动力电池设计规范

合集下载

5、 动力电池系统技术规范

5、 动力电池系统技术规范

密级:项目内部动力电池系统技术规范项目代号:文件编号:EVPT-VD1.27编写:时间:校核:时间:批准:时间:天津易鼎丰动力科技有限公司1. 文件范围本文件规范了XX公司XX车型所用XX动力电池必须满足的技术性能要求。

2. 术语定义和及产品执行标准2.2. 术语定义2.1.1 电动汽车(electric vehicle, EV):指以车载能源为动力,由电动机驱动的汽车;2.1.2 电芯(cell):一个单一的电化学电池最小的功能单元;2.1.3 模组(module):指由多个电芯的并联组装集合体,是一个单一的机电单元;2.1.4 电池组(battery pack):由一个或多个模组连接组成的单一机械总成;2.1.5 电池管理系统(battery management system, BMS):指任何通过监控充电电池的状态、计算二次数据并报告该等数据、保护该等充电电池、设置报警信号、与设备中的其他子系统进行电子通信、控制充电电池内部的环境或平衡该等充电电池或环境等方式来管理该等充电电池的电子设备,包括软件、硬件和运算法则;2.1.6 动力电池系统(battery system):动力电池系统是指由动力电池组、电池箱体、电池管理系统、电器元件及高低压连接器等组成的总成部件,功能为接收和储存由车载充电机、发电机、制动能量回收装置或外置充电装置提供的高压直流电,并且为电驱动系统及电辅助系统提供高压直流电;2.1.7 整车控制器(vehicle controller unit):检测控制电动汽车系统电路的控制器;2.1.8 高电压(High Voltage, HV):特指电动汽车200VDC以上高压系统;2.1.9 低电压(Low Voltage, LV):指任何信号或功率型能量低于50VDC,本文中特指整车12VDC电源系统;2.1.10 荷电状态(state-of-charge, SOC):电池放电后剩余容量与全荷电容量的百分比;2.1.11 寿命初始(Beginning Of Life, BOL):指动力电池系统刚交付使用的状态;2.1.12 寿命终止(End Of Life, EOL):动力电池系统能量降低到初始能量的80%,或者实时峰值功率低于初始峰值功率的85%时,视为寿命终止;2.1.13 电磁兼容性(Electro-Magnetic Compatibility, EMC):在同一电子环境中,两种或多种电子设备能互不干扰进行正常工作的能力;2.1.14 高低压互锁(High Voltage Inter-Lock, HVIL):特指低压断电时,通过低压信号控制能够同时将高压回路切断;2.1.15 CAN(Controller Area Network):控制器局域网;2.1.16 DFMEA(Failure Mode and Effects Analysis):设计故障模式及失效分析;2.1.17 MTBF(Mean Time Between Failure):平均无故障时间;2.1.18 额定容量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压或最高单体电压达到规定电压值,以恒定电压充电至电流小于0.05C(A)时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的容量为额定容量,单位为Ah;2.1.19 额定能量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压达到或最高单体电压达到规定电压值,以恒定电压充电至电流小于0.05CA时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的能量为额定能量,(Wh),此值可由电压-容量曲线的覆盖面积积分得到;2.1.20 可用能量:在25±2℃、-5±2℃两种温度条件下,按照《动力电池可用能量测试规范》分别做NEDC测试,动力电池系统在放电率允许的范围内实际放出的电量的平均值。

新能源汽车动力电池的设计与安全管理

新能源汽车动力电池的设计与安全管理

新能源汽车动力电池的设计与安全管理随着环境保护意识的提升和技术进步的推动,越来越多的国家和地区开始关注新能源汽车的发展和应用。

而动力电池作为新能源汽车的重要组成部分,其设计和安全管理则成为了一个备受关注的议题。

本文将探讨新能源汽车动力电池的设计原则和安全管理措施,以确保动力电池的性能和稳定性。

一、动力电池的设计原则动力电池的设计考虑因素众多,其中最重要的是电池容量、电池特性和电池系统的整体设计。

在动力电池的设计过程中,需要遵循以下原则:1.1 电池容量的合理规划电池容量是衡量动力电池能量储存能力的重要指标。

在设计过程中,需要根据车辆的驱动需求和续航里程进行科学合理的规划。

过低的电池容量可能导致续航里程不足,而过高的电池容量则会增加成本和重量,降低整车的性能。

1.2 电池特性的匹配和优化动力电池的特性包括充放电特性、循环寿命特性和工作温度特性等。

设计过程中需要对这些特性进行匹配和优化,以确保动力电池能够在各种工况下正常工作并充分释放能量。

同时,还需要考虑电池的安全性和稳定性,避免过热、过充和过放等问题。

1.3 系统的整体设计和优化除了动力电池本身的设计,还需要考虑到电池管理系统(BMS)、电池冷却系统和电池安全防护系统等。

这些系统需要与动力电池紧密配合,实现对电池性能和安全的全面管理和保护。

因此,在动力电池的设计过程中,需要综合考虑整车系统的需求并进行合理的系统设计和优化。

二、动力电池的安全管理措施为了确保新能源汽车动力电池的安全性,需要采取一系列的安全管理措施。

以下列举了一些重要的措施:2.1 电池系统的设计和布局电池系统的设计和布局应遵循最佳实践,确保电池组件之间的热量分布均衡,以提高电池的散热效果。

同时,还需要为电池组件提供足够的热量散出通道,减少过热风险。

此外,还需合理安装保护装置,如防护板、防火墙等,以防止电池受到外界碰撞或直接暴露于高温环境中。

2.2 温度管理和控制动力电池在充放电过程中会产生大量的热量,因此温度管理和控制至关重要。

动力电池结构设计标准

动力电池结构设计标准

动力电池结构设计标准动力电池是电动汽车的核心组件之一,对于电动汽车的性能、安全性以及使用寿命都有着至关重要的影响。

而动力电池的结构设计标准则直接决定了电池组的性能表现和整体可靠度。

本文将针对动力电池结构设计进行论述,探讨动力电池结构设计标准的要点和技术要求。

一、动力电池结构的基本要素动力电池结构的基本要素包括电池芯、电池模块和电池包。

电池芯是动力电池的核心,是由正负极片、隔膜和电解液组成,负责存储电能;电池模块是由若干电池芯组成的基本单元,负责电荷和放电;电池包则是多个电池模块的组合,提供电动汽车所需的能量。

