平抛运动斜面问题

合集下载

平抛运动典型例题(含答案)

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。

解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。

又根据运动学的规律可得竖直方向上,水平方向上,所以Q点的速度[例2] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A 和B两小球的运动时间之比为多少?图3解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到所以有同理则[例3] 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?图6解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。

取沿斜面向下为轴的正方向,垂直斜面向上为轴的正方向,如图6所示,在轴上,小球做初速度为、加速度为的匀变速直线运动,所以有① ②当时,小球在轴上运动到最高点,即小球离开斜面的距离达到最大。

由①式可得小球离开斜面的最大距离当时,小球在轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。

由②式可得小球运动的时间为例4:在平直轨道上以20.5/m s 的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m .间隔时间为1s .两物体落地点的间隔是2.6m ,则当第一个物体下落时火车的速度是多大?(g 取210/m s )分析:如图所示.第一个物体下落以0v 的速度作平抛运动,水平位移0s ,火车加速到下落第二个物体时,已行驶距离1s .第二个物体以1v 的速度作平抛运动水平位移2s .两物体落地点的间隔是2.6m .解:由位置关系得 1202.6s s s =+-物体平抛运动的时间 20.7ht s g'=00021002000.710.252()(0.5)0.7s v t v s v t at v s v at t v '===+=+'=+⋅=+⨯由以上三式可得201sin 22sin 2/L gt L t gv m sαα===例5:光滑斜面倾角为θ,长为L ,上端一小球沿斜面水平方向以速度0v 抛出(如图所示),小球滑到底端时,水平方向位移多大?解:小球运动是合运动,小球在水平方向作匀速直线运动,有0s v t = ①沿斜面向下是做初速度为零的匀加速直线运动,有212L at =② 根据牛顿第二定律列方程sin mg ma θ= ③由①,②,③式解得0022sin L Ls v v a g θ==例6:某一物体以一定的初速度水平抛出,在某1s 内其速度方向与水平方向成37︒变成53︒,则此物体初速度大小是________/m s ,此物体在1s 内下落的高度是________m (g 取210/m s ) 选题目的:考查平抛物体的运动知识的灵活运用.解析:作出速度矢量图如图所示,其中1v .2v 分别是ts 及(1)t s +时刻的瞬时速度.在这两个时刻,物体在竖直方向的速度大小分别为gt 及(1)g t +,由矢量图可知:037gt v tg =︒ 0(1)53g t v tg +=︒由以上两式解得017.1/v m s = 97t s =物体在这1s 内下落的高度2211(1)22y g t gt ∆=+- 221919(1)()2727g g =+-17.9m =例7如图,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg .不计空气阻力.(取sin37°=0.60,cos37°=0.80;g 取10m/s 2)求:(1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;(1)从O点水平飞出后,人做平抛运动,根据水平方向上的匀速直线运动,竖直方向上的自由落体运动可以求得A点与O点的距离L;(2)运动员离开O点时的速度就是平抛初速度的大小,根据水平方向上匀速直线运动可以求得;设A点与O点的距离为L,运动员在竖直方向做自由落体运动,则有:Lsin37°=0.5gt2L=gt22sin37°=75m(2)设运动员离开O点的速度为v0,运动员在水平方向做匀速直线运动,即:Lcos37°=v0t解得:v0=20m/s答:(1)A点与O点的距离是75m;(2)运动员离开O点时的速度大小是20m/s.1:在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。

平抛运动中的典型问题

平抛运动中的典型问题
水平:x=v0t 竖直:y=gt2/2
tan y gt
x 2v0
分解速度: 水平:vx=v0 竖直:vy=gt
v0
α
θ
v
θ vy
第4页
返回目录
v0 y x
结束放映
数字媒体资源库
【例1】如图所示,在与水平方向成37°角
的斜坡上的A点,以10m/s的速度水平抛出
一个小球,求落在斜坡上的B点与A点的距
可算出(ABC ).
A.轰炸机的飞行高度 B.轰炸机的飞行速度 C.炸弹的飞行时间 D.炸弹投出时的动能
审题设疑
1、审题中的关键着眼点在哪里?
2、通过什么办法找出各量之间的 关系,列方程求解?
第8页
数字媒体资源库ຫໍສະໝຸດ Hxv0H-h=12vyt x=v0t, vv0y=ta1n θ x=tahn θ vy=返g回t 目录
第14页
返回目录
结束放映
数字媒体资源库
典型问题二 平抛运动的临界问题
第15页
返回目录
结束放映
数字媒体资源库
【例6】如图,排球场总长18m,设网的高度为2m,运动员 站在离网3m远的线上正对网前竖直跳起把球水平击出 .(g=10m/s2). (1)设击球点的高度为2.5m,问球被水平击出时的速度在 什么范围内才能使球既不触网也不出界? (2)若击球点的高度小于某个值,那么无论球被水平击出 的速度多大,球不是触网就是出界,试求此高度?
B.小球的抛出点距斜面的竖直高度约是 15 m
C.若将小球以水平速度 v0′=5 m/s 向右抛出, 它一定落在 AB 的中点 P 的上方
D.若将小球以水平速度 v0′=5 m/s 向右抛出, 它一定落在 AB 的中点 P 处

2-3斜面上的平抛运动

2-3斜面上的平抛运动

斜面上的平抛运动一、斜面上的平抛运动○顺着斜面运动(斜面足够长)<落到斜面>1.【典型例题】如图所示,斜面倾角为θ,小球从A点以初速度v0水平抛出,恰好落到斜面B点,求:①AB间的距离;②物体在空中飞行的时间;2.如图所示,从倾角为θ的斜面上的A点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上B点所用的时间为()答案:B 〔同类题〕3. 跳台滑雪是勇敢者的运动,它是利用山势特别建造的跳台,运动员穿着专用滑雪板,不带雪杖在助滑路上获得高速后水平飞出,在空中飞行一段距离后着陆,这项运动极为壮观。

