暖通空调自动控制

合集下载

暖通空调(HVAC)的自动控制

暖通空调(HVAC)的自动控制
进气通 道风门 电机
发动机 ECU
温度控制
气流分配 控制
内外循环 控制
压缩机控制 电动风扇控

▣ 暖通空调(HVAC)
一、风速控制
自动控制:连续可变控制
1、 光线强度补偿:在光线较强的情况下,将鼓风机转速提高。
▣ 暖通空调(HVAC)
2、 初始鼓风机控制: 环境温度低的情况下
当发动机温度很低时为了防止强冷风吹到乘客,鼓风机电机设定到低档,(当水温超过设 定值或者分钟以后,运行自动)。
暖通空调(HVAC)的自动控制
通用型 制作作者:李绍相
▣ 暖通空调(HVAC)
■ 传感器输入/输出示意图
驾驶员操作 温度选择 自动设定
环境条件
冷却液温 度
环境温度 蒸发器温
度 车内温度
太阳辐射
控制
控制 模块 (空 调面 板)
车辆信息 车速信号
输出
功率晶 体管
鼓风机转 速控制
混合风 门电机
空气流 向风门 电机
最大冷却/加热控制 :如果温度设置到最低水平(Lo)或最高水平(Hi),系统也会进入最大冷却或最大加热 模式。
温度设定 低 高
压缩机 开 关
吹风模式 通风 脚部
内外循环模式 鼓风机转速
内循环 外循环
较高 较高
空气混合口 最强制冷 最强加热
▣ 暖通空调(HVAC)
三、进气控制 (内/外循环)
自动控制:自动可变 1、强力制冷控制 基本设定为“外循 环”模式,但是如果强烈要求冷却,那 么空气模式改为“内循度、进气温度超过(35℃) 时,为了防止热风吹到乘客,吹风模式设定到“除霜”5秒钟
▣ 暖通空调(HVAC)
五、压缩机控制 (通过蒸发器温度、环境温度)

浅谈暖通空调自控系统设计

浅谈暖通空调自控系统设计

浅谈暖通空调自控系统设计1.引言随着社会的进步,我国的现代化进程在不断加快,人们生活水平不断提高。

建筑行业在此形势下迅猛发展并占据了越来越多的大城市,不管是从文化体育到医疗保险还是从宾馆酒店到商业金融建筑,各具特色和功能齐全的高层建筑鳞次栉比。

为了追求生活环境的舒适性,暖通空调的自控系统设计成为了未来的发展趋势。

暖通工程项目涉及广泛,在对其进行设计需要考虑的问题较多,因地制宜选择合适的能源资源、减少耗能,减少对室外环境不利影响。

但目前,还无法充分发挥暖通空调本身的优势和功能,主要是暖通空调和自控设计这两方面的配合问题没有得到妥善处理。

2.暖通空调自控系统概述暖通空调是一种具有采暖、通风和空气调节功能的空调器,是智能建筑不可缺少的重要环节。

暖通空调的自控系统部分由软件技术和硬件技术组成,随着技术的不断发展,专业性的不断提升,对暖通空调自控设计的研究还无法专门由自控专业的技术人员独立完成。

在智能建筑中,空调系统的耗电量占整个建筑总耗电量的50%~60 % ,其监控点数量常常占整栋建筑监控点总数的50%以上。

暖通空调自控系统不仅能够帮助管理者提升建筑的管理水平,还能提高系统能效,在最大程度上实现空调系统的经济运行,降低运行费用。

3.暖通与自控之间配合上存在的问题(1)暖通与自控专业之间的研究范围不同。

因为专业研究范围不同,自控工程师对控制对象和控制要求难以理解,所以很难做到和暖通专业一样全而深入地了解空调系统特性。

根据实际工程研究可知:明确信息的来源和信息参数性能要求等是由暖通专业的技术人员负责;建立通畅的数据通信渠道,排除噪音的干扰和传输媒体的控制则由自控专业的技术人员负责。

由于自控专业的技术人员不具备热工流体、建筑环境的理论和技术等相关专业知识,而且对于空调系统的特性的了解却还远远不够要深入,所以就无法达到暖通专业技术人员的专业水平,也无法了解控制对象和控制要求。

