常用逆变电源电路图

合集下载

逆变器原理及电路图

逆变器原理及电路图

逆变器原理及电路图2009-09-10 21:52场上常见款式车载逆变器产品的主要指标输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。

二常见车载逆变器产品的电路图及工作原理目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。

一款最常见的车载逆变器电路原理图见图1。

车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。

[img]/UploadFiles/200942618167800.jpg[/img]1.车载逆变器电路工作原理图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。

由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。

图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。

TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。

全桥逆变电路

全桥逆变电路

常用逆变电源电路图作者:本站来源:本站原创发布时间:2007-12-22 13:46:00 [收藏] [评论]常用逆变电源电路图双端工作的方波逆变变压器的铁心面积乘积公式为AeAc=Po(1+η)/(ηDKjfKeKc Bm)(1)式中:Ae(m2)为铁心横截面积;Ac(m2)为铁心的窗口面积;Po为变压器的输出功率;η为转换效率;δ为占空比;K是波形系数;j(A/m2)为导线的平均电流密度;f为逆变频率;Ke为铁心截面的有效系数;Kc为铁心的窗口利用系数;Bm为最大磁通量。

图3变压器原边的开关管S1和S2各采用IRF32055只并联,之所以并联,主要是因为在逆变电源接入负载时,变压器原边的电流相对较大,并联可以分流,可有效地减少开关管的功耗,不至于造成损坏。

PWM控制电路芯片SG3524,是一种电压型开关电源集成控制器,具有输出限流,开关频率可调,误差放大,脉宽调制比较器和关断电路,其产生PWM方波所需的外围线路很简单。

当脚11与脚14并联使用时,输出脉冲的占空比为0~95%,脉冲频率等于振荡器频率的1/2。

当脚10(关断端)加高电平时,可实现对输出脉冲的封锁,与外电路适当连接,则可以实现欠压、过流保护功能。

利用SG3524内部自带的运算放大器调节其输出的驱动波形的占空比D,使D>50%,然后经过CD4011反向后,得到对管的驱动波形的D< 50%,这样可以保证两组开关管驱动时,有共同的死区时间。

3 DC/AC变换如图3所示,DC/AC变换采用单相输出,全桥逆变形式,为减小逆变电源的体积,降低成本,输出使用工频LC滤波。

由4个IRF740构成桥式逆变电路,IRF740最高耐压400 V,电流10A,功耗125W,利用半桥驱动器IR2110 提供驱动信号,其输入波形由SG3524提供,同理可调节该SG3524的输出驱动波形的D<50%,保证逆变的驱动方波有共同的死区时间。

图4IR2110是IR公司生产的大功率MOSFET和IGBT专用驱动集成电路,可以实现对MOSFET和IGBT的最优驱动,同时还具有快速完整的保护功能,因而它可以提高控制系统的可靠性,减少电路的复杂程度。

