第16章 分式单元水平测试B卷(含答案)
八年级数学下册第16章《分式》综合水平测试题[1]
八年级数学下册第16章《分式》综合水平测试一、选择题:(每小题2分,共20分) 1.下列各式:2b a -,x x 3+,πy+5,()1432+x ,ba b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个 2.下列判断中,正确的是( ) A .分式的分子中一定含有字母 B .当B =0时,分式B A无意义 C .当A =0时,分式BA的值为0(A 、B为整式)D .分数一定是分式 3.下列各式正确的是( ) A .11++=++b a x b x a B .22x y x y = C .()0,≠=a mana m n D .am an m n --=4.下列各分式中,最简分式是( ) A .()()y x y x +-8534 B .yx x y +-22 C .2222xy y x y x ++D .()222y x y x +-5.化简2293mmm --的结果是( ) A.3+m m B.3+-m m C.3-m m D.mm-36.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .9448448=-++x x B .9448448=-++x x C .9448=+x D .9496496=-++x x8.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.139.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.47 10.已知226a b ab +=,且0a b >>,则a ba b+-的值为( ) A .2 B .2± C .2 D .2±二、填空题:(每小题3分,共24分)11.分式392--x x 当x 时分式的值为零,当x 时,分式xx2121-+有意义.12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 . 14.要使2415--x x 与的值相等,则x =. 15.计算:=+-+3932a a a . 16. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为.17.若分式231-+x x 的值为负数,则x 的取值范围是.18. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为. 三、解答题:(共56分) 19.计算:(1)11123x x x++ (2)32÷x y2620. 计算: ()3322232n m n m --⋅21. 计算(1)168422+--x x xx (2)mn nn m m m n n m -+-+--222. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==-23. 解下列分式方程. (1)xx 3121=- (2)1412112-=-++x x x24. 计算: (1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++-25.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?28.A、B两地相距20 ,甲骑车自A地出发向B地方向行进30分钟后,乙骑车自B地出发,以每小时比甲快2倍的速度向A地驶去,两车在距B地12 的C地相遇,求甲、乙两人的车速.答案 一、选择题1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A二、填空题(每小题3分,共24分)11.=-3、≠1212.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a - 16. 17.-1<x <2318.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即24y y m ++=2.三、解答题(共56分) 19.(1)原式=632666x x x ++=116x (2)原式=2236x xy y =212x20.原式=243343m n m n -=1712m n -21.(1)原式=2(4)(4)x x x --=4xx - (2)原式=2m n m n m n m n m n -++----=2m n m n m n -++--=mm n-- 22.原式=22222()()[]1()()()a a a a b a a b a b a b a b a b --÷-+--+-- =2222()[]1()()()a ab a a a b a a b a b a b ----÷+-+-=2()()1()ab a b a b a b ab-+-÷+-- =a b a b a b a b +-+--=2aa b- 当2,33a b ==-时,原式=2232(3)3⨯--=43113=411 23.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.(1)原式=1111x x x -⎛⎫+⎪-⎝⎭=1111x x x x -+--=11x x x x--=1(2)原式=241124(1)(1)(1)(1)11x x x x x x x x +-+++-+-+++=224224111x x x++-++=22222242(1)2(1)4(1)(1)(1)(1)1x x x x x x x +-++-++-+=2222422224(1)(1)1x x x x x ++-+-++=444411x x +-+=4444444(1)4(1)(1)(1)(1)(1)x x x x x x +-+-++-=4484(1)4(1)1x x x ++--=881x -25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++- 2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23x -是整数,∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5.26.①241≤x ≤300;②x m 12-,6012+-x m27.设原计划每小时加工x 个零件,根据题意得:1500150052x x-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件. 28.设甲速为,乙速为3,则有xx x31260301220=--,解之得8=x ,经检验,x =8是原方程的根,答:甲速为8,乙速为24.。
新人教版八年级下数学第十六章分式单元检测题及答案
八年级(下)数学单元检测题(第十六章 分式)一、选择题(每小题3分,共30分)1.下列式子是分式的是( )A .2xB .x 2C .πx D .2y x + 2.下列各式计算准确的是( )A .11--=b a b aB .abb a b 2= C .()0,≠=a ma na m n D .a m a n m n ++= 3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293m m m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则cb a +的值是( ) A .54 B. 47 C.1 D.45 8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x9.某学校学生实行急行军训练,预计行60千米的路程在下午5时到达,后来因为把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
设原计划行军的速度为xkm/h ,,则可列方程( )A .1%206060++=x x B. 1%206060-+=x x C. 1%2016060++=)(x x D. 1%2016060-+=)(x x 10.已知 k b a c c a b c b a =+=+=+,则直线2y kx k =+一定经过( ) A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限二、填空题(每小题3分,共18分)11.计算2323()a b a b --÷= .12.用科学记数法表示—0.000 000 0314= . 13.计算22142a a a -=-- . 14.方程3470x x=-的解是 . 15.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式,从而打开了光谱奥秘的大门。
第16章分式单元测试题(人教新课标初二下)doc初中数学
41224vv第16章分式单元测试题(人教新课标初二下)doc 初中数学A .x 1x 12x 1 DC .2x 1 x2x 1x 23•假2------- -0,那么x 等于xx 6A . ± 2B . — 2C . 24.把分式2(a b)中的a 和b 都扩大4倍,那么分式的值abA . 扩大为原先的 4倍B .扩大为原先的2倍C . 缩小为原先的1D .不变45. 以 下运 算 正 确 的 选〔 〕A.y y x yxy22x yC .x yx y1一 26 . 假设分 式与5 x2 3x〔 〕5A . —2 . 4B—1211 0 27•将一,3,42x y 2B .—3x y 3 D .y x1 22x yx y的 值互为 相反数,那么xC .— 8D . 2. 4〔〕D . 5个〔 〕1 1 X2 13 1亠 1•在一、一、、、a中分式的个数x 22x ymA . 2个B . 3个C . 4个2•以下分式中 疋有意义的是、选择题241224vv勺顺序排列,正确的结果是 〔 〕1 1C .4 2V3 0V 14 D .0 21 3 V 4 V -41 8 .-1 3,那么 5x xy 5y 的值为〔 〕x yx xy y14 .不改变分式的值,使分式的分子、分母中各项系数都为整数,0.2x 0.012 x 0.053- 2 2a b a b 15 .化简:3ab —2a 2ab b116 . 一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:-+1 1 v =f720720匕720 匕 720A . 5B . 548 x 48 48 48 x720 720 c 720 720 c C . 5D . 548 x48 48 x、填空题求提早5天交货,设每天应多做x 件,那么x 应满足的方程为13.科学家发觉一种病毒的长度约为9.假如关于x 的方程72 -C.-2 7无解,那么m 的值为5 x2 D. -7〔 〕10.能使分式 2x-2x的值为零的所有 的值是C .112的3x 2 4x 7___ 6x 2 8xC .12 .某厂接到加工720件衣服的订单,估量每天做 48件, 正好按时完成, 后因客户要0. 000043mm ,科学记数法表示 0. 000043的结果 假设f = 6厘米,v = 8厘米,那么物距u = 厘米.a 2b 218. a 0, a b, x 1是方程ax 2 bx 10 0的一个解,那么代数式-一—的值2a 2b是 ____________ .三、解答题17.: a5,那么a 4 a 2 119•运算:10y 21x 2;x 1) x 3 F _2)x 2 4x 420.先化简代数式g 2,然后请你任意先择一组你自己 a b (a b)(a b)2所喜爱的a,b 的值代入求值.21•解方程:〔1〕J —1;〔2〕6 x 2 11 1111111 1 11 1 1 1 11 ~~ ___________X — ——x- -2 2 23 2 3 34 3 44 54 5〔2〕 验证一下你写出的等式是否成立.〔3〕 1 利用等式运算: 111122.下面一列等式.〔1〕请你按这些等式左边的结构特点写出它的一样性等式:x(x 1) (x 1)(x 2) (x 2)(x 3) (x 3)(x 4)误,请讲出每一步解法的依据.24.用价值为100元的甲种涂料与价值为 200元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少 3元,比乙种涂料每千克的售价多 1元,求这种新涂料每千克售价是多少元?25.为加快西部大开发,某自治区决定新修一条公路, 甲、乙两工程队承包此项工程. 假如甲工程队单独施工, 那么刚好如期完成;假如乙工程队单独施工就要超过6个月才能完成.现在甲、乙两队先共同施工 4个月,剩下的由乙队单独施工,那么刚好 如期完成.咨询原先规定修好这条公路需多长时刻?23 •假设方程2x a 1的解是正数,求a 的取值范畴.关于这道题,有位同学做出x 2如下解答:解:去分母得,2x a x 2.化简,得3x2 a欲使方程的根为正数,必须> 0,得a v 2.3因此,当a v 2时,方程红上1的解是正数.x 2上述解法是否有误?假设有错误请讲明错误的缘故,2 a .故 x2 a ~3~并写出正确解答;假设没有错26.为增强市民节水意识, 某自来水公司水费运算方法如下: 假设每户每月用水不超过5m 3,那么每立方米收费1.5元;假设每户每月用水超过 5m 3,那么超过部分每立22月份,小王家用水量是小李家用水量的-,小王家当3月水费是17. 5元,?小李家当月水费是27. 5元,求超过5m 3的部分每立方米收二、填空题 三、解答题22 .〔 1 〕参考答案 费多少元?、选择题 1-5 BACCD 6-10 DABDA 11-12 AD19.〔 1〕20. 化简结果为a b ,〔取值要求:b 丨.21.〔1〕n(n 1) n(n1)n(n 1)n n 1因此J3月. 4x 2 4x26. 2元/吨.23.有错,当a v 2时, 因此结果为 a v 2且a分母有可能为零; 改正: 24. 9 元. 因为x 2 ,25 . 12 个方米收取较高的定额费用.13. 4.3 10 5 14.100x 6 15. 2ab 16.24 17. 24 18.500x 25;〔2〕。
华师大版八年级数学下《第16章分式》单元测试卷含答案