由于自控专业的工作人员缺乏与暖通专业相关的一些基础性知识,因此很难理解暖通空调的整个系统的运作过程。

(暖通空调系统自动化)第一章暖通空调系统自动化概述

(暖通空调系统自动化)第一章暖通空调系统自动化概述

按被控对象的复杂程度分
1. 简单控制系统 简单控制系统往往只有一个控制回路,控制 规律也比较简单,例如风机盘管的控制,温控器 感知室内温度低于设定值时就把冷水阀关闭,高 于设定值(中间有回差)时就把温控阀打开。 2. 复杂控制系统 复杂控制系统是相对简单控制系统而言,如 组合式空气处理机组的控制。要想得到稳定的送 风温度和湿度就要控制好进入机组的冷水量、热 水量、蒸汽量等多个变量,以及它们之间的关系, 这就要有冷水控制回路、热水控制回路、蒸汽控 制回路等几个控制回路。
2. 能够准确、全面的提出暖通空调系统需要检测和控制的运行 参数和运行设备状态参数的类别、指标、数量和控制策略。并且以任 务书的形式进行表述和提交;
3. 能够进行简单暖通空调自动控制系统的设计,包括控制方案 的确定、控制设备的选型、控制系统的组态、图纸的绘制等;
4. 能够胜任暖通空调自动化系统现场设备安装、调试、验收等 环节的监理工作;
暖通空调自动化系统的组成
分散式中央空调自动化控制系统
第四节 暖通空调自动化系统实施步骤
实施过程四个阶段
暖通空调自动化系统实施过程框图
学习本课程以后应具备的 几项技术能力
1. 熟练掌握暖通空调系统动态运行的规律。如供热管网和冷水管 网水力运行工况、热力运行工况、动态运行工况下被控参数的变化规 律等内容;
按暖通空调系统的功能分 按有没有控制功能分 按被控对象的复杂程度分 按有没有数字控制分
按暖通空调系统的功能分
供热控制系统 空调控制系统 通风及防排烟控制系统 燃气输配控制系统等
按有没有控制功能分
1. 监测系统 这类系统只是对暖通空调系统运行的参数进 行采集、测量、传送和显示,并把这些数据提供 给有关人员,并不对运行参数进行控制,也叫做 只监不控。 2. 监控系统 这类系统除了对系统运行的参数进行采集、 测量、传送和显示外,还有专门的装置和设备以 及相应的方法对运行参数进行控制,也叫做又监 又控。

暖通空调系统的自动化控制技术

暖通空调系统的自动化控制技术

暖通空调系统的自动化控制技术摘要:暖通空调是人们在现代化生活中常用的机电设备,可以在很大程度上改善人们的生活条件。

目前,很多暖通空调系统在运行当中都可以保持一定的稳定性和安全性,但是总体性能还是存在欠缺。

基于此,建设施工单位开始采用自动化控制技术优化暖通空调系统的性能,在提高系统安全操作的同时减轻人力投入,达到新时期的经济和科学技术发展要求。

文章主要通过分析暖通空调系统自动化控制的方式和技术,对优化技术应用效果的措施进行简要的探讨。

关键词:暖通空调;系统运行;自动化控制技术前言:随着科学技术迅速发展,我国现代化社会经济水平不断提升,人们的生活品质有了很大程度的改善,空调也开始走进了千家万户。

在空调初始应用于日常生活当中时,很多人被高昂的价格劝退,不过在近几年技术发展越发迅速的时期,暖通空调的性能逐渐多样化,人们也有了购买这类设备的能力。

为了改善暖通空调系统的运行效果,有关单位就可以加强对自动化控制技术的应用及普及,通过改良现有的技术形式,给人们带来更好的体验。

1.暖通空调自动控制系统的控制方式目前,暖通空调自动控制系统的控制方式主要有DDC控制、继电器控制及PLC控制三种方式。

DDC控制方法的体现需要以多种数字化技术的应用作为基础,在室内温度发生改变时,就可以利用暖通空调系统对参数进行有效控制和调节,起到优化室内温度并且降低能耗的作用。

继电器作为一种用电流控制开关的装置,在系统运行的过程中,可以实现对不同的电流和流量大小的有效分析,从而轻松实现系统控制目标。

在暖通空调系统运行当中,小电流需要着眼于大电流控制之上,技术人员可以通过时间继电器、中间继电器等方式实现延时和流量切换等功能。

PLC控制在暖通空调系统自动化控制中的应用相对来说比较广泛,其可以在传统的顺序控制器基础上体现新的工业控制装置的特点,以组建远程控制系统的方式为主,提高系统运行的可靠性,还能够体现编程容易、通用性好等优点。

1.暖通空调系统的自动化控制技术分析1.流程自动控制技术虽然传统的暖通空调系统自动化控制技术可以在一定程度上实现对系统的有效控制,但是不符合新时期的暖通空调系统建设发展要求。

自动控制在暖通空调系统中的发展与应用

自动控制在暖通空调系统中的发展与应用

自动控制在暖通空调系统中的发展与应用随着科技的不断发展,自动控制技术在暖通空调系统中的应用越来越广泛。

自动控制技术不仅可以提高暖通空调系统的控制精度和节能效果,还可以提高系统的稳定性和可靠性,为人们提供更加舒适的室内环境。

本文将从自动控制技术的发展历程、在暖通空调系统中的应用以及未来的发展趋势等方面进行分析和探讨。

一、自动控制技术的发展历程自动控制技术是指利用传感器、执行器和控制器等设备,通过对系统的参数进行检测和分析,根据既定的控制策略对系统进行自动调节和控制的技术。

自动控制技术的起源可以追溯到18世纪末的工业革命时期,当时的工业生产中出现了许多用于自动控制的装置,例如蒸汽机的调整装置和自动水位调节装置等。

20世纪初,随着电气技术的发展,自动控制技术得到了更大的发展,出现了许多新的控制装置和调节器件,为自动控制技术的应用奠定了基础。

随着计算机技术的不断发展,自动控制技术在20世纪后期得到了飞速的发展,出现了许多新的控制理论和方法,如PID控制、模糊控制、神经网络控制等。

这些新的控制理论和方法为自动控制技术的应用提供了更多的选择,使得自动控制技术在各个领域得到了更广泛的应用。

自动控制技术在暖通空调系统中的应用主要体现在系统的温度控制、湿度控制、新风控制、风量控制等方面。

通过传感器对室内外环境的参数进行检测,再由控制器对系统进行相应的调节,可以实现对室内温度、湿度等参数的精确控制。

在传统的暖通空调系统中,一般采用定时控制或者手动控制的方式进行系统的调节,这种方式存在控制精度不高、能耗较大等问题。

而应用自动控制技术后,可以根据实际的需求对系统进行精确的调节,提高系统的控制精度和节能效果。

自动控制技术还可以提高暖通空调系统的稳定性和可靠性。

通过对系统的运行状态进行实时监测和分析,可以及时发现并解决系统中的问题,提高系统的稳定性和可靠性,减少系统的故障和停机时间,为用户提供更加稳定和可靠的服务。

随着科技的不断进步,自动控制技术在未来的发展趋势主要体现在以下几个方面:1.智能化:未来的暖通空调系统将会越来越智能化,可以通过与人工智能技术相结合,实现对系统的自学习和自适应,根据不同的使用环境和用户需求,对系统进行智能调节和控制。