二、动力电池结构设计标准的要点1. 安全性:动力电池是电动汽车的能量来源,必须具备高度的安全性。

动力电池结构设计应考虑到防止过充、过放、过压、过温等异常情况的发生,并采取相应的安全保护措施。

2. 散热设计:动力电池在充电和放电过程中会产生大量的热量,若散热不良会导致电池过热,甚至引发火灾等严重后果。

因此,动力电池结构设计应合理设计散热系统,确保电池能有效散热。

3. 电池模块可拆卸性:电池模块可拆卸设计方便了维修和替换工作,同时也提高了电池组的可靠性。

动力电池结构应考虑便于模块的拆卸和安装,以降低维修成本和维修时间。

4. 结构可靠性:动力电池需要在不同的环境条件下正常工作,故其结构设计应具备良好的可靠性。

动力电池结构应能够抵御振动、冲击和压力等外力作用,并保持良好的结构稳定性。

5. 尺寸和重量:动力电池结构设计应考虑电池组的尺寸和重量问题,以保证其能够适应电动汽车的空间和负载需求。

三、动力电池结构设计标准的技术要求1. 电池芯的安装方式:电池芯的安装方式可以采用固定式或可调节式。

固定式安装方式适用于要求高结构稳定性,不需频繁拆卸的场景,而可调节式安装方式适用于需要灵活调整电池组结构和容量的场景。

2. 电池模块的连接方式:电池模块之间的连接方式可以采用槽式连接或插鞋式连接。

槽式连接适用于电池模块数量较少且结构相对固定的场景,而插鞋式连接适用于电池模块数量较多且需要频繁拆卸和更换的场景。

动力电池及管理系统(BMS)设计技术规范

动力电池及管理系统(BMS)设计技术规范

电池及管理系统设计技术规范编制:校对:审核:批准:有限公司2015年9月目录前言 (3)一、锂离子电池选型 (4)1、范围 (4)2、规范性引用文件 (4)3、术语和定义 (4)4、符号 (4)5、动力蓄电池循环寿命要求 (5)6、动力蓄电池安全要求 (5)7、动力蓄电池电性能要求 (6)8、电池组匹配 (8)9、电池组使用其他注意事项 (9)二、电池管理系统选型 (10)1、术语定义 (10)2、要求 (10)3、试验方法 (12)4、标志 (13)前言综述电动车的的电池就好比汽车油箱里的汽油。

它是由小块单元电池通过串并联方式级联后,通过BMS的管理,将电能传递到高压配电盒,然后分配给驱动电机和各个高压模块(DC/DC、空调压缩机、PTC等)。

电池管理系统(BMS)采用的是一个主控制器(BMU)和多个下一级电池采集模块(LECU)组成模块化动力电池管理系统,是一种具有有效节省电池电能、提高车辆安全性、实现充放电均衡和降低运行成本功能的电池管理系统模式。

高压控制系统的预充电及正负极高压继电器均由BMS控制,设置了充电控制继电器,增加高压充电时的安全性。

动力电池容量和正极材料的选择电池容量的确定,是根据车型电机的功率、运行时的额定电压、电流。

选择出电池包的电压、串并联的形式。

由电机额定的电压可以选择出需要串联电池的个数,由电机运行时的额定电流可以选择出需要并联电池的个数。

具体计算如下:由整车设计的匹配参数,确定好电机的功率和扭矩后,就可以计算出,动力电池包的串并联电池的数目,串联电池的电压U等于电机额定电压,就可推算出串联的电池个数N串=U/3.7(对于三元锂电的锂电池),对于最少并联的电池个数N并=电机运行工况的平均电流/单元电池的容量*续航里程/工况的平均时速。

电池的选择,则要考虑电池正极材料的类型,总的原则是12米以上的客车主要以磷酸铁锂电池为主,6米小型客车和乘用车的主要是三元锂电池为主。

动力电池技术的国际标准与规范

动力电池技术的国际标准与规范

动力电池技术的国际标准与规范随着全球能源转型和汽车产业的快速发展,动力电池作为电动汽车的核心组件之一,其技术标准与规范的制定和实施变得至关重要。

本文将对动力电池技术的国际标准和规范进行探讨,以期为相关行业提供参考和借鉴。

一、动力电池技术的国际标准1. ISO/IEC 62660系列标准ISO/IEC 62660系列标准是国际上最重要的动力电池标准之一。

该系列标准主要规定了动力电池的性能测试方法、耐久性能要求、安全性能要求等内容,为动力电池的设计、研发、制造和使用提供了一致的技术规范。

2. UN R100UN R100是联合国制定的动力电池国际标准,适用于电动汽车和混合动力汽车的高压动力电池系统。

该标准对动力电池的安全性能、机械强度、电气安全性和安全管理等方面进行了详细规定,确保了动力电池的安全可靠性。

3. GB/T 31485-2015GB/T 31485-2015是中国制定的动力电池技术标准,是中国汽车工业领域的动力电池技术标准,与国际标准相互衔接。

该标准细化了电池的性能指标、测试方法和试验条件,有力地推动了我国动力电池行业的规范化和标准化发展。

二、动力电池技术的国际规范1. ISO/IEC 29167系列规范ISO/IEC 29167系列规范是国际电工委员会和国际标准化组织联合制定的,主要规范了动力电池与车辆之间的通信标准。

