(2)过点E 作EP DF ⊥,交DF 于点P ,当点E 是AC 的中点时,2AE EC CD DB CF =====,求出高,即可求出CEF ∆的面积.解:证明:(1)∵ABC ∆是等边三角形,∴AB BC AC ==,60A B ACB ∠=∠=∠=︒∵//DE AB ,∴60EDC B ∠=∠=︒∵EF DE ⊥∴90DEF ∠=︒∴30F ∠=︒∵ACB ∠是CEF ∆的外角,且60ACB ∠=︒,∴603030CEF ∠=︒-︒=︒,∴CEF F ∠=∠,∴CE CF =,∴CEF ∆是等腰三角形.(2)E 是AC 的中点(或AE CE =).过点E 作EP DF ⊥,交DF 于点P∵//DE AB ,∴60CED A ∠=∠=︒,∴CDE ∆是等边三角形.当点E 是AC 的中点时,2AE EC CD DB CF =====在CEF ∆中,90EPC ∠=︒,60ECP ∠=︒,∴30PEC ∠=︒,∴11,32CP CE PE ===. ∴11·23322CEF S CF EP ∆==⨯=. 【点睛】考查平行线的性质,等边三角形的判定与性质,三角形外角的性质等,难度一般.24.(1)见解析;(2)见解析.【分析】(1)作AB的垂直平分线即可得到AB的中点E,E点即为所求;(2)先利用勾股定理求出DE=2,再利用平行线的性质可得出结果.【详解】如图,四边形ABCD是矩形了(1)正确作出AB的垂直平分线下结论:点E为所求(2)∵E是AB的中点∴AE=11 2AB=∵四边形ABCD是矩形∴∠A=90°AB=CD=2∴222DE AD AE=+=∴DE=DC∴∠DEC=∠DCE∵AB∥CD∴∠CEB=∠DCE∴∠CEB=∠DEC∴CE平分∠BED【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).25.(1)见解析;(2)平行且相等;(3)4.【分析】(1)根据网格结构找出点B、C的对应点B1、C1的位置,然后顺次连接即可;(2)由平移的性质即可解答;(3)利用经过点的长方形的面积减去3个小直角三角形的面积即可求得的面积.【详解】(1)如图所示:(2)由平移的性质可得线段与的关系是平行且相等;(3)的面积为:3×4-×1×2-×2×4-×2×3=4.【点睛】本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.26.(1)2(答案不唯一),是;(2)10,理由见解析;(3)证明见解析.【解析】【分析】(1)利用“平和数”的定义可得;(2)利用配方法,将S配成平和数,可求k的值;(3)根据完全平方公式,可证明22()()4m n m n+--也是“平和数”.【详解】(1)∵2=12+12∴2是平和数∵34=52+32∴34是平和数(2)∵S=x 2+9y 2+6x-6y+k=(x+3)2+(3y-1)2+k-10∴k=10时,S 是平和数(3)设m=a 2+b 2,n=c 2+d 2 ∴22()()4m n m n +--=mn=(a 2+b 2)(c 2+d 2) =a 2c 2+b 2d 2+a 2d 2+b 2c 2=a 2c 2+b 2d 2+a 2d 2+b 2c 2+2abcd-2abcd∴mn=(ac+bd )2+(ad-bc )2∴mn 是平和数 ∴22()()4m n m n +--也是“平和数”. 【点睛】本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是解决本题的关键.27.(1)()22x y -;(2)()()422a b a b -- 【解析】【分析】(1)首先提取公因式2,进而利用完全平方公式分解因式即可.(2)先用平方差公式分解,再化简即可.【详解】解:(1)原式()()222222x xy yx y =-+=-; (2)原式()()223a b a b ⎡⎤=--+⎣⎦()()()()33a b a b a b a b ⎡⎤⎡⎤=-++--+⎣⎦⎣⎦()()4224a b a b =--()()422a b a b =--.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,注意分解要彻底.28.0x≥【解析】【分析】本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【详解】3432(1)1x xx>-⎧⎨+-≥⎩①②由①得:x>-2;由②得:x≥0;所以不等式组的解集为:x≥0.在数轴上表示为:【点睛】本题在分别解完不等式后可以利用数轴或口诀“比大的小,比小的大,中间找”得到最终结果,此题考查利用数形结合解不等式组,是对学生基本运算方法、运算法则、基本性质的运用能力的考查.29.0x=【解析】【分析】先通过方程两边乘最简公分母216x-将分式方程化为整式方程,再解整式方程,最后检验整式方程的解是不是分式方程的解.【详解】214416x x=--解:44x+=x=经检验0x=是分式方程的解.【点睛】本题考查解分式方程. 切记解分式方程可能产生使分式方程无意义的根,检验是解分式方程的必要步骤.30.见详解.【解析】【分析】由所求的点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD的垂直平分线上,再由点P到∠AOB的两边的距离相等,利用角平分线定理得到P在∠AOB的角平分线上,故作出线段CD的垂直平分线,作出∠AOB的角平分线,两线交点即为所求的P点.【详解】解:如图所示:作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;(3)以O为端点,过角内部的交点画一条射线;(4)连接CD,分别为C、D为圆心,大于12CD长为半径画弧,分别交于两点;(5)过两交点画一条直线;(6)此直线与前面画的射线交于点P,∴点P为所求的点.【点睛】本题考查作图-复杂作图,涉及的知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解题的关键.。