暖通空调的控制算法

暖通空调的控制算法

暖通空调(HVAC)系统的控制算法是用来监测和调节建筑内部的温度、湿度、空气质量和空气质量参数的一套规则和逻辑。

这些算法通常基于预设的舒适度标准和节能要求,通过传感器收集的数据来动态调整系统的运行状态。

以下是一些常见的暖通空调控制算法:
1. 温度控制:这是最基本的控制算法之一,它通过调节加热器或冷却器的输出,以及通风系统的风速,来维持室内温度在设定的舒适范围内。

2. 湿度控制:在某些场合,如实验室或数据中心,湿度控制非常重要。

控制系统会监测室内湿度,并调节空调的除湿或加湿功能,以保持湿度在合适的水平。

3. 空气质量控制:为了确保室内空气质量,控制系统会监测空气质量指标,如二氧化碳(CO2)水平、颗粒物浓度等,并相应地调整通风系统的运行。

4. 能效优化:为了节约能源,控制系统会采用各种策略,如预测控制、自适应控制和多变量控制,以优化暖通空调系统的能源消耗。

5. 分区控制:在大型建筑中,不同区域可能有不同的温度和湿度需求。

分区控制系统可以根据各个区域的实际需求独立控制各个区域的暖通空调设备。

6. 季节性调整:随着季节的变化,室外温度和湿度的变化也需要调整室内舒适度。

控制系统会根据季节变化自动调整设定点和运行策略。

7. 故障检测与诊断:控制系统还包括故障检测和诊断算法,用于监测系统性能,及时发现并报告任何故障或异常情况。

8. 远程监控和智能控制:现代暖通空调系统可以通过互联网进行远程监控和控制,实现智能化的运行和管理。

这些控制算法通常由专业的控制系统设计师根据建筑的特点和用户需求来设计和编程。

在实际应用中,这些算法可以结合人工智能和机器学习技术,以实现更加精细和高效的控制。

暖通空调系统自动化课程设计

暖通空调系统自动化课程设计

暖通空调系统自动化课程设计1. 概述暖通空调系统自动化技术是现代智能建筑中不可或缺的环节。

本课程设计通过对暖通空调系统自动化的介绍、实验设计及实验操作等环节的学习,提升学生自动化控制系统设计、调试和运行的能力。

2. 课程学习目标学生通过本课程的学习,应该能够掌握:•暖通空调系统自动化控制系统原理和基本知识。

•暖通空调系统自动化控制方案设计方法。

•暖通空调系统自动化控制器配置、编程及调试方法。

•暖通空调系统自动化控制实验操作方法。

3. 课程内容本课程包括以下内容:3.1 暖通空调系统自动化控制系统原理和基本知识•静态图形和符号规范。

•算法图解和逻辑实现。

•暖通空调系统自动化控制系统的软件和硬件配置。

•自动化控制器编程和调试技术。

3.2 暖通空调系统自动化控制方案设计方法•系统设计重要性介绍。

•系统控制原则和策略讲解。

•系统控制器方案设计。

•系统调试过程介绍。

3.3 暖通空调系统自动化控制器配置、编程及调试方法•PLC常见模块介绍(输入模块、输出模块、计数模块、模拟量模块和通讯模块)。

•常用PLC编程语言介绍。

•自动化控制器调试技术。

3.4 暖通空调系统自动化控制实验操作方法。

•实验室硬件环境介绍。

•实验项目介绍。

•实验流程讲解。

4. 实验设计与操作以某航空机场的空调系统为例,具体设计如下:4.1 实验项目1.温度传感器检测机场大厅内室温,调节风机控制机场大厅内空气循环。

2.机场大厅内湿度传感器检测机场大厅内相对湿度,调节空气加湿类控制。

3.检测所有航站楼内外温度,制定智能化“取暖”计划。

4.2 实验流程1.设计与安装传感器与系统之间的传输协议:使用modbus协议,使用RTU方式进行通讯。

(软件平台使用:目前主流的第三方modbus测试工具如Modscan、Modscan32、Comtest、PDU等)。

2.空气循环控制:设计算法对温度传感器检测到的值进行控制,控制机场大厅内的空气流通。

(软件平台使用:Siemens S7-200 PLC)。

暖通自动化控制

暖通自动化控制

暖通自动化控制暖通自动化控制是指利用先进的自动化技术和设备,对建造物的供暖、通风、空调系统进行智能化管理和控制的一种技术手段。

它通过采集、传输和处理相关数据,实现对室内温度、湿度、空气质量等参数的监测和调节,从而提高室内环境的舒适性和能源利用效率。

一、自动化控制的基本原理1. 传感器:使用温度传感器、湿度传感器、CO2传感器等获取室内环境参数的数据。

2. 控制器:根据传感器采集到的数据,进行数据处理和逻辑判断,并输出控制信号。

3. 执行器:接收控制信号,控制暖通设备的运行,如调节阀门、启停风机等。

二、暖通自动化控制的主要功能1. 温度控制:根据室内温度的变化,自动调节暖通设备的运行,使室内温度保持在设定的舒适范围内。