该系列规范确保了动力电池在不同车辆之间的互操作性和通信的安全性,为电动汽车的发展提供了技术保障。

2. SAE J2929SAE J2929是美国汽车工程师协会制定的动力电池规范,详细规定了动力电池的构造、性能和测试方法。

该规范对动力电池的设计、制造、测试和使用提供了指导,为动力电池的研发和市场应用奠定了基础。

3. GB/T 31467.3-2015GB/T 31467.3-2015是中国制定的动力电池规范之一,主要规定了动力电池的储存、运输和安全要求。

该规范要求电池制造商和使用者制定和执行相应的管理制度和操作规程,确保动力电池的安全运输和存储。

动力电池结构设计标准

动力电池结构设计标准

动力电池结构设计标准
动力电池的结构设计需要综合考虑电池的安全性、性能、可持续性等多个方面。

虽然各个国家和地区可能会有一些差异,但一般来说,动力电池的结构设计需要满足以下一些标准和规范:
1. 安全性:动力电池设计应符合相关的安全标准和法规,包括防火、过充、过放、短路等安全措施。

例如,符合UN38.3等国际或地区性的运输安全标准。

2. 耐久性:动力电池需要在不同的温度和湿度条件下保持稳定的性能,因此需要考虑结构的耐久性和环境适应性。

3. 散热设计:电池在充放电过程中会产生热量,因此需要考虑合适的散热结构,以保证电池在工作时的温度不会过高,从而确保电池的安全和寿命。

4. 结构优化:电池结构设计应考虑到建立紧凑、轻量、高能量密度的结构,从而满足电动车辆等应用对于能量密度的要求。

5. 可维护性:电池设计也应考虑到结构的可维护性和易维修性,以降低维护成本和提高整体性能。

此外,一些国际性的标准化组织和组织发布了许多关于电池设计的标准和指南,比如国际电工委员会(IEC)和国际锂电池协会(ILA),这些标准可以提供全面指导并确保电池产品符合国际性的规范。

动力电池高压电气设计规范

动力电池高压电气设计规范

动力电池高压电气设计规范制定:日期审核: 日期会签: 日期批准: 日期分发部门及份数:文件变更记录1. 目的为建立健全公司技术资料,总结和完善设计开发经验,指导和规范设计人员工作标准化、规范化,提高产品开发质量和竞争力,建立动力电池高压电气设计规范,为实现产品快速准确的设计和评估提供依据。

2. 适用范围适用于汽车类(HEV、PHEV、BEV、EBUS等)锂离子电池包内高压电气设计及测试。

3. 职责与权限3.1 电池系统开发部:负责该规范的编写和更新。

3.2 品质保证部:负责规范的受控、发行和管理。

4. 术语和定义额定电流:额定电流是指,用电设备在额定电压下,按照额定功率运行时的电流,是电气设备长期连续工作时允许的电流。

峰值电流:最大荷载时的电流值浪涌电流:指电源接通瞬间,流入电源设备的峰值电流。

击穿电压:使电介质击穿的电压绝缘电阻:绝缘物在规定条件下的直流电阻,加直流电压于电介质,经过一定时间极化过程结束后,流过电介质的泄漏电流对应的电阻称绝缘电阻。

耐压:样品不会发生击穿、闪络时施加在样品两端的电压等电位:在一个带电线路中如果选定两个测试点,测得它们之间没有电压即没有电势差,则我们就认定这两个测试点是等电势的,它们之间也是没有阻值的。

X电容:X电容接在输入线两端用来消除差模干扰Y电容:Y电容接在输入线和地线之间,用来消除共模干扰过流保护:当电流超过预定最大值时,使保护装置动作的一种保护方式。

短路保护:对供电系统中不等电位的导体在电气上短接产生的短路故障进行的保护。

5. 模组/系统设计电气要求5.1.电气间隙和爬电距离1、正常使用无电解液泄漏风险的,电气间隙和爬电距离应满足GB/T16935.1的要求,常用电压平台如下:电压平台材料组别污染等级海拔高度电气间隙爬电距离450VI 600≤CTI 3≤2000m 2.06.3II 400≤CTI﹤600 3 7.1 IIIa 175≤CTI﹤400 38 IIIb 100≤CTI﹤175 3750VI 600≤CTI 32.510(9)II 400≤CTI﹤600 3 11(9.6)IIIa 175≤CTI﹤400 3 12.5(10.2)IIIb 100≤CTI﹤175 3 不适用1000VI 600≤CTI 33.012.5(10.2)II 400≤CTI﹤600 3 14(11.2)IIIa 175≤CTI﹤400 3 16(12.8)IIIb 100≤CTI﹤175 3 不适用2、如有电解液泄漏可能的,爬电距离应满足:带电端子间:爬电距离大于0.25U+5mm U:最大工作电压带电端子与可导电外壳间:爬电距离大于0.125U+5mm U:最大工作电压电气间隙大于2.5mm5.3.绝缘电阻模组/系统的总正/总负对可导电外壳或布置在不导电外壳表面电极的绝缘电阻在达到露点的测试条件下应满足大于100欧姆/V,在干燥情况下应至少满足1M欧姆/V.jd5.4.耐压模组/系统的总正/总负对可导电外壳或布置在不导电外壳表面电极施加2U+1000V 50-60HZ的交流电压,持续时间1min,期间不发生击穿或电弧现象且漏电流应小于0.1mA。