设一位运动员由山坡顶部的A 点沿水平方向飞出,到山坡上的B 点着陆。

如图所示,已知运动员水平飞行的速度为v 0=20m/s ,山坡倾角为θ=37°,山坡可以看成一个斜面。

(取g=10m/s 2,sin37°=0.6,cos37°=0.8)求:(1)运动员在空中飞行的时间t ; (2)AB 间的距离s 。

答案:(1)3s (2)75m解析:(1)设运动员从A 到B 时间为t ,则有x =v 0t y =gt 2由数学关系知tan θ=y /x 所以t =3s 。

(2)A 、B 间的距离为:s = m =75m 。

〔STS 〕跳台滑雪4. 如图所示,在足够长的斜面上的A 点,以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上所用的时间为t 1;若将此球改用2v 0抛出,落到斜面上所用时间为t 2,则t 1与t 2之比为( ) A .1∶1 B .1∶2 C .1∶3 D .1∶4 答案:B解析:因小球落在斜面上,所以两次位移与水平方向的夹角相等,由平抛运动规律知tan θ=12gt 21v 0t 1=12gt 222v 0t 2,所以t 1t 2=12。

〔延展题〕变初速度5. [多选]如图所示,斜面上有a 、b 、c 、d 、e 五个点,ab =bc =cd =de ,从a 点以初速度v0水平抛出一个小球,它落在斜面上的b点,速度方向与斜面之间的夹角为θ。

平抛运动的推论及与斜面结合问题(课件)-高中物理(人教版2019必修第二册)

平抛运动的推论及与斜面结合问题(课件)-高中物理(人教版2019必修第二册)

到斜面上
速度方向
vy=gt
θ 与 v0、t 的关系:
vx v0
tan θ= =
vy gt
分解位移,构建位移三角形
θ 与 v0、t 的关系:
运动情形
题干信息
vx v0
tan θ= =
vy 分析方法
gt
分解速度,构建速度三角形
分解位移,构建位移三角形
从空中水平抛出垂直落
从斜面水平抛出又落到
到斜面上
斜面上
这些极值点也往往是临界点。
2.求解平抛运动临界问题的一般思路
(1)找出临界状态对应的临界条件。
(2)分解速度或位移。
(3)若有必要,画出临界轨迹。
37°= ,

03
平抛运动的临界问题
1.临界点的确定
(1)若题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程中存在着临界点。
(2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程中存在着
“起止点”,而这些“起止点”往往就是临界点。
(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程中存在着极值,
C. a 的水平速度比 b 的小
D. b 的初速度比 c 的大
4.做平抛(或类平抛)运动的物体,设其位移偏向角为α,速度偏向角
为θ,则在任意时刻、任意位置有tanθ=2tanα。
证明:
v x v0
v y gt
x v0 t
1
y
gt 2
2
O
vy
gt
tan

vx
v0
1 2
gt
y 2
第五章 抛体运动
5.4.2平抛运动的推论

平抛运动最远距离与斜面的关系

平抛运动最远距离与斜面的关系

平抛运动最远距离与斜面的关系1.平抛运动最远距离与斜面的夹角有关。

The maximum distance of projectile motion is related to the angle of the incline.2.当斜面倾角为45度时,平抛运动的最远距离最大。

The maximum distance of projectile motion is the greatest when the incline is 45 degrees.3.斜面的摩擦力会影响平抛运动的最远距离。

The friction of the incline will affect the maximum distance of projectile motion.4.较小的斜面倾角会减小平抛运动的最远距离。

A smaller incline angle will decrease the maximum distance of projectile motion.5.较大的斜面倾角会增加平抛运动的最远距离。

A larger incline angle will increase the maximum distance of projectile motion.6.斜面的高度会影响平抛运动的最远距离。

The height of the incline will affect the maximum distance of projectile motion.7.斜面倾角越大,平抛运动的最远距离越小。

The larger the incline angle, the smaller the maximum distance of projectile motion.8.斜面倾角越小,平抛运动的最远距离越大。

The smaller the incline angle, the greater the maximum distance of projectile motion.9.斜面的光滑程度也会对平抛运动的最远距离产生影响。