2. 湿度控制:根据室内湿度的变化,自动调节加湿器或者除湿器的运行,使室内湿度保持在适宜的水平。

3. 空气质量控制:通过CO2传感器等监测室内空气质量,自动调节新风量和排风量,保证室内空气的新鲜度和清洁度。

4. 能源管理:根据室内外温度、人员活动情况等因素,合理调节暖通设备的运行,实现能源的节约和利用效率的提高。

5. 故障报警:监测暖通设备的运行状态,一旦浮现故障或者异常情况,及时发出报警信号,提醒维修人员进行处理。

三、暖通自动化控制的优势1. 提高舒适性:自动化控制可以根据室内环境的变化,实时调节暖通设备的运行,使室内温度、湿度等参数保持在舒适的范围内。

2. 节约能源:通过合理调节暖通设备的运行,避免能源的浪费,实现能源的节约和利用效率的提高。

3. 提高管理效率:自动化控制可以实现对暖通设备的远程监控和管理,减少人工操作和管理的工作量,提高管理效率。

4. 增强安全性:自动化控制可以对暖通设备的运行状态进行实时监测,一旦浮现故障或者异常情况,及时发出报警信号,保障建造物和人员的安全。

5. 降低运维成本:自动化控制可以减少设备的维修和保养工作,降低运维成本,提高设备的可靠性和使用寿命。

暖通空调系统的自动化控制技术分析

暖通空调系统的自动化控制技术分析

暖通空调系统的自动化控制技术分析摘要:随着我国经济的快速发展,建筑业也得到了迅速地提高,暖通空调行业在社会发展中发挥着重要作用。

但是由于当前阶段能源资源短缺、环境污染等因素的影响,导致其节能减排工作无法顺利进行。

因此本文就将分析在自动化供热系统中存在的问题及优化措施,来有效促进节约能耗和环保型建筑事业更好更快发展,并提供相关启示与建议,从而实现暖通空调行业可持续健康稳定发展的目标,并为其他领域做出贡献。

关键词:节能减排;暖通空调;自动化控制引言暖通空调系统是电气设备的一种类型,将自动控制技术应用于暖通空调系统的运行中,可以更好地发挥暖通空调系统的实用功能。

暖通空调系统自动控制技术包括继电器自动控制技术、PLC自动控制技术和DDC自动控制技术。

各种自动控制技术都独具特色。

在暖通空调系统自动控制的应用中,不同的自动控制方式应结合室内温湿度控制目标的实际情况。

研究暖通空调系统自动控制的人员,还要从控制方式和原理的角度,积极有效地提高暖通空调系统的性能,以满足人们更高的使用需求。

1.暖通空调制冷系统的工作原理暖通空调的制冷系统主要是由压缩机、冷凝器、膨胀阀以及蒸发器四个部分构成,在这些部件中,压缩机是核心部件,它是将低温低压的制冷剂压缩为高温高压的气态制冷剂,通过蒸发器将高温高压的气态制冷剂变为低温低压的液态制冷剂,最后经过冷凝器时就会变成低温低压的气态制冷剂,而在制冷系统中最重要的一个部件就是膨胀阀,它主要负责控制制冷系统中冷冻水的流量,一旦膨胀阀出现问题则会导致温度没有达到设定值或者是出现温度过高现象,最后就会影响制冷系统工作运行的稳定性,这也是影响暖通空调制冷系统自动化控制技术发展的重要因素。

图1(中央空调系统组成)图2(暖通空调系统集控界面)2.暖通空调控制技术存在的问题目前我国的暖通空调系统的控制技术还存在许多问题,如一些企业在对暖通空调系统进行设计时,没有考虑到系统的实际运行状况,也没有考虑到如何对空调设备进行有效管理等问题,使得暖通空调在运行过程中出现了不能满足人们需要的情况;另外在对空调设备进行设计时,也没有考虑到使用寿命和可持续发展等因素。

暖通空调系统的自动化控制简述

暖通空调系统的自动化控制简述

暖通空调系统的自动化控制简述摘要:暖通空调系统的自动化控制,主要应用在冷热源系统、热力系统、冷却水系统、空气处理系统、新风机组控制几个方面。

在温度调节的房间设置传感器,将其与控制器相连,实现自动化启停相应设备的操作,由此达到调节温、湿度的目的。

关键词:暖通空调系统;自动化控制前言:随着经济的高速发展,空调已经走进了千家万户,不过,自动化技术在空调的领域并没有普及得很全面,普遍存在着价格偏高的现象,使人们望而却步。

此外,很多用户对于空调的使用并没有很了解,对其使用方法也没有进行彻底的研究,所以即便是购买了有着自动化功能的空调,其在生活中也不能将这个功能发挥出来,达不到研发人员期望的效果。

要想让暖通空调发展和创新,就必须对于现有的技术进行改良,并对暖通自动化技术进行普及。

1基于建筑节能采用的自动化控制算法近几年,我国加大了对暖通空调系统自动化控制的研究力度,并将相应理论应用到实践中,其中研究理念和应用主要集中在节能这一方向,在不影响空调系统冷、暖气输送的前提下,最大程度减少能源消耗。