动力电池设计规范

动力电池设计规范

动力电池设计方案1 综述电动车得得电池就好比汽车油箱里得汽油.它就是由小块单元电池通过串并联方式级联后,通过BMS得管理,将电能传递到高压配电盒,然后分配给驱动电机与各个高压模块(D C/DC、空调压缩机、PTC等)。

电池管理系统(BMS)采用得就是一个主控制器(BMU)与多个下一级电池采集模块(LECU)组成模块化动力电池管理系统,就是一种具有有效节省电池电能、提高车辆安全性、实现充放电均衡与降低运行成本功能得电池管理系统模式.高压控制系统得预充电及正负极高压继电器均由BMS控制,设置了充电控制继电器,增加高压充电时得安全性。

2 设计标准下列文件为本次MA00-ME100设计整改参考标准。

凡就是注日期得文件,其随后所有得修改单(不包括勘误得内容)或修订版均不适用于本次设计开发,然而,鼓励根据本文件达成协议得各方研究就是否可使用这些文件得最新版本。

凡就是不注日期得文件,其最新版本适用于本次设计开发。

GB/T 18384、1-2001电动汽车安全要求第1部分:车载储能装置GB/T18384、2—2001 电动汽车安全要求第2部分:功能安全与故障保护GB/T 18384、3—2001电动汽车安全要求第3部分:人员触电GB/T 18385 —2005电动汽车动力性能试验方法GB/T 18386-2005 电动汽车能量消耗率与续驶里程试验方法GB/T 18388 —2005 电动汽车定型试验规程GB/T 18487、1-2001电动车辆传导充电系统一般要求GB/T 18487、2—2001 电动车辆传导充电系统电动车辆与交流/直流电源得连接要求GB/T18487、3—2001 电动车辆传导充电系统电动车辆与交流/直流充电机(站)GB/T 17619—1998机动车电子电器组件得电磁辐射抗扰性限值与测量方法GB/T 18387—2008 电动车辆得电磁场辐射强度得限值与测量方法带宽9KHz~30MHzQC/T743—2006 电动汽车用锂离子蓄电池QC/T 413-2002 汽车电气设备基本技术条件ISO 11898-1-2003 道路车辆控制面网络(CAN)第1部分:数据链接层与物理信号ISO 11898—2-2003 道路车辆控制器局域网(CAN)第2部分:高速媒体访问单元ISO7637—2道路车辆由传导与耦合引起得电骚扰(电源线瞬态传到干扰抗绕性试验)ISO11452-2 道路车辆窄带辐射得电磁能量产生得电干扰得部件试验方法(吸波屏蔽外壳)3 动力电池得标准在电动汽车中,动力电池组必须就是具有强大能量得动力电源,除了作为驱动动力能源外,还要向空调系统、动力转向系统等提供电力能源.此外,由于实际使用得需要,电动汽车对动力电池还有更多得要求:(1) 由于电动汽车就是一种代步工具,必须有一定得续驶里程,所以电池要有较大得比能量。

动力电池高压电气设计规范

动力电池高压电气设计规范

动力电池高压电气设计规范动力电池是电动汽车的核心部件之一,直接影响着电动汽车的性能、安全性和可靠性。

而动力电池高压电气设计规范则是为了确保动力电池系统的设计和制造符合一定的标准和规范,以提高电池系统的安全性和可靠性。

下面将从电池的选型和布局、电气连接和绝缘、电气保护和控制等方面介绍动力电池高压电气设计规范。

首先在电池的选型和布局方面,设计人员应根据电动汽车的需求选用合适的电池类型和规格,同时考虑电池的可靠性和安全性。

电池的布局应尽量均匀,避免过度集中或分散,保证电池系统的供电和放电均衡,并便于维护和故障排查。

在电气连接和绝缘方面,应选用符合规范和标准的电气连接件,如插座、连接线、接线端子等,确保连接可靠性和电气接触良好。

同时,应增加绝缘层和绝缘材料,减少因电流传导导致的电器故障和事故发生。

电池系统的金属外壳应具有良好的绝缘性能,防止外部物质对电池系统产生影响。

在电气保护和控制方面,应增加电池状态监测和保护装置,如过电压保护、欠电压保护、过温保护、短路保护等,以保证电池系统的安全性和稳定性。

同时,应设计合理的充放电控制策略,避免电池系统因频繁充放电而损坏。

在电池系统的控制柜和控制系统中,应设置合适的安全措施,如紧急停机按钮、断电保护等,以应对突发情况,保证人员和设备的安全。

此外,还应制定合理的维护和检修计划,定期对电池系统进行检查和维护,包括清洁电池系统、检查电气接触等,以保证系统的正常工作和延长电池的使用寿命。

总之,动力电池高压电气设计规范是为了确保电动汽车的动力电池系统的安全性和可靠性。

通过电池的选型和布局、电气连接和绝缘、电气保护和控制等方面的规范,可以有效降低电池系统的故障率和事故风险,提升电动汽车的运行效率和安全性。

同时,合理的维护和检修计划也能延长电池的使用寿命,降低电池系统的维护成本,促进电动汽车的发展和推广。

电动汽车动力电池系统设计规范03

电动汽车动力电池系统设计规范03

安徽天康特种车辆装备有限公司动力电池系统设计规范编制:审核:批准:日期:2015年8月21日发布2015年10月22日实施安徽天康特种车辆装备有限公司发布目录前言.................................................................................................................................... I I 电动汽车动力系统设计规范 . (1)1.概述 (1)2.设计原则 (1)3.参考引用标准 (1)4.术语和定义 (2)5.设计要求 (4)6.设计验证 (24)前言本规范规定山东省普天新能源汽车(山东)有限公司开发的专用车辆时的线束设计规范。