第16章分式单元测试卷一、选择题(每题2分,共20分)1.在式子-x,,x+y,,+,中,是分式的有( )A.1个B.2个C.3个D.4个2.下列各式中,正确的是( )A.=-1B.=-1C.=a-bD.-=3.要使分式有意义,则x的取值应满足( )A.x≠2B.x≠-1C.x=2D.x=-14.下面是四位同学解方程+=1过程中去分母的一步,其中正确的是( )A.2+x=x-1B.2-x=1C.2+x=1-xD.2-x=x-15.若关于x的方程+=3的解为正数,则m的取值范围是( )A.m<B.m<且m≠C.m>-D.m>-且m≠-6.纳米是非常小的长度单位,1纳米=10-9米,某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是( )A.5×10-10米B.5×10-9米C.5×10-8米D.5×10-7米7.若关于x的分式方程+=无解,则m的值为( )A.-6B.-10C.0或-6D.-6或-108.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各是多少万千克?设原计划平均每亩产量为x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为( )A.-=20B.-=20C.-=20D.+=209.下列运算正确的是( )A.=-B.3-1+(a2+1)0=-2C.÷m·m÷=1D.(m2n)-3=10.轮船顺流航行40 km由A地到达B地,然后又返回A地,已知水流速度为每小时2 km,设轮船在静水中的速度为每小时x km,则轮船往返共用的时间为( )A.hB.hC.hD.h二、填空题(每题3分,共24分)11.已知x+=4,则代数式x2+的值为___________.12.计算的结果是___________.13.若整数m使为正整数,则m的值为___________.14.不改变分式的值,把分式中分子、分母各项系数化成整数为___________.15.使代数式÷有意义的x的取值范围是___________.16.甲、乙两地相距s千米,汽车从甲地到乙地按每小时v千米的速度行驶,可按时到达,若每小时多行驶a千米,则汽车可提前___________小时到达.17.若分式方程-=2有增根,则这个增根是___________.18.已知A,B两地相距160 km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4 h到达,这辆汽车原来的速度是___________km/h.三、解答题(19题4分,24,25题每题10分,其余每题8分,共56分)19.计算:(π-5)0+-|-3|.20.化简:(1)÷;(2)÷21.解方程:(1)=-.(2)1-=.22.先化简,再求值:÷,其中x=2.23.先化简,再求值:·+,其中x是从-1、0、1、2中选取的一个合适的数.24. 为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4 厚型纸单面打印,总质量为400 克,将其全部改成双面打印,用纸将减少一半;如果用A4 薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8 克,求A4薄型纸每页的质量.(墨的质量忽略不计)25.某工厂计划在规定时间内生产24 000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.参考答案一、1.【答案】B解:分母中含有字母是分式的根本特征,注意π是常数,所以只有,是分式.2.【答案】B3.【答案】A4.【答案】D5.【答案】B6.【答案】C7.【答案】D解:去分母得:x+2+x+m=3x-6,∴x=m+8,∵原方程无解,∴m+8=2或m+8=-2,∴m=-6或-10.8.【答案】A 9.【答案】C 10.【答案】D二、11.【答案】1412.【答案】1-2a13.【答案】0,1,2,5解:由题意可得1+m是6的因数,所以当1+m=1时,m=0;当1+m=6时,m=5;当1+m=2时,m=1;当1+m=3时,m=2.14.【答案】15.【答案】x≠±3且x≠-416.【答案】解:-=-=(小时).17.【答案】118.【答案】80解:设这辆汽车原来的速度是x km/h,由题意列方程得-0.4=,解得x=80.经检验,x=80是原方程的解,且符合题意,所以这辆汽车原来的速度是80 km/h.三、19.解:原式=1+2-3=0.20.解:(1)原式=÷=×=;(2)原式=×=×=×=-.21.解:(1)方程两边同时乘以2(2x-1),得2=2x-1-3.化简,得2x=6.解得x=3.检验:当x=3时,2(2x-1)=2×(2×3-1)≠0, 所以,x=3是原方程的解.(2)去分母,得x-3-2=1,解这个方程,得x=6.检验:当x=6时,x-3=6-3≠0,∴x=6是原方程的解.22.解:÷=÷=×=.当x=2时,原式==1.23.解:原式=·+=+=+=.当x=0时,原式=-.24.解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.25.解:(1)设原计划每天生产零件x个,由题意得,=, 解得x=2 400,经检验,x=2 400是原方程的根,且符合题意.∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400个,规定的天数是10天.(2)设原计划安排的工人人数为y人,由题意得,[5×20×(1+20%)×+2400]×(10-2)=24 000,解得y=480.经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.。
华东师大版八年级下《第16章分式》单元复习测试(有答案)
第16章分式复习试题1. 下列各式中,属于分式的个数有()①1;②一2:③学:④牛;⑤4(x2+1).x 2 x+ y 3 4'A . 1个B . 2个C . 3个2. 如果分式一d有意义,那么x的取值范围是()x —1B . X M 1A .全体实数3. C.x= 1 D . x> 1下列计算不正确的一项是( b_= by 2x= 2xy2 32 6y x 3x y-=—J x 2y ax= abx b2aa-2 a + 24 .方程丝七=3的解是()x —1(x6 .分式方程C.C.a—baa+ b D .-a—1 =x —1 (x—1) ( x+2)B. x=—1的解为()A . x= 17.电动车每小时比自行车多行驶了25千米,两车的平均速度各为多少?设自行车的平均速度为30 〃40x x—2530 40+ 1 = _x x—251 1 1 1B.D.C .无解自行车行驶x千米/时,30 〃40x+ 2540x+ 25x30「+ 1 =x已知”m2+承2= n—m—2,则m —£的值是(当x= 6, y = 3时,代数式D . x=—230千米比电动车行驶40千米多用了1小时,求应列方程为y+壮能的值是(C. 6B. 32x a10.关于x的分式方程 ------ =1的解是正数,则字母a的取值范围为x+ 1A . a》一1B . a> —1x 311 .分式方程二〒=2 (x—1)—2的解为+ 応=a+ b.丿a+ 2b ---------- C. a w —1a< —112.计算:13.人体内某种细胞可近似地看作球体,它的直径为表示为_________ .0. 000 000 156 m,将0. 000 000 156用科学记数法14. ________________________________________________________________ 已知实数m满足m2—3m+ 1 = 0,则代数式m2+ i^的值等于__________________________________________________ .m十215. 甲、乙二人做某种机械零件,已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做的零件的个数为___________ .16.对于正数x ,规定f(x)=注,例如f (3)=右=3,f 3(3)( — 1. 4X 10「10)十7X 105)(结果用科学记数法表示).18.解下列分式方程:3 4 (1口 = X ;/ x 2— 2x 3 x — 3X 2——肓—三i x —4,并从1, 2, 3, 4这四个数中取一个合适的数作为x 的值代入求值.1丄,计算:f(2 018)+ f(2 017) + …+ f(1) 4(1) - a'—^0 + (— 2 018)0 —(—3)3X 0. 3—1;19•先化简,再求值:1-右启,其中X = 2 •20.化简: + f17•计算:…+f 2^ =21 •某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22•为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场. 现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1. 5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.23.商场经营的某品牌童装,4月的销售额为20 000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7 000元.(1) 求该童装4月份的销售单价;(2) 若4月份销售这种童装获利8 000元,6月全月商场进行“六一儿童节”促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?参考答案I . B 2.B 3.A 4.D 5.A 6.C 7.B 8.C 9.C 10.B7 a _ 7II x =7 12.^^ 13.1.56 X 10「14.9 15.8 16.2 0186 a + b1 _ 16⑴帝 ⑵一909 ⑶一2X 10「 18.(1)x = 4 (2)x =— 3 x 2原式= 20.原式=x + 2 当x = 4时,原式=6x +1 3 75个 甲工厂每天加工 40件产品,乙工厂每天加工 60件产品 (1)4月份的销售单价为 200元(2)销量至少为250件17. 19. 21.22. 23.。
华师大版八年级数学下册 第十六章《分式》整章水平测试.docx
八年级数学下册第十六章《分式》整章水平测试(总分:100分,时间:40分钟)一、 试试你的身手(每小题4分,共28分)1.若分式11x x -+的值为零,则x 的值为 . 2.不改变分式的值,把分式10.720.3a b a b-+的分子与分母的各项系数化为整数为: . 3.当a 时,分式2521a a -+的值不小于0. 4.化简:3222222232a b a b a ab ab a ab b a b +--÷++-= . 5.生物学家发现一种病毒的长度约为0.000043㎜,用科学记数法表示0.000043的结果为㎜.6.若方程56x x a x x -=--有增根,则a 的值可能是 . 7.把题目补充完整:轮船在顺流中航行64km 与逆流中航行34km 一共用去的时间等于该船在静水中航行180km 所用的时间,已知水流的速度是每小时3km ,求该船 .设 ,依题意列方程 .二、相信你的选择(每小题4分,共32分)1.在有理式21121,,(),,,,(15)321x x x m n m n R x a m n yππ-+--+中,分式有( ). (A )1个 (B )2个 (C )3个 (D )4个2.如果226x x x ---=0,则x 等于( ). (A )±2 (B )-2 (C )2 (D )33.分式2232x x y-中的,x y 同时扩大2倍,则分式的值( ). (A )不变 (B )是原来的2倍 (C )是原来的4倍 (D )是原来的21 4.下列各式从左到右的变形正确的是( ). (A )122122x y x y x y x y --=++(B )0.220.22a b a b a b a b ++=++(C )11x x x y x y +--=-- (D )a b a b a b a b +-=-+ 5.已知111,11ab M a b ==+++,11a b N a b =+++,则M 与N 的大小关系为( ). (A )M >N (B )M=N (C )M <N (D )不确定6.关于x 的方程(1)43a x x +=+的解是负数,则a 的取值范围是( ).(A )a =3 (B )a <3且a ≠-1 (C )a ≥3 (D )a ≤3且a ≠-17.在正数范围内定义一种运算“※”,其规则为a ※b =11a b +,根据这个规则方程x ※(1x +)=0的解为( ).(A )1 (B )0 (C )无解 (D )12- 8.学生有m 个,若每n 个人分配1间宿舍,则还有一人没有地方住,问宿舍的间数为( ).(A )1m n + (B )1m n - (C )1m n - (D )1m n + 三、挑战你的技能(本大题共37分) 1.(本题8分)解方程:214 1.11x x x +-=--2.(本题10分)先化简代数式222222()()()a b a b ab a b a b a b a b +--÷-+-+,然后请选择一组你喜欢的,a b 的值代入求值.3.(本题12分)同一条高速公路沿途有三座城市A 、B 、C ,C 市在A 市与B 市之间,A 、C 两市的距离为540千米,B 、C 两市的距离为600千米.现有甲、乙两辆汽车同时分别从A 、B 两市出发驶向C 市,已知甲车比乙车的速度慢10千米/时,结果两辆车同时到达C 市.求两车的速度.四、拓广探索(本大题共12分)请阅读某同学解下面分式方程的具体过程. 解方程1423.4132x x x x +=+----解:13244231x x x x -=-----, ① 222102106843x x x x x x -+-+=-+-+, ② 22116843x x x x =-+-+, ③ ∴22684 3.x x x x -+=-+ ④ ∴5.2x =把52x =代入原方程检验知52x =是原方程的解. 请你回答:(1)得到①式的做法是 ;得到②式的具体做法是 ;得到③式的具体做法是 ;得到④式的根据是 .(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答: .错误的原因是 .(3)给出正确答案(不要求重新解答,只需把你认为应改正的加上即可).参考答案:一、1.1 2.57310a b a b -+ 3.a ≤524.2ab 5.54.310-⨯6.6 7.在静水中的速度,船在静水中的速度为x km/h ,64348033x x x +=+-. 二、 1.D 2.C 3.B 4.A 5.B 6.B 7.D 8.C三、1.无解.2.a b +,答案不唯一.3.甲车的速度为90千米/ 时,乙车的速度为100千米/ 时.提示:设乙车的速度为x 千米/ 时,则甲车的速度为(10x -)千米/ 时,由题意可得方程:540600.10x x=- 四、(1)移项,方程两边分别通分,方程两边同除以210x -+,分式值相等,分子相等,则分母相等;(2)有错误.从第③步出现错误,原因:210x -+可能为零;(3)当2100x -+=时,210,5x x -=-=,经检验知5x =也是原方程的解, 故原方程的解为55,.2x x ==初中数学试卷桑水出品。
最新八年级下期数学第十六章分式单元测试题及答案
八年级下期数学第十六章分式单元测试题及答案一、选择题(本题共16分,每小题2分)1、在x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个2、下列各式中,一定成立的是( )A 、1-=---b a a b B 、()222b a b a -=- C 、y x yx xy y x -=---1222 D 、()2222a b b ab a -=+- 3、与分式23.015.0+-x x 的值,始终相等的是( ) A 、2315+-x x B 、203105+-x x C 、2032+-x x D 、2315 4、下列分式中的最简分式(不能再约分的)是( )A 、112++a aB 、aa a 222++ C 、cd ab 42 D 、2)1(22++a a 5、下列说法正确的是 ( )A 、若n m >,则88->-n mB 、42≤-x 的解集是2≥xC 、当m =32时, m m 23-无意义 D 、分式2)2(++m m m 总有意义6、下列从左边到右边的变形正确的是( )A 、)32(4124822b a ab ab ab b a -=--B 、22)21(41-=+-x x x C 、mm m 2321=+ D 、1=-+-b a b b a a7、若分式)1)(4()4)(4(--+-m m m m 的值为零,则m = ( )A 、±4B 、 4C 、 4-D 、 18、下列化简正确的是 ( )A 、b a b a b a +=++2B 、1-=+--b a b aC 、1-=---b a b aD 、b a b a b a -=--22二、填空题(本题共16分,每小题2分)1、 当x 时,分式42+-x x 有意义。