dc ac逆变器电路图

dc ac逆变器电路图

dc ac逆变器电路图dcac逆变器电路图这里介绍的逆变器(见图)主要由MOS场效应管,普通电源变压器构成。

其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。

下面介绍该逆变器的工作原理及制作过程。

电路图工作原理这里我们将详细介绍这个逆变器的工作原理。

方波信号发生器(见图3)这里采用六反相器CD4069构成方波信号发生器。

电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率工作原理这里我们将详细介绍这个逆变器的工作原理。

方波信号发生器(见图3)这里采用六反相器CD4069构成方波信号发生器。

电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。

电路的振荡是通过电容C1充放电完成的。

其振荡频率为f=1/2.2RC。

图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。

由于元件的误差,实际值会略有差异。

其它多余的反相器,输入端接地避免影响其它电路。

场效应管驱动电路由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。

如图4所示。

MOS场效应管电源开关电路。

这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。

图5MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。

它一般有耗尽型和增强型两种。

本文使用的为增强型MOS 场效应管,其内部结构见图5。

它可分为NPN型PNP型。

NPN型通常称为N沟道型,PNP型也叫P沟道型。

三相半桥逆变和全桥逆变介绍和参数对比

三相半桥逆变和全桥逆变介绍和参数对比

半桥逆变和全桥逆变的介绍一、典型的单相半桥电路图:•半桥逆变电路有两个桥臂,每个桥臂有 一个IGBT 模块和一个反并联二极管组成。

•在直流侧接有两个相互串联的足够大的电容,两个电容的联结点是直流电源的中点。

•负载联结在直流电源中点和两个 桥臂联结点之间。

对于三相半桥逆变,则由3套同样的 电路组合而成,每套电路的控制时序 不同。

二、典型的全桥逆变电路图:全桥逆变电路可看成由两个半桥电路组合而成,共4个桥臂, 桥臂1和4为一对,桥臂2和3为 另一对,成对桥臂同时导通, 两对交替各导通180°三相逆变全桥电路示意图如下:+ -RLa)U d i o u oV 1 V 2 VD 1VD 2U d 2U d2+-C R L U dV 1V 2V 3V 4VD 1VD 2VD 3VD 4u o i o半桥电路与全桥电路的区别如下:①半桥电路由一个臂就可以形成正/负半波,每个逆变模块和其他臂上的功率管不发生任何关系。

而全桥电路中是一个桥臂上的功率管和其它桥臂的功率模块同时导通,分时控制。

②半桥电路的输出本身就是具有中线的三相四线制结构,一般采用高频调制脉冲进行控制,不用加输出变压器。

而全桥电路必须有输出变压器。

③半桥电路需要正负两组电池,直流电压高,需要单独的充电器,否则充电能力不足,而全桥电路只需一组电池,整流器具备大功率的充电能力。

④半桥电路的每一组输出电压均需经过一个高频lc滤波器将脉宽调制波解调成正弦波,在解调过程中,每次谐波经电容器的低阻抗旁路到中线n,又由于三相输出电压在相位上互差120º,不能将高次谐波互相抵消,所以其中线n上具有不易消除的高次谐波。

全桥逆变器必然需要一个工频隔离变压器,其原边与电容构成低通滤波将脉宽调制波解调成正弦波,高次谐波不会传递到负载侧。

半桥逆变电路特点优点:简单,使用开关器件少,电路实现简单;缺点:输出交流电压幅值只有U d/2,直流侧需两电容器串联,工作时要注意两侧直流电压均衡,否则容易引起器件发生故障。

逆变电路

逆变电路

逆变电源设计概要大家知道,市电或其他的交流电可以通过二极管或可控硅的单向导电性整流成直流电供给需要使用直流电的场合。

这种把交流电变换成直流电的过程我们叫做整流,也叫做顺变。

那么逆变呢?我们自然地就会想到,应该就是把直流电变换成交流电的过程。

逆变电源就是相对于整流器而言通过半导体功率开关器件的开通和关断把直流电变换成交流电的这么一个装置。

逆变电源也叫做逆变器,下面分单元地讲一下逆变器主要的单元电路。

主要内容为:一.电池输入电路二.辅助电源电路1. 12V电池输入的辅助电源电路2. 24V-48V电池输入的辅助电源电路3. 多路隔离辅助电源电路三.高频逆变器前级电路的设计1. 闭环前级变压器匝数比的设计2. 准开环前级变压器匝数比的设计四.高频逆变器后级电路的设计1. 米勒电容对高压MOS管安全的影响及其解决办法2. IR2110应用中需要注意的问题3. 正弦波逆变器LC滤波器的参数五.逆变器的部分保护电路1. 防反接保护电路2. 电池欠压保护3. 逆变器的过流短路保护电路的设计4. IGBT的驱动和短路保护一.电池输入电路逆变器大多用在车载上,利用汽车上的蓄电池和发电机组成的低压直流供电系统供电。

这个系统上往往还给其他的用电器供电,所以有必要在逆变器的输入端设计一个输入电路保证能滤除大部分来自直流供电系统的纹波和干扰,同时也滤除逆变器对直流供电系统上其他用电器的干扰。

输入电路一般由LC构成,如上图所示:输入电路设计中需要注意的是L要能过足够的电流不会饱和和过热。

LC的参数还要能起到滤波效果。

在实际的电路中也往往在节省成本或要求不高时省去L.二.辅助电源电路。

逆变器除了功率变换回路外,还包含了小信号部分的供电,例如PWM信号芯片的12V供电,运放的单电源或双电源供电,单片机的5V或3.3V供电等。

对上述电路提供一个稳定的纯净的电源供电在逆变器中也显得很重要。

1.12V电池输入的辅助电源电路对于12V电池供电的逆变器,一般经过一级RC滤波给PWM芯片如TL494,SG3525等供电即可。

简单的逆变器电路图分析

简单的逆变器电路图分析

简单的逆变器电路图分析
分析该电路的工作过程!不要怕打字,高分回报!
这个电路我以前曾做过,我可以给你讲一下,C2是隔直电容,也可以说升压电容,可以保护电路不过载,R2是振教荡调节电阻,大小为1-2欧,L1,L2是初级线圈,L3L4是自振荡线圈L5是输出线圈,R1可以不要。

