人教版数学八年级上册第一单元测试卷(答案版)
最新人教版初中数学八年级数学上册第一单元《三角形》测试题(含答案解析)(1)
一、选择题1.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒2.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25°3.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD∠的度数为( )A .25︒B .85︒C .60︒D .95︒ 4.如果一个三角形的三边长分别为5,8,a .那么a 的值可能是( )A .2B .9C .13D .155.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30° 6.以下列各组线段为边,能组成三角形的是( )A .1,2,3B .1,3,5C .2,3,4D .2,6,107.在ABC 中,若B 与C ∠互余,则ABC 是( )三角形A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形8.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .4cm, 5cm,9cmB .4cm, 5cm, 6cmC .5cm,12cm,6cmD .4cm,2cm,2cm9.在ABC 中,若一个内角等于另两个内角的差,则( ) A .必有一个内角等于30° B .必有一个内角等于45° C .必有一个内角等于60°D .必有一个内角等于90°10.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60° 11.内角和与外角和相等的多边形是( ) A .六边形B .五边形C .四边形D .三角形12.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④B .①②③C .①④⑤D .②④⑤二、填空题13.如图1,ABC 纸片面积为24,G 为ABC 纸片的重心,D 为BC 边上的一个四等分点(BD CD <)连结CG ,DG ,并将纸片剪去GDC ,则剩下纸片(如图2)的面积为__________.14.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.15.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.16.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.17.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.18.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.19.如图,在△ABC 中,∠A=64°,∠ABC 与∠ACD 的平分线交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n-1BC 与∠A n-1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为______.20.如图,ABC 面积为1,第一次操作:分别延长,,AB BC CA 至点111,,A B C 使111,,A B AB B C BC C A CA ===顺次结111,,A B C ,得到111A B C △,第二次操作:分别延长111111,,A B B C C A 至点222A B C ,使211121112111,,A B A B B C B C C A C A ===,顺次连结222,,A B C ,得到222A B C △…,按此规律,则333A B C △的面积为_______.三、解答题21.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______; (2)若110ABC ACB ∠+∠=︒,则BPC ∠=______; (3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).22.如图1,△ABC 中,AD 是∠BAC 的角平分线,AE ⊥BC 于点E . (1)若∠C=80°,∠B=40°,求∠DAE 的度数; (2)若∠C >∠B ,试说明∠DAE=12(∠C-∠B); (3)如图2,若将点A 在AD 上移动到A′处,A′E ⊥BC 于点E .此时∠DAE 变成∠DA′E ,请直接回答:(2)中的结论还正确吗?23.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.24.如图,已知BP 是△ABC 的外角∠ABD 的平分线,延长CA 交BP 于点P .射线CE 平分∠ACB 交BP 于点E .(1)若∠BAC=80°,求∠PEC 的度数;(2)若∠P=20°,分析∠BAC 与∠ACB 的度数之差是否为定值?(3)过点C 作CF ⊥CE 交直线BP 于点F .设∠BAC=α,求∠BFC 的度数(用含α的式子表示).25.若a ,b ,c 是ABC 的三边的长,化简|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|. 26.如图ABC 中,45B ∠=︒,70ACB ∠=︒,AD 是ABC 的角平分线,F 是AD 上一点EF AD ⊥,交AC 于E ,交BC 的延长线于G .求G ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求出DFB ∠的度数 【详解】 解:在DEC ∆中∵90C ∠=︒,45CDE ∠=︒ ∴45E ∠=︒ 又∵60ABC ∠=︒ ∴120FBE ∠=︒ 由三角形的外角性质得DFB E FBE ∠=∠+∠ 45120=︒+︒165=︒故选:C 【点睛】本题考查了三角形的内角和定理,互为补角的定义及三角形的外角性质,解题的关键是掌握三角形的外角性质2.B解析:B 【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【详解】解:如图,由平行线的性质可得∠2=30°, ∠1=∠3-∠2=45°-30°=15°. 故选:B .【点睛】本题考查了平行线的性质及三角形外角的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.3.D解析:D 【分析】根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解. 【详解】 解:∵AD 是∠CAE 的平分线,60=︒∠DAC , ∴∠DAC =∠DAE =60°, 又∵35B ∠=︒由三角形的外角性质得,∠D =∠DAE−∠B =60°−35°=25°, ∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°. 故选:D . 【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.4.B解析:B 【分析】根据三角形三边关系得出a 的取值范围,即可得出答案. 【详解】 解:8-5<a <8+5 3<a <13, 故a 的值可能是9, 故选:B . 【点睛】本题考查了三角形三边关系,掌握知识点是解题关键.5.A解析:A 【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论. 【详解】解:∵∠ADC 是△ABD 的外角, ∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE ∵∠AED 是△CDE 的外角, ∴∠AED=∠C+∠EDC , ∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC , ∵∠B=∠C , ∴∠BAD=2∠EDC , ∵10CDE ∠=︒ ∴∠BAD=20°; 故选:A 【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.C解析:C 【分析】根据三角形三边关系逐一进行判断即可. 【详解】A 、1+2=3,不能构成三角形,故不符合题意;B 、1+3=4<5,不能构成三角形,故不符合题意;C 、2+3=5>4,可以构成三角形,故符合题意;D 、2+6=8<10,不能构成三角形,故不符合题意, 故选:C . 【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.7.B解析:B 【分析】由B 与C ∠互余,结合180A B C ∠+∠+∠=︒,求解A ∠,从而可得答案. 【详解】 解:B 与C ∠互余,90B C ∴∠+∠=︒, 180A B C ∠+∠+∠=︒, 90A ∴∠=︒,ABC ∴是直角三角形,故A 、C 、D 不符合题意,B 符合题意, 故选:B . 【点睛】本题考查的是两个角互余的概念,三角形的内角和定理的应用,二元一次方程组的解法,掌握以上知识是解题的关键.8.B解析:B 【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解. 【详解】解:根据三角形的三边关系,知: A 中,4+5=9,排除; B 中,4+5>6,满足; C 中,5+6<12,排除;D中,2+2=4,排除.故选:B.【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.D解析:D【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可判断.【详解】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴必有一个内角等于90°,故选:D.【点睛】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.10.A解析:A【分析】延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【详解】如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∵∠CED=∠α=47°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣47°=43°.故选:A.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.11.C解析:C 【分析】设这个多边形为n 边形,根据题意列出方程,解方程即可求解. 【详解】解:设这个多边形为n 边形,由题意得 (n-2)180°=360°, 解得n=4,所以这个多边形是四边形. 故选:C 【点睛】本题考查多边形的内角和公式,多边形的外角和360°,熟知两个定理是解题关键.12.A解析:A 【分析】根据直线的性质、两点间的距离、等式的性质、线段中点定义、多边形的定义依次判断. 【详解】①过两点有且只有一条直线,故①正确; ②两点之间,线段最短,故②正确;③若ax ay =,当0a =时,x 不一定等于y ,故③错误;④若A ,B ,C 三点共线且AB BC =,则B 为AC 中点,故④正确; ⑤各角都相等且各边相等的多边形是正多边形,故⑤错误. ∴正确的有①②④, 故选:A . 【点睛】此题考查理解能力,正确掌握直线的性质、两点间的距离、等式的性质、线段中点定义、正多边形的定义是解题的关键.二、填空题13.18【分析】连接BG 根据重心的性质得到△BGC 的面积再根据D 点是BC 的四等分点得到△GDC 的面积故可求解【详解】连接BG ∵G 为纸片的重心∴S △BGC=S △ABC=8∵D 为边上的一个四等分点()∴S △解析:18 【分析】连接BG ,根据重心的性质得到△BGC 的面积,再根据D 点是BC 的四等分点得到△GDC 的面积,故可求解. 