2、若32=a b ,则=+-ba b a 。
3、当x 时,分式242+-x x 的无意义;(1分) 当x 时,分式242+-x x 值为零;(1分) 4、计算(结果用科学计数技术法表示)(1) (3×10-8)×(4×103)= (1分) (2) (2×10-3)2÷(10-3)3 = (1分)5、化简:ab bc a 2= ,(1分) 12122+--x x x -2122x x -- = ;(1分) 6、化简:a y ya 242-⋅= ,(1分) =-÷+-)1(11m m m . (1分) 7、如果分式333++x x x 与的差为2 ,那么x 的值是 . 8、若=++≠==a c b a a c b a 则),0(753 .三、化简、计算(本题共25分,第1—5题每小题4分,第6题5分)1、a b a b a b a -+-+2、y y y y y y 93322-⋅⎪⎪⎭⎫ ⎝⎛+--3、 19)1(961222--⨯+÷++-a a a a a a4、x x x x x x x x -÷+----+4)44122(225、2224442yx x y x y x y x y y x x +÷--+⋅-6、已知:ba ab ab b a ++-==+21,4求:的值。
新人教版八年级下数学第十六章分式单元检验题及答案
八年级 ( 下 >数学单元检测题<第十六章 分式)一、选择题 <每题3 分,共 30 分)1.以下式子是分式的是< )A .xB.2C .xD. x y2x22.以下各式计算正确的选项是<)A . a a 1B .bb 2C .n na, a 0bb 1aabmmaD .nn a mm a3.以下各分式中,最简分式是< )A .3 x yB. m 2n 2 C .a 2b 27 x ymna 2b ab 2D .x 2 y 2x 2 2 xy y 24.化简 m23m的结果是 <)9 m 2mB.m C.mm A.m3D.3 mm 3m 35.若把分式xy中的 x 和 y 都扩大 2 倍,那么分式的值<)xyA .扩大 2 倍B .不变C .减小 2倍D .减小 4倍6.若分式方程1 3ax有增根,则 a 的值是 < )x 2a xA . 1B . 0C.— 1 D .— 27.已知abc ,则 a b的值是 <)234 cA .4B.7D.5 5448.一艘轮船在静水中的最大航速为30 千 M/时,它沿江以最大航速顺水航行100 千 M 所用时间,与以最大航速逆流航行 60 千 M 所用时间相等,江水的流速为多少?设江水的流速为x 千 M/时,则可列方程<)Xs3IIMCUcUA. 10060B. 100x 60x3030x x3030C. 10060D. 100x 6030x30x x30309.某学校学生进行急行军训练,估计行60 千 M的行程在下午 5 时抵达,后出处于把速度加速20% ,结果于下午 4 时抵达,求原计划行军的速度。
设原计划行军的速度为xkm/h ,,则可列方程 <) Xs3IIMCUcUA.60x 601 B.60601x20%x x 20%60601 D.60601C.x(1x x(120%)x20%)10. 已知a b c k ,则直线 y kx2k 必定经过<)c a c a bbA. 第一、二象限B.第二、三象限C.第三、四象限D. 第一、四象限二、填空题 <每题 3分,共 18分)11.计算 a 2 b3(a2 b) 3=.12.用科学记数法表示—0.000 000 0314=.132a1..计算a 24a214.方程3704的解是.x x9,16,25,36,15.瑞士中学教师巴尔末成功地从光谱数据中获得5122132巴尔末公式,进而翻开了光谱神秘的大门。
八年级数学下册第十六章分式整章水平测试(B)
八年级数学下册第十六章《分式》整章水平测试(B )(总分:100分,时间:40分钟)一、填空(每题4分,共24分) 1. 对于分式392+-x x ,当x__________时,分式无意义;当x__________时,分式的值为0; 2. 计算=-----nm z mn y nm x _________;3. 若5922=-+ba b a ,则a :b =__________;4. 某种微粒的直径约为4280纳米,用科学记数法表示为______________________米;5. 已知13a a -=,那么221a a+=_________ ;6. 若分式732-x x的值为负数,则x 的取值范围为_______________; 二、选择题:(每题4分,共24分)7. 下面各分式:4416121222222+-+---++-x x x x x y x yx x x x ,,,,其中最简分式有( )个。
A. 4B. 3C. 2D. 18. 下面各式,正确的是( )A. 326xxx= B. ba cb ca =++C. 1=++ba ba D. 0=--ba ba9. 如果m 为整数,那么使分式13++m m 的值为整数的m 的值有( )(A )2个 (B )3个 (C )4个 (D )5个10.已知1=ab ,则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-b b a a 11的值为( )A. 22aB. 22bC. 22a b -D. 22b a -11. “五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 ( )A .32180180=+-x xB .31802180=-+x xC .32180180=--x xD .31802180=--xx 12. 在正数范围内定义一种运算☆,其规则为a ☆b =ba 11+,根据这个规则x ☆23)1(=+x 的解为( )A .32=xB .1=xC .32-=x 或1 D .32=x 或1-三、解答题(52分)13. 计算:(每小题10分,共20分)(1)xx x -+-++1111112;(2)xx x x x x x 4126)3(446222--+⋅+÷+-- ;14. 解方程:(共10分)1613122-=--+x xx;15. 化简或求值:(共10分)若21<<x ,化简xx xx x x +-----1122 ;16. 应用题:(共12分) 阅读下面对话:小红妈:“售货员,请帮我买些梨。
2021-2022学年华东师大版八年级数学下册第十六章分式章节测试试卷(含答案详解)
华东师大版八年级数学下册第十六章分式章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分式的变形正确的是( )A .21=21a a b b ++B .22x y x y ++=x +yC .55a a b b =D .22a a b b=(a ≠b ) 2、若分式22x x -有意义,则x 的取值范围是( ) A .任意实数 B .2x > C .2x ≠ D .0x ≠3、已知关于x 的分式方程2-2124x mx x x -=+-无解,则m 的值为( ) A .0 B .0或-8 C .-8 D .0或-8或-44、若关于x 的不等式组3422119x x x a +⎧≤-⎪⎨⎪+>+⎩的解集是11x ≥,关于y 的方程62111y y a y y +-+=--的解为正整数,则符合条件的所有整数a 的和为( )A .10-B .5-C .0D .15、被称为“大魔王”的新冠病毒变异毒株奥密克戎直径约为110纳米,1纳米910-=米,则用科学记数法表示其直径(单位:米)约为( ).A .9110-⨯B .81.110-⨯C .71.110-⨯ D .61.110-⨯6、下列各分式中,当x =﹣1时,分式有意义的是( )A .121x +B .11x +C .21x x -D .22x x+ 7、若101-=+a a ,则a 的值为( ) A .0 B .1- C .1 D .28、若关于x 的一元一次不等式组2(3)4152x x x a +-<+⎧⎨-≤⎩的解集为1x <-,且关于y 的分式方程1144y a y y++=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .-15 B .-10 C .-7 D .-49、下列运算正确的是( )A .22352a b a b -=-B .()22448a b a b -= C .()224--= D .()22224a b a b -=-10、若关于x 的分式方程3211x m x x -=+--产生增根,则m 的值为( ) A .1- B .2- C .1 D .2第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、如果23x y y -=,那么x y =____________. 2、依据如图流程图计算221b b a b a--+,需要经历的路径是__(只填写序号),输出的运算结果是__.3、某车间有A ,B ,C 型的生产线共12条,A ,B ,C 型生产线每条生产线每小时的产量分别为4m ,2m ,m 件,m 为正整数.该车间准备增加3种类型的生产线共7条,其中B 型生产线增加1条.受到限电限产的影响,每条生产线(包括之前的和新增的生产线)每小时的产量将减少4件,统计发现,增加生产线后,该车间每小时的总产量恰比增加生产线前减少10件,且A 型生产线每小时的产量与三种类型生产线每小时的总产量之比为30:67.请问增加生产线后,该车间所有生产线每小时的总产量为______件.4、新型冠状病毒(2019﹣nCoV )的平均直径是100纳米.1米=109纳米,100纳米可以表示为_____米.(用科学记数法表示)5、若230x x +-=,则代数式211x x x x ⎛⎫-⋅ ⎪-⎝⎭的值是______. 6、当x =_____时,式子||22x x --的值为0. 7、甲做360个零件与乙做480个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x 个零件,则可列方程______.8、若30x y ++=,则()()11x y-⋅-=______.9、人类进入5G 时代,科技竞争日趋激烈.据报道,我国已经能大面积生产14纳米的芯片,14纳米即为0.00000014米,将其用科学记数法表示为______米.10、若关于x 的方程42x x -﹣5=2mx x -无解,则m 的值为_____.三、解答题(5小题,每小题6分,共计30分)1、计算:(1)()()()2222x y x y x y +--- (2)222111a a a a a a --⎛⎫+-÷ ⎪++⎝⎭2、计算:0111)()3-+ 3、解方程: (1)2153x x -=+; (2)133x x x ---=﹣1. 4、小蕊在作业本上写完一个代数式的正确计算过程,不小心墨水洒了,遮住了原代数式的一部分(被墨水遮住的部分用△代替),该式为31()111x x x x x +-÷=-+-. (1)求被墨水遮住部分的代数式;(2)原代数式的值能等于1-吗?请说明理由.5、哈尔滨市热网改造工程指挥部,要对某小区工程进行招标,接到了甲乙两个工程队的投标书,从投标书中得知:甲队单独完成这项工作所需天数比乙队单独完成这项工程所需天数少6天,乙队做6天的工作量,甲队只需5天就可以完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)已知甲队每天的施工费用为14万元,乙队每天的施工费用为10万元,该工程由甲乙两队合作若干天后,再由乙队完成剩余工作,若要求完成此项工程的工作款不超过380万元,则甲、乙两队最多合作多少天.-参考答案-一、单选题【解析】【分析】根据分式的基本性质判断即可.【详解】解:A选项中不能分子分母不能约分,故该选项不合题意;B选项中分子和分母没有公因式,故该选项不合题意;C选项中分子和分母都乘5,分式的值不变,故该选项符合题意;D选项中分子乘a,分母乘b,a≠b,故该选项不合题意;故选:C.【点睛】本题考查了分式的基本性质,把分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.2、C【解析】【分析】根据分式有意义的条件列不等式求解.【详解】解:由题意可得:x-2≠0,解得:x≠2,故选:C.【点睛】本题考查了分式有意义的条件,理解分式有意义的条件(分母不能为零)是解题关键.【解析】【分析】把分式方程转化为整式方程,分分母为零无解,分母为零时,对应的字母值求解.【详解】 ∵2x-2mx 124x x -=+- ∴22(x-2)mx 1(2)(2)4x x x -=+--, ∴22(-2)4x mx x -=-,∴(+4)8m x =,∴当m +4=0时,方程无解,故m = -4;∴当m +4≠0,x =2时,方程无解,∴(+4)28m ⨯=故m =0;∴当m +4≠0,x = -2时,方程无解,∴(+4)(2)8m ⨯-=故m =-8;∴m 的值为0或-8或-4,故选D .【点睛】本题考查了分式方程的无解,正确理解无解的条件和意义是解题的关键.【解析】【分析】详解不等式组得出4a <;再解分式方程得出72a y +=,根据y 为正整数,702a y +=>,得出-7a >,根据-4a 7<<,使72a y +=为整数,求得5,3,1,1,3a =---,再求和即可. 【详解】 解:3422119x x x a +⎧≤-⎪⎨⎪+>+⎩①②,解不等式①得11x ≥, 解不等式②得192x a +>,,∵关于x 的不等式组3422119x x x a +⎧≤-⎪⎨⎪+>+⎩的解集是11x ≥, ∴19112a +<,解得4a <; 62111y y a y y+-+=-- 方程两边都乘以(y -1)得()621y y a y +--=-, 解得72a y +=, ∵y 为正整数且不为1,702a y +=>, ∴-7a >,且a ≠-5∴-4a 7<<,使72a y +=为整数,∴3,1,1,3a=--,符合条件的所有整数a的和为-3-1+1+3=0.故选C.【点睛】本题考查解不等式组,分式方程的正整数解,确定a的范围,有理数加法,找出满足条件a的值是解题关键.5、C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:110纳米×10−9=1.1×102×10−9=1.1×10−7(m).故选:C.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、A【解析】【分析】根据分式有意义的条件:分母不为零,进行逐一判断即可.【详解】解:A、当x=﹣1时,分母2x+1=﹣1≠0,所以分式121x+有意义;故本选项符合题意;B 、当x =﹣1时,分母x +1=0,所以分式11x +无意义;故本选项不符合题意; C 、当x =﹣1时,分母x 2﹣1=0,所以分式21x x -无意义;故本选项不符合题意; D 、当x =﹣1时,分母x 2+x =0,所以分式22x x+无意义;故本选项不符合题意; 故选A .