电源接通,电流通过R2限流,流经L3L4中间抽头,再经两头尾抽头到功率管基极导通功率管,经L1L2初级线圈,产生一次初级电流,经变压器耦合,在L5形成次级电流,第一次振荡完成。

在L1L2形成电流同时,L3L4也通过变压器形成第二次感应电流,再次导通功率管,这样这个自激振荡电路就这样振荡下去,直到断电或管子烧坏。

(功率放大管可以用开关管,职DD207,3DD15,AX18)唯一不好的是频率不稳定,不过用在电鱼还不很好的,现在都用555作振荡电路,
追问
大侠,可以推荐一下,专用的逆变器IC吗,当然要简单构造的,不要太复杂啦,如果用IC我就可省去震荡电路自己做驱动就行啦,而且IC控制好调节,故障好检修,有这种IC吗!
回答
我给你一个555的。

tl494高频逆变器电路图(第1页)

tl494高频逆变器电路图(第1页)

tl494⾼频逆变器电路图(第1页)
图⽚集简介:tl494⾼频逆变器电路图 (第1页),该页⾯将为您提供关于
tl494⾼频逆变器电路图的图⽚集,涵盖的图⽚有逆变器电路图介绍
(tl494/555作逆变器/纯正弦波逆变器电路) 模拟技术正⽂下图为利⽤tl494组成的400w⼤功率稳压逆变器电路. 求助关于...
逆变器电路图介绍(tl494/555作逆变器/纯正弦波逆变器电路)
模拟技术正⽂下图为利⽤tl494组成的400w⼤功率稳压逆变器电路.
求助关于12到220v 100w以下的逆变器制作
逆变器电路21本⽂图⽚内容是:tl494⾼频逆变器电路图
tl494组成的逆变器(7.2v 转450v ac)电路图
tl494设计的逆变器电路。

最常见的车载逆变器电路原理图

最常见的车载逆变器电路原理图

创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*最常见的车载逆变器电路原理图见图1。

车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。

车载逆变器电路工作原理图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。

由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V /50Hz交流电供各种便携式电器使用。

图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。

TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。

TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。

TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。

TL494芯片的内部电路图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。

上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。

第5章-逆变电路

第5章-逆变电路
(2)当S1、S4闭合,S2、S3断开时,负载电压uo为正。 (3)当S1、S4断开,S2、S3闭合时,负载电压uo为负。
当变化两组开关切换频率,就可变化输出交流电频
率相也;位不若也同接相。电同阻;负若载阻时感,负负载载时电,i流o相io和位u滞o旳后波于形uo相,同波,形
如图所示,设t1前S1、S4通,则uo和io均为正。 若在t1时刻断开S1、S4,合上S2、S3,则uo旳极性变负,但io 不能立即反向且仍维持原方向;
交直交变频电路由交直变换(整流)和直交变换两部分构成, 后一部分就是逆变。
3. 应用
多种直流电源,如蓄电池、干电池、太阳能电池等在向交流 负载供电时就需要逆变电路。
交流电机调速用变频器、不间断电源、感应加热电源等电力 电子装置旳关键部分都是逆变电路。
2024/9/22
5.1 换流方式
5.1.1 逆变电路旳基本工作原理 5.1.2 换流方式分类
优点:电路简朴,使用器件少。
缺陷电:容输器出串交联流,电须压控幅制值两仅者为电压Ud均/2衡,。且直流侧需要两个
应用: 常用于几kW下列旳小功率逆变电源。 单相全桥、三相桥式都可看成若干个半桥逆变电路 旳组合。
2024/9/22
5.2.1 单相电压型逆变电路
2. 全桥逆变电路
共四个桥臂,可看成两个 半桥电路组合而成。 两对桥臂交替导通180°。 输出电压和电流波形与半 桥电路形状相同,但幅值 高出一倍。 变化输出交流电压旳有效 值只能经过变化直流电压 Ud来实现。
2024/9/22
5.1.2 换流方式分类
4. 逼迫换流 举例:
设置附加旳换流电路,给欲关断旳晶闸管逼迫施加 反向电压或反向电流旳换流方式称为逼迫换流 (forced commutation), 这一般是利用附加电容上储存 旳能量来实现,故也称为电容换流。