【详解】连接BG ,∵G 为ABC 纸片的重心,∴S △BGC =13S △ABC =8 ∵D 为BC 边上的一个四等分点(BD CD <) ∴S △DGC =34S △BGC =6 ∴剪去GDC ,则剩下纸片的面积为24-6=18故答案为:18.【点睛】此题主要考查重心的性质,解题的关键是熟知重心的性质及面积的换算关系.14.20°【分析】根据高线的定义以及角平分线的定义分别得出∠CAD=34°进而得出∠CAE 的度数进而得出答案【详解】解:∵且∴∵平分∴∵是的高∴∴∴∴故答案为:20°【点睛】此题考查三角形的角平分线中线解析:20°【分析】根据高线的定义以及角平分线的定义分别得出68BAC ︒∠=,∠CAD =34°,进而得出∠CAE 的度数,进而得出答案.【详解】解:∵180B BAC C ︒∠+∠+∠=,且6B 3︒∠=,6C 7︒∠=,∴180180367668BAC B C ︒︒︒︒︒∠=-∠-∠=--=,∵AD 平分BAC ∠,∴11683422CAD BAC ︒︒∠=∠=⨯=, ∵AE 是ABC ∆的高, ∴90AEC ︒∠=,∴90C CAE ︒∠+∠=,∴90907614CAE C ︒︒︒︒∠=-∠=-=,∴341420DAE CAD CAE ︒︒︒∠=∠-∠=-=,故答案为:20°.【点睛】此题考查三角形的角平分线、中线和高,三角形内角和定理,解题关键在于掌握各性质定义.15.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛 解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠, ∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠,∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 16.540°【分析】连接GD 根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F 进而可求解【详解】解:连解析:540°【分析】连接GD ,根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°,再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F ,进而可求解.【详解】解:连接GD ,∠A+∠B+∠C+∠CDG+∠DGA =(5﹣2)×180°=540°,∵∠1+∠FGD+∠EDG =180°,∠2+∠E+∠F =180°,∠1=∠2,∴∠FGD+∠EDG =∠E+∠F ,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠FGA =540°,故答案为540°.【点睛】本题主要考查多边形的内角和定理,三角形的内角和定理,掌握相关定理是解题的关键. 17.75°【分析】先根据四边形的内角和求出∠BAD+∠CDA 然后再根据角平分线的定义求得∠EAD+∠EDA 最后根据三角的内角和定理求解即可【详解】解:∵在四边形ABCD 中∠ABC=80°∠BCD=70°解析:75°.【分析】先根据四边形的内角和求出∠BAD+∠CDA ,然后再根据角平分线的定义求得∠EAD+∠EDA,最后根据三角的内角和定理求解即可.【详解】解:∵在四边形ABCD 中,∠ABC=80°,∠BCD=70°∴∠BAD+∠CDA=360°-80°-70°=210°∵∠EAD=12∠BAD ,∠EDA=12∠CAD ∴∠EAD+∠EDA=12(∠BAD+∠CDA )=105° ∴∠AED=180°-(∠EAD+∠EDA )=180°-105°=75°.故答案为75°.【点睛】本题主要考查了三角形的内角和、四边形的内角和以及角平分线的相关知识,灵活应用相关知识成为解答本题的关键.18.2或6【分析】利用面积法求出BD 即可求得CD 再分AE 在内部和外部求出DE 即可【详解】解:为的高△ABD 的面积为14AE=7∴∵为的中线∴CD=BD=4当AE 在内部时∵CE=2∴DE=CD-CE=2当解析:2或6【分析】利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7,1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线, ∴CD=BD=4,当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键.19.6【分析】根据三角形的一个外角等于与它不相邻的两个内角的和得到∠A =2∠A1同理可得∠A1=2∠A2即∠A=22∠A2因此找出规律【详解】由三角形的外角性质得∠ACD=∠A+∠ABC∠A1CD=∠A解析:6【分析】根据三角形的一个外角等于与它不相邻的两个内角的和得到∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∴n=6.故答案为:6.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键. 20.343【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积再根据两三角形的倍数关系求解即可【详解】△ABC 与△A1BB1底相等(AB =A1B )高为1:2(BB1=2BC )故面积比为1:2∵解析:343【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2, ∵△ABC 面积为1,∴112A BB S =△,同理可得11112C B C A C A S S ==△△, ∴1112317A B C S =⨯+=△;同理可证222111749A B C A B C S S ==△△,所以333749343A B C S =⨯=△,故答案为:343.【点睛】本题考查了图形面积的规律探究,准确找到每变化一次之后图形面积的变化规律是解决问题的关键.三、解答题21.(1)130°;(2)125°;(3)135°;(4)1902A ︒+∠. 【分析】(1)依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(2)依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(3)依据∠A=90°,可得∠ABC+∠ACB 的度数,依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(4)根据三角形的内角和定理可得∠ABC+∠ACB 的度数,依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC=90°+12∠A .【详解】解:如下图所示,(1)∵∠ABC=40°,∠ACB=60°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=20°+30°=50°,∴△BCP 中,∠P=180°-50°=130°,故答案为:130°;(2)∵∠ABC+∠ACB=110°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×110°=55°, ∴△BCP 中,∠P=180°-55°=125°,故答案为:125°;(3)∵∠A=90°,∴∠ABC+∠ACB=90°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×90°=45°, ∴△BCP 中,∠P=180°-45°=135°,故答案为:135°;(4)∵∠ABC+∠ACB=180°-∠A ,∠ABC 和∠ACB 的平分线相交于点P , ∴124(180)2A ∠+∠=⨯︒-∠, ∴△BCP 中,11180(180)9022P A A =︒-⨯︒-∠=︒+∠∠. 故答案为:1902A ︒+∠. 【点睛】 本题主要考查了三角形内角和定理以及角平分线的定义的运用,解题时注意:三角形内角和是180°.22.(1)∠DAE=15°;(2)见解析;(3)正确.【分析】(1)先根据三角形内角和定理求出∠BAC 的度数,再根据角平分线的定义求得∠BAD 的度数,在△ABE 中,利用直角三角形的性质求出∠BAE 的度数,从而可得∠DAE 的度数. (2)结合第(1)小题的计算过程进行证明即可.(3)利用三角形的外角等于与它不相邻的两个内角之和先用∠B 和∠C 表示出∠A′DE ,再根据三角形的内角和定理可证明∠DA′E=12(∠C-∠B). 【详解】(1)∵∠C=80°,∠B=40°, ∴∠BAC=180°-∠B-∠C =180°-40°-80°=60°,∵AD 是∠BAC 的角平分线,∴∠BAD=∠CAD=12∠BAC=30°, ∵AE ⊥BC ,∴∠AEC=90°,∴∠BAE=50°,∴∠DAE=∠BAE-∠BAD =20°;(2)理由:∵AD 是∠BAC 的角平分线,∴∠BAD=∠CAD=12∠BAC=12(180°-∠B-∠C)= 90°-12∠B-12∠C , ∵AE ⊥BC ,∴∠AEC=90°,∴∠BAE=90°-∠B ,∴∠DAE=∠BAE-∠BAD=(90°-∠B) -(90°-12∠B-12∠C ) =12∠C-12∠B =12(∠C-∠B); (3)(2)中的结论仍正确.∵∠A′DE=∠B+∠BAD=∠B+12∠BAC=∠B+12(180°-∠B-∠C) = 90°+12∠B-12∠C ; 在△DA′E 中,∠DA′E=180°-∠A′ED -∠A′DE=180°-90°-(90°+12∠B-12∠C) =12(∠C-∠B). 【点睛】本题考查了三角形的角平分线和高,三角形的内角和定理,三角形的外角性质等知识,注意综合运用三角形的有关概念是解题关键.23.(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠,ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A ,则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .24.(1)140°;(2)是定值;(3)∠BFC=90°12-α 【分析】(1)首先证明∠CEB 12=∠CAB ,求出∠CEB 即可解决问题. (2)利用三角形的外角的性质解决问题即可.(3)利用是菱形内角和定理以及(1)中结论解决问题即可.【详解】由题意,可以假设∠ACE=∠ECB=x ,∠ABP=∠PBD=y .(1)由三角形的外角的性质可知:2y BAC 2x y CEB x =∠+⎧⎨=∠+⎩, 可得∠CEB 12=∠CAB=40°, ∴∠PEC=180°-40°=140°;(2)由三角形的外角的性质可知,∠BAC=∠P+y ,y=∠P+2x , ∴∠BAC=2∠P+2x ,∴∠BAC -∠ACB=∠BAC-2x=2∠P=40°,∴∠BAC -∠ACB=40°,是定值;(3)∵CF ⊥CE ,∴∠ECF=90°,由(1)得:∠CEB 12=∠CAB , ∴∠BFC=90°-∠CEB=90°12-∠CAB=90°12-α. 【点评】 本题考查了三角形内角和定理,三角形的外角性质等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.25.3c+a ﹣b .【分析】根据三角形的三边关系“两边之和>第三边,两边之差<第三边”,判断式子的符号,再根据绝对值的意义去掉绝对值即可.【详解】解:根据三角形的三边关系,两边之和大于第三边,得a ﹣b ﹣c <0,b ﹣c ﹣a <0,c+a ﹣b >0.∴|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|=b+c ﹣a+c+a ﹣b+c+a ﹣b=3c+a ﹣b .【点睛】本题考查了三角形的三边关系、绝对值的性质、整式加减的应用,熟练掌握三角形的三边关系定理是解题关键.26.12.5【分析】根据角平分线的定义以及三角形的内角和定理即可得出∠ADC的度数,再根据垂直定义以及三角形的内角和即可得出∠G的度数.【详解】解:∵∠B=45°,∠ACB=70°,AD是ABC的角平分线,∴∠BAC=2∠CAD=65°,∴∠ADC=180°﹣70°﹣32.5°=77.5°,∵EF⊥AD,∴∠G=180°﹣90°﹣77.5°=12.5°.【点睛】本题主要考查了三角形的内角和定理以及角平分线的定义,难度适中.。