【点睛】 本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键.7、C【解析】【分析】 根据11a a -+=0即可得到a −1=0,由此即可得到答案. 【详解】 解:∵11a a -+=0,,a+1≠0 ∴a −1=0,∴a =1,故选C .【点睛】本题主要考查了分式值为零的条件,解题的关键在于能够熟练掌握分式值为零时的条件是分子为0,分母不等于0.8、B【解析】【分析】解出一元一次不等式组的解集,根据不等式组的解集为1x<-,在数轴上标出x的解集求出a的范围;根据分式方程分母不能为0的性质得出y-4≠0,再在分式方程两边同乘以y-4,解出分式方程的解,再根据a的范围求出y的取值范围,找出符合条件的y的正整数解,分别代入求出a的值,求和即可.【详解】解:2(3)4152x xx a+-<+⎧⎨-≤⎩ ① ②,解不等式①得:x<-1,解不等式②得:x≤25a+,∵不等式组的解集为1x<-,∴25a+≥-1,∴a≥-7;要想分式方程有意义,则y-4≠0,∴y≠4分式方程两边同乘以(y-4)得:y+y-4=-a-1,解得:y=32a-,∵a≥-7∴y=32a-≤5,∵方程的解是正整数且y≠4∴ y的正整数解有:1,2,3,5.把y=1,2,3,5分别代入32a-,可得整数a的值为1,-1,-3,-7.∴所有满足条件的整数a 的值之和是:1+(-1)+(-3)+(-7)=-10故选:B .【点睛】解一元一次不等式组可通过数轴求解解集,注意不等式两边同乘以负号的时候不等号的方向一定要改变.解分式方程时,防止增根产生,要保证分母不为0.9、B【解析】【分析】由题意依据合并同类项和积、幂的乘方以及负指数幂和完全平方差公式逐项进行运算判断即可.【详解】解:A. 222352a b a b a b -=-,本选项运算错误;B. ()22448a b a b -=,本选项运算正确; C. ()2124--=,本选项运算错误; D. ()222244a b a ab b -=-+,本选项运算错误.故选:B.【点睛】本题考查整式的混合运算以及完全平方差公式,熟练掌握合并同类项和积、幂的乘方以及负指数幂运算是解题的关键.10、B【解析】【分析】首先把所给的分式方程化为整式方程,然后根据分式方程有增根,得到x −1=0,据此求出x 的值,代入整式方程求出m 的值即可.【详解】解:去分母,得:x -3=m +2(x −1),由分式方程有增根,得到x −1=0,即x =1,把x =1代入整式方程,可得:m =−2.故选:B .【点睛】此题主要考查了分式方程的增根,解答此题的关键是要明确:(1)化分式方程为整式方程;(2)把增根代入整式方程即可求得相关字母的值.二、填空题1、53【解析】【分析】 先将23x y y -=变形成213x y -=,然后解关于x y 的方程即可. 【详解】 解:由23x y y -=可得213x y -=,解得x y =53. 故答案是53.【点睛】本题主要考查了求分式混合运算,灵活分式混合运算法则对已知等式进行变形成为解答本题的关键.2、 ②③ ()()a b a b a +- 【解析】【分析】根据异分母分式相加减进行计算即可,即经历路径为②,进而经过路径③得出结果.【详解】两个分式分母不同,∴经历路径为②.根据路径②计算如下:原式()()1b b a b a b a =-+-+, ()()()()b b a b a b a b a b a -=-+-+-, ()()a b a b a =+-,∴原式为最简分式,再经过路径③得出结果.故答案为:②③,()()a b a b a +-. 【点睛】本题考查了异分母分式相加减,掌握分式的加减运算是解题的关键.3、134【解析】【分析】设增加生产线前A 、B 、C 型生产线各有x 、y 、z 条,增加生产线后A 型增加a 条,则C 型增加(7-1-a )条,由题意得:()()()()()()42441246410mx my mz x a m y m z a m ++=+-++-++--+,从而可以求出6638m a =+,由m 是正整数,06a ≤≤且a 是整数,可求出1a =,6m =,再由A 型生产线每小时的产量与三种类型生产线每小时的总产量之比为30:67可得()()()()()()()()146430146412647116467x x y z +⨯-=+⨯-++⨯-++---可以求出4544940y z -=,由z 是非负整数,则45449y -一定能被40整除,即45449y -的个位数字一定是0,即49y 的个位数字一定是4,即可求出6y =,4z =,2x =,由此即可得到答案.【详解】解:设增加生产线前A 、B 、C 型生产线各有x 、y 、z 条,增加生产线后A 型增加a 条,则C 型增加(7-1-a )条,由题意得:()()()()()()42441246410mx my mz x a m y m z a m ++=+-++-++--+,x +y +z =12, ∴424444224464244mx my mz mx am x a my m y mz m am z a ++=+--++--++---+,整理得:38660am m +-=, ∴6638m a =+, ∵m 是正整数,∴3866a +=或3833a +=或3822a +=或3811a +=或382a +=或381a +=,又∵06a ≤≤且a 是整数,∴只有3811a +=符合题意,即1a =,∴6m =,∵A 型生产线每小时的产量与三种类型生产线每小时的总产量之比为30:67∴()()()()()()()()146430146412647116467x x y z +⨯-=+⨯-++⨯-++---, ∴1340134060060024024060300x x y z +=+++++,∴7420246x y z +=+,∴()741220246z y y z --+=+,∴9087474246y z y z --=+,∴4940454y z +=,∴4544940y z -=, ∵z 是非负整数,∴45449y -一定能被40整除,∴45449y -的个位数字一定是0,即49y 的个位数字一定是4,又∵y 是非负整数,∴6y =,∴4z =,∴2x =,经检验当6y =,4z =,2x =时,原分式方程分母不为0,∴该车间所有生产线每小时的总产量为()()()2021861245134+++++=,故答案为:134.【点睛】本题主要考查了二元一次方程和分式方程,解题的关键在于能够理解题意列出方程求解. 4、1×10-7【解析】【分析】小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1米=109纳米,∴100纳米=100÷109米=1×10-7米,故答案为:1×10-7本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5、3【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 2+x =3整体代入计算即可求出值.【详解】解:∵x 2+x -3=0,∴x 2+x =3, ∴211x x x x ⎛⎫-⋅ ⎪-⎝⎭ 2211x x x x -=⋅- 2(1)(1)1x x x x x +-=⋅- (1)x x =+=x 2+x=3,故答案为:3.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.6、2-【解析】根据分式值为0的条件,进行分析即可求得x 的值.【详解】 式子||22x x --的值为0 20,20x x ∴-=-≠2x ∴=-故答案为:2-【点睛】本题考查了分式值为0的条件,解题的关键是掌握分式值为0的条件是“分子为0,分母不为0” . 7、360480140x x=- 【解析】【分析】设甲每天做x 个零件,则乙每天做()140x - 个零件,根据“甲做360个零件与乙做480个零件所用的时间相同,”列出方程,即可求解.【详解】解:设甲每天做x 个零件,则乙每天做()140x - 个零件,根据题意得:360480140x x=- . 故答案为:360480140x x=- 【点睛】 本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.8、1-【解析】【分析】先根据已知等式可得3x y +=-,再根据同底数幂的乘法、负整数指数幂即可得.【详解】解:由30x y ++=得:3x y +=-,则()()()111x y x y +--=-⋅()31-=-1=-, 故答案为:1-.【点睛】本题考查了同底数幂的乘法、负整数指数幂,熟练掌握各运算法则是解题关键.9、81.410-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000014=1.4×10−8,故答案为:1.4×10−8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10、﹣4或1【解析】【分析】先去分母方程两边同乘以x -2根据无解的定义得到关于m 的方程,解方程即可求出m 的值.【详解】 解:∵42x x -﹣5=2mx x- 去分母得,()452x x mx --=-去括号得,4510x x mx -+=-移项,合并同类项得,()110m x -=-∵关于x 的方程42x x -﹣5=2mx x-无解, ∴当10m -=时,整式方程无解,即1m =;当10m -≠时,此时方程有增根,增根为2x =,∴代入得,()2110m -=-,解得:4m =-,∴m 的值为4-或1.故答案为:﹣4或1.【点睛】本题考查了分式方程无解的条件, 分式方程无解的条件是:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于0.三、解答题1、 (1)22234x y xy -+(2)1a a- 【解析】【分析】(1)利用平方差公式及完全平方公式展开,然后合并同类项计算即可得;(2)先通分,然后去括号计算分式的除法,最后进行化简即可得.(1)解:原式()2222422x y x xy y =---+,22224242x y x xy y =--+-,22234x y xy =-+;(2) 解:原式2222111a a a a a a-+-+=⋅+-, ()()21111a a a a a -+=⋅+-, 1a a-=. 【点睛】题目主要考查整式的混合运算及分式的混合运算,完全平方公式及平方差公式的运用,熟练掌握两个运算法则是解题关键.2、6【解析】【分析】根据公式1(0)p p aa a-=≠、01(0)a a =≠及算术平方根的概念逐个求解即可. 【详解】 解:原式1326=++=.【点睛】 本题考查了1(0)p p a a a-=≠、01(0)a a =≠及算术平方根的概念,属于基础题,计算过程中细心即可. 3、 (1)14x =(2)1x =【解析】【分析】 (1)方程两边同乘以公分母3(5)x +,将分式方程转化为整式方程,再验根即可;(1)方程两边同乘以公分母(3)x -,将分式方程转化为整式方程,再验根即可.(1)解:方程两边同乘以公分母3(5)x +得,3(2)5x x -=+41x ∴-=-14x ∴= 经检验,14x =是原方程的解; (2) 方程两边同乘以公分母(3)x -得,1(3)x x +=--22x ∴=1x ∴=经检验,1x =是原方程的解.【点睛】本题考查解分式方程,是重要考点,难度一般,注意验根是解题关键.4、 (1)31x x -- (2)原代数式的值不能等于1-,理由见解析【解析】【分析】(1)由题意知13111x x x x x+=⋅+-+-,进行化简求解即可; (2)令111x x +=--,可得0x =,分式有意义则有则有10x -≠且10x +≠且0x ≠,进而可得出结果. (1) 解:∵ 31()111x x x x x +-÷=-+- ∴13111x x x x x+=⋅+-+- 311x x x =--- 31x x -=- ∴被墨水遮住部分的代数式为31x x --. (2)解:原代数式的值不能等于1-;理由如下:∵111x x +=-- ∴1(1)x x +=--解得:0x = 要使分式33()111x x x x x --÷--+有意义,则有10x -≠且10x +≠且0x ≠ 即x 不能为1,1-,0∴原代数式的值不能等于1-.【点睛】本题考查了分式的化简计算,解分式方程.解题的关键在于正确的进行化简求解.5、 (1)甲队单独完成这项工程各需30天,乙队单独完成这项工程各需36天(2)甲乙两队最多合做10天【解析】【分析】(1)首先表示出甲、乙两队需要的天数,进而利用乙队做6天的工作量,甲队只需5天就可以完成得出等式求出答案;(2)首先根据题意列出不等式即可求出两队合作需要的天数.(1)设乙队单独完成这项工程需要x 天, 则甲队单独完成这项工程需要(x -6)天,根据题意得, 656x x =- 解得,x =36经检验,x =36是原分式方程的解,且符合题意,36-6=30(天)∴甲队单独完成这项工程需30天,乙队单独完成这项工程需36天(2)设甲、乙两队合做y 天,根据题意得,111()3630(1410)10380136y y -+++⨯≤ 化简得,220y ≤解得,10y ≤即甲乙两队最多合做10天【点睛】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确得出等量关系和不等量关系是解题关键.。
八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)