北师大版八年级下册数学期末考试试题附答案

北师大版八年级下册数学期末考试试题附答案

北师大版八年级下册数学期末考试试卷一、单选题1.下列图形既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.已知a b <,则下列不等式中不正确的是()A .44a b<B .44a b ++<C .4a 4b--<D .44a b --<3.当3x =-,下列分式中有意义的是()A .33x x --B .33x x -+C .()()()()3232x x x x ++--D .()()()()3232x x x x -++-4.不等式12x -≥的解集在数轴上表示正确的是()A .B .C .D .5.下列等式从左到右的变形正确的是()A .11b b a a +=+B .2b ab a a=C .22b b a a=D .32b b a a=6.下列多项式中,不能用平方差公式分解的是()A .22x y -B .22x y --C .224x y -D .24x -+7.如图,在菱形ABCD 中,不一定成立的是()A .四边形ABCD 是平行四边形B .AC BD ⊥C .ABD 是等边三角形D .CAB CAD∠=∠8.炎炎夏日,甲安装队为A 小区安装60台空调,乙安装队为B 小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是A .6050x x 2=-B .6050x 2x=-C .6050x x 2=+D .6050x 2x=+9.若方程()()211120m m x m x +----=是关于x 的一元二次方程,则m 的值为()A .0B .±1C .1D .-110.若分式211x x -+的值为0,则x 的值为()A .0B .1C .﹣1D .±1二、填空题11.分解因式:2x y y -=_________.12.如图,函数y=2x 和y=ax+4的图象相交于点A(32,3),则不等式2x >ax+4的解集为___.13.已知关于x 的方程21+-x ax -1=0的解是正数,则a 的取值范围是________.14.如图,在△ABC 中,AB=AC=10cm ,DE 是AB 的中垂线,△BDC 的周长为16cm ,则BC 的长为______cm .15.已知关于x 的分式方程2233x kx x -=+--无解,则k 的值是__________.16.一个n 边形的各内角都等于120︒,则边数n 是_______.17.如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∠EAF =45°,△ECF 的周长为4,则正方形ABCD 的边长为_____.三、解答题18.在边长为1个单位长度的小正方形组成的网格中,点A 、B 、C 、O 都是格点.将ABC绕点O 按逆时针方向旋转180︒得到111A B C △,请画出111A B C △.19.(1)解方程:21233x x x-=+--(2)解不等式组64325213x x x x +≥-⎧⎪+⎨--⎪⎩>20.(1)用配方法解方程:2230x x --=(2)用因式分解法解方程:()()224219210x x +--=21.化简226921432a a a a a a a -++-----22.如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E.(1)判断四边形ACED 的形状,并说明理由;(2)若BD=8cm ,求线段BE 的长.23.某物流公司要将300吨物资运往港口码头,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装完.如果已确定调用5辆A 型车,那么至少还需调用B 型车多少辆?24.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路钱一少用10分钟到达.求小明走路线一时的平均速度.25.如图,已知菱形ABCD ,AB=AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF .(1)求证:四边形AECF 是矩形;(2)若AB=6,求菱形的面积.26.如图,在ABC 中,点O 是AC 边上的一个动点,过点O 作直线//BC MN ,设MN 交BCA ∠的角平分线于点E ,交BCA ∠的外角ACG ∠的平分线于点F ,连接AF .(1)求证:EO FO =;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3)在(2)的条件下,ABC 满足什么条件时,四边形AECF 是正方形?并说明理由.