人教版数学八年级上册第一年级测试试卷(含答案)
人教版数学8年级上册第1单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)若一个多边形的一个内角为144°,则这个图形为正( )边形.A.十一B.十C.九D.八2.(3分)下列长度的三条线段中,能组成三角形的是( )A.1cm,2cm,3cm B.2cm,3cm,4cmC.4cm,6cm,10cm D.5cm,8cm,14cm3.(3分)某三角形的三边长分别为3,6,x,则x可能是( )A.3B.9C.6D.104.(3分)有下列两种图示均表示三角形分类,则正确的是( )A.①对,②不对B.②对,①不对C.①、②都不对D.①、②都对5.(3分)一个正六边形的内角和的度数为( )A.1080°B.720°C.540°D.360°6.(3分)如图,为估计池塘岸边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,A、B间的距离不可能是( )A.12米B.10米C.20米D.8米7.(3分)如图,窗户打开后,用窗钩AB可将其固定,其所运用的几何原理是( )A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形具有稳定性8.(3分)在△ABC中,且满足∠A+∠B=90°,则△ABC一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.(3分)若一个正多边形的每一个外角都等于36°,则它是( )A.正九边形B.正十边形C.正十一边形D.正十二边形10.(3分)如图,∠1=40°,则∠C的度数为( )A.30°B.40°C.50°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,BD是△ABC的中线,AB=8,BC=5,△ABD和△BCD的周长的差是 .12.(3分)在△ABC中,AC=3,BC=4,若∠C是锐角,那么AB长的取值范围是 .13.(3分)在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,则这个多边形的内角和为 .14.(3分)如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC 沿直线AD折叠后,点C落到点E处,若∠BAE=50°,则∠DAC的度数为 °.15.(3分)如图所示,在△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是 .三、解答题(共10小题,满分75分)16.(7分)已知a,b,c是△ABC的三边,a=4,b=6,若三角形的周长是小于18的偶数.(1)求c边的长;(2)判断△ABC的形状.17.(7分)若a、b、c是△ABC的三边,化简:|a﹣b+c|﹣|c﹣a﹣b|+|a+b+c|.18.(7分)如图,五边形ABCDE的每个内角都相等,已知EF⊥BC,求证:EF平分∠AED.19.(7分)如图,四边形ABCD中,AB⊥AC.(1)若AB∥CD,且∠D=60°,求∠1的度数;(2)若∠1+∠B=90°,求证:AD∥BC.20.(7分)如图,∠ABE是四边形ABCD的外角,已知∠ABE=∠D.求证:∠A+∠C=180°.21.(7分)如图,在四边形ABCD中,BE平分∠ABC,交AD于点G,交CD的延长线于点E,F为DC延长线上一点,∠ADE+∠BCF=180°.(1)求证:AD∥BC;(2)若∠DGE=30°,求∠A的度数.22.(7分)如图,在△ABC中,∠B=30°,∠C=65°,AE⊥BC于E,AD平分∠BAC,(1)求∠DAE的度数;(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数.23.(8分)已知:如图,点D、E、F、G都在△ABC的边上,EF∥AC,且∠1+∠2=180°.(1)求证:AE∥DG;(2)若EF平分∠AEB,∠C=35°,求∠BDG的度数.24.(9分)如图,在△ABC中,∠CAE=18°,∠C=42°,∠CBD=27°.(1)求∠AFB的度数;(2)若∠BAF=2∠ABF,求∠BAF的度数.25.(9分)如图,在△ABC中,CD平分∠ACB,AE⊥CD,垂足为F,交BC于点E,若∠BAE=33°,∠B=37°,求∠EAC的度数.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.B;3.C;4.B;5.B;6.C;7.D;8.B;9.B;10.C;二、填空题(共5小题,满分15分,每小题3分)11.3;12.1<AB<5;13.1260°;14.30;15.80°;三、解答题(共10小题,满分75分)16.解:(1)∵a,b,c是△ABC的三边,a=4,b=6,∴2<c<10,∵三角形的周长是小于18的偶数,∴2<c<8,∴c=4或6;(2)当c=4或6时,△ABC的形状都是等腰三角形.17.解:∵a、b、c是△ABC的三边,∴a﹣b+c>0,c﹣a﹣b<0,a+b+c>0,∴原式=a﹣b+c+c﹣a﹣b+a+b+c=a﹣b+3c.18.证明:∵五边形内角和为(5﹣2)×180°=540°且五边形ABCDE的5个内角都相等,∴∠A=∠B=∠AED=540°5=108°.∵EF⊥BC,∴∠3=90°.又∵四边形的内角和为360°,∴在四边形ABFE中,∠1=360°﹣(108°+108°+90°)=54°,又∵∠AED=108°,∴∠1=∠2=54°,∴EF平分∠AED.19.(1)解:∵AB⊥AC,∴∠BAC=90°,∵AB∥CD,∴∠BAC=∠ACD=90°,∵∠D=60°,∴∠1=30°;(2)证明:∵∠B+∠BCA=90°,∠1+∠B=90°,∴∠1=∠BCA,∴AD∥BC.20.证明:∵∠ABE=∠D,∠ABE+∠ABC=180°,∴∠ABC+∠D=180°,又∵四边形内角和等于360°,∴∠A+∠C=180°.21.(1)证明:∵∠ADE+∠BCF=180°,∠BCE+∠BCF=180°,∴∠ADE=∠BCE,∴AD∥BC;(2)解:由(1)得,AD∥BC,∴∠AGB=∠EBC,∵∠AGB=∠DGE,∴∠AGB=∠EBC=∠DGE=30°,∵BE平分∠ABC,∴∠AGB=∠EBC,∴∠A=180°﹣30°﹣30°=120°.22.解:(1)∵∠B=30°,∠C=65°,∴∠BAC=85°,∵AD平分∠BAC,∴∠CAD=42.5°,∵AE⊥BC,∴∠CAE=25°,∴∠DAE=∠CAD﹣∠CAE=17.5°;(2)如图,∵∠B=30°,∠C=65°,∴∠BAC=85°,∵AD平分∠BAC,∴∠CAD=42.5°,∴∠FAG=180°﹣∠CAD=137.5°,∵EF⊥BC,∴∠CGE=25°,∴∠AGF=25°,∴∠DFE=180°﹣∠AGF﹣∠FAG=17.5°.23.(1)证明:∵EF∥AC,∴∠1=∠CAE.∵∠1+∠2=180°,∴∠2+∠CAE=180°.∴AE∥DG.(2)解:∵EF∥AC,∠C=35°,∴∠BEF=∠C=35°.∵EF平分∠AEB,∴∠1=∠BEF=35°.∴∠AEB=70°.由(1)知AE∥DG,∴∠BDG=∠AEB=70°.24.解:(1)∵∠AEB=∠C+∠CAE,∠C=42°,∠CAE=18°,∴∠AEB=60°,∵∠CBD=27°,∴∠BFE=180°﹣27°﹣60°=93°,∴∠AFB=180°﹣∠BFE=87°;(2)∵∠BAF=2∠ABF,∠BFE=93°,∴3∠ABF=93°,∴∠ABF=31°,∴∠BAF=62°.25.解:∵AE⊥CD交CD于点F,∴∠AFC=∠EFC=90°,∵CD平分∠ACB,∴∠ACF=∠ECF,∵∠AFC+∠EAC+∠ACF=180°,∠EFC+∠CEA+∠ECF=180°,∴∠EAC=∠CEA,∵∠CEA=∠B+∠BAE,∠B=37°,∠BAE=33°,∴∠CEA=70°,∴∠EAC=70°.。
人教版数学八年级上学期《全等三角形》单元综合测试题含答案
人教版八年级上册《全等三角形》单元测试卷时间:90分钟总分: 100一、选择题(每小题3分,总计30分。
请将唯一正确答案的字母填写在表格内)1. 下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A . ①②③④B . ①②③C . ②③④D . ①②④2.如图所示,△A B C ≌△A EF,A B =A E,∠B =∠E,有以下结论:①A C =A F;②∠FA B =∠EA B ;③EF=BC ;④∠EA B =∠FA C ,其中正确的个数是( )A . 1个B . 2个C . 3个D . 4个3.下列各图中A 、B 、C 为三角形的边长,则甲、乙、丙三个三角形和左侧△A B C 全等的是()A . 甲和乙B . 乙和丙C . 甲和丙D . 只有丙4.如图,如果A D ∥B C ,A D =B C ,A C 与B D 相交于O点,则图中的全等三角形一共有()A . 3对B . 4对C . 5对D . 6对5.下列说法中,正确的是()A . 两边及其中一边的对角分别相等的两个三角形全等B . 两边及其中一边上的高分别相等的两个三角形全等C . 有一直角边和一锐角分别相等的两个直角三角形全等D . 面积相等的两个三角形全等6.在平面直角坐标系中,第一个正方形A B C D 的位置如图所示,点A 的坐标为(2,0),点D 的坐标为(0,4),延长C B 交x轴于点A 1,作第二个正方形A 1B 1C 1C ;延长C 1B 1交x轴于点A 2,作第三个正方形A 2B 2CC 1…按这样的规律进行下去,第2018个正方形的面积为()2A . 20×()2017B . 20×()2018C . 20×()4036D . 20×()40347.如图,大树A B 与大数C D 相距13m,小华从点B 沿B C 走向点C ,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A 和D ,两条视线的夹角正好为90°,且EA =ED .已知大树A B 的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A . 13sB . 8sC . 6sD . 5s8.如图,把两根钢条A B ,C D 的中点O连在一起,可以做成一个测量工件内槽宽的工具(卡钳).只要量得A C 之间的距离,就可知工件的内径B D .其数学原理是利用△A OC ≌△B OD ,判断△A OC ≌△B OD 的依据是()A . SA SB . SSSC . A SAD . A A S9.观察图中尺规作图痕迹,下列说法错误的是()A . OE是∠A OB 的平分线 B . OC =ODC . 点C 、D 到OE的距离不相等 D . ∠A OE=∠B OE10.如图,OP平分∠B OA ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是()A . PC =PDB . OC =OD C . OC =OP D . ∠C PO=∠D PO二、填空题(每空3分,总计30分)11.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=_____.12.