八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)一、选择题1.若分式y 1y 3-+的值是0,则y 的值是( ) A .3-B .0C .1D .1或3-2.下列分式中,是最简分式的是( )A .2xy xB .3333x x +- C .x yx y+- D .211x x +- 3.计算1a a÷的结果为( ) A .a B .21aC .1D .2a4.下列等式成立的是( )A .4453m n m n m n⋅=B .213m n m n +=+ C .2121m m n n=++D .m mm n m n=--++5.下列方程①4x x y y -=+,②15x =,③13πx x -=-,④11x a b =-中,是关于x 的分式方程的有( )个. A .1B .2C .3D .46.将分式2x yx y-中的x y ,的值同时扩大为原来的10倍,则分式的值( )A .扩大1000倍B .扩大100倍C .扩大10倍D .不变7.设11a b p a b =-++,1111q a b =-++则p ,q 的关系是( ) A .p q = B .p q > C .p q =-D .p q <8.根据规划设计,某工程队准备修建一条长1120米的盲道.由于情况改变,实际每天修建盲道的长度比原计划增加10米,结果提前2天完成了这一任务,假设原计划每天修建盲道x 米,根据题意可列方程为( )A .11201120210x x -=+ B .11201120210x x -=- C .11201120210x x-=+ D .11201120210x x-=-9.下列运算正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()2139--= 10.成人体内成熟的红细胞的平均直径一般为0.000007245m ,保留三个有效数字的近似数,可以用科学记数法表示为( ) A .7.25×10﹣5m B .7.25×106m C .7.25×10﹣6mD .7.24×10﹣6m二、填空题11.分式256x y 和214xy 的最简公分母为 . 12.若12a b =,则分式3a b b+= . 13.已知,ab=-1,a+b=2,则式子b aa b+= .14.某化肥厂原计划五月份生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨.设原计划每天生产化肥x 吨.根据题意,列方程为 .三、解答题15.计算:.16.先化简,再求值:(21a a - ﹣a ﹣1)÷ 21a a - ,其中a =﹣2. 17.先化简,再求值:22121121x x x x x --⎛⎫-÷⎪+++⎝⎭,其中x 是1-,1,2中的一个合适的数.18.我国5G 手机产业迅速发展,5G 网络建成后,下载完一部1000MB 大小的电影,使用5G 手机比4G 手机少花190秒.已知使用5G 手机比4G 手机每秒多下载95MB ,求使用5G 手机每秒下载多少MB ?四、综合题19.我市某文具店准备购进A 、B 两种文具,A 种文具每件的进价比B 种文具每件的进价多20元,用4000元购进A 种文具的数量和用2400元购进B 种文具的数量相同.文具店将A 种文具每件的售价定为80元,B 种文具每件的售价定为45元.(1)A 种文具每件的进价和B 种文具每件的进价各是多少元?(2)文具店计划用不超过1600元的资金购进A 、B 两种文具共40件,其中A 种文具的数量不低于17件,该文具店有几种进货方案?(3)在(2)的条件下,文具店利用销售这40件文具获得的最大利润再次购进A 、B 两种文具(两种文具都买),直接写出再次购进A 、B 两种文具获利最大的进货方案.20.阅读下列材料:我们知道,分子比分母小的数叫做“真分数”:分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”:当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221x x +这样的分式就是真分式,假分数74可以化成314+(即314)带分数的形式,类似的,假分式也可以化为带分式.如:()12121111x x x x x +--==-+++. 解决下列问题: (1)分式 5x 是 (填“真分式”或“假分式”);假分式52x x ++可化为带分式 形式;(2)如果分式41x x --的值为整数,求满足条件的整数x 的值; (3)若分式22382x x ++的值为m ,则m 的取值范围是 (直接写出结果)21.佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,且很快售完,由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次购进的数量多20千克.(1)求第一次购进该水果的进价?(2)已知第一次购进的水果以每千克8元很快售完,第二次购进的水果,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?答案解析部分1.【答案】C【解析】【解答】解:由题意得:y-1=0且y+3≠0解得:y=1; 故答案为:C.【分析】分式值为0的条件:分子为0且分母不为0,据此解答即可.2.【答案】C【解析】【解答】解:A 、2xy yx x= 故此选项不合题意; B 、 ()()3133133311x x x x x x +++==--- 故此选项不合题意; C 、x yx y+- 是最简分式,故此选项符合题意; D 、 ()()21111111x x x x x x ++==-+-- 故此选项不合题意; 【分析】把一个分式中相同的因式约去的过程叫做约分,如果分式中没有可约的因式,则为最简分式,据此判断.3.【答案】B【解析】【解答】解:21111a aa a a ÷=⋅= 故答案为:B .【分析】利用分式的乘除法则计算求解即可。
华东师大版八年级下册第16章《分式》单元测试卷(原卷版+解析版)
华东师大版八年级下册第16章《分式》单元测试卷(原卷版)本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。
题号一二三全卷总分总分人1718 19 20 21 22 得分1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。
一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。
)1、在代数式m 1,3b ,π1-x ,y x +2,aa 1+中,分式的个数是( )A 、2B 、3C 、4D 、52、下列各分式中,是最简分式的是( )A 、x x 22B 、1122+++x x xC 、x x 1+ D 、112--x x 3、将分式yx x42-中的x ,y 的值同时扩大为原来的2022倍,则变化后分式的值( )A 、扩大为原来的2022倍B 、缩小为原来的20221C 、保持不变D 、以上都不正确4、已知0132=+-x x ,则xx 1-的值是( ) A 、5B 、7±C 、5±D 、35、若b a ≠,则下列分式化简正确的是( )A 、b a b a =--22B 、b a mb a m =+C 、b ab a =22D 、b abab =26、下列运算正确的是( )A 、692432b b a a b =•B 、2323132b a b ab =+ C 、a a a 32121=+ D 、1211112-=+--a a a 7、分式方程13132=----xx x 的解为( ) A 、2=xB 、无解C 、3=xD 、3-=x8、若关于x 的分式方程2113+-=--x mx x 产生增根,则m 的值为( ) A 、1-B 、2-C 、1D 、29、随着电影《你好,李焕英》热映,其同名小说的销量也急剧上升、某书店分别用400元和600元两次购进该小说,第二次数量比第一次多1倍,且第二次比第一次进价便宜4元,设书店第一次购进x 套,根据题意,下列方程正确的是( )A 、42600400=-x x B 、42400600=-x x C 、46002400=-xx D 、44002600=-xx 10、若关于x 的分式方程21121=----x k x kx 无解,则k 的值为( ) A 、31-=kB 、1=kC 、31=k 或2 D 、0=k 11、已知关于x 的分式方程xkx x -=--343的解为负数,则k 的取值范围是( ) A 、12-≤k 且3-≠k B 、12->k C 、12-<k 且3-≠k D 、12-<k 12、若关于x 的不等式组()⎪⎩⎪⎨⎧-≤+-≥-+12224131x a x x x 有解,且使关于y 的分式方程32221-=--+--yya y y 的解为非负数、则满足条件的所有整数a 的和为( ) A 、9- B 、8- C 、5- D 、﹣4二、填空题(本大题共4个小题,每小题4分,共16分) 13、已知611=+y x ,则yxy x y xy x +-++525的值为 ; 14、对于实数a 、b ,定义一种新运算“*”为:ba ab a -=*,这里等式右边是实数运算。
新冀教版八年级数学上册第十六章分式单元测试(附答案)
新冀教版八年级数学上册第十六章分式单元测试【知识要点】一、分式的概念1形如__________________________________________________叫做分式.2.分式有意义的条件是_____________,分式的值为零的条件是____________.二、分式的基本性质1.分式的基本性质:分式的分子与分母____________________________,分式的值不变.用式子表示为:_________________________,(其中A、B、C是整式,0C≠).2.分式的变号法则:_______________________________,可简记为“________,值不变”.3.通分:根据分式的基本性质,分子和分母同乘以适当的整式,不改变分式的值.把几个异分母的分式化成同分母的分式,这样的分式变形叫做分式的通分.通分的关键是__________________.最简公分母用下面的方法确定:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取(3) 相同字母的幂的因式取指数最大的特别注意:为了确定最简公分母,通常先将各分母分解因式.4.约分:根据分式的基本性质,把一个分式的分子和分母的________约去,这样的分式变形叫做分式的约分.约分的关键是确定分子与分母的__________.约分的结果应化为最简分式.三、分式的运算法则1.分式的乘法法则:_________________________________________用式子表示为:a c a cb d b d⋅⋅=⋅.2.分式的除法法则:__________________________________________用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.3.分式的乘方法则:___________________________,用式子表示为:()n nna ab b=.4.分式的加减法法则:同分母分式相加减,_________________异分母分式相加减,_______________________________用式子表示为:a c a bc d c±±=;a c ad bc ad bcb d bd bd bd±±=±=.5.分式的混合运算分式的混合运算,关键是弄清楚运算顺序.进行运算时要先算__________,再算___________,最后算__________;有括号要先算括号里面的;计算结果_________________________.四、分式方程1.分式方程的特征是_________________,这是分式方程与整式方程的根本区别. 2.解分式方程的基本思路是“___________”,即把分式方程化为我们熟悉的____________,转化的途径是“____________”,即方程两边都乘以____________.3.解分式方程的一般步骤:①_________________________________________;②_____________;③_______________,把整式方程的解代人__________________,使__________________不等于零的解是原分式方程的解,使__________________等于零的解不是原分式方程的解.注意:因为解分式方程时可能产生_____________,所以解分式方程必须_________.【例题精析】考点一:分式的有关概念 1、分式的概念例1:在 x 1 ,32ba ,-0.5xy+y2,a cb + ,yzx +-5 , πa 3中,是分式的有 ;练习1:在下列有理式中,哪些是整式?哪些是分式?43a ,a 34,3n m +,n m a -8,xx 2,π45-x2、分式有意义:例2:当x 取什么值时,下列分式有意义:(1) 32-x x (2) 141+-x x (3) 422+x x(4)1212+-+x x x (5) 4-x x(6)21102x x -+3、分式的值为零:例3:当x 为什么数时,下列分式的值为零(1) 5412+-x x (2) 221--x x练习2:(1) 13+x x (2) 392--x x例4:(1)当x 时,分式x -84的值为正; (2)当x 时,分式1212+-x x的值为负.练习3:(1) 若分式122+--m m m 的值为零,则m=(2) 若分式x417--的值为正数,则x 范围是 (3) 若分式122+-x x 的值为负,则x 范围是(4) 若分式632-x x无意义,则x= 考点二:分式的性质: 1、基本性质例5:下列等式的右边是怎样从左边得到的?(1)22a acb bc=;(0)c ≠ (2)32x x xy y =.例6:在什么条件下,下列各等式中的左式可以化为右式? (1)22(3)2(3)(2)x x x x +=-+-; (2)232132x x x x-=-. 练习4:填空:(1)b a ab b a 2)(=+ (2)ba ab a 22)(2=- (3))(22yx x xy x +=+ (4)2)(22-=-x x x x (5))()(222yx y x y x -=+- (6))(232622=-++x x x例7:不改变分式的值,把下列分式的值,把下列各式的分子与分母中各项的系数都化为整数:(1)=-+y x yx 32213221 (2)=+-+7.04.03.02.01.0b a b a2、分式的符号法则:例8:不改变分式的值,使下列分子与分母都不含“-”号: (1)=-yx52 (2)=-n m 2 (3)=--b a 73 (4)=--n m 310例9:不改变分式的值,使下列各式的分子与分母按降幂排列,并使最高次项系数是正数:(1)22;3x x --+ (2)22132x x x +--- (3)22312x x x--+--练习5: 1、填空:)()()(-+=+--=+-=-+yx y x y x y x y x 2、(1)如果把分式63xx y-中的x,y 都扩大10倍,那么分式的值一定( )A.扩大10倍B.扩大100倍C.缩小10倍D.不变 (2)在分式a bab+(a 、b 为正数)中,字母a 、b 的值分别扩大为原来的2倍,则分式的值是原来的( )倍? 3.下列从左到右的变形正确的是( ).A .122122x y x y x y x y --=++ B .0.220.22a b a b a b a b ++=++ C .11x x x y x y+--=-- D .a b a b a b a b +-=-+ 3、分式的通分、约分:例10:下面的等式中右式是怎样从左式得到的?这种变换的根据是什么?(1)23326384a b b a b a =; (2)222x xy xx y x y+=--. 最简分式:例11:约分:(1)2322515a bc ab c - (2)22969x x x -++ (3)2239m mm --例12:通分: (1)2232a b a b ab c -与 (2)2355x x x x -+与 (3)2142x x -与214x -. 最简公分母是:考点三、分式的运算例13.计算:(1))(22a b abb a -÷-; (2)a a --+242;(3)a a a 2)441(2+⋅-+; (4))242(2222aa a a a a -+-⋅+;(5)11)1211(22-÷-++-x x x x x ; (6)x x x x xx x --+⋅+÷+--36)3(446222.考点四、分式的化简求值例14.(1)已知:a =3,2b =-,求222)11(b ab a ab b a ++⋅+的值.(2)先化简xx x x x x x 1)121(22÷+---+,再选择一个适当的x 值代入并求值.例15.(1)已知(3)(2)0x x -=,求xx x x x x x x 36)431(22+-+÷----的值.