对空调系统的自动化控制,尝试采用模糊控制的方式,通过仿真对比空间内的温度变化规律,实现自动化调节空调系统输送温度;尝试采用神经网络控制,将自适应神经网络预测控制技术应用到自动化控制中,把温度变化情况反馈给空调控制器。

2暖通空调自动化技术发展的现状虽然现在在大力发展空调以及自动化技术相结合,但我国现有的空调自动控制的水平远远达不到国际水平,从中不难看出:由于空调自动化技术是两个专业相互融合的产物,所以很多空调设计的公司只停留在对于空调设计上面不懂得如何进行自动化控制,又有很多的自动化控制的公司不懂得如何设计空调。

我国的这种现象就导致暖通空调的自动化现象越难发展,两个方面的企业最后就会放弃发展进行随意的融合研究,是暖通空调自动化技术的结合停滞不前。

3暖通空调的自动化技术出现的问题3.1设计员工的专业素质普遍较低空调的使用和地域性的气候有很大的关系,所以在进行设置空调时很多技术人员也是根据每个地方的气候差异进行设计。

暖通空调控制系统

暖通空调控制系统

按被调参数的给定值不同可以分为: 恒值(定值)调节系统:恒值控制系统的参 考输入为常量,要求它的被控制量在任何扰 动的作用下能尽快地恢复(或接近)到原有 的稳态值。由于这类系统能自动的消除或削 弱各种扰动对被控制量的影响,又称为自镇 定系统。 随动调节系统:随动控制系统得参考输入是 一个变化的量,一般是随机的。要求系统的 被控量能快速、准确地跟随参考输入信号的 变化而变化。
二. 基本控制
2.1、新风机组自动控制 2.2、空调机组自动控制 2.3、风机盘管控制
2.1、新风机组自动控制
*新风机组通常与风机盘管配合使用*
1)、 新风机组控制原理
(1) 运行参数与状态监控点/位 (2) 常用传感器
新风机组控制原理图
2 ) 新风机组连锁控制
新风机组启动顺序控制: 新风风门开启→送风机启动→冷热水调节阀 开启→加湿阀开启。 新风机组停机顺序控制: 关加湿阀→关冷热水阀→送风机停机→新风 阀门全关。
1. 基本概念 1.0、绪论 1.1、“控制工程”基本含义 1.2. 基本工作原理 1.3. 控制的基本要求
二. 基本控制
2.1、新风机组自动控制 2.2、空调机组自动控制 2.3、风机盘管控制
1.0、绪论
设计时,中央空调系统是按计算室内、室外气 象参数设计,但实际上绝大部分时间空调是不会 运行在满负荷状态下的,存在较大的富余,又有 四季的变化(图一),天气阴晴及白天与黑夜时 (图二),外界温度不同,使得中央空调的热负 荷在大部分时间里比设计负荷低。
为了不浪费多余冷量必须考虑增加相关节能 设备把能省的钱省下来,省下来钱等于投资者赚 到钱。
空调年运行Байду номын сангаас合图
空调日运行符合图
1.1、“控制工程”基本含义

暖通空调系统自动化第9章

暖通空调系统自动化第9章
总风量变--以最远房间满足风量、风压为标准
空调的风系统
空气调节的自动控制—空调系统特性与基本设备的控制
冷(热)水盘管的控制(被控量:温度) 风机盘管的出口温度控制方法 控制风机的转速—变风量(末端) 控制盘管水温—不好(需求不同) 控制盘管中热(冷)水量
二. 空调基本设备的控制
风机盘管装置
风机盘管装置
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
115
125
135
145
%RH
I(KJ/Kg)
65 60 55 50 45 40 35 30 25 20 15 10 5 0
-5
-10
-15
-20
-25
-30
二、湿空气焓湿图(i-d图) 1. i-d图是如何画出来的? 2. 饱和线随B的不同而不同。 B下降,饱和线右移。 3. 热湿比 = i / d
空气状态的调节——空气焓湿图的应用
定露点恒温恒湿空调自动控制系统 定露点湿度控制的原理 对于某一温度(20℃) 若已知当前的相对湿度
风机盘管系统示意
风机盘管系统示意
空气调节自动控制—系统特性与基本设备的控制
01
盘管中热(冷)水量的控制
02
控制框图
空气调节的自动控制—系统特性与基本设备的控制
电加热器的控制 控制框图(以b为例,PID)
淋水室的控制 控制框图(必须使用PID)
空气调节的自动控制—系统特性与基本设备的控制
加湿设备的控制 控制框图
汇报人姓名
202X年12月20日
全空气系统示意

注册公用设备工程师暖通空调自动控制培训

注册公用设备工程师暖通空调自动控制培训

注册公用设备工程师暖通空调自动控制培训1. 介绍注册公用设备工程师暖通空调自动控制培训是针对从事暖通空调自动控制工作的工程师或有志于加入该行业的人士开设的培训课程。

本文档将介绍该培训的目的、内容、教学方法以及培训后的认证和就业机会。

2. 培训目的本培训的目的是为了提供一套完整的暖通空调自动控制知识体系,使学员能够熟悉空调系统的工作原理、控制方法以及常见故障排查与解决能力。

通过培训,学员将获得注册公用设备工程师暖通空调自动控制的认证资格。

3. 培训内容3.1 基础知识•暖通空调系统概述•空调系统的工作原理•常见的暖通空调设备及其特点•空调系统的基本组成部分3.2 控制原理•控制原理的基本概念•控制回路的设计与调试•控制方式的选择与应用•控制元件及其特性3.3 自动化系统与设备•自动化控制系统的基本原理•控制系统的稳定性与可靠性•现场总线控制技术的应用•控制系统的网络化和智能化3.4 故障排查与维修•常见故障的诊断与排查方法•维修技术与方法•故障预防与维护措施•大型空调系统的维护管理4. 教学方法培训采用理论讲授与实践操作相结合的教学方法。