与斜面有关的平抛运动

与斜面有关的平抛运动

与斜面有关的平抛运动与斜面有关的平抛运动,包括两种情况:(1)物体从空中抛出落在斜面上;(2)物体从斜面上抛出落在斜面上.在解答该类问题时,除要运用平抛运动的位移和速度规律外,还要充分利用斜面倾角,找出斜面倾角同位移和速度的关系,从而使问题得到顺利解决.两种情况的特点及分析方法对比如下:方法内容斜面飞行时间总结分解速度水平方向:v x=v0竖直方向:v y=gt合速度:v=v x2+v y2特点:tan θ=v xv y=v0gtt=v0g tan θ分解速度,构建速度三角形分解位移水平方向:x=v0t竖直方向:y=12gt2合位移:s=x2+y2特点:tan θ=yx=gt2v0t=2v0tan θg分解位移,构建位移三角形【例1】如图所示,以9.8 m/s的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的固定斜面上,这段飞行所用的时间为(不计空气阻力,g取9.8 m/s2)()A.23s B.223s , C. 3 s D.2 s【例2】如图所示,AB为固定斜面倾角为30°,小球从A点以初速度v0水平抛出,恰好落到B点.求:(空气阻力不计,重力加速度为g)(1)A、B间的距离及小球在空中飞行的时间;(2)从抛出开始,经过多长时间小球与斜面间的距离最大?最大距离为多大?【例3】如图所示,B 为竖直圆轨道的左端点,它和圆心O 的连线与竖直方向的夹角为α.一小球在圆轨道左侧的A 点以速度v 0平抛,恰好沿B 点的切线方向进入圆轨道.已知重力加速度为g ,则A 、B 之间的水平距离为( )A.v 20tan αgB.2v 20tan αgC.v 20g tan αD.2v 20g tan α【例4】如图所示,在倾角为37°的斜面上从A 点以6 m/s 的初速度水平抛出一个小球,小球落在B 点,求:(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力)(1)A 、B 两点间的距离和小球在空中飞行的时间;(2)小球刚碰到斜面时的速度方向与水平方向夹角的正切值.【例5】如图所示,一个小球从高h =10 m 处以水平速度v 0=10 m/s 抛出,撞在倾角θ=45°的斜面上的P 点,已知AC =5 m .g =10 m/s 2,不计空气阻力,求:(1)P 、C 之间的距离;(2)小球撞击P 点时速度的大小和方向.课后作业1.如图所示,位于同一高度的小球A、B分别以v1和v2的速度水平抛出,都落到了倾角为30°的斜面上的C点,小球B恰好垂直打在斜面上,则v1、v2之比为()A.1∶2B.2∶1 C.3∶2 D.2∶32.如图所示,斜面与水平面之间的夹角为45°,在斜面底端A点正上方高度为10 m处的O 点,以5 m/s的速度水平抛出一个小球,飞行一段时间后撞在斜面上,不计空气阻力,这段飞行所用的时间为(g取10 m/s2)()A.2 s B. 2 s C.1 s D.0.5 s3.如图所示,一个倾角为37°的斜面固定在水平面上,在斜面底端正上方的O点将一小球以速度v0=3 m/s水平抛出,经过一段时间后,小球垂直打在斜面P点处.(小球可视为质点,不计空气阻力,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8),则()A.小球击中斜面时的速度大小为5 m/sB.小球击中斜面时的速度大小为4 m/sC.小球做平抛运动的水平位移是1.6 mD.小球做平抛运动的竖直位移是1 m4.将一小球以水平速度v0=10 m/s从O点向右抛出,经 3 s小球恰好垂直落到斜面上的A点,不计空气阻力,g=10 m/s2,B点是小球做自由落体运动在斜面上的落点,如图所示,下列判断正确的是()A.斜面的倾角是60°B.小球的抛出点距斜面的竖直高度约是15 mC.若将小球以水平速度v0′=5 m/s向右抛出,它一定落在AB的中点P的上方D.若将小球以水平速度v0′=5 m/s向右抛出,它一定落在AB的中点P处5.如图所示,在斜面顶端先后水平抛出同一小球,第一次小球落到斜面中点,第二次小球落到斜面底端,从抛出到落至斜面上(忽略空气阻力)( )A.两次小球运动时间之比t 1∶t 2=1∶2B.两次小球运动时间之比t 1∶t 2=1∶2C.两次小球抛出时初速度之比v 01∶v 02=1∶2D.两次小球抛出时初速度之比v 01∶v 02=1∶46.如图所示,从斜面上的A 点以速度v 0水平抛出一个物体,飞行一段时间后,落到斜面上的B 点,已知AB =75 m ,α=37°,不计空气阻力,g =10 m/s 2,sin 37°=0.6,下列说法正确的是( )A.物体的位移大小为60 mB.物体飞行的时间为6 sC.物体的初速度v 0大小为20 m/sD.物体在B 点的速度大小为30 m/s7.如图所示,可视为质点的小球,位于半径为3m 半圆柱体左端点A 的正上方某处,以一定的初速度水平抛出小球,其运动轨迹恰好能与半圆柱体相切于B 点.过B 点的半圆柱体半径与水平方向的夹角为60°,则初速度为(不计空气阻力,重力加速度g 取10 m/s 2)( )A.553 m/sB.4 3 m/sC.3 5 m/sD.152m/s8.如图所示,一小球从平台上水平抛出,恰好落在平台前一倾角为α=53°的固定斜面顶端并刚好沿斜面下滑,已知平台到斜面顶端的高度为h =0.8 m ,不计空气阻力,g =10 m/s 2,sin 53°=0.8,cos 53°=0.6,求: (1)小球水平抛出的初速度大小v 0; (2)斜面顶端与平台边缘的水平距离x .与斜面有关的平抛运动参考答案【例1】【答案】 C【解析】 如图所示,把末速度分解成水平方向的分速度v 0和竖直方向的分速度v y ,则有:tan 30°=v 0v y ,v y =gt ,联立得:t=v 0g tan 30°=3v 0g= 3 s ,故C 正确. 【例2】【答案】 (1)4v 0 23g 23v 03g (2)3v 03g 3v 0 212g【解析】 (1)设飞行时间为t ,则有:水平方向位移l AB cos 30°=v 0t 竖直方向位移l AB sin 30°=12gt 2解得:t =2v 0g tan 30°=23v 03g ,l AB =4v 023g .(2)方法二(结合斜抛运动分解)如图所示,把初速度v 0、重力加速度g 都分解成沿斜面和垂直斜面的两个分量.在垂直斜面方向上,小球做的是以v 0y 为初速度、g y 为加速度的“竖直上抛”运动.小球到达离斜面最远处时,速度v y =0, 由v y =v 0y -g y t ′可得:t ′=v 0y g y =v 0sin 30°g cos 30°=v 0g tan 30°=3v 03g小球离斜面的最大距离y =v 0y22g y =v 0 2sin 2 30°2g cos 30°=3v 0 212g.【例3】【答案】 A【解析】 如图所示,对在B 点时的速度进行分解,小球运动的时间t =v y g =v 0tan αg,则A 、B 间的水平距离x =v 0t =v 20tan αg,故A 正确,B 、C 、D 错误.【例4】【答案】 (1)6.75 m 0.9 s (2)32【解析】 (1)如图所示,小球落到B 点时位移与初速度的夹角为37°,设运动时间为t . 则tan 37°=h x =12gt 2v 0t =56t又因为tan 37°=34,解得:t =0.9 s所以x =v 0t =5.4 m则A 、B 两点间的距离l =xcos 37°=6.75 m(2)设小球落到B 点时速度方向和水平方向的夹角为α,则tan α=v y v 0=gt v 0=32.【例5】【答案】 (1)5 2 m (2)10 2 m/s 方向垂直于斜面向下 【解析】 (1)设P 、C 之间的距离为L ,根据平抛运动规律有: AC +L cos θ=v 0t ,h -L sin θ=12gt 2联立解得:L =5 2 m ,t =1 s.(2)小球撞击P 点时的水平速度v 0=10 m/s 竖直速度v y =gt =10 m/s所以小球撞击P 点时速度的大小v =v 02+v y 2=10 2 m/s设小球撞击P 点时的速度方向与水平方向的夹角为α,则tan α=v yv 0=1 解得:α=45°故小球撞击P 点时速度方向垂直于斜面向下.课后作业1.【答案】C【解析】球A 做平抛运动,根据分位移公式,有x =v 1t ,y =12gt 2,又tan 30°=yx ,联立解得v 1=32gt ;小球B 恰好垂直打到斜面上,则有tan 30°=v 2v y =v 2gt ,则得v 2=33gt ,可得v 1∶v 2=3∶2,故C 正确,A 、B 、D 错误. 2.【答案】C【解析】设小球撞到斜面AB 中的一点D 上,则小球的水平运动的时间与竖直下落的时间相等,设飞行时间为t ,则根据几何关系可得v 0t =10 m -12gt 2,代入数据解得t =1 s ,故选项C正确. 3.【答案】 A【解析】 P 点小球的速度方向与斜面垂直,则有:tan 37°=v 0v y ,解得:v y =v 0tan 37°=334 m/s=4 m/s ,小球击中斜面时的速度大小为:v =v 20+v 2y =32+42 m/s =5 m/s ,A 正确,B 错误;小球运动的时间:t =v y g =410 s =0.4 s ,可知水平位移:x =v 0t =3×0.4 m =1.2 m ,竖直位移:y =12gt 2=12×10×0.42 m =0.8 m ,C 、D 错误.4.【答案】 C【解析】 设斜面倾角为θ,对小球在A 点的速度进行分解有tan θ=v 0gt,解得θ=30°,A 错误;小球距过A 点水平面的距离为h =12gt 2=15 m ,所以小球的抛出点距斜面的竖直高度一定大于15 m ,B 错误;若小球的初速度为v 0′=5 m/s ,过A 点做水平面,小球落到水平面的水平位移是小球以初速度v 0=10 m/s 抛出时的一半,延长小球运动的轨迹线,可知小球应该落在P 、A 之间,C 正确,D 错误。