电力电子技术(第5版)课件:逆变电路

电力电子技术(第5版)课件:逆变电路

a)
o
Um
O
t
-Um
io
O
t3 t1 t 2
t4
t5 t6
t
ON
V1 V 2
V1 V2
VD1 VD 2 VD 1 VD2 b)
图4-6 单相半桥电压型逆
变电路及其工作波形
■半桥逆变电路
◆在直流侧接有两个相互串联的足够大
的电容,两个电容的联结点便成为直流电 源的中点,负载联接在直流电源中点和两 个桥臂联结点之间。
e) u NNO' u UN
f)
O
2Ud 3
Ud 6
t
Ud 3
t
iU
g)
O
t
id
h)
O
t
图4-10 电压型三相桥式逆变电路的工作波形
4.2.2 三相电压型逆变电路
u UN'
a)
O
Ud
t
u VN'
2
b)
O
t
u WN'
c)
O
t
u UV
Ud
d)
O
t
e) u NNO' u UN
f)
O
2Ud 3
Ud 6
t
Ud 3
逆变电路
4.1 换流方式 4.2 电压型逆变电路 4.3 电流型逆变电路 4.4 多重逆变电路和多电平逆变电路
本章小结
引言
■逆变的概念 ◆与整流相对应,直流电变成交流电。 ◆交流侧接电网,为有源逆变。 ◆交流侧接负载,为无源逆变,本章主要讲述无源逆变。
■逆变与变频 ◆变频电路:分为交交变频和交直交变频两种。 ◆交直交变频由交直变换(整流)和直交变换两部分组 成,后一部分就是逆变。

单相全桥逆变器电路图 单相桥式逆变器的工作原理和波形图详解

单相全桥逆变器电路图 单相桥式逆变器的工作原理和波形图详解

单相全桥逆变器电路图单相桥式逆变器的工作原理和波形图详解
一、单相全桥(逆变器)是什么?
单相全桥逆变器基本上是电压源逆变器,单相全桥逆变器的(电源电路)图下图所示。

为了简单,没有标出SCR触发电路和换向电路。

单相全桥逆变器采用2线直流(电源)、4个续流(二极管)和4个(可控硅)。

T1和可T2同时导通,其频率为f=1/T。

同样,T3 和T4同时开启。

(T1和T2 )和(T3和T4)的相位差有180℃。

单相全桥逆变器
二、单相全桥逆变器电路工作原理
单相全桥逆变器的工作分为4种模式:模式℃:(t1
模式℃(t1
模式II (T/2
模式III(t2
三、单相全桥逆变波形
这里S1、S2、S3、S4也就是T1、T2、T3、T4。

1、当负载为:负载为R、L、RL
1)纯(电感负载)L 负载:
电流Io 关于t 轴对称,因此直流分量= 0,并且电流从最小峰值电流(-Ip) 到最大峰值电流(+Ip) 呈线性。

在这种情况下:D1 和D2在0
负载为R、L、RL
2、当负载为纯阻性负载
输出电压(U0)和输出电流(I0)波形如下:
Ig1和Ig2为门脉冲,用于接通S1、S2和S3、S4。

对于阻性负载,在0
负载为纯阻性负载
3、任何负载的输出电压(U0)波形
负载的输出电压(U0)波形
对于任何类型的负载,输出电压波形将保持相同,但电流波形取决于负载的性质。

输出电压波形是半波对称的,因此不存在所有偶次谐波。

四、单相全桥逆变优点
电路中无电压波动
适合高输入电压
高效节能
功率器件的额定电流等于负载电流。

逆变器原理图_框图

逆变器原理图_框图

车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。

图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。

由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。

图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。

TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。

TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。

TL494芯片还内置2只NPN图二本逆变器输入端为汽车蓄电池(+12V,4.5Ah),输出端为工频方波电压(50Hz,220V)。

其系统主电路和控制电路框图如图1所示,采用了典型的二级变换,即DC/DC变换和DC/AC逆变。

12V直流电压通过推挽式变换逆变为高频方波,经高频升压变压器升压,再整流滤波得到一个稳定的约320V直流电压;然后再由桥式变换以方波逆变的方式,将稳定的直流电压逆变成有效值稍大于220V的方波电压,以驱动负载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用逆变电源电路图
收藏此信息打印该信息添加:用户发布来源:未知
双端工作的方波逆变变压器的铁心面积乘积公式为
AeAc=Po(1+η)/(ηDKjfKeKcBm)(1)
式中:Ae(m2)为铁心横截面积;
Ac(m2)为铁心的窗口面积;
Po为变压器的输出功率;
η为转换效率;
δ为占空比;
K是波形系数;
j(A/m2)为导线的平均电流密度;
f为逆变频率;
Ke为铁心截面的有效系数;
Kc为铁心的窗口利用系数;
Bm为最大磁通量。