(2)已知12x x -+=,求22x x -+的值.考点五、零指数和负整指数练习6:(1)3132)2(b a b a - (2)3132)()(---bc a(3)2322123)5()3(z xy z y x --- (4)33222)4()3(----mn n m例16:计算:(1)2231)32(--÷x xy (2)3323)25()23(--÷-y x xy例17:计算:(1)2321326)3(------b a b a b a (2)23232222)()3()()2(--⋅⋅ab b a b a ab考点五、科学记数法例18.一种细胞的直径约为61.5610-⨯米,那么它的一百万倍相当于( ).A .玻璃跳棋棋子的直径B .数学课本的宽度C .初中学生小丽的身高D .五层楼房的高度练习7:用科学计数法表示下列小数:0.1= 0.01= 0.001= 0.0001= 0.00001= 0.000001= 0.000 000 000 001= 0.0012= 0.000 000 345= -0.00003= 0.000 000 010 8=310102112)1(,,)384(,1,)1.0(,3,)21(,1001----------a 、计算例19:把下列科学计数法表示的数还原成小数: =⨯-4105.3 =⨯-81034.2考点六、解分式方程 例20.解方程:(1)132x x =-; (2)11522xx x-+=--.例21.解关于x 的方程:01m nx x-=-(m n ≠).例22.已知:公式21111R R R +=中,(R )1R ≠,求出表示R 2的公式.练习14:解下列分式方程(4)2142111x x x x x -+-=+--(5)11114736x x x x -=-++++3(1)2122x x x =---33(2)122x x x -+=--22(3)1212x x x =--+例23:(1)关于x 的方程2323=---x a x x 有增根,那么增根是多少?此时a 是多少?(2)当a 为何值时,关于x 的方程234222+=-+-x x ax x 有增根?(3)当a 为何值时,关于x 的方程21122---+=--x x x x x x m 的解为正数?【创新题型】例24.请你阅读下列计算过程,再回答所提出的问题.23311x x x---- =()()33111x x x x --+-- (A ) = ()()()()()3131111x x x x x x +--+-+- (B ) = x - 3 - 3 (x +1) (C ) = -2x - 6 (D )(1) 上述计算过程中, 哪一步开始出现错误? __________;(2) 从(B )到(C )是否正确? _________;若不正确,错误的原因是 _________. (3) 请你写出正确的解答过程.例25.对于正数x ,规定f(x)=1x x +.例如33(3)134f ==+,1113()13413f ==+; 计算:++)20061()20071(f f …+++++)2()1()1()21(f f f f …+)2007()2006(f f += .【专题复习】一、分式的条件求值例1.已知43x y =,则分式3223x yx y --的值为 . 例2.已知2232x y xy -=(x 、y 均为正数),则22x yx y+-的值为 .例3.已知115a b a b +=+,求b aa b+的值.例4.若2210a a --=,求代数式441a a +的值.二、含字母系数的分式方程例5.m 为何值时,关于x 的方程361(1)x m x x x x ++=--有解? 例6.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ). A .1a < B .1a <且0a ≠ C .1a ≤ D .1a ≤且0a ≠ 例7.已知关于x 的方程233x m x x -=--有正数解,则( ). A .0m >且3m ≠ B .6m <且3m ≠ C .0m < D .6m > 例8.当m 为何值时,关于x 的方程223242mx x x x +=--+无解?.。
(word完整版)第16章《分式》单元测试题(含答案及评分标准),推荐文档
第16章《分式》单元测试题班级: 学号: 姓名: 成绩:说明:本试题分为A 卷和B 卷两部分,其中A 卷六个大题100分,B 卷两个大题20分,总分120分。
A 卷(100分)一、选择题(每小题2分,共20分)1、下列各式中,分式的个数为:( )3y x -,12-x a ,1+πx ,b a 3-,y x +21,y x +21,3122+=-x x ; A 、5个 B 、4个 C 、3个 D 、2个2、下列各式正确的是( )A 、b ac b a c -=-- B 、b a c b a c +-=-- C 、b a c b a c +-=+- D 、ba cb ac --=-- 3、人体中成熟的红细胞的平均直径为0000077.0米,用科学记数法表示为( ) A 、5107.7-⨯米 B 、6107.7-⨯米 C 、51077-⨯米; D 、61077-⨯米4、下列分式是最简分式的是( )A 、m m --11 B 、xy y xy 3- C 、22y x y x +- D 、m m 3261- 5、将分式yx x +2中的x 、y 的值同时扩大2倍,则扩大后分式的值( ) A 、扩大2倍 B 、缩小2倍 C 、保持不变 D 、无法确定6、不改变分式y x y x +-32252的值,把分子、分母中各项系数化为整数,结果是( ) A 、yx y x +-4152 B 、y x y x 3254+- C 、y x y x 24156+- D 、y x y x 641512+- 7、若分式23xx -的值为负数,则x 的取值范围是( ) A 、3φx B 、3πx ; C 、3πx 且0≠x D 、3-φx 且0≠x 8、若2:3:=y x ,则分式y x y x +-的值为( ) A 、51- B 、51 C 、1 D 、无法确定 9、若68682-=-x x x x 成立,则x 应满足( ) A 、0φx B 、0≠x 且6≠x C 、0πx D 、6≠x10、甲从A 地到B 地要走m 小时,乙从B 地到A 要走n 小时,若甲、乙二人同时从A 、B 两地出发,经过多长时间两人相遇( )A 、()n m +小时B 、2n m +小时C 、mn n m +小时D 、nm mn +小时 二、填空题(每小题3分,共30分)11、若分式33||--x x 的值为零,则___________=x . 12、分式xy y x 2+,23x y ,26xy y x -的最简公分母为 . 13、计算:()___________14.33102=-+⎪⎭⎫ ⎝⎛--π. 14、若()120=+a ,则a 必须满足的条件是 .15、请你写出一个含有字母x 的分式 .(要求所写的分式应满足:不论x 取任何实数,该分式均有意义)16、约分:(1)_________6222=y ax axy ;(2)___________44422=-+-a a a . 17、在括号内填上适当的整式,使下列等式成立:(1)b a abb a 2)(=+; (2))(222222a b a ab a =-+; 18、已知31=+x x ,则__________122=+xx . 19、观察下列关系式:212111+=,613121+=,1214131+=,……,请你归纳出一般结论为 .20、从甲地到乙地全长S 千米,某人步行从甲地到乙地t 小时可以到达,现为了提前半小时到达,则每小时应多走 千米(结果化为最简形式).三.解答题(每小题5分,共15分)21、计算:()22923ac b ac -÷⎪⎭⎫ ⎝⎛-; 22、计算:b a b a a b b b a a -+÷⎪⎪⎭⎫ ⎝⎛-+-22;23、先化简,再求值:11112-÷⎪⎭⎫ ⎝⎛-+x x x ,其中2-=x .四、解答题(每小题5分,共15分)24、解方程:125552=-+-x x x 25、解方程:131182-+=+-x x x26、先化简代数式14422222-++-÷+-b ab a b a b a b a ,然后选择一个使原式有意义的a 、b 值代入求值.五、解答题(第27、28小题每题6分,共12分)27、有这样一道题:“计算:x xx x x x x -+-÷-+-2221112的值,其中2007=x ”,某同学把2007=x 错抄成2008=x ,但它的结果与正确答案相同,你说这是怎么回事?28、某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做多少个零件?六、探究题(共8分)29、观察下列各式:211211-=⨯;3121321-=⨯;4131431-=⨯;L ,L , (1)猜想它的规律,把()11+n n 表示出来;(2)用你得到的规律,计算:()111216121+++++n n Λ,并求出当24=n 时代数式的值.B 卷(20分)一、填空题(每小题3分,共9分)1、已知2-=x 时,分式a xb x +-无意义;当4=x 时,此分式值为0,则_____=+b a . 2、已知111=-ab ,则_______2232=---+b ab a b ab a . 3、观察下面一列有规律的数:31,82,153,244,355,486,…… (1)根据排列规律,第七个数是 ,第十个数是 ;(2)根据规律猜想第n 个数应是 (n 为正整数);(3)如果第m 个数化简后是801,则它是第 个数. 二、解答题(4题5分,5题6分,共11分)4、a 克糖水中有b 克糖(0φφb a ),则糖的质量与糖水质量之比为 ;若再添加c 克糖(0φc ),则糖的质量与糖水质量之比为 .生活常识告诉我们:添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个常识提炼出一个不等式.这个不等式是: ;你会运用已学过的知识来说明这个不等式的正确性吗?5、观察下列各式,并按要求完成下列问题: 因为⎪⎭⎫ ⎝⎛-=⨯31121311,⎪⎭⎫ ⎝⎛-=⨯513121531,…………,⎪⎭⎫ ⎝⎛-=⨯1911712119171 所以19919112119117151313112119171531311=⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-++-+-=⨯++⨯+⨯ΛΛΛ. (1)在式子ΛΛ+⨯+⨯531311中,第7项为 ,第n 项为 (n 为正整数). (2)计算:()()()()()20082007121111++++++++x x x x x x ΛΛ.第17章《分式》章节测试题参考答案及评分意见A 卷(100分)一、选择题(每小题2分,共20分)1、C ;2、B ;3、C ;4、C ;5、A ;6、D ;7、C ;8、B ;9、B ;10、D .二、填空题(每小题3分,共30分)11、3-;12、226y x ;13、10;14、2-≠a ;15、本题答案不唯一,例如112+x 、212+x 等;16、x y 3;22+-a a ;17、ab a +2;b a -;18、7;19、()11111+++=n n n n (n 为正整数);20、()12-t t s . 三、解答题(每小题5分,共15分)21、解原式22229149ac b c a -⨯= 24ba -= 22、解原式b a b a b a b b a a +-⨯⎪⎪⎭⎫ ⎝⎛---=22;()()ba b a b a b a b a +-⨯--+= b a -=23、解原式()()x x x x x x 111111-+⨯⎪⎭⎫ ⎝⎛-+--= ()()xx x x x 111-+⨯-= 1+=x当2-=x 时,原式112-=+-=四、解答题(每小题5分,共15分)24、解:152552=---x x x 525-=-x x0=-x0=x检验:把0=x 代入52-x 得:0552≠-=-x故0=x 是原方程的解.25、解:()()131118-+=++-x x x x ; 341822++=-+x x x44-=-x1=x检验:把1=x 代入()()11-+x x 得:()()011=-+x x 故1=x 不是原方程的解.26、解原式()()()1222--++⨯+-=b a b a b a b a b a ba b a b a b a ++-++=2 ba b += 选择一个使原式有意义的a 、b 值代入求值答案不唯一,只要符合分式有意义即可.五、解答题(第27、28小题每题6分,共12分)27、解:x xx x x x x -+-÷-+-2221112 ()()()()x x x x x x x --+⋅-+-=111112 x x -=0=∵该式子化简的结果为0,与x 无关.∴某同学把2007=x 错抄成2008=x ,但它的结果与正确答案相同就是这个原因.28、解:设现在平均每天做x 个零件,由题意得: 2030004000-=x x 解得:80=x经检验:80=x 是原方程的解且符合题意答:现在平均每天做80个零件.六、探究题(共8分)29、(1)()11111+-=+n n n n (2)解:()111216121+++++n n Λ 11141313121211+-++-+-+-=n n Λ 111+-=n 当24=n 时,原式12411+-=2524= B 卷(20分)一、填空题(每个小题3分,共9分)1、6;2、5-;3、(1)637,12010;(2)()112-+n n 或21+n (n 为正整数)(3)78. 二、解答题(4题5分,5题6分,共11分)4、a b ;ca cb ++;a bc a c b φ++ 理由:()()()()()c a a b a c c a a bc ac c a a bc ab c a a ac ab a b c a c b +-=+-=++-++=-++ ∵b a φ∴0φb a -,()()0φc a a b a c +- 故0φa b c a c b -++,即ab c a c b φ++ 5、(1)15131⨯;()()12121+-n n (n 为正整数). (2)解:()()()()()20082007121111++++++++x x x x x x ΛΛ 20081200712111111+-++++-+++-=x x x x x x ΛΛ 200811+-=x x ()20082008+=x x。
达标测试华东师大版八年级数学下册第十六章分式章节测试试卷(精选含答案)