平抛运动的基本规律和与斜面曲面相结合问题(解析版)

平抛运动的基本规律和与斜面曲面相结合问题(解析版)

平抛运动的基本规律和与斜面曲面相结合问题特训目标特训内容目标1平抛运动基本规律(1T -4T )目标2平抛运动与斜面相结合的问题(5T -8T )目标3平抛运动与圆面相结合的问题(9T -12T )目标4平抛运动与任意曲面相结合的问题(13T -16T )【特训典例】一、平抛运动基本规律1如图,正在平直公路行驶的汽车紧急刹车,位于车厢前端、离地高度分别为H ≈3.2m 、h ≈2.4m 的两件物品,因没有固定而散落到路面,相距L ≈1m 。

由此估算刹车时的车速最接近()A.40km /hB.50km /hC.70km /hD.90km/h【答案】A【详解】汽车紧急刹车后物品做平抛运动,平抛初速度等于汽车碰撞瞬间的行驶速度,设为v 。

对于物品A ,水平方向上,有x A =vt 1竖直方式上,有h =12gt 21对于物品B ,水平方向上,有x B =vt 2竖直方式上,有H =12gt 22根据题图分析可知L =x B -x A 解得汽车的行驶速度v =9.33m/s =33.6km/h所以刹车时的车速最接近40km/h 故选A 。

2如图所示,空间有一底面处于水平地面上的长方体框架ABCD -A 1B 1C 1D 1,已知:AB :AD :AA 1=1:1:2,从顶点A 沿不同方向平抛小球(可视为质点)。