课程设置包括理论课、实验课和综合训练课程。

通过理论课讲解基础知识,实验课进行实际操作,综合训练课程进行案例分析和综合应用,以提高学员的学习效果。

5. 认证与就业机会完成培训后,学员将获得注册公用设备工程师暖通空调自动控制的认证资格。

该认证将为学员提供更多的就业机会,比如在暖通空调设备制造商、设计院、施工单位等领域工作。

此外,一些大型企事业单位和公共机构也需要拥有该认证资格的工程师来负责设备的维护和管理。

6. 总结注册公用设备工程师暖通空调自动控制培训是提供一套完整知识体系的培训课程,旨在培养学员熟悉暖通空调自动控制的工作原理和方法。

通过该培训,学员可以获得注册认证资格,并且获得更多的就业机会。

这将帮助他们在暖通空调行业取得更好的发展。

如果您对该培训感兴趣,请联系我们获取更多信息。

暖通空调自动控制系统培训资料

暖通空调自动控制系统培训资料

是暖通空调自动控制系统的核心,接收来自传感器的信号,根
据预设的程序和控制逻辑,输出控制指令。
分散控制器
02
用于控制各个分散的设备或系统,接收来自中央控制器的指令,
根据指令输出控制信号。
可编程逻辑控制器(PLC)
03
是一种可编程的控制器,能够实现复杂的控制逻辑,广泛应用
于工业控制领域。
执行器
电动阀
根据控制器的指令调节水路或气 路的流量,实现温度和湿度的控
特点
自动化、智能化、高效节能、安 全可靠。
系统组成与工作原理
系统组成
主要包括传感器、执行器、控制器、人机界面等部分。
工作原理
传感器负责采集室内外温度、湿度、空气质量等参数,并将数据传输给控制器;控制器根据预设的程序和参数, 通过执行器对空调系统进行调节,以达到设定的舒适度和节能目标;同时,人机界面可以实时显示系统运行状态 和参数,方便用户进行监控和管理。
能减排。
系统集成与优化
跨区域、跨领域集成
将暖通空调系统与其他建筑系统(如电力系统、给排水系统等) 进行集成,实现跨领域协同优化。
集成控制平台
建立统一的集成控制平台,实现对暖通空调系统的集中监控、管 理和调度。
系统性能优化
通过系统集成和优化,提高暖通空调系统的整体性能,降低运行 成本和维护难度。
THANKS
VS
详细描述
通过采集室内外压力传感器数据,自动控 制系统根据预设的压力范围和调节算法, 调节新风量或排风量的输出量,以实现室 内压力的稳定。同时,系统还会根据室内 外压力差、人员活动等因素进行自适应调 节,以实现节能效果。
空气质量控制
总结词
空气质量控制是暖通空调自动控制系统中的 重要控制策略之一,主要目的是保持室内空 气的新鲜度和舒适性。

暖通空调系统温度控制规范要求

暖通空调系统温度控制规范要求

暖通空调系统温度控制规范要求对于暖通空调系统温度控制规范的要求,我们需要考虑多个方面,包括温度控制的目标、设定温度范围、传感器的位置和精度、调节方式、温度控制的稳定性等。

本文将逐一介绍这些要求。

一、控制目标暖通空调系统的温度控制目标是确保系统内各区域的温度稳定在预先设定的合适范围内。

不同场所和用途要求的温度范围不同,需要根据实际情况进行设定。

二、设定温度范围根据使用场所的需求,设定温度范围时应综合考虑室内外温差、舒适度要求和节能要求。

室内空调系统的操作界面应提供方便操作的温度设定功能,用户可以根据需求进行调整。

三、传感器的位置和精度为保证温度控制的准确性,传感器的位置选择非常重要。

传感器应安装在能够准确反映区域温度的位置,避免阳光直射、风口附近或其他干扰源。

传感器的精度应符合国家标准,能够准确感知温度的变化。

四、调节方式温度控制系统可采用以空调主机为中心的单一控制方式或区域独立控制方式。

单一控制方式适用于温度需求相对均匀的场所,而区域独立控制方式适用于对温度要求有差异的区域,如办公室、会议室等。

控制方式应根据实际情况和需求进行选择。

五、温度控制的稳定性为保证温度控制的稳定性,系统应具备自动调节、自动控制的功能。

当温度达到设定范围上限或下限时,空调系统应根据需求自动调节风速和制冷或制热量,保持室内温度稳定。

六、其他要求除了以上要求,暖通空调系统温度控制规范还应考虑以下因素:系统的节能性能、系统的运行噪音、维护保养等。

节能性能可以通过合理的温度控制策略来实现,运行噪音应满足国家标准,维护保养包括定期检查、清洁和更换设备等。

总结:暖通空调系统温度控制规范的要求是确保系统内各区域的温度稳定控制在预先设定的范围内。

为了达到这一目标,我们需要确定控制目标、设定合适的温度范围、选择合适的传感器位置和精度、确定调节方式以及考虑温度控制的稳定性等。

同时,还应关注系统的节能性能、运行噪音和维护保养等其他因素。

通过严格遵守温度控制规范,可以保证暖通空调系统的高效运行和舒适的室内环境。

2020年注册公用设备工程师(暖通空调)《专业基础考试》【考试大纲+考研真题】自动控制【圣才出品】

2020年注册公用设备工程师(暖通空调)《专业基础考试》【考试大纲+考研真题】自动控制【圣才出品】

第四章自动控制第一节自动控制和自动控制系统的一般概念考点一基本概念★★★1.自动控制系统及反馈控制自动控制:在没有人直接参与的情况下,利用控制装置使被控对象的工作状态或某些物理量准确地按照预期规律变化。