本规范由安徽天康特种车辆装备有限公司产品开发部提出。

本规范由安徽天康特种车辆装备有限公司批准。

本规范主要起草人:李劲松本规范于2015年8月首次发布。

电动汽车动力系统设计规范1.概述动力电池系统是电动汽车的重要组成部分,为电动汽车驱动提供能量来源。

由于电池系统是高电压高能量密度产品,在设计电池系统时,主要从箱体设计、电池成组设计、电池安全、以及电池管理系统设计等方面进行。

2.设计原则动力电池系统设计以满足车辆动力要求为前提,同时从电池系统自身内部结构和安全设计、电池管理等方面进行设计,主要包括以下几个部分:(1)电池箱外观尺寸:电池箱体尺寸主要根据车辆提供的电池安装空间进行设计,并且要考虑到接插件和机械连接部位的尺寸影响。

电池箱内部尺寸,主要从整体设计考虑,从电池的排布、线束的排布以及电池管理系统尺寸位置、热管理系统尺寸及位置等方面进行设计。

电池箱的外观设计主要从材质、表面防腐蚀、绝缘处理、产品标识等方面进行设计。

(2)电池性能参数:电池系统参数,比如电压平台、额定容量、额定能量、最大可持续放电电流、瞬间峰值放电电流、瞬间峰值充电电流等,在设计时要根据车辆的动力参数和要求进行匹配。

动力电池规范

动力电池规范

动力电池规范动力电池规范随着电动车市场的迅猛发展,动力电池作为电动汽车的核心部件,其安全性和性能已成为重要关注的焦点。

为了确保电动汽车的安全性和可靠性,制定和实施动力电池规范变得尤为重要。

下面将介绍一些常见的动力电池规范。

1. 国家标准国家标准是电动汽车行业最基本、最重要的规范。

中国国家标准主要包括《动力电池系统安全技术要求》(GB/T 18384)、《动力电池术语和定义》(GB/T 29026)等。

这些标准主要涵盖了动力电池的安全性、性能、使用环境要求等方面,为动力电池的设计、生产和使用提供了指导。

2. 车型认证要求车型认证是指对整车进行认证,其中包括对动力电池系统的认证。

根据中国国家标准,动力电池系统认证要求包括电池组、电池管理系统、高压部分等多个方面。

这些认证要求了解决了电池系统在整车运行过程中可能面临的问题,从而确保电池系统的安全性和可靠性。

3. 测试标准为了评估和验证动力电池的性能和安全性,制定了一系列测试标准。

例如,国际电工委员会(IEC)发布了IEC 62660-1标准和IEC 62660-2标准,用于评估动力电池和其管理系统的电气性能。

此外,还有一些涉及热失效、电化学性能、振动性能等方面的测试标准。

4. 电池回收处理规范动力电池在使用寿命结束后,需要进行回收处理。

为了保护环境和有效利用资源,国家制定了一系列电池回收处理规范。

例如,国家发改委发布了《关于加快新能源汽车推广应用的若干政策》,明确了电池回收处理的要求和政策。

5. 安全操作规范动力电池的使用过程中,需要严格遵守安全操作规范,以确保人员和设备的安全。

安全操作规范主要包括电池的安装与拆卸、充电与放电、储存与运输等方面的规定。

遵守安全操作规范,可以减少事故发生的可能性,保障人身安全和设备的正常运行。

6. 国际标准除了国内标准外,国际标准也对动力电池的规范进行了制定。

例如,国际电工委员会(IEC)的IEC 62619标准,对锂离子动力电池系统的性能和安全性进行了详细规定。

动力电池设计规范

动力电池设计规范

动力电池设计方案1 综述电动车的的电池就好比汽车油箱里的汽油。

它就是由小块单元电池通过串并联方式级联后,通过BMS的管理,将电能传递到高压配电盒,然后分配给驱动电机与各个高压模块(DC/DC、空调压缩机、PTC等)。

电池管理系统(BMS)采用的就是一个主控制器(BMU)与多个下一级电池采集模块(LECU)组成模块化动力电池管理系统,就是一种具有有效节省电池电能、提高车辆安全性、实现充放电均衡与降低运行成本功能的电池管理系统模式。

高压控制系统的预充电及正负极高压继电器均由BMS控制,设置了充电控制继电器,增加高压充电时的安全性。

2 设计标准下列文件为本次MA00-ME100设计整改参考标准。

凡就是注日期的文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本次设计开发,然而,鼓励根据本文件达成协议的各方研究就是否可使用这些文件的最新版本。

凡就是不注日期的文件,其最新版本适用于本次设计开发。

GB/T 18384、1-2001 电动汽车安全要求第1部分:车载储能装置GB/T 18384、2-2001 电动汽车安全要求第2部分:功能安全与故障保护GB/T 18384、3-2001 电动汽车安全要求第3部分:人员触电GB/T 18385 -2005 电动汽车动力性能试验方法GB/T 18386 -2005 电动汽车能量消耗率与续驶里程试验方法GB/T 18388 -2005 电动汽车定型试验规程GB/T 18487、1-2001 电动车辆传导充电系统一般要求GB/T 18487、2-2001 电动车辆传导充电系统电动车辆与交流/直流电源的连接要求GB/T 18487、3-2001 电动车辆传导充电系统电动车辆与交流/直流充电机(站)GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值与测量方法GB/T 18387-2008 电动车辆的电磁场辐射强度的限值与测量方法带宽9KHz~30MHz QC/T 743-2006 电动汽车用锂离子蓄电池QC/T 413-2002 汽车电气设备基本技术条件ISO 11898-1-2003 道路车辆控制面网络(CAN) 第1部分:数据链接层与物理信号ISO 11898-2-2003 道路车辆控制器局域网(CAN) 第2部分:高速媒体访问单元ISO7637-2 道路车辆由传导与耦合引起的电骚扰(电源线瞬态传到干扰抗绕性试验) ISO11452-2 道路车辆窄带辐射的电磁能量产生的电干扰的部件试验方法(吸波屏蔽外壳)3 动力电池的标准在电动汽车中,动力电池组必须就是具有强大能量的动力电源,除了作为驱动动力能源外,还要向空调系统、动力转向系统等提供电力能源。