关于小球的运动,则()A.所有小球单位时间内的速率变化量均相同B.落在平面A 1B 1C 1D 1上的小球,末动能都相等C.所有击中线段CC 1的小球,击中CC 1中点处的小球末动能最小D.当运动轨迹与线段AC 1相交时,在交点处的速度偏转角均为60°【答案】C【详解】A .所有小球都是做平抛运动,只受重力,加速度为重力加速度g ,所有小球单位时间内的速度变化率相同,故A 错误;B .所有落在平面A 1B 1C 1D 1上的小球,下落高度相同,由t =2h g可知下落时间相同,而落到C 1点的小球水平位移最大,所以落到C 1点的小球的抛出初速度v 0最大,所以落到C 1点的小球的末速度最大,即落到C 1点的小球的末动能最大,故B 错误;C .所有击中线段CC 1的小球水平位移相同,设为x ,击中线段CC 1某点的小球的位移偏转角为θ,那么下落到该点的高度h 为h =x tan θ又由平抛规律和动能定理有h =12gt 2;x =v 0t ;mgh =E k -12mv 20联立上式得E k =mgx tan θ+14tan θ可知当tan θ=12时,E k 有最小值,再结合题目的几何关系知该点应为线段CC 1的中点,故C 正确;D .当运动轨迹与线段AC 1相交时,所有小球的位移偏转角相同,其正切值为tan θ=1再根据平抛推论知,所有小球速度偏转角相同,其正切值为tan ∂=2tan θ=2由此可知在交点处的速度偏转角均不为60°,故D 错误;故选C 。

平抛距斜面最大距离公式推导

平抛距斜面最大距离公式推导

平抛距斜面最大距离公式推导平抛运动是物理学中的一种常见运动形式。

平抛距斜面最大距离体现了平抛运动在斜面上的应用。

下面,我将用1200字以上为您推导平抛距斜面最大距离的公式。

首先,考虑在斜面上的平抛运动。

设平抛物体的投掷速度为v_0,投掷角度为α,斜面的倾角为θ。

将斜面的倾角θ定义为斜率tanθ,那么斜面上的单位长度上升高度Δy与单位长度水平位移Δx之间的关系为Δy/Δx=tanθ。

在平抛运动中,物体的水平速度一直保持不变,我们用v_x来代表物体的水平速度。

对于一段很小的时间间隔Δt内,物体的水平位移Δx等于水平速度与Δt的乘积,即Δx=v_xΔt。

假设在时间间隔Δt内,物体的垂直位移为Δy。

根据加速度等于重力加斜坡所施加的垂直于斜面的分力的关系,我们有Δy=(1/2)gt^2+ (1/2)ax^2由于斜坡上没有水平加速度,垂直方向上的加速度可以简化为重力的投影分量,即a=gsinθ。

代入上述方程,我们可以将Δy表示为Δy=(1/2)g(tΔt)^2+(1/2)g(v_xtΔt)^2根据物体的初速度和加速度的关系v_y=v_0sinα-gt,我们可以得到Δy=v_0sinαΔt- (1/2)gΔt^2将上述两个方程联立,得到v_0sinαΔt-(1/2)gΔt^2=(1/2)g(tΔt)^2+ (1/2)g(v_xtΔt)^2将该式重整理为v_0sinαΔt=(1/2)g(1-v_x^2t^2/(v_0cosα)^2)Δt^2,并整理得到v_0sinα=(1/2)g(1- v_x^2t^2/(v_0cosα)^2)Δt。

在投掷角度α相同的情况下,物体的总飞行时间T=2v_0sinα/g。

因此,Δt=T/2同时,根据水平速度v_x=v_0cosα,我们知道物体所有的水平位移Δx可以表示为Δx=v_0cosαT/2再次回到最初的关系式Δy/Δx=tanθ。

将Δy和Δx代入该关系式,得到tanθ=(1/2)g(1- v_x^2t^2/(v_0cosα)^2)Δt/(v_0cosαT/2)。

8与斜面结合的平抛问题

8与斜面结合的平抛问题

与斜面结合的平抛运动问题考点规律分析与斜面结合的平抛运动常见的两类情况(1)顺着斜面抛:如图甲所示,物体从斜面上某一点水平抛出以后又重新落在斜面上,此时平抛运动物体的合位移方向与水平方向的夹角等于斜面的倾角。

结论有:①到达斜面的速度方向与斜面夹角恒定;②到达斜面的水平位移和竖直位移的关系:tanθ=yx=12gt2v0t=gt2v0;③运动时间t=2v0tanθg。

(2)对着斜面抛:如图乙所示,做平抛运动的物体垂直打在斜面上,此时物体的合速度与竖直方向的夹角等于斜面的倾角。

结论有:①速度方向与斜面垂直;②水平分速度与竖直分速度的关系:tanθ=v0v y=v0gt;③运动时间t=v0g tanθ。

例题讲解女子跳台滑雪如图所示,运动员踏着专用滑雪板,不带雪杖在助滑路上(未画出)获得一速度后水平飞出,在空中飞行一段距离后着陆,这项运动非常惊险。

设一位运动员由斜坡顶的A点沿水平方向飞出的速度v0=20 m/s,落点在斜坡上的B点,斜坡倾角θ取37°,斜坡可以看成一斜面。

(取g=10 m/s2,sin37°=0.6,cos37°=0.8)求:(1)运动员在空中飞行的时间t ; (2)A 、B 间的距离s 。

[规范解答] (1)运动员由A 点到B 点做平抛运动,水平方向的位移x =v 0t ,竖直方向的位移y =12gt 2,又yx =tan37°,联立以上三式得t =2v 0tan37°g =3 s 。

(2)由题意知sin37°=y s =12gt 2s , 得A 、B 间的距离s =gt 22sin37°=75 m 。

[完美答案] (1)3 s (2)75 m物体从斜面平抛后又落到斜面上,则其位移大小为抛出点与落点之间的距离,位移的偏角为斜面的倾角α,且tan α=\f(y,x )。