华东师大版八年级数学下册第十六章分式章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x 的一元一次不等式组()213221x x x a ⎧-≤-⎪⎨->⎪⎩的解集为5x ≥,且关于y 的分式方程2322y a y y+=---有非负整数解,则符合条件的所有整数a 的和为( ) A .1- B .2- C .3- D .4-2、下列计算正确的是( )A .x 2•x 4=x 6B .a 0=1C .(2a )3=6a 3D .m 6÷m 2=m 3 3、如果把分式2xy x y +中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变4、某企业车间生产一种零件,3位工人同时生产,1位工人恰好能完成组装,若车间共有工人60人,如何分配工人才能使生产的零件及时组装好.设分配x 名工人生产,由题意列方程,下列选项错误的是( )A .x +3x =60B .1603x x -= C .6013x x -= D .x =3(60-x )5、若a b ,则下列分式化简正确的是( )A .22a a b b +=+B .22a a b b -=-C .22a a b b =D .22a a b b= 6、下列关于x 的方程,是分式方程的是( )A .325xx -= B .11523x y -= C .32xx x π=+ D .1212x x=-+ 7、当x =﹣2时,下列分式没有意义的是( )A .22x x -+B .2x x -C .22x x +D .22x x-- 8、PM 2.5是大气中直径小于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .62.510-⨯D .52.510-⨯9、若关于x 的一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-,且关于x 的分式方程32222ax x x x +=+--有非负整数解,则所有满足条件的整数a 的值之和是( )A .14-B .5-C .9-D .6-10、若关于x 的不等式组2123342x x a x x -⎧-<⎪⎨⎪-≤-⎩有且仅有3个整数解,且关于y 的方程2135a y a y --=+的解为负整数,则符合条件的整数a 的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、腊味食品是川渝人民的最爱,去年12月份,某销售商出售腊肠、腊舌、腊肉的数量之比为3:5:3,腊肠、腊舌、腊肉的单价之比为3:3:2.今年1月份,该销售商将腊肠单价上调20%,腊舌、腊肉的单价不变,并加大了宣传力度,预计今年1月份的营业额将会增加,其中腊肉增加的营业额占总增加营业额的14,今年1月份腊肉的营业额将达到今年1月份总营业额的730.若腊舌今年1月份增加的营业额与今年1月份总营业额之比为1:5,则今年1月份出售腊肠与腊肉的数量之比是__________.2、(1)(﹣2020)0=_____;(2)(x 3y )2=_____;(3)3a 2•2a 4=_____.3、方程12131x x =-+的解为___. 4、若分式99x x--的值为0,则x 的值为__________. 5、若()0211x -=,则x ≠______.6、计算:(232x y-)3=___;(9x 2y ﹣6xy 2+3xy )÷3xy =_____. 7、若230x x +-=,则代数式211x x x x ⎛⎫-⋅ ⎪-⎝⎭的值是______.8、计算:201(2π-⎛⎫-= ⎪⎝⎭__________. 9、如果分式(1)x x x+的值为零,那么x 的值是________. 10、若关于x 的分式方程133x a x x +=---有增根,则a=________. 三、解答题(5小题,每小题6分,共计30分)1、化简: (1)2236932a a a a a a +++⋅+ (2)111(1)m m m +++ 2、计算:(1)(2a ﹣b )2﹣b (2a +b );(2)(2a a 1-﹣a ﹣1)÷221-a a .3、化简分式2344(1)11x x x x x ,并从1、2、3这三个数中取一个合适的数作为x 的值代入求值.4、A、B两地相距25km,甲上午8点由A地出发骑自行车去B地,乙上午9点30分由A地出发乘汽车去B地.(1)若乙的速度是甲的速度的4倍,两人同时到达B地,请问两人的速度各是多少?(2)已知甲的速度为12/km h,若乙出发半小时后还未追上甲,此时甲、乙两人的距离不到2km,判断乙能否在途中超过甲,请说明理由.5、观察下列等式:①1111212--=-⨯;②1111 23434--=-⨯;③1111 35656--=-⨯;④1111 47878--=-⨯;……根据上述规律回答下列问题:(1)第⑤个等式是;(2)第n个等式是(用含n的式子表示,n为正整数).-参考答案-一、单选题1、D【解析】【分析】由一元一次不等式组的解集可知a <3,由y 的分式方程知a =-3,a =-1时满足方程有非负整数解,故符合条件的所有整数a 的和为4-.【详解】()213221x x x a ⎧-≤-⎪⎨->⎪⎩ 化简21362x x x a -≤-⎧⎨->⎩ 解得25ax x >+≥⎧⎨⎩ 故2+a <5即a <32322y a y y+=--- 通分得2322y a y y -=--- 合并得232y a y -=-- 两边同乘y -2得236y a y -=-+ 移向得32y a =+ 32y a =+若有非负整数解且y ≠2, 则a =-3时,y =0,符合题意,a =-1时y =1,符合题意,a =1时y =2,舍去,a =3时y =3,但a <3,不符合题意,故舍去,其余a 的取值同理均舍去.综上所述a=-1,a=-3满足条件,故符合条件的所有整数a的和为-4.故选:D.【点睛】本题考查了一元一次不等式组的解集,分式方程的性质,非负整数集的定义,一元一次不等式组的解集取两个式子解集的公共部分,分式方程的分母不能为0,否则方程无意义,非负整数指的是0和正整数.熟练掌握这些性质是解题的关键.2、A【解析】【分析】根据零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则求解即可.【详解】解:A、x2•x4=x6,故选项正确,符合题意;a 时,0a无意义,故选项错误,不符合题意;B、当0C、(2a)3=8a3,故选项错误,不符合题意;D、m6÷m2=m4,故选项错误,不符合题意.故选:A.【点睛】此题考查了零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则,解题的关键是熟练掌握零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则.3、A【解析】【分析】将x,y用3x,3y代入化简,与原式比较即可.解:将x,y用3x,3y代入得233y3233x xyx y x y⨯⨯⨯=++,故值扩大到3倍.故选A.【点睛】本题考查分式的基本性质,熟悉掌握是解题关键.4、A【解析】【分析】设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,根据生产工人数和组装工人数的倍数关系,可列方程.【详解】解:设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,由3位工人生产,1位工人恰好能完成组装,可得:x=3(60-x)①故D正确;将①两边同时除以3得:60-x=13x,则B正确;将①两边同时除以3x得:60xx-=13,则C正确;A选项中,x为生产工人数,而生产工人数是组装工人数的3倍,而不是相反,故A错误.综上,只有A不正确.故选:A.本题考查了由实际问题抽象出一元一次方程,明确题中的数量关系,是解题的关键.5、C【解析】【分析】由a b ,令3a =,4b =再逐一通过计算判断各选项,从而可得答案.【详解】解:当3a =,4b =时,34a b =,2526a b +=+,故A 不符合题意; 2122a b -=-,故B 不符合题意; 而2,2a a b b = 故C 符合题意; 22916a b =.故D 不符合题意 故选:C .【点睛】本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.6、D【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】解:A .方程分母中不含未知数,故不是分式方程,不符合题意;B .方程分母中不含未知数,故不是分式方程,不符合题意;C .方程分母中不含表示未知数的字母,π是常数,故不是分式方程,不符合题意;D .方程分母中含未知数x ,故是分式方程,符合题意.故选:D .【点睛】本题主要考查了分式方程的定义,解题的关键是掌握判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).7、A【解析】【分析】根据分式的分母为0时,分式无意义即可解答.【详解】解:A .分式22x x -+没有意义时,x =-2,故A 符合题意; B .分式2x x -没有意义时,x =2,故B 不符合题意; C .分式22x x +没有意义时,x =0,故C 不符合题意; D .分式22x x--没有意义时,x =0,故D 不符合题意; 故选:A .【点睛】本题考查了分式无意义的条件,熟练掌握分式的分母为0时,分式无意义是解题的关键.8、C【解析】【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.5a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往右移动到2的后面,所以 6.n =-【详解】解:0.000002562.510-=⨯故选C【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.9、B【解析】【分析】先解不等式组根据解集x a ≤-,求出得a 的范围,再解分式方程,根据非负整数解,求出a 的值即可求解.【详解】 解一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩得5x x a ≤⎧⎨≤-⎩ ∵元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-∴5a ≥-,即5a ≥-解关于x 的分式方程32222ax x x x +=+--得61x a =-+ ∵分式方程32222ax x x x+=+--有非负整数解, ∴11a +=-或12a +=-或13a +=-或16a +=-,解得2a =-或3a =-或4a =-或7a =-, ∵621x a =-≠+ ∴4a ≠-∵5a ≥-∴2a =-或3a =-∴2(3)5-+-=-或3a =-故选:B【点睛】本题考查分式方程、一元一次不等式组,熟练掌握分式方程、一元一次不等式组的解法,注意分式方程增根的情况是解题的关键.10、C【解析】【分析】 解不等式组得到227x a x <⎧⎪+⎨≥⎪⎩,利用不等式组有且仅有3个整数解得到169a -<≤-,再解分式方程得到152a y +=-,根据解为负整数,得到a 的取值,再取共同部分即可. 【详解】 解:解不等式组2123342x x a x x -⎧-<⎪⎨⎪-≤-⎩得:227x a x <⎧⎪+⎨≥⎪⎩,∵不等式组有且仅有3个整数解, ∴2217a +-<≤-, 解得:169a -<≤-, 解方程2135a y a y --=+得:152a y +=-, ∵方程的解为负整数, ∴1502a +-<, ∴15a >-,∴a 的值为:-13、-11、-9、-7、-5、-3,…,∴符合条件的整数a 为:-13,-11,-9,共3个,故选C .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.二、填空题1、20:21【解析】【分析】设去年12月份腊肠的单价为3x ,则去年12月份腊舌,腊肉的单价分别为3x ,2x ,今年1月份腊肠的单价为3.6x ,去年12月份腊肠的销售数量为3y ,则腊舌,腊肉的销售数量分别为5y 、3y ,1月份腊肉增加的营业额为z ,则总增加营业额为4z ;先求出去年12月份的销售额为30xy ,1月份腊肉的销售额为6xy z +,从而得到今年1月份的总销售额为304xy z +,再由今年1月份腊肉的营业额将达到今年1月份总营业额的730,推出15z xy =,即可求出今年1月份的总销售额为90xy ,腊肉的销售额21xy ,则腊肠今年1月份的营业额为90332136xy xy xy xy --=,设今年1月份出售腊肠与腊肉的数量分别为a 和b ,可以得到 3.636221ax xy bx xy=⎧⎨=⎩,由此求解即可. 【详解】解:设去年12月份腊肠的单价为3x ,则去年12月份腊舌,腊肉的单价分别为3x ,2x ,今年1月份腊肠的单价为3.6x ,去年12月份腊肠的销售数量为3y ,则腊舌,腊肉的销售数量分别为5y 、3y ,1月份腊肉增加的营业额为z ,则总增加营业额为4z ,∴去年12月份的销售额为33532330x y x y x y xy ⋅+⋅+⋅=,1月份腊肉的销售额为236x y z xy z ⋅+=+, ∴今年1月份的总销售额为304xy z +,∵今年1月份腊肉的营业额将达到今年1月份总营业额的730, ∴6730430xy z xy z +=+, ∴15z xy =(经检验,符合分式方程有意义的条件),∴今年1月份的总销售额为90xy ,腊肉的销售额21xy∵腊舌今年1月份增加的营业额与今年1月份总营业额之比为1:5,∴腊舌今年1月份增加的营业额为18xy ,∴腊舌今年1月份的营业额为351833x y xy xy ⋅+=,∴腊肠今年1月份的营业额为90332136xy xy xy xy --=,设今年1月份出售腊肠与腊肉的数量分别为a 和b ,∴ 3.636221ax xy bx xy=⎧⎨=⎩, ∴3.636221a b =, ∴2021a b =, 故答案为:20:21.【点睛】本题主要考查了分式方程的应用,解题的关键在于能够根据题意设出相应的未知量,然后推导出对应的关系式.2、 1 x6y2 6a6【解析】【分析】(1)根据非零数的零次幂等于1求解;(2)根据积的乘方法则计算;(3)根据单项式与单项式的乘法法则计算;【详解】解:(1)(﹣2020)0=1;(2)(x3y)2=x6y2;(3)3a2•2a4=6a6.故答案为:(1)1;(2)x6y2;(3)6a6.【点睛】本题考查了零次幂的意义、积的乘方计算、以及单项式与单项式的乘法计算,单项式与单项式的乘法法则是,把它们的系数相乘,字母部分的同底数的幂分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.3、x=-3【解析】【分析】先去分母,然后再求解方程即可.【详解】解:12131x x =-+ 去分母得:()3121x x +=-,去括号得:3122x x +=-,移项、合并同类项得:3x =-,经检验:3x =-是原方程的解,故答案为3x =-.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.4、-9【解析】【分析】分式值为0的条件:分式的分子为0且分母不为0,据此求解即可得.【详解】解:由题意得:9090⎧-=⎨-≠⎩x x , 解得:9x =-,故答案为:9-【点睛】本题考查了分式值为0,解题的关键是熟练掌握分式值为0的条件.5、12##0.5【解析】【分析】直接利用零指数幂的底数不为0可得出答案.【详解】解:∵(2x ﹣1)0=1,∴2x ﹣1≠0,解得:x ≠12. 故答案为:12.【点睛】此题主要考查了零指数幂,正确掌握零指数幂的底数不为0是解题关键.6、 36278x y - 3x ﹣2y +1 【解析】【分析】根据分式的乘方法则和分式的约分方法计算即可.【详解】解:(232x y -)3=323(3)(2)x y -=36278x y -=﹣36278x y; (9x 2y ﹣6xy 2+3xy )÷3xy =229633x y xy xy xy-+ =()33213xy x y xy -+=3x ﹣2y +1;故答案为:﹣36278x y;3x ﹣2y +1. 