参考答案1.D 【详解】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、是轴对称图形,但不是中心对称图形,故本选项错误;C 、是轴对称图形,但不是中心对称图形,故本选项错误;D 、既是轴对称图形,又是中心对称图形,故本选项正确.故选D .2.C【分析】根据不等式的性质逐个判断即可.【详解】解:A、∵a<b,∴4a<4b,故本选项不符合题意;B、∵a<b,∴a+4<b+4,故本选项不符合题意;C、∵a<b,∴-4a>-4b,故本选项符合题意;D、∵a<b,∴a-4<b-4,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3.C【解析】【分析】根据分式有意义的条件是分母不为0对各个选项进行判断即可.【详解】解:A、当x=-3时,x-3=0,故A不符合;B、当x=-3时,x+3=0,故B不符合;C、当x=-3时,(x-3)(x-2)≠0,故C符合;D、当x=-3时,(x+3)(x-2)=0,故D不符合;故选:C.【点睛】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.4.A【解析】先求出已知不等式的解集,然后表示在数轴上即可.【详解】不等式1-x≥2,解得:x≤-1,表示在数轴上,如图所示:故选:A .【点睛】此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆圈表示.5.B 【解析】【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项.【详解】解:A 、根据分式基本性质知道11b b a a ++≠,故选项错误;B 、2b ab a a =,其中a≠0,故选项正确;C 、等式的右边是左边的平方,显然不成立,故选项错误;D 、根据分式的基本性质可得:32b b a ab=(b≠0),故选项错误;故选B .【点睛】此题主要考查了分式的基本性质,关键是熟练掌握分式的基本性质.6.B 【解析】根据平方差公式的结构特点,两平方项的符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、x 2-y 2符合平方差公式,故本选项错误;B 、-x 2与-y 2符号相同,不能运用平方差公式,故本选项正确;C 、4x 2-y 2符合平方差公式,故本选项错误;D 、-4+x 2,符合平方差公式,故本选项错误.故选:B .【点睛】本题主要考查了运用公式法分解因式,熟记平方差公式的结构特点是解本题的关键.7.C 【解析】【分析】菱形是特殊的平行四边形,故A 正确,根据菱形的性质:对角线互相平分且平分对角得B 、D 正确.【详解】因为菱形是特殊的平行四边形,对角线互相垂直平分,且每一条对角线平分一组对角.故选:C.【点睛】考查菱形的性质,熟练掌握菱形的性质定理是解题的关键.8.D 【解析】【详解】试题分析:由乙队每天安装x 台,则甲队每天安装x+2台,则根据关键描述语:“两队同时开工且恰好同时完工”,找出等量关系为:甲队所用时间=乙队所用时间,据此列出分式方程:6050x 2x=+.故选D .9.D 【解析】【分析】根据一元二次方程的定义解答,(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.所以m 2+1=2,且m-1≠0,解得m 的值只能是-1.【详解】解:∵()()211120m m x m x +----=是关于x 的一元二次方程,∴21012m m -≠⎧⎨+=⎩,解得:m=-1,故选D .【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.10.B 【解析】【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式211x x -+的值为零,∴21010x x ⎧-=⎨+≠⎩,解得:x=1,故选B .【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.11.y (x+1)(x ﹣1).【解析】【详解】试题分析:x 2y ﹣y=y (x 2﹣1)=y (x+1)(x ﹣1),故答案为y (x+1)(x ﹣1).考点:提公因式法与公式法的综合运用;因式分解.12.x>3 2【解析】【分析】由于函数y=2x和y=ax+4的图象相交于点A(332,),观察函数图象得到当x>32时,函数y=2x的图象都在y=ax+4的图象上方,所以不等式2x>ax+4的解集为x>3 2.【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(332,),∴当x>32时,2x>ax+4,即不等式2x>ax+4的解集为x>3 2.故答案为:x>3 2.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.a<-1且a≠-2【解析】【分析】先求得方程的解,再解x>0,求出a的取值范围.