如图①,已知△A B C 的六个元素,则图②中甲、乙、丙三个三角形中与图①中△A B C 全等的图形是_____.13.如图是5×5的正方形网格,△A B C 的顶点都在小正方形的顶点上,像△A B C 这样的三角形叫格点三角形.画与△A B C 有一条公共边且全等的格点三角形,这样的格点三角形最多可以画出_____个.14.如图,点D 、E分别在A B 、A C 上,C D 、B E相交于点F,若△A B E≌△A C D ,∠A =50°,∠B =35°,则∠EFC 的度数为_____.15.如图,在△A B C 和△D EF中,点B 、F、C 、E在同一直线上,B F = C E,A C ∥D F,请添加一个条件,使△AB C ≌△D EF,这个添加的条件可以是.(只需写一个,不添加辅助线)16.如图,A B =12m,C A ⊥A B 于A ,D B ⊥A B 于B ,且A C =4m,P点从B 向A 运动,每分钟走1m,Q点从B 向D 运动,每分钟走2m,P、Q两点同时出发,运动________分钟后△C A P与△PQB 全等.17.如图,若A B =A C ,B D =C D ,∠B =20°,∠B D C =120°,则∠A =________.18.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有①,②,③,④的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块.19.如图,要测量池塘的宽度A B ,在池塘外选取一点P,连接A P、B P并各自延长,使PC =PA ,PD =PB ,连接C D ,测得C D 长为25m,则池塘宽A B 为________ m,依据是________20.如图,点O在△A B C 内,且到三边的距离相等,若∠A =60°,则∠B OC =_____.三.解答题(共6小题60分)21.如图,A B =A E,∠B =∠A ED ,∠1=∠2.求证:△A B C ≌△A ED .22.阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.已知:如图,A M,B N,C P是△A B C 的三条角平分线.求证:A M、B N、C P交于一点.证明:如图,设A M,B N交于点O,过点O分别作OD ⊥B C ,OF⊥A B ,垂足分别为点D ,E,F.∵O是∠B A C 角平分线A M上的一点(),∴OE=OF().同理,OD =OF.∴OD =OE().∵C P是∠A C B 的平分线(),∴O在C P上().因此,A M,B N,C P交于一点.23.如图,两根旗杆A C 与B D 相距12m,某人从B 点沿A B 走向A ,一定时间后他到达点M,此时他仰望旗杆的顶点C 和D ,两次视线夹角为90°,且C M=D M.已知旗杆A C 的高为3m,该人的运动速度为0、5m/s,求这个人走了多长时间?24.如图,A 、B 两点分别位于一个池塘的两侧,池塘西边有一座假山D ,在D B 的中点C 处有一个雕塑,小川从点A 出发,沿直线A C 一直向前经过点C 走到点E,并使C E=C A ,然后他测量点E到假山D 的距离,则D E的长度就是A 、B 两点之间的距离.(1)你能说明小川这样做的根据吗?(2)如果小川恰好未带测量工具,但是知道A 和假山D 、雕塑C 分别相距200米、120米,你能帮助他确定A B 的长度范围吗?25.如图①, C m,,, C m.点在线段上以1 C m/s的速度由点向点运动,同时,点在线段上由点向点运动.它们运动的时间为s.(1)若点的运动速度与点的运动速度相等,当时,与是否全等,请说明理由,并判断此时线段和线段的位置关系;(2)如图②,将图①中的“,”改为“”,其他条件不变.设点的运动速度为 C m/s,是否存在实数,使得与全等?若存在,求出相应的的值;若不存在,请说明理由.26. 如图,在△A B C 中,A B =A C ,D E是过点A 的直线,B D ⊥D E于D ,C E⊥D E于点E;(1)若B 、C 在D E的同侧(如图所示)且A D =C E.求证:A B ⊥A C ;(2)若B 、C 在D E的两侧(如图所示),其他条件不变,A B 与A C 仍垂直吗?若是请给出证明;若不是,请说明理由.参考答案一、选择题(每小题3分,总计30分。
人教版八年级上册数学第一单元测试卷
人教版八年级上册数学第一单元测试卷人教版八年级上册数学第一单元测试卷一、选择题(每题3分,共24分)1、下列说法中正确的是()A、两个直角三角形全等B、两个等腰三角形全等C、两个等边三角形全等D、两条直角边对应相等的直角三角形全等2、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDBB.∠BAC=∠DACC.∠XXX∠DCADD.∠B=∠D=90º3.如图所示,将两根钢条AA’、BB’的中点O连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB,那么判定△OAB≌△OA’B’的理由是()A.边角边B.角边角C.边边边D.角角边4、如图,△ABC中,∠C=90º,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且CD=6cm,则DE的长为()A、4cmB、6cmC、8cmD、10cm5、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有(。
)A、3个B、2个C、1个D、0个6、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配。
A.①B.②C.③D.①和②7.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③8、如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PBB.PO平分∠APBXXX垂直平分OP二、填空题(每题3分,共24分)9、如图,若△ABC≌△A1B1C1,且∠A=110º,∠B=40º,则∠C1=30º。
人教版八年级数学上册第1章三角形单元测试试卷B
班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为 . 2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的 性.3.如图,三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,第十一章 三角形 单元测试(B ) 答题时间:90 满分:100分第2题 第3题 第4题若∠1=20°,则∠2的度数为______.4.如图,已知AB ∥CD ,∠A =55°,∠C =20°,则∠P =___________.5.如图,在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC = °.6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可) .8.如图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G 的度数为 .9.如图,△ABC 中,BD 平分∠ABC ,CD 平分∠ACE ,请你写出∠A 与∠D 的关系: .第6题30°30°30°A第8题GFE D CBA第5题DCBA第15题第16题10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为 . 11.在△ABC 中,∠A =55°,高BE 、CF 交于点O ,则∠BOC =______. 12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.13.如图所示,已知点D 是AB 上的一点,点E 是AC 上的一点,BE ,CD 相交于点F ,∠A =50°,∠ACD =40°,∠ABE =28°,则∠CFE 的度数为______.14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”). 二、选择题(共4小题,每题3分,共12分)15.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,第9题 第12题 第13题EDC BABC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高16.如图所示,x的值为()A.45°B.50°C.55°D.70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是()A.正方形与正三角形B.正五边形与正三角形C.正六边形与正三角形D.正八边形与正方形18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是()A.6 B.7 C.8 D.9三、解答题(共60分)19.(4分)△ABC中,∠A=2∠B=3∠C,则这个三角形中最小的角是多少度?20.(4分)如图,已知四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的关系,并说明理由.21.(4分)如图,△ABC的外角∠CBD、∠BCE的平分线相交于点F,若∠A=68°,求∠F的度数.22.(6分)在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法) .CB A CB A24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?25.(6分)一个大型模板如图所示,设计要求BA与CD相交成30°角,DA与CB相交成20°,怎样通过测量∠A,∠B,∠C,∠D的度数,来检验模板是否合格?DABC26.(8分)如图所示,小明欲从A地去B地,有三条路可走:①A→B;②A→D→B;③A→C→B.(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC+BC>AD+DB,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE,你能说明∠A+∠B+∠C+∠D+∠E=180吗?如图2、图3,如果点B向右移到AC上,或AC的另一侧时,上述结论仍然成立吗?请分别说明理由.图1 图2 图328.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.参考答案:(B 卷)一、填空题1.2 2.稳定 3.60° 4.35° 5.82.5 6.120 7.答案不唯一 8.540° 9.∠A =2∠D 10.130° 11.55或125 12.360 13.62 14.否二、选择题15.C 16.C 17.B 18.C三、解答题19.36011⎛⎫ ⎪⎝⎭20.AD BC ∥ 21.56 22.三边长为16,16,22或20,20,14 23.略 24.六边形 25.只要量得∠B +∠C =150°,∠C +∠D =160°,则模板即为合格 26.(1)两点之间,线段最短;(2)略 27.结论都成立,理由略 28.(1)60°,90°,108°,120°,(2)180n n-°;(2)正三角形、正方形、正六边形;(3)答案不唯一,如正方形和正八边形,正三角形和正十二边形.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版数学八年级上学期《三角形》单元检测题(带答案)
(2)当E在A D上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系,并说明理由.