当速度平行于斜面时,物体离斜面最远。

举一反三作业1.如图所示,以9.8 m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,这段飞行所用的时间为(g 取9.8 m/s 2,不计空气阻力)( )A.23s B.223sC. 3 s D.2 s答案C解析如图所示,把末速度分解成水平方向的分速度v0和竖直方向的分速度v y,则有tan30°=v0vy ,又v y=gt,解两式得t=v yg=3v0g= 3 s,故C正确。

第16讲 斜面上的平抛运动模型及类平抛运动模型(解析版)

第16讲 斜面上的平抛运动模型及类平抛运动模型(解析版)

第16讲 斜面上的平抛运动模型及类平抛运动模型一.知识总结斜面上的平抛运动问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决。

1.从斜面上某点水平抛出,又落到斜面上的平抛运动的五个规律(推论) (1)位移方向相同,竖直位移与水平位移之比等于斜面倾斜角的正切值。

(2)刚落到侧面时的末速度方向都平行,竖直分速度与水平分速度(初速度)之比等于斜面倾斜角正切值的2倍。

(3)运动的时间与初速度成正比⎝ ⎛⎭⎪⎫t =2v 0tan θg 。

(4)位移与初速度的二次方成正比⎝ ⎛⎭⎪⎫s =2v 20tan θg cos θ。

(5)当速度与斜面平行时,物体到斜面的距离最远,且从抛出到距斜面最远所用的时间为平抛运动时间的一半。

2.常见的模型模型方法分解速度,构建速度三角形,找到斜面倾角θ与速度方向的关系 分解速度,构建速度的矢量三角形分解位移,构建位移三角形,隐含条件:斜面倾角θ等于位移与水平方向的夹角基本 规律水平:v x =v 0竖直:v y =gt 合速度:v =v 2x +v 2y水平:v x =v 0 竖直:v y =gt 合速度:v =v 2x +v 2y水平:x =v 0t 竖直:y =12gt 2 合位移: s =x 2+y 2方向:tanθ=v xv y方向:tanθ=v yv x方向:tanθ=yx运动时间由tanθ=v0v y=v0gt得t=v0g tanθ由tanθ=v yv0=gtv0得t=v0tanθg由tanθ=yx=gt2v0得t=2v0tanθg3.类平抛运动模型(1)模型特点:物体受到的合力恒定,初速度与恒力垂直,这样的运动叫类平抛运动。

如果物体只在重力场中做类平抛运动,则叫重力场中的类平抛运动。

学好这类模型,可为电场中或复合场中的类平抛运动打基础。

(2).类平抛运动与平抛运动的区别做平抛运动的物体初速度水平,物体只受与初速度垂直的竖直向下的重力,a=g;做类平抛运动的物体初速度不一定水平,但物体所受合力与初速度的方向垂直且为恒力,a=F合m。

斜面上平抛运动问题

斜面上平抛运动问题

斜面上的平抛运动问题一、情景描述:如果物体是从斜面上平抛的,若以斜面为参考系,平抛运动有垂直(远离)斜面和平行斜面两个方向的运动效果,如果题目要求讨论相对斜面的运动情况,如求解离斜面的最远距离等,往往沿垂直斜面和平行斜面两个方向进行分解,这种分解方法初速度、加速度都需要分解,难度较大,但解题过程会直观简便。

平抛运动中的“两个重要结论”是解题的关键,一是速度偏向角α,二是位移偏向角β,画出平抛运动的示意图,抓住这两个角之间的联系,即tan α=2tan β,如果物体落到斜面上,则位移偏向角β和斜面倾角θ相等,此时由斜面的几何关系即可顺利解题。

推论Ⅰ:做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为θ,位移方向与水平方向的夹角为φ,则tan θ=2tan φ。

证明:如右图所示,由平抛运动规律得tan θ=v y v x =gt v 0, tan φ=y 0x 0=12·gt 2v 0t =gt 2v 0, 所以tan θ=2tan φ。

推论Ⅱ:做平抛(或类平抛)运动的物体,任意时刻的瞬时速度方向的反向延长线一定通过此时水平位移的中点。

证明:如右图所示,tan φ=y 0x 0tan θ=2tan φ=y 0x 0/2即末状态速度方向的反向延长线与x 轴的交点B 必为此时水平位移的中点。

注意:(1)在平抛运动过程中,位移矢量与速度矢量永远不会共线。

(2)它们与水平方向的夹角关系为tan θ=2tan φ,但不能误认为θ=2φ。

【典例精析】:如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上, 物体与斜面接触时速度与水平方向的夹角φ满足( )A .tan φ=sin θB .tan φ=cos θC .tan φ=tan θD .tan φ=2tan θ[解析]竖直速度与水平速度之比为:tan φ=gt v 0,竖直位移与水平位移之比为:tan θ=gt 22v 0t,故tan φ=2tan θ, D 正确。

平抛运动与斜面、曲面结合的问题--高考物理热点模型(解析版)

平抛运动与斜面、曲面结合的问题--高考物理热点模型(解析版)