【详解】解21+-x ax-1=0得:x=-a-1,∵于x的方程21+-x ax-1=0的解是正数,∴x〉0,即-a-1>0,∴a<-1,当x-1=0时,x=1,代入得:a=-2.此为增根,∴a≠-2,综合上述可得:a<-1且a≠-2.故答案是:a<-1且a≠-2.【点睛】考查了分式方程的解,先求出分式方程的解,再求出a的取值范围.14.6【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后推出△BDC的周长=AC+BC,代入数据进行计算即可得解.【详解】∵DE是AB的中垂线,∴AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵△BDC的周长为16cm,AC=10cm,∴10+BC=16,解得BC=6.故答案为6.【点睛】此题考查等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,是基础题,熟记性质是解题的关键.15.1【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解得到x-3=0求出x的值,代入整式方程求出k的值即可.【详解】解:分式方程去分母得:x-2=k+2(x-3),即x=4-k,由分式方程无解得到x-3=0,即x=3,代入整式方程得:3=4-k,解得:k=1,故答案为:1.【点睛】此题考查了分式方程的解,需注意在解分式方程时要考虑分母不为0.16.6【解析】【分析】首先求出外角度数,再用360°除以外角度数可得答案.【详解】解:∵n边形的各内角都等于120°,∴每一个外角都等于180°-120°=60°,∴边数n=360°÷60°=6.故答案为:6.【点睛】此题主要考查了多边形的外角和定理,外角与相邻的内角的关系,关键是掌握各知识点的计算公式.17.2【解析】【分析】根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.【详解】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE 和△EAF′中''AF AF FAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△FAE ≌△EAF′(SAS ),∴EF=EF′,∵△ECF 的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故答案为:2.【点睛】此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE ≌△EAF′是解题关键.18.见解析【解析】【分析】连接AO 并延长,然后截取OA 1=OA ,则A 1就是A 的对应点,同样可以作出B 、C 的对应点,然后顺次连接即可.【详解】解:所作图形111A B C △如图所示.【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.19.(1)x=5;(2)45<x≤3【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】解:(1)21233x x x-=+--去分母得:()2231x x -=--,去括号得:2261x x -=--,移项合并得:x=5,经检验:x=5是原方程的解,∴原方程得解是x=5;(2)64325213x x x x +≥-⎧⎪⎨+--⎪⎩①>②,解不等式①得:x≤3,解不等式②得:x >45,∴不等式组的解集为:45<x≤3.【点睛】本题考查了解分式方程和解一元一次不等式组,解题的关键是掌握相应的解法.20.(1)x 1=-1,x 2=3;(2)x 1=110,x 2=52【解析】【分析】(1)方程两边加上4,再把方程左边分解得到()214x -=,然后利用直接开平方法求解;(2)利用平方差公式进行因式分解,然后求解即可.【详解】解:(1)2230x x --=,∴2214x x -+=,∴()214x -=,∴x-1=±2,解得:x 1=-1,x 2=3;(2)()()224219210x x +--=,()()2242630x x +--=,()()426342630x x x x ++-+-+=,()()101250x x --+=,10x-1=0或-2x+5=0,解得:x 1=110,x 2=52.【点睛】本题考查了解一元二次方程—因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.也考查了配方法解一元二次方程.21.22a --【解析】【分析】先将各分子和分母因式分解,再约分,最后计算减法.