参考答案
一、选择题(每小题3分,共30分)
1.下列各组中的三条线段能组成三角形的是()
A.3,4,8B.5,6,11C.5,6,10D.4,4,8
点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边.由此可以得到A>3,A<7,因此可以判断A-3和A-7的正负情况.此题还考查了考生绝对值的运算法则:正数的绝对值是其本身,负数的绝对值是它的相反数,零的绝对值还是零.由此可化简|A-3|+|A-7|
[结束]
10.如图,把△A B C纸片沿DE折叠,当点A在四边形B C DE的外部时,记∠AEB为∠1,∠A D C为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()
A. 10°B. 15°C. 20°D. 25°
[答案]B
[解析]
试题分析:根据三角形的外角的性质可得,∠A+45°=60°,解得∠A=15°.
故选B.
考点:三角形的外角的性质.
7.下列度数不可能是多边形内角和的是()
A.360°B.720°
C.810°D.2 160°
[答案]C
[解析]
试题分析:多边形内角和公式为(n-2)×180°,可将四个选项代入公式,计算出n为正整数就是多边形内角和,若不是则说明不是多边形的内角和.经计算可得810°除以180°等于4.5不是整数,所以810°不是多边形的内角和.故选C
二、填空题(每小题3分,共18分)
11.如图,共有______个三角形.
12.如图,点B,C,E,F 一直线上,A B∥D C,DE∥GF,∠B=∠F=72°,则∠D=_____度.
人教版八年级上学期数学《全等三角形》单元检测题(带答案)
故选C.
[点睛]本题考查了全等三角形的判定与性质的应用,能正确证明出两个三角形全等是解此题的关键.
4.如图,在 中, , 平分 , , ,
A.8B.4C.2D.1
[答案]A
[解析]
[分析]
过点D作DE⊥B C于E,根据角平分线上的点到角的两边距离相等可得A D=DE,再根据S△A B C=S△A B D+S△B C D列式计算即可得解.
又∵∠EOD=∠BOC=120°,
∴∠EOF=∠EOD﹣∠DOF=120°﹣∠DOF,
∴∠EOF=∠DOG,
A. B. C. D.
[答案]A
[解析]
[分析]
设其中一个三角形另外两边长为y和z,由全等图形周长相等,可知x+y+z= ,再由边长关系,可推出x的取值范围.
[详解]∵围成两个全等的三角形可得两个三角形的周长相等,
∴ ,∵ ,∴ ,解得
又∵ , ,∴ ,即 ,解得
综上可得
故选C.
[点睛]本题考查三角形三边关系,两边之和大于第三边,两边之差小于第三边.
9.如图, 的两条角平分线B D、CE交于O,且 ,则下列结论中不正确的是( )
A. B.
C. D.
10.如图,已知将 沿 所在直线翻折,点 恰好与 上的点 重合,对折边 ,折痕也经过点 ,则下列说法正确的是()
① ;
② ;
③ ;
④ ;
⑤若 ,则 是等边三角形.
A.只有①②正确B.①②③
C.①②③④D.①②③④⑤
A. B.
C. D.
[答案]D
[解析]
试题分析:根据三角形的内角和等于180°求出∠A B C+∠A C B=120°,再根据角平分线的性质求出∠OB C+∠OC B=60°,然后利用三角形的内角和等于180°列式计算即可求出∠BOC的度数;
人教版八年级数学上册第1章三角形单元测试(含答案)
第11章三角形一、选择题1.平行四边形的内角和为()A.180°B.270°C.360°D.640°2.如图,正六边形的每一个内角都相等,则其中一个内角α的度数是()A.240°B.120°C.60°D.30°3.五边形的内角和是()A.180°B.360°C.540°D.600°4.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形5.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.88.一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.79.一个多边形的内角和是360°,这个多边形是()A.三角形B.四边形C.六边形D.不能确定10.一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7 C.6 D.511.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°12.已知正多边形的一个外角等于60°,则该正多边形的边数为()A.3 B.4 C.5 D.613.如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3 B.4 C.5 D.614.八边形的内角和等于()A.360°B.1080°C.1440°D.2160°15.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形二、填空题16.若一个正多边形的一个内角等于135°,那么这个多边形是正______边形.17.正多边形一个外角的度数是60°,则该正多边形的边数是______.18.正多边形的一个外角等于20°,则这个正多边形的边数是______.19.n边形的每个外角都等于45°,则n=______.20.一个多边形的内角和比外角和的3倍多180°,则它的边数是______.21.一个正多边形的一个外角等于30°,则这个正多边形的边数为______.22.五边形的内角和为______.23.四边形的内角和是______.24.若正多边形的一个外角为40°,则这个正多边形是______边形.25.内角和与外角和相等的多边形的边数为______.26.若正n边形的一个外角为45°,则n=______.27.四边形的内角和为______.28.如图,一个零件的横截面是六边形,这个六边形的内角和为______.29.某正n边形的一个内角为108°,则n=______.30.正多边形的一个外角是72°,则这个多边形的内角和的度数是______.第11章三角形参考答案一、选择题(共15小题)1.C;2.B;3.C;4.C;5.C;6.C;7.C;8.D;9.B;10.C;11.A;12.D;13.D;14.B;15.C;二、填空题(共15小题)16.八;17.六;18.18;19.8;20.9;21.12;22.540°;23.360°;24.九;25.四;26.8;27.360°;28.720°;29.5;30.540°;先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
新人教版八年级数学上册《全等三角形》单元测试卷(含答案)
精心整理八 年 级 数 学单元质量检测 第Ⅰ卷(选择题 共30 分)一、选择题(每小题3分,共30分)4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC≌△A /B /C /,则补充的这个条件是( )第5题图DA .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C /5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )还需要条件( )A.AB=EDB.AB=FDC.AC=FDD.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于第9题图点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④D是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD=,根据可得△AOD≌△COB,从而可以得到AD=.15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明≌得到AB=DC,再利用“”证明△AO某同学把一块三角形的玻璃打碎成三片,∴△ABD≌△ACD()19.(8分)如图,已知△≌△第19题图是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度. 20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以BC12章·全等三角形(详细答案)一、选择题CBDCD BDCDC二、填空题11、△ABD SSS 12、∠ABC 13、3cm∠ACB=∠ECD∴△ABC≌△CDE(ASA)∴AB=DE。
人教版八年级数学上册第1单元测试卷
人教版八年级数学上册第1单元测试卷学习八年级数学第一单元知识不在于力量多少,而在能坚持多久。