平抛运动与斜面、曲面结合的问题模型概述1.模型概述:在分析与斜面有关的平抛运动问题时,注意分析题干信息,强调的是速度方向还是位移方向,然后进行分解并利用两分量与已知角关系求解.2.各种类别:1)平抛与竖直面结合水平:d =v 0t竖直:h =12gt 22)平抛与斜面结合①顺着斜面平抛情形一:落到斜面上,已知位移方向沿斜面向下处理方法:分解位移.x =v 0t y =12gt 2tan θ=yx可求得t =2v 0tan θg .情形二:物体离斜面距离最大,已知速度方向沿斜面向下处理方法:分解速度v x =v 0v y =gt tan θ=v y vx可求得t =v 0tan θg .②对着斜面平抛:垂直打在斜面上,已知速度方向垂直斜面向下处理方法:分解速度.v x =v 0v y =gt tan θ=v x v y=v 0gt可求得t =v 0g tan θ.3)平抛与圆面结合①小球从半圆弧左边沿平抛,落到半圆内的不同位置.处理方法:由半径和几何关系制约时间t :h =12gt2R ±R 2-h 2=v 0t联立两方程可求t .②小球恰好沿B 点的切线方向进入圆轨道,此时半径OB 垂直于速度方向,圆心角α与速度的偏向角相等.处理方法:分解速度.v x =v 0v y =gt tan θ=v y v x=gt v可求得t =v 0tan θg .③小球恰好从圆柱体Q 点沿切线飞过,此时半径OQ 垂直于速度方向,圆心角θ与速度的偏向角相等.处理方法:分解速度.v x =v 0v y =gt tan θ=v y v x=gt v可求得t =v 0tan θg .4)与圆弧面有关的平抛运动:题中常出现一个圆心角,通过这个圆心角,就可找出速度的方向及水平位移和竖直位移的大小,再用平抛运动的规律列方程求解.典题攻破1.平抛运动与斜面结合的问题1.(2024·辽宁·模拟预测)如图所示,斜面的倾角为θ,斜面的长度为L 。

高一物理:与斜面(曲面)结合的平抛运动

高一物理:与斜面(曲面)结合的平抛运动

与斜面(曲面)结合的平抛运动题型一顺着斜面平抛宇航员站在某质量分布均匀的星球表面一斜坡上P 点,沿水平方向以初速度0v 抛出一个小球,测得小球经时间t 落到斜坡另一点Q 上,斜坡的倾角为α,已知该星球的半径为R ,引力常量为G ,球的体积公式是34π3V R 。

求:(1)该星球表面的重力加速度g ;(2)该星球的密度;(3)该星球的第一宇宙速度。

【解题技巧提炼】(1)落到斜面上,已知位移方向沿斜面向下(如图)处理方法:分解位移.x =v 0ty =12gt 2tan θ=y x可求得t =2v 0tan θg.(2)物体离斜面距离最大,已知速度方向沿斜面向下(如图)处理方法:分解速度v x=v0,v y=gttanθ=v yv0.t=v0tanθg从斜面上某点水平抛出,又落到斜面上的平抛运动的五个规律(推论)(1)位移方向相同,竖直位移与水平位移之比等于斜面倾斜角的正切值。

(2)刚落到侧面时的末速度方向都平行,竖直分速度与水平分速度(初速度)之比等于斜面倾斜角正切值的2倍。

(3(4(5)当速度与斜面平行时,物体到斜面的距离最远,且从抛出到距斜面最远所用的时间为平抛运动时间的一半。

题型二对着斜面平抛如图所示,倾角为37°的斜面长l=1.9m,在斜面底端正上方的O点将一小球以v0=3m/s的速度水平抛出,与此同时由静止释放斜面顶端的滑块,经过一段时间后,小球恰好能够以垂直于斜面的速度在斜面P点处击中滑块。

(小球和滑块均可视为质点,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8),求:(1)抛出点O离斜面底端的高度;(2)滑块与斜面间的动摩擦因数μ。

【解题技巧提炼】垂直撞在斜面上,已知速度方向垂直斜面向下(如图)处理方法:分解速度.v x =v 0v y =gttan θ=v x v y =v 0gt可求得t =v 0g tan θ.题型三与圆弧面有关的平抛运动(多选)如图所示为一半球形的坑,其中坑边缘两点M 、N 与圆心等高且在同一竖直面内。

平抛运动斜面上的平抛问题(共10张PPT)

平抛运动斜面上的平抛问题(共10张PPT)
例3 从倾角为θ的足够长的斜面上的A点,先后将同一小球以不同的初速度水平向右抛出.第一次初速度为v1,球落到斜面上的瞬时速度方向
与斜面夹角为α1,第二次初速度为v2,球落到斜面上的瞬时速度方向与斜面夹角为α2,若v1>v2,则
A、α=β>γ B、α=β=γ
小球可能落在斜面上的c点与d点之间
C、α=β<γ D、α<β<γ
>v ,则 的速度方向与斜面夹角 为θ;不计空气阻力,初速度为v时
2 如图所示,在倾角为θ的斜面上以初速度v0 水平抛出一物体,落在斜面上,试求物体运动的时间.
A、B落到斜面上时的速度方向与水平方向的夹角分别为α、β,C落到水平面上时的速度方向与水平向方的夹角为γ,则有( )
A.α >α 小在球顶落 点在把斜两面个时小的球速以1度同方样向大与小2斜的面初夹速角度也分为别向θ 左、向右水平抛出,小球都落在斜面上,若不计空气阻力,则A、B两个小球运动时间之比为(
1
练习2.足够长的斜面上有a、b、c、d、e五个点, ab=bc=cd=de,从a点水平抛出一 个小球,初速度为v时,小 球落在斜面上的b点,落在斜面上时的速度方向与斜面夹角 为θ;不计空气阻力,初速度为2v时 A.小球可能落在斜面上的c点与d点之间 B.小球一定落在斜面上的e点
C.小球落在斜面时的速度方向与斜面夹角大于θ
B. ) α =α A、α=β>γ
B、1α=β=2 γ
C.α <α 足够长的斜面上有a、b、c、d、e五个点,ab=bc=cd=de,从a点水平抛出一 个小球,初速度为v时,小球落在斜面上的b点,落在斜面上时
2 的速度方向与斜面夹1 角 为θ;不计空气阻力,初速度为2v时
D.无法确定 A、α=β>γ B、α=β=γ
平抛运动2--斜面上的平抛问题