动力电池设计规范之欧阳索引创编

动力电池设计规范之欧阳索引创编

动力电池设计方案欧阳家百(2021.03.07)1 综述电动车的的电池就好比汽车油箱里的汽油。

它是由小块单元电池通过串并联方式级联后,通过BMS的管理,将电能传递到高压配电盒,然后分配给驱动电机和各个高压模块(DC/DC、空调压缩机、PTC等)。

电池管理系统(BMS)采用的是一个主控制器(BMU)和多个下一级电池采集模块(LECU)组成模块化动力电池管理系统,是一种具有有效节省电池电能、提高车辆安全性、实现充放电均衡和降低运行成本功能的电池管理系统模式。

高压控制系统的预充电及正负极高压继电器均由BMS控制,设置了充电控制继电器,增加高压充电时的安全性。

2 设计标准下列文件为本次MA00ME100设计整改参考标准。

凡是注日期的文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本次设计开发,然而,鼓励根据本文件达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的文件,其最新版本适用于本次设计开发。

GB/T 18384.1 电动汽车安全要求第1部分:车载储能装置GB/T 18384.2 电动汽车安全要求第2部分:功能安全和故障保护GB/T 18384.3 电动汽车安全要求第3部分:人员触电GB/T 18385 电动汽车动力性能试验方法GB/T 18386 电动汽车能量消耗率和续驶里程试验方法GB/T 18388 电动汽车定型试验规程GB/T 18487.1 电动车辆传导充电系统一般要求GB/T 18487.2 电动车辆传导充电系统电动车辆与交流/直流电源的连接要求GB/T 18487.3 电动车辆传导充电系统电动车辆与交流/直流充电机(站)GB/T 176191998 机动车电子电器组件的电磁辐射抗扰性限值和测量方法GB/T 18387 电动车辆的电磁场辐射强度的限值和测量方法带宽9KHz~30MHzQC/T 743电动汽车用锂离子蓄电池QC/T 413 汽车电气设备基本技术条件ISO 118981 道路车辆控制面网络(CAN) 第1部分:数据链接层和物理信号ISO 118982 道路车辆控制器局域网(CAN) 第2部分:高速媒体访问单元ISO76372 道路车辆由传导和耦合引起的电骚扰(电源线瞬态传到干扰抗绕性试验)ISO114522 道路车辆窄带辐射的电磁能量产生的电干扰的部件试验方法(吸波屏蔽外壳)3 动力电池的标准在电动汽车中,动力电池组必须是具有强大能量的动力电源,除了作为驱动动力能源外,还要向空调系统、动力转向系统等提供电力能源。

动力电池设计规范

动力电池设计规范

动力电池设计方案1 综述电动车的的电池就好比汽车油箱里的汽油。

它是由小块单元电池通过串并联方式级联后,通过BMS的管理,将电能传递到高压配电盒,然后分配给驱动电机和各个高压模块(DC/DC、空调压缩机、PTC等)。

电池管理系统(BMS)采用的是一个主控制器(BMU)和多个下一级电池采集模块(LECU)组成模块化动力电池管理系统,是一种具有有效节省电池电能、提高车辆安全性、实现充放电均衡和降低运行成本功能的电池管理系统模式。

高压控制系统的预充电及正负极高压继电器均由BMS控制,设置了充电控制继电器,增加高压充电时的安全性。

2 设计标准下列文件为本次MA00-ME100设计整改参考标准。

凡是注日期的文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本次设计开发,然而,鼓励根据本文件达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的文件,其最新版本适用于本次设计开发。

GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置GB/T 18384.2-2001 电动汽车安全要求第2部分:功能安全和故障保护GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电GB/T 18385 -2005 电动汽车动力性能试验方法GB/T 18386 -2005 电动汽车能量消耗率和续驶里程试验方法GB/T 18388 -2005 电动汽车定型试验规程GB/T 18487.1-2001 电动车辆传导充电系统一般要求GB/T 18487.2-2001 电动车辆传导充电系统电动车辆与交流/直流电源的连接要求GB/T 18487.3-2001 电动车辆传导充电系统电动车辆与交流/直流充电机(站)GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值和测量方法GB/T 18387-2008 电动车辆的电磁场辐射强度的限值和测量方法带宽9KHz~30MHz QC/T 743-2006 电动汽车用锂离子蓄电池QC/T 413-2002 汽车电气设备基本技术条件ISO 11898-1-2003 道路车辆控制面网络(CAN) 第1部分:数据链接层和物理信号ISO 11898-2-2003 道路车辆控制器局域网(CAN) 第2部分:高速媒体访问单元ISO7637-2 道路车辆由传导和耦合引起的电骚扰(电源线瞬态传到干扰抗绕性试验)ISO11452-2 道路车辆窄带辐射的电磁能量产生的电干扰的部件试验方法(吸波屏蔽外壳)3 动力电池的标准在电动汽车中,动力电池组必须是具有强大能量的动力电源,除了作为驱动动力能源外,还要向空调系统、动力转向系统等提供电力能源。