下面由店铺为你整理的人教版八年级数学上册第1单元测试卷附答案,希望对大家有帮助!人教版八年级数学上册第1单元测试卷第1章分式类型之一分式的概念1.若分式2a+1有意义,则a的取值范围是 ( )A.a=0B.a=1C.a≠-1D.a≠02.当a ________时,分式1a+2有意义.3. 若式子2x-1-1的值为零,则x=________.4.求出使分式|x|-3(x+2)(x-3)的值为0的x的值.类型之二分式的基本性质5.a,b为有理数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1,则P____Q(填“>”、“<”或“=”).类型之三分式的计算与化简6.化简1x-3-x+1x2-1(x-3)的结果是 ( )A.2B.2x-1C.2x-3D.x-4x-17.化简x(x-1)2-1(x-1)2的结果是______________.8.化简:1+1x÷2x-1+x2x.9.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的值代入计算.10.先化简,后求值:x-1x+2•x2-4x2-2x+1÷1x2-1,其中x2-x=0.类型之四整数指数幂11.计算:(1)(-1)2 013-|-7|+9×(7-π)0+15-1;(2)(m3n)-2•(2m-2n-3)-2÷(m-1n)3.类型之五科学记数法12.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 096 3贝克/立方米.数据“0.000 096 3”用科学记数法可表示为__________________ .类型之六解分式方程13.分式方程12x2-9-2x-3=1x+3的解为 ( )A.x=3B.x=-3C.无解D.x=3或-314.解方程:2x-1=1x-2.15.解方程:23x-1-1=36x-2.类型之七分式方程的应用16.李明到离家2.1千米的学校参加九年级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行匀速回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校,已知李明骑自行车的速度是步行速度的3倍,且李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?17.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求:甲、乙两个工厂每天分别能加工多少件新产品.人教版八年级数学上册第1单元测试卷答案1.C2.≠-23.34.【解析】要使分式的值为0,必须使分式的分子为0,且分母不为0,即|x|-3=0且(x+2)(x-3)≠0.解:要使已知的分式的值为0,x应满足|x|-3=0且(x+2)•(x-3)≠0.由|x|-3=0,得x=3或x=-3,检验知:当x=3时,(x+2)(x-3)=0,当x=-3 时,(x+2)(x-3)≠0,所以满足条件的x的值是x=-3.5.=6.B 【解析】原式=1x-3-1x-1(x-3)=1-x-3x-1=x-1x-1-x-3x-1=2x-1.7.1x-18.解:原式=x+1x÷x2-1x=x+1x×x(x+1)(x-1)=1x-1.9.解:原式=1-a-1a×a(a+2)(a+1)(a-1)=1-a+2a+1=-1a+1.当a=3时,原式=-13+1=-14.(a的取值为0,±1,-2外的任意值)10.【解析】本题是一道含有分式乘除混合运算的分式运算,先化简,然后把化简后的最简结果与已知条件相结合,不难发现计算方法.解:原式=x-1x+2•(x+2)(x-2)(x-1)2•(x+1)(x-1)1=(x-2)•(x+1)=x2-x-2.当x2-x=0时,原式=0-2=-2.11.【解析】先算乘方,再算乘除.解:(1)原式=-1-7+3+5=0;(2)原式=m-6n-2•2-2m4n6÷m-3n3=14m-6+4-(-3)n-2+6-3=14mn.12.9.63×10-513.C 【解析】方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.检验:当x=3时,(x+3)(x-3)=0,即x=3不是原分式方程的解,故原方程无解.14.解:方程两边都乘(x-1)(x-2),得2( x-2)=x-1,去括号,得2x-4=x-1,移项,得x=3.经检验,x=3是原方程的解,所以原分式方程的解是x=3.15.解:方程两边同时乘6x-2,得4-(6x-2)=3,化简,得-6x=-3,解得x=12.检验:当x=12时,6x-2≠0,所以x=12是原方程的解.16.【解析】(1)相等关系:从学校步行回家所用的时间-从家赶往学校所用的时间=20分钟;(2)比较回家取道具所用总时间与42分的大小.解:(1)设李明步行的速度是x米/分,则他骑自行车的速度是3x 米/分,根据题意,得2 100x-2 1003x=20,解得x=70,经检验,x=70是原方程的解,所以李明步行的速度是70米/分.(2)因为2 10070+2 1003×70+1=41(分)<42(分),所以李明能在联欢会开始前赶到学校.17.【解析】本题的等量关系为:甲工厂单独加工完成这批产品所用天数-乙工厂单独加工完成这批产品所用天数=10;乙工厂每天加工的数量=甲工厂每天加工的数量×1.5,则若设甲工厂每天加工x件产品,那么乙工厂每天加工1.5x件产品,根据题意可分别表示出两个工厂单独加工完成这批产品所用天数,进而列出方程求解.解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意,得1 200x-1 2001.5x=10,解得x=40,经检验x=40是原方程的根,所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.。
人教版数学八年级上册《分式》单元综合检测卷附答案
10.若关于x的方程 =3的解为正数,则m的取值范围是()
A m< B.m< 且m≠
C.m>﹣ D.m>﹣ 且m≠﹣
二、填空题(每小题3分,共24分)
11.当x________时,分式 有意义.
12.方程 解是_____.
13 若3x-1= ,则x=_______.
14.计算 的结果是.
根据分式的运算法则逐一作出判断
【详解】A、 ,故本选项错误;
B、 ,故本选项正确;
C、 ,故本选项正确;
D、 ,故本选项正确.
故选A.
4.人体中红细胞的直径约为0.000 007 7m,将数0.000 007 7用科学记数法表示为( )
A.7.7× B. C. D.
【答案】C
【解析】
试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000077=7.7×10﹣6,故答案选C.
21.(1)先化简,再求值: ,其中x=1;
(2)先化简,再求值: ,从不大于4的正整数中,选择一个合适的值代入x求值.
【答案】(1) ,2(2)取x=4,原式=
【解析】
试题分析:(1)通分,化简,代入求值.
(2)通分,化简,代入求值.
试题解析:
(1)原式= ,
当x=1时,原式=2.
(2)原式=( ·(x-3)= ·(x-3)= ,
考点:科学记数法表.
5.化简 的结果是
A. +1B. C. D.
【答案】D
【解析】
试题分析: .故选D.
6.如果把分式 中的m和n都扩大2倍,那么分式的值()
人教版八年级数学上册全册单元测试卷(含答案)
人教版八年级数学上册全册单元测试卷(含答案)第十一章三角形是初中数学中的重要概念之一,本章主要介绍三角形的定义、分类、性质以及相关定理。
首先,三角形是由三条线段组成的图形,其中每条线段都是三角形的一条边,而三条边的交点称为三角形的顶点。
根据三角形的边长和角度大小,我们可以将三角形分为不同的类型,如等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等。
其次,全等三角形是指在形状和大小上完全相同的两个三角形,它们的对应边和对应角都相等。
全等三角形有很多应用,比如在证明几何定理时经常会用到。
第十二章轴对称是初中数学中的一个重要概念,它是指一个图形关于某条直线对称后完全重合的情况。
轴对称可以分为水平轴对称和垂直轴对称两种情况,对称轴是指图形中被对称的那条直线。
轴对称有很多应用,比如在绘制图形、证明几何定理和解决实际问题时都会用到。
第十三章整式的乘法与因式分解是初中数学中的一个重要知识点,它涉及到多项式的基本运算和分解。
整式是由常数、变量和它们的乘积以及它们的各项次幂所构成的代数式,而整式的乘法和因式分解则是对多项式进行拆分和组合的过程,能够帮助我们更好地理解和应用代数式。
第十四章分式是初中数学中的一个重要概念,它是指由两个整式相除所得到的代数式。
分式可以分为真分式、带分式和整式三种情况,其中真分式是指分子次数小于分母次数的分式,带分式是指分子次数大于等于分母次数的分式,而整式则是指分母为常数的分式。
分式在数学中有着广泛的应用,比如在解方程、证明定理和计算实际问题时都会用到。
第十五章三角形单元测试是初中数学中的一种测试形式,它主要考察学生对于三角形相关知识和技能的掌握情况。
本测试共有10道选择题,每道题目有4个选项,只有一个选项是正确的。
测试时间为90分钟,满分为100分。
通过三角形单元测试,学生可以了解自己在三角形方面的薄弱环节,并及时进行补充和提高。
二、填空题11.x的取值范围是 1<x<312.可以构成 4 个三角形13.∠A+∠B+∠C+∠D+∠E+∠F等于 540°14.如果一个正多边形的内角和是900°,则这个正多边形是正 10 边形15.n=816.需要安排 3 种不同的车票17.得到的图形是正三角形,它的内角和(按一层计算)是 360°18.∠BOC的度数是 80°三、解答题19.因为BD平分∠ABC,所以∠CBD=∠ABD=40°又因为DA⊥AB,所以∠ADB=90°-∠ABD=50°所以∠C=∠CBD+∠ADB=40°+50°=90°20.(1) 画出△XXX的外角∠BCD后,再画出∠BCD的平分线CE,如图:image.png](/upload/image_hosting/edn2j1v0.png)2) 由于∠A=∠B,所以∠ACB=∠ABC,而∠BCD是△ABC的外角,所以∠BCD=∠ACB+∠ABC又因为CE是∠BCD的平分线,所以∠ECD=∠DCB,所以∠ECD+∠XXX∠BCD即∠ECD+∠XXX∠ACB+∠ABC又因为∠ACB=∠ABC,所以∠ECD=∠DCB所以CE∥AB21.(1) 如图:image.png](/upload/image_hosting/1a0z4h2p.png)ABC+∠ACB=30°+90°=120°XXX∠XXX∠ABC+∠XXX-∠XXX-∠XCB=120°-90°-30°=0°2) ∠ABX+∠ACX的大小不变,因为它们与三角板XYZ 的位置无关,只与△ABC的角度有关,而△XXX的角度没有变化。
人教版数学八年级上学期《三角形》单元综合检测题(含答案)
C.∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;
D.∵4A+4A=8A,∴三条线段不能构成三角形,故本选项错误.