自动控制系统:能够对被控对象的工作状态或某些物理量进行自动控制的整个系统。

它一般由被控对象和控制装置组成。

其中被控对象是指要求实现自动控制的机器、设备或生产过程。

控制装置是指对被控对象起控制作用的设备的总体。

反馈:将检测出来的输出量送回到系统的输入端,并与输入信号比较产生偏差信号的过程称为反馈。

这个送回输入端的信号称为反馈信号。

若反馈信号与输入信号相减,使产生的偏差越来越小,则称为负反馈;反之称为正反馈。

偏差信号(误差信号):输入信号与反馈信号之差。

负反馈控制原理:检测偏差用于消除偏差。

将系统的输出信号引回输入端,与输入信号相减,形成偏差信号。

然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。

负反馈控制原理是闭环控制系统的核心。

负反馈控制系统的基本组成:包含被控对象和控制装置两个部分,基本构成如图4-1-1所示。

图4-1-1典型的反馈控制系统2.开环和闭环系统的构成开环和闭环系统构成及特征如表4-1-1所示。

表4-1-1开环和闭环系统构成及特征3.控制系统的分类控制系统的诸多分类如表4-1-2所示。

表4-1-2控制系统的分类4.控制系统基本性能要求自动控制系统最基本的要求是必须稳定。

一般要求稳态误差越小越好(约为被控制量额定值2%~5%)一般的自动控制系统被控量的变化动态特性包含:单调过程、衰减振荡过程、等幅振荡过程、发散振荡过程、稳定性、动态性能和稳态性能。

第二节控制系统的数学模型考点二数学模型★★1.控制系统各环节的特性控制系统的数学模型:是描述系统输入、输出物理量(或变量)以及内部各物理量之间关系的数学表达式。

静态模型:在静态条件下,描述各变量之间的关系的数学方程。

动态模型:各变量在动态过程中的关系用微分方程描述称为动态模型。

暖通空调系统的自动化控制技术

暖通空调系统的自动化控制技术

暖通空调系统的自动化控制技术摘要:近年来我国整体发展良好,社会各行业发展中所用技术与理念得到一定完善、优化与创新。

在现代建筑工程之中,暖通空调正常运转需要耗费大量能源,能源逐渐稀缺的趋势下,节能技术研究更加受到重视。

现代城市建筑的暖通空调需要消耗50%左右的能源,这就需要建筑行业在设计暖通空调时灵活运用节能技术,从而在真正意义上促使建筑工程中的暖通空调达成节能环保目标。

基于此,本篇文章对暖通空调系统的自动化控制技术进行研究,以供相关人士参考。

关键词:暖通空调、自动化控制、技术引言暖通空调系统是一种电气设备类型,在暖通空调系统运行中应用自动控制技术,能够更好地发挥暖通空调系统的实用功能。

暖通空调系统的自动控制技术包括了继电器自动控制技术、PLC自动控制技术和DDC自动控制技术,各种自动控制技术都具有独特性,在暖通空调系统的自动控制应用中,应当结合实际情况,在室内温度和湿度等控制目标中,综合利用不同的自动控制方式。

暖通空调系统自动控制的研究人员,也要从控制方式和原理的角度,积极有效地提高暖通空调系统性能,以满足人们更高的使用需求。

一、暖通空调技术在建筑中的运用原则1.1回收原则在建筑工程暖通空调内部之中,有很多零件或部件自身都具备或可起到重要作用,因此,对这种自身作用较大的零件或部件,一定要有针对性地回收,并于回收之后,可以通过重新加工与调整实现循环利用的目的。

在实际回收暖通空调中重要零件与部件时,一定要明确区分回收和回用之间的差别,所以这种回收原则并非是没有任何基础与底线,十分随意且规模较大地回收暖通空调中重要零件与部件,在落实回收原则时需要根据零件类型进行合理回收。

1.2循环原则循环原则是以回收原则作为基础的,主要是指在通过回收原则将暖通空调中重要部件与零件回收以后,针对回收零件展开进一步处理,这样便可大幅增加能源在暖通空调中的利用率。

简单来讲就是针对暖通空调中没有应用或已经报废的重要零件,展开进一步加工处理,促使没有应用或已经报废的重要零件可在建筑工程暖通空调之中循环应用,循环原则可以有效减少回收原则落实时所耗成本,同时增加暖通空调的经济效益与社会效益。

简析暖通空调自动控制系统

简析暖通空调自动控制系统

简析暖通空调自动控制系统暖通空调主要是运用制冷的方式,将冷水和水蒸汽作为传播温度的媒介,对一定的区域进行稳定的且不间断的制冷服务。

暖通空调主要由冷量源、自动控制系统和冷气用户三个部分构成。

暖通空调可以使制冷能源得到充分的使用,并且是一种环保型的系统,在使用时不会对环境造成任何的污染,在近些年来主要应用于我国冬季寒冷的东北地区。

大型的暖通空调一般是由很多的冷量源于制冷站连接构成的庞大的网络系统,由于我国很多地区还没有制定出有效的策略来对自动控制系统进行控制,导致暖通空调供冷的稳定性不高,暖通空调的特点还不能展现出来,针对这些问题,应该提出有效的策略来解决。