动力电池高压电气设计规范

动力电池高压电气设计规范

动力电池高压电气设计规范制定:日期审核: 日期会签: 日期批准: 日期分发部门及份数:文件变更记录1. 目的为建立健全公司技术资料,总结和完善设计开发经验,指导和规范设计人员工作标准化、规范化,提高产品开发质量和竞争力,建立动力电池高压电气设计规范,为实现产品快速准确的设计和评估提供依据。

2. 适用范围适用于汽车类(HEV、PHEV、BEV、EBUS等)锂离子电池包内高压电气设计及测试。

3. 职责与权限3.1 电池系统开发部:负责该规范的编写和更新。

3.2 品质保证部:负责规范的受控、发行和管理。

4. 术语和定义额定电流:额定电流是指,用电设备在额定电压下,按照额定功率运行时的电流,是电气设备长期连续工作时允许的电流。

峰值电流:最大荷载时的电流值浪涌电流:指电源接通瞬间,流入电源设备的峰值电流。

击穿电压:使电介质击穿的电压绝缘电阻:绝缘物在规定条件下的直流电阻,加直流电压于电介质,经过一定时间极化过程结束后,流过电介质的泄漏电流对应的电阻称绝缘电阻。

耐压:样品不会发生击穿、闪络时施加在样品两端的电压等电位:在一个带电线路中如果选定两个测试点,测得它们之间没有电压即没有电势差,则我们就认定这两个测试点是等电势的,它们之间也是没有阻值的。

X电容:X电容接在输入线两端用来消除差模干扰Y电容:Y电容接在输入线和地线之间,用来消除共模干扰过流保护:当电流超过预定最大值时,使保护装置动作的一种保护方式。

短路保护:对供电系统中不等电位的导体在电气上短接产生的短路故障进行的保护。

5. 模组/系统设计电气要求5.1.电气间隙和爬电距离1、正常使用无电解液泄漏风险的,电气间隙和爬电距离应满足GB/T16935.1的要求,常用电压平台如下:电压平台材料组别污染等级海拔高度电气间隙爬电距离450VI 600≤CTI 3≤2000m 2.06.3II 400≤CTI﹤600 3 7.1 IIIa 175≤CTI﹤400 38 IIIb 100≤CTI﹤175 3750VI 600≤CTI 32.510(9)II 400≤CTI﹤600 3 11(9.6)IIIa 175≤CTI﹤400 3 12.5(10.2)IIIb 100≤CTI﹤175 3 不适用1000VI 600≤CTI 33.012.5(10.2)II 400≤CTI﹤600 3 14(11.2)IIIa 175≤CTI﹤400 3 16(12.8)IIIb 100≤CTI﹤175 3 不适用2、如有电解液泄漏可能的,爬电距离应满足:带电端子间:爬电距离大于0.25U+5mm U:最大工作电压带电端子与可导电外壳间:爬电距离大于0.125U+5mm U:最大工作电压电气间隙大于2.5mm5.3.绝缘电阻模组/系统的总正/总负对可导电外壳或布置在不导电外壳表面电极的绝缘电阻在达到露点的测试条件下应满足大于100欧姆/V,在干燥情况下应至少满足1M欧姆/V.jd5.4.耐压模组/系统的总正/总负对可导电外壳或布置在不导电外壳表面电极施加2U+1000V 50-60HZ的交流电压,持续时间1min,期间不发生击穿或电弧现象且漏电流应小于0.1mA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

议的各方研究是否可使用这些文件的最新版本。

次设计开发。

凡是不注日期的文件, 其最新版本适用于本
GB/T 18384.1-2001 GB/T 18384.2-2001 GB/T 18384.3-2001 GB/T 18385 -2005
电动汽车安全要求 电动汽车安全要求 电动汽车安全要求 电动汽车动力性能
第 1 部分:车载储能装置 第 2 部分:功能安全和故障保护 第 3 部分:人员触电 试验方法
GB/T 18386 -2005 电动汽车能量消耗率和续驶里程 试验方法
GB/T 18388 -2005 GB/T 18487.1-2001 GB/T 18487.2-2001 GB/T 18487.3-2001
电动汽车定型试验规程 电动车辆传导充电系统 电动车辆传导充电系统 电动车辆传导充电系统
一般要求
电动车辆与交流 / 直流电源的连接要求 电动车辆与交流 /直流充电机 (站)
GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值和测量方法
GB/T 18387-2008 电动车辆的电磁场辐射强度的限值和测量方法
带宽9KHz 〜30MHz
1 综述
电动车的的电池就好比汽车油箱里的汽油。

它是由小块单元电池通过串并联方式级联后, 通过BMS 勺管理,将电能传递到高压配电盒,然后分配给驱动电机和各个高压模块
(DC/DC 、
空调压缩机、PTC 等)。

电池管理系统(BMS )采用的是一个主控制器 (BMU )和多个下一级电池 采集模块
(LECU )组成模块化动力电池管理系统, 是一种具有有效节省电池电能、 提高车辆安
全性、实现充放电均衡和降低运行成本功能的电池管理系统模式。