【详解】解:226921432a a a a a a a -++-⋅----=()()()23212232a a a a a a a -+-⋅-+---=3122a a a a -----=22a --【点睛】本题考查了分式的混合运算,解题的关键掌握运算法则以及因式分解的运用.22.(1)四边形ACED 是平行四边形.理由如下见解析(2).【解析】【分析】(1)根据正方形的对边互相平行可得AD ∥BC ,即为AD ∥CE ,然后根据两组对边互相平行的四边形是平行四边形解答.(2)根据正方形的四条边都相等,平行四边形的对边相等可得BC=AD=CE ,再根据正方形的边长等于对角线的2倍求出BC ,然后求出BE 即可.【详解】解:(1)四边形ACED 是平行四边形.理由如下:∵四边形ABCD 是正方形,∴AD ∥BC ,即AD ∥CE.∵DE ∥AC ,∴四边形ACED 是平行四边形.(2)由(1)知,BC=AD=CE=CD ,∵BD=8cm ,∴BC=2BD=2cm ,∴.23.14.【解析】【详解】试题分析:设还需要调用B 型车x 辆,根据关系式为:5辆A 型车的装载量+x 辆B 型车的装载量≥300列不等式进行求解即可得.试题解析:设还需要调用B 型车x 辆,根据题意得:20×5+15x≥300,解得x≥1313,由于x 是车的数量,应为整数,所以x 的最小值为14,答:至少需要调用14辆B 型车.【点睛】本题考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.24.50千米/小时【解析】【分析】设小明走路线一的平均速度是x 千米/小时,则小明走路线二的平均速度是x (1+80%)千米/小时,根据走路线二比走路线一少用10分钟建立方程求出其解即可.【详解】解:设小明走路线一的平均速度是x 千米/小时,则走路线二的平均速度是x (1+80%)千米/小时,由题意,得()253010180%60x x =++,解得:x=50,经检验,x=50是原方程的解.故小明走路线一的平均速度是50千米/小时.答:小明走路线一的平均速度是50千米/小时.【点睛】本题考查了列分式方程解关于行程问题的运用题运用及分式方程的解法的运用,解答时根据条件找到等量关系建立方程是关键,解分式方程要验根是不可少的步骤.25.(1)证明见解析;(2)【解析】【详解】试题分析:(1)首先证明△ABC 是等边三角形,进而得出∠AEC=90°,四边形AECF 是平行四边形,即可得出答案;(2)利用勾股定理得出AE 的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD 是菱形,∴AB=BC ,又∵AB=AC ,∴△ABC 是等边三角形,∵E 是BC 的中点,∴AE ⊥BC ,∴∠AEC=90°,∵E 、F 分别是BC 、AD 的中点,∴AF=12AD ,EC=12BC ,∵四边形ABCD 是菱形,∴AD ∥BC 且AD=BC ,∴AF ∥EC 且AF=EC ,∴四边形AECF 是平行四边形,又∵∠AEC=90°,∴四边形AECF 是矩形;(2)在Rt △ABE 中,AE==,所以,S 菱形ABCD 考点:1.菱形的性质;2..矩形的判定.26.(1)见解析;(2)当点O 运动到AC 的中点时,四边形AECF 是矩形,理由见解析;(3)ABC 满足ACB ∠为直角时,四边形AECF 是正方形,理由见解析.【解析】【分析】(1)由平行线的性质和角平分线的定义得出32∠=∠,13∠=∠,得出EO=CO ,FO=CO ,即可得出结论;(2)先证明四边形AECF 是平行四边形,再由对角线相等,即可得出结论;(3)由//BC MN ,得出AOE ACB ∠=∠,当90ACB ∠=︒时,AC EF ⊥即可.【详解】(1)证明:如图,∵//BC MN ,∴32∠=∠.又∵CF 平分ACG ∠,∴12∠=∠,∴13∠=∠,∴FO CO =,同理,EO CO =,∴EO FO =.(2)解:当点O 运动到AC 的中点时,四边形AECF 是矩形,证明如下:当点O 运动到AC 的中点时,AO CO =.又∵EO FO =,∴四边形AECF 是平行四边形,由(1)可知,FO CO =,∴AO CO EO FO ===,∴AO CO EO FO +=+,即AC EF =,∴四边形AECF 是矩形.(3)当点O 运动到AC 的中点时,且△ABC 满足∠ACB 为直角的直角三角形时,四边形AECF 是正方形.在(2)的条件下,ABC 满足ACB ∠为直角时,四边形AECF 是正方形.理由:由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形.∵//BC MN ,∴AOE ACB ∠=∠,当90ACB ∠=︒时,90AOE ∠=︒,即AC EF ⊥,∴四边形AECF 是正方形.【点睛】本题考查了平行线的性质、等腰三角形的判定、矩形的判定、正方形的性质;熟练掌握平行线的性质和矩形、正方形的判定方法,并能进行推理论证是解决问题的关键.。