故选B.
[点睛]本题考查了三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.
A. 8Cm和10CmB. 6Cm和10CmC. 6Cm和8CmD. 10Cm和12Cm
[答案]D
[解析]
根据平行四边形的对角线互相平分,所选择作为对角线长度的一半与已知边长需要构成三角形的边长,必须满足三角形的两边之和大于第三边,由此逐一排除;
A、取对角线的一半与已知边长,得4,5,10,不能构成三角形,舍去;
人教版八年级上册《三角形》单元测试卷
(时间:120分钟 满分:150分)
一、单选题(共10题;共30分)
1.下列长度的三条线段能组成三角形的是()
A.5,6,11B.5,6,10C.3,4,8D.4A,4A,8A(A>0)
2.一位同学用三根木棒两两相交拼成如下图形,则其中符合三角形概念的是()
A B. C. D.
5.下列长度的四根木棒中,能与 长的两根木棒首尾相接成一个三角形的是()
A. B. C. D.
6.直角三角形两锐角 平分线相交所夹的钝角为()
A. 125°B. 135°C. 145°D. 150°
7.平行四边形中一边长为10Cm,那么它的两条对角线长度可以是
A. 8Cm和10CmB. 6Cm和10CmC. 6Cm和8CmD. 10Cm和12Cm
∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;
人教版初中数学八年级数学上册第一单元《三角形》测试卷(答案解析)
一、选择题1.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,12 2.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( )A .20cmB .7cmC .5cmD .2cm 3.如图,1∠等于( )A .40B .50C .60D .704.如图,线段BE 是ABC 的高的是( )A .B .C .D .5.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( ) A .15 B .20 C .30 D .406.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .4cm, 5cm,9cmB .4cm, 5cm, 6cmC .5cm,12cm,6cmD .4cm,2cm,2cm7.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°8.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cm B .10cm C .4cm D .6cm 9.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30° 10.如图,在五边形ABCDE 中,AB ∥CD ,∠A =135°,∠C =60°,∠D =150°,则∠E 的大小为( )A .60°B .65°C .70°D .75° 11.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒ 12.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°二、填空题13.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.14.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.15.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.16.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.17.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.18.一副分别含有30°和45°的直角三角板,拼成如图,则BFD ∠的度数是______.19.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.20.如图所示,∠A+∠B+∠C+∠D+∠E+∠F=____.(填写度数).三、解答题21.如图,△ABC中,D为AC上一点,且∠ADB=∠ABC=α(0°<α<180°),∠ACB的角平分线分别交BD、BA于点E、F.(1)若α=90°,判断∠BEF和∠BFE的大小关系并说明理由;(2)是否存在α,使∠BEF大于∠BFE?如果存在,求出α的范围,如果不存在,请说明理由.22.如图BC平分∠ABE,DC平分∠ADE,求证:∠E+∠A=2∠C23.已知一个n 边形的每一个内角都等于120°.(1)求n 的值;(2)求这个n 边形的内角和;(3)这个n 边形内一共可以画出几条对角线?24.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.25.如图,在ABC 中,D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于点F ,62A ∠=︒,35ACD ∠=︒,20ABE ∠=︒.求:(1)BDC ∠的度数;(2)BFD ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学公式)解:(1)∵BDC A ACD ∠=∠+∠( )∴623597BDC ∠=︒+︒=︒(等量代换)(2)∵BFD BDC ABE ∠+∠+∠=______( )∴180BFD BDC ABE ∠=︒-∠-∠(等式的性质)1809720=︒-︒-︒(等量代换)63=︒26.阅读材料在平面中,我们把大于180︒且小于360︒的角称为优角.如果两个角相加等于360︒,那么称这两个角互为组角,简称互组.(1)若1∠,2∠互为组角,且1135∠=︒,则2∠=______.习惯上,我们把有一个内角大于180︒的四边形俗称为镖形.(2)如图,在镖形ABCD 中,优角BCD ∠与钝角BCD ∠互为组角,试探索内角A ∠,B ,D ∠与钝角BCD ∠之间的数量关系,并至少用两种以上的方法说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、1+2<4,不能构成三角形;B 、5+6=11,不能构成三角形;C 、3+3>3,能构成三角形;D 、8+4=12,不能构成三角形.故选:C .【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于最大的数.2.A解析:A【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】A 、15+8=23>20,能组成三角形,符合题意;B 、7+8=15,不能组成三角形,不合题意;C、5+8=13<15,不能组成三角形,不合题意;D、2+8=10<15,不能组成三角形,不合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,三角形的两边差小于第三边.但通常不需一一验证,其简便方法是将较短两边之和与较长边比较.3.D解析:D【分析】根据三角形外角的性质直接可得出答案.【详解】解:由三角形外角的性质,得∠+︒︒160=130∴∠=︒-︒=︒11306070故选D.【点睛】本题考查了三角形外角的性质,比较简单.4.D解析:D【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【详解】A选项中,BE⊥BC,BE与AC不垂直,此选项错误;B选项中,BE⊥AB,BE与AC不垂直,此选项错误;C选项中,BE⊥AB,BE与AC不垂直,此选项错误;D选项中,BE⊥AC,∴线段BE是△ABC的高,此选项正确.故选:D.【点睛】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.5.A解析:A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列出方程求解即可.【详解】解:∵∠C的外角=∠A+∠B,∴x+40=2x+10+x,解得x=15.故选:A.【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.6.B解析:B【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解.【详解】解:根据三角形的三边关系,知:A中,4+5=9,排除;B中,4+5>6,满足;C中,5+6<12,排除;D中,2+2=4,排除.故选:B.【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.7.D解析:D【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可判断.【详解】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴必有一个内角等于90°,故选:D.【点睛】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.8.D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm,7cm,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.9.C解析:C【分析】先依据平行线的性质可求得∠ABC 的度数,然后在直角三角形CBD 中可求得∠BCD 的度数.【详解】解:∵//BC AE ,150∠=︒,∴∠1=∠ABC=50°.∵CD AB ⊥于点D ,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C .【点睛】本题主要考查平行线的性质、垂线的定义、直角三角形两锐角互余的性质,掌握相关知识是解题的关键.10.D解析:D【分析】先根据多边形的内角和公式求出五边形的内角和,根据AB ∥CD 得到∠B+∠C=180°,即可求出∠E 的大小.【详解】解:由五边形的内角和公式得(5-2)×180°=540°,∵AB ∥CD ,∴∠B+∠C=180°,∴∠E=540°-∠A-∠B-∠C-∠D=540°-135°-180°-150°=75°.故选:D【点睛】本题考查了多边形的内角和公式,平行线的性质,熟练掌握多边形的内角和公式是解题关键.11.A解析:A【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】∵四边形的内角和等于a,∴a=(4-2)•180°=360°;∵五边形的外角和等于b,∴b=360°,∴a=b.故选:A.【点睛】本题考查了多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.12.A解析:A【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,即可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-510°=30°.故选:A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.二、填空题13.