高压控制系统的预充电及正负极高压继电器均由 BMS 控制,设置了充电控制继电器, 增
加高压充电时的安全性 。

2 设计标准
F 列文件为本次 MAOO-ME1O0设计整改参考标准。

凡是注日期的文件,其随后所有的修
改单(不包括勘误的内容 )或修订版均不适用于本次设计开发, 然而,鼓励根据本文件达成协
QC/T 743-2006 电动汽车用锂离子蓄电池
QC/T 413-2002 汽车电气设备基本技术条件
ISO 11898-1-2003 道路车辆 控制面网络 (CAN ) 第 1 部分:数据链接层和物理信号 ISO 11898-2-2003 道路车辆 控制器局域网 (CAN ) 第 2部分:高速媒体访问单元 ISO7637-2 道路车辆由传导和耦合引起的电骚扰(电源线瞬态传到干扰抗绕性试验) ISO11452-2 道路车辆窄带辐射的电磁能量产生的电干扰的部件试验方法 (吸波屏蔽外 壳) 3 动力电池的标准
动力电池设计方案
在电动汽车中,动力电池组必须是具有强大能量的动力电源,除了作为驱动动力能源外,还要向空调系统、动力转向系统等提供电力能源。

此外,由于实际使用的需要,电动汽车对
动力电池还有更多的要求:
(1) 由于电动汽车是一种代步工具,必须有一定的续驶里程,所以电池要有较大的比能量。

(2) 电动汽车不可能一直在非常好的路况上行驶,为了应付恶劣路况及爬坡等情况的发生,故电池要有较大的比功率。

(3) 由于电池提供高压直流电,供驱动电机使用,所以必须做好安全措施,保证乘客以及电池的安全,应符合GB/T 18384.1-2001 、GB/T 18384.2-2001 、GB/T 18384.3-2001 的要求。

(4) 由使用方便性及价格因素,要求电池可进行充电,具有快速充电的功能,循环寿命足够长,且可回收,应符合GB/T 18385-2005 、GB/T 18386-2005 、GB/T 18388-2005 、GB/T 18487.1-2001 、GB/T 18487.2-2001 、GB/T 18487.3-2001 和GB/T 20234-2006 的要求。

(5) 具有电池管理系统,还可以将需要的信息反映到仪表板上。

4 动力电池容量和正极材料的选择电池容量的确定,是根据车型电机的功率、运行时的额定电压、电流。

选择出电池包的
电压、串并联的形式。

由电机额定的电压可以选择出需要串联电池的个数,由电机运行时的
额定电流可以选择出需要并联电池的个数。

具体计算如下:由整车设计的匹配参数,确定好电机的功率和扭矩后,就可以计算出,动力电池包的串并联电池的数目,串联电池的电压U 等于电机额定电压,就可推算出串联的电池个数N串=U/3.7 (对于三元锂电的锂电池),对
于最少并联的电池个数N 并=电机运行工况的平均电流/单元电池的容量*续航里程/工况的平均时速。

电池的选择,则要考虑电池正极材料的类型,总的原则是12 米以上的客车主要以磷酸铁锂电池为主,6 米小型客车和乘用车的主要是三元锂电池为主。

原因主要是:磷酸铁锂电池低温时的低容、能量密度低、单体电池一致性差,但安全性能好、耐高温性能好、充放电次数高等因素。

而三元锂电池的优点和缺点在于:能量密度高、低温性能好等优点,耐高温新能差等缺点。

正是由于这些因素,我们在选择各种类型电池是的考虑是:磷酸铁锂电池,适合大型客车的安全考虑,而三元锂电池适合乘用车对续航里程和电池重量占整车重量比的要求。

对于电池单体容量的选择,主要是根据厂家现有生产产品的规格来选择。

电池单体要从
容量、能量密度、不同温度的放电特性、充放电电流、持续放电电流、最大放电电流、电池重量、内阻、串并联连接方式、电池温度传感器、电压传感器的放置位置等方面来考虑,对于电池包来说,还要考虑整个电池包的尺寸、电池包重量、整个能量密度、电池组的冷却加
热方式、电池包的电压降、电池管理系统对电池包的管理等方面来考虑。

对于整个动力电池组的考虑,主要是考虑各个单元电池用1C放电电流放电时,整个系
统的效率,主要是电池的内阻自身消耗,所以要尽量减小电池的内阻,主要通过减小单体电
池的内阻和串并连接级联时的连接电阻。

通过这些设计,提高整个电池组的放电效率。

在设
计电池包时,还要通过有效设计降低电池组的自放电效应。

对于整个电池包的维修安全和维修方便考虑,要在高压配电盒力增加维修开关,同时考
虑电池正负极出线的安全要求,防护等级要达到IP67的要求,电池包内部要设熔断器保证
电池线外部短路时及时防止高温爆炸等风险,电池包的正负极连接到高压配电盒内部时,也
要串入熔断器,防止高压配电盒内部和外部短路时的风险。

对于整个电池包的包装和安装的考虑,主要是从碰撞安全和机械连接可靠,这些方面来
考虑。

对于单体电池性能的评价,可从电池正负极材料特性(晶体结构、颗粒分布、比表面积、振实密度、宋庄密度以及电池中有害成分等)、电解液反应效果、隔膜的抗腐蚀和抗氧化能
力、隔膜的电阻、隔膜的抗穿刺能力、隔膜渗透性、吸液和保液能力、隔膜高温稳定性、隔膜的尺寸均一度。

对于动力电池包的评价,还得通过一些安全和性能试验来验证,通过试验测试验证电池
的安全和各项性能指标。

安全试验包括:针刺、热失控、挤压、短路、过充、过热、振动、跌落、内外部火焰暴露试验等试验项目。

性能测试试验包括:20度放电容量特性、-20度放
电容量特性、55度放电容量特性、20度倍率放电容量特性、充放电循环试验、温度循环试验、非平衡电池组充放电试验、盐雾试验、浸泡试验、常温、高温荷电保存能力及容量恢复能力、循环寿命、存储等试验项目。

(范文素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档