(完整版)北师大版八年级下册数学期末测试卷及含答案(查漏补缺)

(完整版)北师大版八年级下册数学期末测试卷及含答案(查漏补缺)

北师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a 为常数,且a≠0)相交于点P,则不等式kx+b<ax的解集是()A.x>1B.x<1C.x>2D.x<22、如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC 与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线,作过C点且与AC垂直的直线,交于P点,则P即为所求.对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确3、下列命题:(1)如果a<0,b>0,那么;(2)同角的补角相等;(3)同位角相等;(4)如果,那么;(5)有公共顶点且相等的两个角是对顶角。

其中正确的个数是()A.1B.2C.3D.44、如图,AD是正五边形ABCDE的一条对角线,则∠BAD等于()A.72°B.108°C.36°D.62°5、若不等式组的解集是x>4,则m的取值范围是()A.m>4B.m≥4C.m≤4D.m<46、已知整数x满足是不等式组,则x的算术平方根为()A.2B.±2C.D.47、下列基本图形中经过平移、旋转或轴对称变换后不能得到右图的是()A. B. C. D.8、若将分式中的x和y都扩大到原来的2倍,那么分式的值()A.扩大到原来的4倍B.扩大到原来的2倍C.不变D.缩小到原来的.9、如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E,F,则线段B′F的长为( )A. B. C. D.10、如图所示,在矩形ABCD中,AB= ,BC=2,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A. B. C.1 D.1.511、如图,△ABC中,AB=AC=5,BC=6,M为BC的中点,MN⊥AC于N点,则MN=()A. B. C. D.12、如图,中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A. B. C.D.13、如图,△ABC的顶点都在⊙O上,∠BAO=50°,则∠C的度数为()A.30°B.40°C.45°D.50°14、如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则∠a的度数是( )A.42°B.40°C.36°D.32°15、若整数使得关于的不等式组的解集为,且关于的分式方程的解为负数,则所有符合条件的整数的和为()A.0B.-3C.-5D.-8二、填空题(共10题,共计30分)16、因式分解:________ .17、若m+n=2,计算6﹣2m﹣2n=________.18、如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,这样的点P共有________个.19、如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为________.20、如图,在矩形中,,,那么的度数为________.21、若关于的分式方程有增根,则=________ .22、在函数y=中,自变量x的取值范围是________.23、在□ABCD中,若∠A=50°,则∠D的度数为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题15关庄中学2012-2013学年下学期期末考试八年级数学综合复习题若a<0,则下列不等式不成立的是( ). a+5<a+7 B .5a >7a C .5-a <7-a D .75a a > .在1:38000的交通旅游图上,南京玄武湖隧道长7㎝,则它的实际长度是( ) 下列从左到右的变形是因式分解的是( )(x+1)(x-1)=x 2-1 B.(a-b)(m-n)=(b-a)(n-m)2-2m-3=m(m-2-m3)多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不 ) A.4x B.-4x C.4x 4 D.-4x 4已知311=-yx,则y xy x y xy x ---+55 的值为( )A 、27- B 、27 C 、72 D 、72-已知正方形的面积为(16+8x+x 2)㎝2,则正方形的周长是( )A.(4+x)㎝B.(x+2)㎝C.(16+4x )㎝D.(4x+8)㎝ 如图,一次函数b kx y +=的图像经过A 、B 两点,则不等式0>+b kx 解集是( ) .0>x B .3->x C .2>x D .23<<-x如图,是甲、乙两位学生的5次数学成绩的折线统计图,则成绩较稳定的是( ) .甲稳定 B .乙稳定 C .甲、乙稳定性相同 D .无法判断.小明抛掷硬币50次,得到的统计结果如图4,则这50 ) A .0.22 B .0.28 C .0.44 D .0.56为了解我市中考数学的情况,抽出2000名考生的数学试卷进行分析,抽出2000名学生( )总体 B.个体 C. 样本 D. 样本容量解分式方程可能产生增根,下列步骤中,可能产生增根的是( )A.去分母,两边同时乘以一个含未知数的整式B.去括号C.移项,合并同类项D.检验,将所求的根代入原方程 12.下列命题中,真命题是( )A.互补的两角若相等,则此两角都是直角B.直线是平角C.两条直线被第三条直线所截,同位角相等D.不相交的两条直线叫做平行线13.某县计划在一定时间造林m 公顷,原计划每月造林a 公顷,现每月多造林b 公顷,则可比原计划少用( )月。