平抛体在斜面上的最高大高度

平抛体在斜面上的最高大高度

平抛体在斜面上的最高大高度平抛体是指在一定速度下以水平方向抛出的物体,在空气中受到空气阻力的影响,其运动轨迹呈现抛物线形状。

而当这种物体在斜面上运动时,其最高垂直高度会受到斜面倾角和起始速度的影响,下面我们就来详细解析一下平抛体在斜面上的最高大高度的计算方法。

首先,我们需要了解一些基本知识和公式,这里我们以平抛体的运动方程为例:① x = v0tx② y = v0tyt - 1/2gt²其中,x 和 y 分别代表平抛体在水平和垂直方向上的运动距离;v0x 和 v0y 分别代表平抛体在水平和垂直方向上的初速度;g 代表重力加速度,取值为9.8m/s²;t 代表运动时间。

从上述公式中我们可以看出,平抛体在水平方向上的运动速度一定,而其在垂直方向上的速度受到重力的影响而逐渐减小,最终为0。

接下来我们考虑平抛体在斜面上的运动情况,在斜面上,与水平方向成角度θ,其初速度可以分解为水平方向v0x和斜面法线方向上的初速度v0y。

当平抛体到达斜面最高点时,其速度方向与斜面法线方向垂直,因此其垂直速度为0。

我们可以根据初速度和重力加速度的夹角来求出平抛体在斜面上的加速度,设其为a,则有:a = gsinθ由初速度v0y和加速度a求出到达最高点的时间t1:t1 = v0y/a = v0sinθ/g根据公式②可得到平抛体在t1时的高度:由于到达最高点时,平抛体的垂直速度为0,因此在达到最高点时,有:v1y = 0由平抛体在斜面运动时的动量守恒可知:m(v0x) = m(v1x)将t1代入公式中可以得到:综上所述,我们得出了平抛体在斜面上的最高垂直高度的计算公式。

由此可见,该高度与斜面倾角θ有关,当斜面倾角较小时,平抛体的最高垂直高度较高,反之,当斜面倾角较大时,平抛体的最高垂直高度较低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2 平抛运动的规律和应用(二)
考点:
斜面上的平抛运动
典型例题
[例1] 如图4-2-1所示,斜面倾角为300,小球从A 点以初速度v 0水平抛出,恰好落到斜面B 点,求:①AB 间的距离;②物体在空中飞行的时间;③从抛出开始经多少时间小球与斜面间的距离最大?
[例2]一斜面倾角为θ,A 、B 两个小球均以水平初速度v0水平抛出(如图4-2-2所示,A 球垂直撞在斜面上,B 球落到斜面上的位移最短,不计空气阻力,则A 、B 两个小球下落时间tA 与tB 之间的关系为( )
A .tA =t
B B .tA =2tB
C .tB =2tA
D .无法确定
[例3] 如图4-2-3所示,一个斜面固定在水平面上,从斜面顶端以不同初速度v0水平抛出一小球,得到小球在`空中运动时间t 与初速度v0的关系如下表所示,g 取10 m/s2试求:
v 0/m ·s -1
…2…910…t /s …0.400… 1.000 1.000…
(1)v0=2 m/s 时平抛水平位移s ;
(2)斜面的高度
h ;
(3)斜面的倾角θ。

针对训练:
1.某同学在篮球训练中,以一定的初速度投篮,篮球水平击中篮板,现在他向前走一小段距离,与篮板更近,再次投篮,出手高度和第一次相同,篮球又恰好水平击中篮板上的同一点,则( )
A .第二次投篮篮球的初速度大些
B .第二次击中篮板时篮球的速度大些
图4-2-1
C.第二次投篮时篮球初速度与水平方向的夹角大些
D.第二次投篮时篮球在空中飞行时间长些
2.如图1所示,在水平地面上固定一倾角为θ=37°、表面光滑的斜面体,物体A以v1=6 m/s
的初速度沿斜面上滑,同时在物体A的正上方,有一物体B以某一初速度水平抛出.如果当A
上滑到最高点时恰好被B物体击中.(A、B均可看做质点,sin37°=0.6,cos37°=0.8,取g=10 2
m/s)求:
(1)物体A上滑到最高点所用的时间t;
(2)物体B抛出时的初速度v2;
(3)物体A、B间初始位置的高度差h.
图1
3.如图2所示,在距地面2l的高空A处以水平初速度v0=gl投掷飞镖,在与A点水平距
离为l的水平地面上的B点有一个气球,选择适当时机让气球以速度v0=gl匀速上升,在
升空过程中被飞镖击中。

飞镖在飞行过程中受到的空气阻力不计,在计算过程中可将飞镖和
气球视为质点,已知重力加速度为g。

试求:
(1)飞镖是以多大的速度击中气球的;
(2)掷飞镖和释放气球两个动作之间的时间间隔Δt。

图2
4.国家飞碟射击队在进行模拟训练时用如图所示装置进行.被训练的运动员在高H=
20 m的塔顶,在地面上距塔水平距离为l处有一个电子抛靶装置,圆形靶可被以速度
v2竖直向上抛出.当靶被抛出的同时,运动员立即用特制手枪沿水平方向射击,子弹速
度v1=100 m/s.不计人的反应时间、抛靶装置的高度及子弹在枪膛中的运动时间,且忽
略空气阻力及靶的大小(g取10 m/s2).
(1)当l取值在什么范围内,无论v2为何值靶都不能被击中?
(2)若l=100 m,v2=20 m/s,试通过计算说明靶能否被击中?。

相关文档
最新文档