【点睛】本题考查了分式的乘方和分式的约分,分式的乘方是把分子、分母分别乘方,分式的约分是把分式分子、分母中除1以外的公因式约去.7、3【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 2+x =3整体代入计算即可求出值.【详解】解:∵x 2+x -3=0,∴x 2+x =3, ∴211x x x x ⎛⎫-⋅ ⎪-⎝⎭ 2211x x x x -=⋅- 2(1)(1)1x x x x x +-=⋅- (1)x x =+=x 2+x=3,故答案为:3.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.8、3【解析】【分析】根据实数的运算法则即可求出答案.【详解】解:原式41=-3=.【点睛】本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.9、1-【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:(1)0x x +=且0x ≠,解得1x =-.故答案为:1-.【点睛】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10、3【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出a 的值即可.【详解】 解:133x a x x+=---, 去分母得: x −a =3-x ,由分式方程有增根,得到x −3=0,即x =3,代入整式方程得:3−a =3-3,解得:a =3.故答案为:3.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.三、解答题1、 (1)12 (2)1m 【解析】【分析】(1)根据分式的乘法计算法则化简即可;(2)根据异分母分式的加法计算法则化简即可.(1) 解:2236932a a a a a a +++⋅+ ()()23323a a a a a =⋅+++12=; (2) 解:111(1)m m m +++ ()11(1)m m m m m =+++ ()11m m m +=+ 1m=. 【点睛】本题主要考查了分式的化简,熟知相关计算法则是解题的关键.2、 (1)4a 2-6ab (2)12a a+- 【解析】【分析】(1)先利用完全平方公式和单项式乘多项式的运算法则计算乘方和乘法,然后再算加减;(2)先将小括号内的式子进行通分计算,然后再算括号外面的.【小题1】解:原式=4a 2-4ab +b 2-2ab -b 2=4a 2-6ab ;【小题2】原式=()()()()21111112a a a a a a a a +-+-⎡⎤-⋅⎢⎥--⎣⎦=()()2211112a a a a a a-+--+⋅- =12a a+- 【点睛】本题考查整式的混合运算,分式的混合运算,掌握完全平方公式的结构及通分和约分的技巧是解题关键.3、22x x +-,当x =3时,5. 【解析】【分析】先将分子分母因式分解,再进行计算,即可求解.【详解】 解:原式=(21311x x x ----)÷2(2)1x x -- =2(2)(2)11(2)x x x x x +--⨯-- x 2x 2+=-, ∵x ≠1且x ≠2,∴当x =3时,原式=3232+-=5. 【点睛】本题主要考查了分式的化简求值,熟练掌握分式的混合运算法则是解题的关键.4、 (1)甲的速度是12.5千米/时,乙的速度是50千米/时;(2)乙能在途中超过甲.理由见解析【解析】(1)设甲的速度是x千米/时,乙的速度是4x千米/时,根据A、B两地相距25千米,甲骑自行车从A地出发到B地,出发1.5小时后,乙乘汽车也从A地往B地,且两人同时到达B地,可列分式方程求解;(2)根据乙出发半小时后还未追上甲,此时甲、乙两人的距离不到2km,列不等式组求得乙的速度范围,进步计算即可判断.(1)解:设甲的速度是x千米/时,乙的速度是4x千米/时,由题意,得25251.54x x-=,解得x=12.5,经检验x=12.5是分式方程的解,12.5×4=50.答:甲的速度是12.5千米/时,乙的速度是50千米/时;(2)解:乙能在途中超过甲.理由如下:设乙的速度是y千米/时,由题意,得0.52120 2120.52yy-⨯<⎧⎨⨯-<⎩,解得:44<y<48,甲走完全程花时间:2512小时,则乙的时间为:2571.51212-=小时,∴乙712小时走的路程s为:712×44<s<712×48,即2523<s<28,∴乙能在途中超过甲.本题考查了分式方程的应用,一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的相等和不等关系,并据此列出方程和不等式组.5、 (1)1111 5910910 --=-⨯(2)11112122(21) n n n n n--=---【解析】【分析】(1)观察前4个等式可以得出等式左边第1 个减数的分母是被减数的2倍减1,第2个减数的分母是被减数分母的2倍,右边的分母是等式左边第1个减数与第2个减数的分母乘积,且结果为负数,由此可得结论;(2)由(1)可得结论.(1)第⑤个等式是:1111 5910910--=-⨯,故答案为:1111 5910910--=-⨯;(2)由(1)以及所给等式可以得出,第n个等式为:11112122(21)n n n n n--=---,故答案为:11112122(21) n n n n n--=---【点睛】本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.学生很容易发现各部分的变化规律.。
人教八年级数学(下)第16章分式单元检测(含答案)
第十六章 分式单元测试题(时间90分钟 满分100分)班级____________姓名____________学号____________成绩______ 一、选一选(请将唯一正确答案代号填入题后的括号内,每小题3分,共30分)1.已知x ≠y ,下列各式与x y x y-+相等的是( ). (A )()5()5x y x y -+++ (B)22x y x y-+ (C)222()x y x y -- (D )2222x y x y -+2.化简212293m m +-+的结果是( ). (A )269m m +- (B)23m - (C)23m + (D )2299m m +-3.化简3222121()11x x x x x x x x --+-÷+++的结果为( ).(A)x-1 (B)2x-1 (C)2x+1(D)x+14.计算11()a a a a -÷-的正确结果是( ). (A )11a + (B )1 (C )11a - (D )-15.分式方程1212x x =--( ). (A )无解 (B )有解x=1 (C )有解x=2 (D )有解x=06.若分式21x +的值为正整数,则整数x 的值为( ) (A )0 (B )1 (C )0或 1 (D )0或-17.一水池有甲乙两个进水管,若单独开甲、乙管各需要a 小时、b 小时可注满空池;现两管同时打开,那么注满空池的时间是( )(A )11ab+ (B )1ab (C )1a b+ (D )aba b+ 8.汽车从甲地开往乙地,每小时行驶1v km ,t 小时可以到达,如果每小时多行驶2v km ,那么可以提前到达的小时数为 ( )(A )212v t v v + (B ) 112v t v v + (C )1212v vv v + (D )1221v t v t v v - 9.下列说法:①若a ≠0,m,n 是任意整数,则a m .a n =a m+n ; ②若a 是有理数,m,n 是整数,且mn>0,则(a m )n =a mn ;③若a ≠b 且ab ≠0,则(a+b)0=1;④若a 是自然数,则a -3.a 2=a -1.其中,正确的是( ).(A )① (B )①② (C )②③④ (D )①②③④10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是:( )(A )1515112x x -=+ (B )1515112x x -=+ (C )1515112x x -=- (D )1515112x x -=- 二、填一填(每小题4分,共20分)11.计算22142a a a -=-- . 12.方程 3470x x=-的解是 . 13.计算 a 2b 3(ab 2)-2= . 14.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按这种规律写出第七个数据是 .15.如果记 221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即f(12)=221()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)= (结果用含n 的代数式表示).三、做一做16.(7分)先化简,再求值:62393m m m m -÷+--,其中m=-2. 17.(7分)解方程:11115867x x x x +=+++++. 18.(8分)有一道题“先化简,再求值: 2221()244x x x x x -+÷+-- 其中,x=-3”小玲做题时把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?19.(9分)学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,问这笔钱全部用来买钢笔或日记本,可买多少?20.(9分)A 、B 两地相距80千米,甲骑车从A 地出发1小时后,乙也从A 地出发,以甲的速度的1.5倍追赶,当乙到达B 地时,甲已先到20分钟,求甲、乙的速度.四、试一试21.(10分)在数学活动中,小明为了求 2341111122222n+++++的值(结果用n 表示),设计如图1所示的几何图形.(1)请你利用这个几何图形求2341111122222n+++++的值为 ;(2)请你利用图2,再设计一个能求2341111122222n+++++的值的几何图形.16. 4 本章测试题一、1.C 2.B 3.A 4.A 5.D 6.C 7.D 8.A 9.B 10.B二、11.12a + 12.x=30 13.16 14.8177 15.12n - 三、16.-5 17.x=132- 18. 24x +. 19.可以买钢笔100支或者日记本450本.20.甲的速度为40千克/时,乙速为60千克/时. 21.(1)1;(2)12n略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19、由已知得 = ,∴M=a2
20、∵x2-9=0∴x=±3组x=3时,分母x-3=0,故x=3舍去,
当x=-3时,原式= =-5
三、21、解原式= ×25×3+1-4=10-3=7
22、答:A、B互为相反数,因为A= - = =-
- =11
解这个方程,得x=80
经检验,x=80是所列方程的根
∴80×3.2=256(千米/时)
答:提速后的速度为256千米/时。
27、(1)解:设乙工程队单独完成这项工程需要x天,根据题意得:
+( + )×20=1
解之得:x=60
经检验,x=60是原方程的解
答:乙工程队单独完成这项工程所需的天数为60天。
17、若x2+3x-1=0,则 ÷(x+2- )=。
18、化简( - )÷ 最后结果是。
19、若 - = ,则M=。
20、若x2-9=0,则 =。
三、解答题(每小题5分,共30分)
21、计算( - )×( )-2÷|- |+( -2)0+(- )2009×42010
22、已知:两个分式A= - ,B= ,其中x≠±1,下面三个结论①A=B;②A、B为倒数;③A、B互为相反数,请问这三个结论中哪一个结论正确?为什么?
二、11~20-1 3 -3 c>d>a>b -
a2-5
提示:12、∵( + + )+( + + )=5+7
即4( + + )=12∴ + + =3
13、原方程可化为 - =-1 =-1
由m+4=0得m=-4
14、将原方程化为2x-4(x+1)=k+1,将增根x=-1代入此方程中得k=-3
15、原式= =
23、解方程 + =3
24、先化简再求值: ÷(x-1- )其中x=
25、已知实数a满足a2+4a-8=0,求 - × 的值。
四、综合应用题(每小题15分,共30分)
26、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度。
(2)解:设两队合做完成这项工程所需天数为y天
根据题意得
( + )y=1
解之得:y=24
答:两个人合做完成这项工程所需的天数为24天。
可以编辑的试卷(可以删除)
A、解为x=7B、解为x=8C、解为x=15D、无解
6、关于x的方程 - = - (m≠n)的解是( )
A、不等于0的任意数 B、mnC、-mnD、m+n
7、一只船顺流航行90km与逆流航行60km所用的时间相等,若水流速度是2km/h,求船在静水中的速度,设船在静水中速度为xkm/h,则可列方程()
A、-x-1B、-x+1C、- D、
2、代数式 有意义时,字母x的取值范围是()
A、x>0B、x≥0C、x>0且x≠1D、x≥0且x≠1
3、下列各式计算正确的是()
A、 =x2B、 =
C、 =m+3D、 +x· =
4、计算( )-( )÷( )的结果为()
A、1B、 C、 D、
5、解分式方程 =8,可知方程()
27、(长沙市)在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成。
(1)求乙工程队单独完成这项工程所需的天数。
(2)求两队合做完成这项工程所需的天数。
参考答案
一、ADBAD BAADB
23、解::方程两边同乘(x+2)(x-2)得
3x(x-2)+2(x+2)=3(x2-4)
3x2-6x+2x+4=3x2-12-4x=-16x=4
经检验x=4是原方程的根
24、解原式= ÷ = × =
25、解:原式= - ×
= - = =
由a2+4a-8=0得a2+4a=8
∴原式= =
四综合应用题
26、解设列车提速前的速度为x千米/时,根据题意得
二、填空题(每小题3分,共30分)
11、若分式 的值为零,则x的值等于。
12、(茂名市)若 + + =5, + + =7,则 + + =。
13、化简 =。
14、当k=时,方程 -4= 有增根?
15、 =。
16、若a=-0.32,b=-3-2,c=(- )-2,d=(- )0,则a、b、c、d的大小关系是
A、 = B、 = C、 +3= D、 +3=
8、下列各式从左到右变形正确的是()
A、 = B、 =
C、- = D、 =
9、把 , , 通分过程中,不正确的是()
A、最简公分母是(x-2)(x+3)2B、 =
C、 = D、 =Байду номын сангаас
10、把xg盐溶于yg水中制成溶液,求mg这样的溶液中含水()
A、 mgB、 gC、 gD、 g
第十六章 分式单元水平测试
题号
一1
二2
三3
四4
五5
六6
七7
八8
得分
任何学习不可可能重复一次就可以掌握,必须经过多次重复、多方面、多个角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每小题3分,共30分)
1、化简(- )÷ 的结果是()