(A )b a m + (B )b a m a m +- (C )bm (D )a m b a m -+14.如图,直线l 1∥l 2,AF ∶FB=2∶3,BC ∶CD=2∶1,则AE ∶EC 是( ) A.5∶2 B.4∶1 C.2∶1 D.3∶215.一次函数323+-=x y 的图象如图3所示,当-3 < y < 3时, x 的取值范围是( )A .x >4B .0<x <2C .0<x <4D .2<x <416.把一盒苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( )A 、3B 、4C 、5D 、617.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是( ) A.20米 B.18米 C.16米 D.15米18.已知:如图在△ABC 中,DE//BC ,31=DB AD ,则BCDE =( ) A 、21 B 、31 C 、 41 D 、5119.已知点D 是AC 边上黄金分割点(AD >DC ),若AC=2,则AD 等于( ) A .15+B .215- C .15- D .215+ 20.如图,有一矩形纸片ABCD ,AB=6,AD=8,将纸片折叠,使AB 落在AD 边上,折痕为AE ,再将△AEB 以BE 为折痕向右折叠,AE 与DC 交于点F ,则CDFC 的值是( )题14 题8 甲 乙 甲乙分数 次数正反抛掷结次0 123题(- 3 ,0)x y O (0,2)B A 题7A F MB D EC N 学校: 班级: 姓名: 学号21.如图4,把一个矩形纸片ABCD 沿AD 和BC 的中点连线EF 对折,要使矩形AEFB 与原矩形相似,则原矩形长与宽的比为( ) A.2∶1B.3∶1C.2∶1D.4∶122.已知线段AB ,点C 是它的黄金分割点,AC>BC ,设以AC 为边的正方形的面积为S 1,•以CB 、AB 为边的矩形面积为S 2,则S 1与S 2的关系是( ).A .S 1>S 2B .S 1<S 2C .S 1=S 2D .S 1≥S 2二、填空题1. =+-x x x 251023分解因式: 。

2. 已知点A(2-a,a+1)在第一象限,则a 的取值范围是 。

3.使分式方程 产生增根的k 值为 。

4.关于x 的方程2x-ax-1=1的根是正数,则a 的取值范围是 。

5.当x 时,分式112-x x -值为0。

6.某商店销售一款衣服,每件150元,获利20%.求这款衣服的进价.设进货价为a 元,根据题意得方程: 。

7.如图,在△ABC 中,点P 是AB 边上的一点,连接CP , 要使△ACP ∽△ABC ,还需要补充的一个条件是 。

8.下列命题:(1)有一个锐角相等的两个直角三角形相似(2) 斜边和一直角边对应成比例的两个直角三角形相似(3) 两个等边三角形一定相似(4) 任意两个矩形一定相似其中真命题有 个。

9.在电学中,如果两个并联的电阻分别是R 1和R 2,那么总电阻R 和R 1、R 2的关系是:,RR R 11121=+ ==R R R R R 的是:表示那么用如果112,2 。

10.若的值为那么分式bba b b a +=-,352 。

11.已知关于x 的不等式组⎩⎨⎧>-≥-1250x a x 只有四个整数解,则实数a 的取值范围是 。

12. 如图,如图3,正方形ABCD 中,E 是AD 的中点,BM ⊥CE,AB=6,则BM=13.两相似三角形相似比为2∶3,周长的差是25,则较大三角形的周长是 。