图3
变压器原边的开关管S1和S2各采用IRF32055只并联,之所以并联,主要是因为在逆变电源接入负载时,变压器原边的电流相对较大,并联可以分流,可有效地减少开关管的功耗,不至于造成损坏。

PWM控制电路芯片SG3524,是一种电压型开关电源集成控制器,具有输出限流,开关频率可调,误差放大,脉宽调制比较器和关断电路,其产生PWM方波所需的外围线路很简单。

当脚11与脚14并联使用时,输出脉冲的占空比为0~95%,脉冲频率等于振荡器频率的1/ 2。

当脚10(关断端)加高电平时,可实现对输出脉冲的封锁,与外电路适当连接,则可以实现欠压、过流保护功能。

利用SG3524内部自带的运算放大器调节其输出的驱动波形的占空比D,使D>50%,然后经过CD4011反向后,得到对管的驱动波形的D<50%,这样可以保证两组开关管驱动时,有共同的死区时间。

3DC/AC变换
如图3所示,DC/AC变换采用单相输出,全桥逆变形式,为减小逆变电源的体积,降低成本,输出使用工频LC滤波。

由4个IRF740构成桥式逆变电路,IRF740最高耐压4 00V,电流10A,功耗125W,利用半桥驱动器IR2110提供驱动信号,其输入波形由SG3
524提供,同理可调节该SG3524的输出驱动波形的D<50%,保证逆变的驱动方波有共同的死区时间。

图4
IR2110是IR公司生产的大功率MOSFET和IGBT专用驱动集成电路,可以实现对MOSFET和IGBT的最优驱动,同时还具有快速完整的保护功能,因而它可以提高控制系统的可靠性,减少电路的复杂程度。

IR2110的内部结构和工作原理框图如图4所示。

图中HIN和LIN为逆变桥中同一桥臂上下两个功率MOS的驱动脉冲信号输入端。

SD为保护信号输入端,当该脚接高电平时,IR2110的输出信号全被封锁,其对应的输出端恒为低电平;而当该脚接低电平时,IR211 0的输出信号跟随HIN和LIN而变化,在实际电路里,该端接用户的保护电路的输出。

HO 和LO是两路驱动信号输出端,驱动同一桥臂的MOSFET。

IR2110的自举电容选择不好,容易造成芯片损坏或不能正常工作。

VB和VS之间的电容为自举电容。

自举电容电压达到8.3V以上,才能够正常工作,要么采用小容量电容,以提高充电电压,要么直接在VB和VS之间提供10~20V的隔离电源,本电路采用了1μF 的自举电容。

为了减少输出谐波,逆变器DC/AC部分一般都采用双极性调制,即逆变桥的对管是高频互补通和关断的。

4保护电路设计及调试过程中的一些问题
保护电路分为欠压保护和过流保护。

欠压保护电路如图5所示,它监测蓄电池的电压状况,如果蓄电池电压低于预设的10. 8V,保护电路开始工作,使控制器SG3524的脚10关断端输出高电平,停止驱动信号输出。

图5中运算放大器的正向输入端的电压由R1和R3分压得到,而反向输入端的电压由稳压管箝位在+7.5V,当蓄电池的电压下降超过预定值后,运算放大器开始工作,输出跳转为负,LED灯亮,同时三级管V截止,向SG3524的SD端输出高电平,封锁IR2110
的输出驱动信号。

过流保护电路如图6所示,它监测输出电流状况,预设为1.5A。

方波逆变器的输出电流经过采样进入运算放大器的反向输入端,当输出电流大于1.5A后,运算放大器的输出端跳转为负,经过CD4011组成的R S触发器后,使三级管V1基级的信号为低电平,三级管截止,向IR2011的SD1端输出高电平,达到保护的目的。

调试过程遇到的一个较为重要的问题是关于IR2110的自举电容的选择。

IR2110的上管驱动是采用外部自举电容上电,这就使得驱动电源的路数大大减少,但同时也对VB和VC之间的自举电容的选择也有一定的要求。

经过试验后,最终采用1μF的电解电容,可以有效地满足自举电压的要求。

相关文档
最新文档