1 暖通空调自动控制系统现状分析暖通空调是由直接性的系统和间接使用的系统构成的,间接使用的系统是我们平时供暖常用的一种系统。

间接使用的系统是由不同的网络系统构成的,形成不同的冷气循环网络。

暖通空调自动控制系统具有下面几个主要的特征:其一,因为不同的网络中的用户不是独立的,在供冷气时采取的是集中供冷气的方式,因此,自动控制系统具有很强的连接性特点,其耦合能力比较强;其二,由于建筑物之前是存在冷气量的惯性的,系统设备进行冷气量的输送和传递过程中会有一定的滞后性,使暖通空调的自动控制系统具有供冷气滞后性特征;其三,在暖通空调进行供冷气的时候,由于系统外界存在不同的压力,其压力差是在变化的,这就导致了自动控制系统在供冷气的时候会具有时变性的特点;其四,由于暖通空调的散冷气器不具有线性特征,这就导致了自动控制系统的线性特征比较弱。

2 暖通空调自动控制系统的发展2 . 1 自动控制系统的控制策略在对暖通空调的供冷气形式进行调节和控制的时候,一般先对自动控制系统进行调节,使自动控制系统可以实现平稳而均勻的供冷气效果,调节供冷气系统的阀门,实现对一次网供冷气的调节,在调节好以后就不要再使之发生变动了。

在暖通空调进行供冷气的时候,按照用户的对冷气量的需求程度进行冷气量供应的调节,作为媒介的水和蒸汽的温度调节要根据完结的温度进行调节,一次网的流量调节也要随着室外温度的变化而调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直 接 数 字 控 制 系 统
中央设备(中央电脑,彩色监视器,
键盘,鼠标,打印机,不间断电源,通 讯借口,鼠标等)
DDC现场控制器
通讯网络
终端设备(传感器,执行器)
中央电脑设备 主要用于管理,其功能 为一台中央电脑可容纳数个DDC控制 器,并可分别对每个DDC控制器进行 管理和相互通讯。 DDC控制器 本身具有输入输出通 讯功能的微型计算机,但DDC有容量限 制(DDC包含多少个控制点)。
直接数字控制系统(DDC系统)
新风机组DDC控制
三设计空调自控注意的问题
1.信息点的选择 1.1 硬件设备的选择是信息点选择的第一步
每一个控制或测量任务的完成都是获取信息、处 理信息、发出信息的过程。控制系统获取的信息可能是 传感器的测量数据,可能是执行器的反馈信号,也可能 是运行管理人员输入的指令。各种控制测量任务是通过 信息采集、处理实现的。因而建立控制系统,首先要选 择传感器、执行器等系统硬件设备,确定实现控制测量 的信息来源。
暖通空调自动控制
一空调自动控制的意义
1.全面掌握系统信息 测量建筑内空气温度,空气湿度,水 流量,空调送风风速等参数。 2.动态能耗计量分析 实现建筑水,电,热量,燃气,等能 耗的自动统计计量。
3.控制调节和节能分析 当气象条件等因素发生变化时,对系统 设备的运行状态进行调节,实现节能优 化。 4.改善设备管理 监测系统设备的运行状况,及时进行故 障诊断和事故报警。
二空调自动控制的种类
1.常规仪表控制系统 该系统由分散的常规仪表来完成数据信 息的采集,采集的信息直接传输给终端的 执行器,有执行器来完成控制任务,此种 控制简单,控制过于粗糙。
空调器常规仪表控制
2.直接数字控制系统(DDC控制系统) 直接数字控制系统 可以理解为常规仪表 控制经数据收集器转换传输给中央电脑的控 制系统。
1.2如何选择系统硬件设备
对各个控制调节和测量任务的分析,可以清楚的知每 一个任务控制系统所需要获取的信息和所需要发送的信 息。据此,可以明确实现各个任务所需要传感器的种类, 测量范围,以及精度要求;明确所需要的执行器的种类,调 节范围。
信 息 点 的 选 择
确 定 信 息 来 源
终 端 设 备 选 择
系 统 功 能 确 定
2.通讯网络的设计 2.1 通讯协议 硬件设备之间的信息传递是通过二进 制的数字编码来实现的,只有采用相同的 编码协议和通讯协议的硬件设备之间才能 相互理解。 通讯网络应解决采用各种通讯设备的 兼容问题。
2.信息传递平台 每一个控制任务的完成是建立在对各 个功能子系统运行情况全面掌握的基础上 的。 通讯网络应该提供一个集成的,公共 的信息传递平台,平等的收集、发送来自 各个功能子系统中传感器、执行器等控制 设建筑系统运行过程中,运行管理人员 可能会不断调整、优化系统运行策略和 控制算法,以改善系统运行情况。 通讯网络应该能够满足控制策略的灵 活改变:通讯网络结构形式不应该妨碍控 制策略的改变,控制逻辑也不应该影响到 通讯网络的形式。
清华大学超低能耗示范楼
参考文献
1 江亿,朱颖心,张寅平.超低能好建筑技 术及应用.北京:中国建筑工业出版 社.2005.233-278 2 吴志裳.空调系统自动控制方法.暖通空调 (副刊),2005,2:12-16
相关文档
最新文档