14.三角尺在灯泡O 的照射下在墙上形成影子(如图所示).现测得20cm 50cm OA AA '==,,这个三角尺的周长与它在墙上形成的影子的周长的比是 .15.如图,在△ABC 中,AB =4cm ,AC =2cm ,在AB 上取一点D ,当AD = cm 时,△ACD ∽△ABC.16.如图,在平行四边形ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交AC 于P 、Q 两点,则AP :PQ :QC= . 三、解答题1.(1)解不等式: 135222-+≥+x x 并把解集在数轴上表示出来.(2)解不等式组()⎪⎩⎪⎨⎧-≤-+-x x x x 2371211324φ2.分解因式(1)22)()(y x y x --+ (2) )1(4)(2----y x y x3.化简求值(1)、x x x x x x 4)223(2-•+--,其中x=2. (2)、22,24224222+=⎪⎭⎫ ⎝⎛+---÷--x x x x x x x 其中A B C 931312-=++-x kx x 题16题14 题15 DB C A姓名: 学号(3)x x xx x x x ÷--++--22121222其中21=x4.当21-=a 时,求aa a a a a 112112÷+---+的值. 5.解方程14222=-+-x x x6.如图,已知:AC∥DE,DC∥EF,CD 平分∠BCA 求证:EF 平分∠BED. (证明注明理由)7.王明同学为了测量河对岸树AB 的高度.他在河岸边放一面平面镜MN ,他站在C 处通过平面镜看到树的顶端A .如图l -4-33,然后他量得B 、P 间的距离是56米,C 、P 间距离是 12米,他的身高是1.74米.⑴他这种测量的方法应用了物理学科的什么知识?请简要说明; ⑵请你帮他计算出树AB 的高度.8. 正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.9.(5分)阳光通过窗口照射到室内,在地面上留下2.7m 宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.10.一次实习作业课中,甲、乙两组学生各自对学校旗杆进行了5次测量,所得数据如下表所示:所测和的旗杆高度(单位:米)11.90 11.95 12.00 12.05 甲组测得的次数1 02 2 乙组测得的次数212现已算得乙组所测得数据的平均数为212.000.002x 乙乙=,方差s =(1)求甲组所测得数据的平均数与方差;(2)根据(1)中计算结果,说明哪一组学生所测得的旗杆高度比较一致。

11. 将某雷达测速60千米的区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成) :注:30~40为时速大于等于30千米而小于40千米,其他类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)汽车速度的中位数落在 数据段(4)如果汽车时速不低于60千米即为违章,则违章车辆共有 辆?12.(12分)如图, △ABC 是等边三角形,点D,E 分别在BC,AC 上,且BD=CE,AD 与BE 相交于点F.(1)△AEF 与△ABE 相似吗?说说你的理由.(2)BD 2=AD ·DF 吗?请说明理由.54321ADF CEB题1013.如图1,在Rt ABC∆中,∠ACB=090 ,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB 交边BC于点E,EM BD⊥垂足为M,EN CD⊥垂足为N。

(本题9分)(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?14.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。

由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装。

生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车。

(本题12分)(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好..能完成一年的安装任务,那么工厂有哪几种...新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?15.(10分)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气型号占地面积(单位:m2/个 )使用农户数(单位:户/个)造价(单位: 万元/个)A 15 18 2B 20 30 3户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱?16.(本题12分)如图,梯形ABCD中AB∥CD,且AB=2CD,E、F分别是AB、BC的中点,EF与BD相交于点M.⑴试说明△EDM∽△FBM;⑵若DB=9,求BM.17.在Rt△ABC中,. ∠C=90°,AC=20cm,BC=15cm. 现有动点P从点A出发, 沿AC向点C方向运动,动点Q从点C出发, 沿线段CB也向点B方向运动. 如果点P的速度是4cm /秒, 点Q的速度是2cm /秒, 它们同时出发,当有一点到达所在线段的端点时,就停止运动。

相关文档
最新文档