【分析】根据三角形的面积公式列方程即可得到结论【详解】解:根据三角形面积公式可得∵AB=3BC=6CE=5∴解得故答案为:【点睛】本题考查了三角形的高以及三角形的面积熟记三角形的面积公式是解题的关键解析:2.5【分析】根据三角形的面积公式列方程即可得到结论.【详解】解:根据三角形面积公式可得,1122ABCS AB CE BC AD =⨯=⨯,∵AB=3,BC=6,CE=5,∴1135622AD ⨯⨯=⨯⨯, 解得 2.5AD =. 故答案为:2.5.【点睛】本题考查了三角形的高以及三角形的面积,熟记三角形的面积公式是解题的关键. 14.275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数由多边形的外角和即可求解【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数∵多边形的外角和为360°∴解析:275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,由多边形的外角和即可求解.【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,∵多边形的外角和为360°,∴他在行程中共转过了()36018095275︒-︒-︒=︒,故答案为:275.【点睛】本题考查多边形的外角和,明确王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数是解题的关键.15.2或6【分析】利用面积法求出BD 即可求得CD 再分AE 在内部和外部求出DE 即可【详解】解:为的高△ABD 的面积为14AE=7∴∵为的中线∴CD=BD=4当AE 在内部时∵CE=2∴DE=CD-CE=2当解析:2或6【分析】利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7,1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线, ∴CD=BD=4,当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键. 16.【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数再由三角形内角与外角的性质可求出∠ADF 的度数由AF ⊥BC 可求出∠AFD=90°再由三角形的内角和定理即可解答【详解】∵AF 是的高∴在中∴解析:20︒【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数,再由三角形内角与外角的性质可求出∠ADF 的度数,由AF ⊥BC 可求出∠AFD=90°,再由三角形的内角和定理即可解答.【详解】∵AF 是ABC 的高,∴90AFB ∠=︒,在Rt ABF 中,36B ∠=︒,∴90BAF B ∠=︒-∠9036=︒-︒54=︒.又∵在ABC 中,36B ∠=︒,76C ∠=︒,∴18068BAC B C ∠=︒-∠-∠=︒,又∵AD 平分BAC ∠, ∴11683422BAD CAD BAC ∠=∠=∠=⨯=︒, ∴DAF BAF BAD ∠=∠-∠5434=︒-︒ 20=︒.故答案为:20︒.【点睛】本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等.17.10或50【分析】分点P在AB的上方点P在AB与CD的中间点P在CD的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P在AB的上方;(2)如图解析:10或50【分析】分点P在AB的上方、点P在AB与CD的中间、点P在CD的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P在AB的上方,30,20∠=︒∠=︒,BPD PBA∴∠=∠+∠=︒,150BPD PBAAB CD,//150∴∠=∠=︒;CDP(2)如图,点P在AB与CD的中间,延长BP,交CD于点E,//,20∠=︒,AB CD PBA∴∠=∠=︒,20BED PBA∠=︒,30BPD∴∠=∠-∠=︒;CDP BPD BED10(3)如图,点P在CD的下方,//,20∠=︒,AB CD PBA∴∠=∠=︒,120PBA∠=︒,30BPD∠=︒不符,∴∠=∠+∠=∠+︒>︒与120CDP BPD CDP13030即点P 不可能在CD 的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.【点睛】本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.18.15°【分析】先根据直角三角板的性质得出∠B 及∠CDE 的度数再由补角的定义得出∠BDF 的度数根据三角形内角和定理即可得出结论【详解】解:∵图中是一副直角三角板∴∠B=45°∠CDE=60°∴∠BDF解析:15°【分析】先根据直角三角板的性质得出∠B 及∠CDE 的度数,再由补角的定义得出∠BDF 的度数,根据三角形内角和定理即可得出结论.【详解】解:∵图中是一副直角三角板,∴∠B=45°,∠CDE=60°,∴∠BDF=180°-60°=120°,∴∠BFD=180°-45°-120°=15°.故答案为:15°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 19.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°=10解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°. 故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.20.360°【分析】连接BE先利用三角形内角和定理得出∠C+∠D=∠PBE+∠PEB 继而在四边形ABEF中利用内角和定理进行求解即可【详解】连接BE∵∠C+∠D+∠DPC=180°∠PBE+∠PEB+∠解析:360°【分析】连接BE,先利用三角形内角和定理得出∠C+∠D=∠PBE+∠PEB,继而在四边形ABEF中利用内角和定理进行求解即可.【详解】连接BE,∵∠C+∠D+∠DPC=180°,∠PBE+∠PEB+∠BPE=180°,∠DPC=∠BPE,∴∠C+∠D=∠PBE+∠PEB,在四边形ABEF中,∠A+∠ABE+∠BEF+∠F=(4-2)×180°=360°,∴∠A+∠ABP+∠PBE+∠PEB+∠PEF+∠F=360°,∴∠A+∠ABP+∠C+∠D+∠PEF+∠F=360°,故答案为:360°.【点睛】本题考查了三角形内角和定理以及四边形内角和的应用,正确添加辅助线,准确识图,熟练应用相关知识是解题的关键.三、解答题21.(1)∠BEF=∠BFE,理由见解析;(2)存在,90°<α<180°【分析】(1)根据余角的定义得到∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,根据角平分线的定义得到∠DCE=∠BCF,等量代换得到∠BEF=∠BFC,于是得到∠BEF=∠BFE;(2)根据角的和差和三角形的内角和定理即可得到结论.【详解】(1)∠BEF=∠BFE;理由:∵∠ADB=∠ABC=90°,∴∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,∵CF 平分∠ACB ,∴∠DCE=∠BCF ,∴∠DEC=∠BFC ,∵∠DEC=∠BEF ,∴∠BEF=∠BFC ,即∠BEF=∠BFE ;(2)∵∠BEF=∠EBC+∠ECB ,∠BFE=∠A+∠ACF ,∠ECB=∠ACF ,∴∠BEF-∠BFE=(∠EBC+∠ECB)-(∠A+∠ACF)=∠EBC-∠A ,∵∠EBC=∠ABC-∠ABD=α-∠ABD ,∠A=180°-∠ADB-∠ABD=180°-α-∠ABD ,∴∠BEF-∠BFE=(α-∠ABD )-(180°-α-∠ABD )=2α-180°,若∠BEF >∠BFE ,则∠BEF ﹣∠BFE >0,即2α﹣180°>0,∴α>90°,∴90°<α<180°.【点评】本题考查了三角形的内角和定理,角平分线的定义,余角的性质,正确的理解题意是解题的关键.22.证明见解析.【分析】如图(见解析),先根据角平分线的定义可得12,34∠=∠∠=∠,再根据三角形的外角性质可得13,42A C E C ∠+∠=∠+∠∠+∠=∠+∠,然后两式相加化简即可得.【详解】 如图,BC 平分ABE ∠,DC 平分ADE ∠,12,34∴∠=∠∠=∠,由三角形的外角性质得:153462A C E C ∠+∠=∠=∠+∠⎧⎨∠+∠=∠=∠+∠⎩, 即1342A C E C ∠+∠=∠+∠⎧⎨∠+∠=∠+∠⎩, 两式相加得:14223A E C ∠+∠+∠+∠=∠+∠+∠,14214A E C ∴∠+∠+∠+∠=∠+∠+∠,2E A C ∴∠+∠=∠.【点睛】本题考查了角平分线的定义、三角形的外角性质等知识点,熟练掌握三角形的外角性质是解题关键.23.(1)6;(2)720°;(3)9条【分析】(1)分别用两个式子表示多边形的内角和,列出方程,求解即可;(2)根据多边形内角和公式即可求解;(3)根据对角线的定义求出每个顶点的对角线条数,再求解即可.【详解】解:(1)由题意得()2180120n n -︒=︒,解得 6n =.(2)()62180720-⨯︒=︒,所以这个多边形的内角和为720°.(3)六边形每个顶点可以引6-3=3条对角线, 所以一共可画6392⨯=条对角线. 【点睛】本题考查了多边形的内角和公式,多边形对角线的定义,熟记多边形的内角和公式,理解对角线的定义是解题关键.24.10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE是角平分线,∴∠EAC=12∠BAC=12×60°=30°,∵AD是高,∴∠ADC=90°,∴∠CAD=90°−∠C=90°−70°=20°,∴∠DAE=∠EAC−∠CAD=30°−20°=10°;∵AE,BF是角平分线,∴∠OAB=12∠BAC,∠OBA=12∠ABC,∴∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC)=12(180°−∠C)=12×(180°−70°) =55°.【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.25.(1)三角形的外角性质;(2)180,三角形内角和定理【分析】(1)在△ACD中,利用三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和计算即可;(2)在△BFD中,利用三角形的内角和定理计算即可.【详解】(1)∵∠BDC=∠A+∠ACD(三角形的外角性质),∴∠BDC=62°+35°=97°(等量代换),故答案为:三角形的外角性质;(2)∵∠BFD+∠BDC+∠ABE=180°(三角形内角和定理),∴∠BFD=180°-∠BDC-∠ABE(等式的性质),=180°-97°-20°(等量代换)=63°;故答案为:180°,三角形内角和定理.【点睛】本题主要考查了三角形的外角性质与三角形的内角和定理,熟记性质与定理是解题的关键.26.(1)225°;(2)钝角∠BCD=∠A+∠B+∠D,理由见解析.【分析】(1)根据互为组角的定义可知∠2=360°-∠1,代入数据计算即可;(2)理由①:根据四边形内角和定理可得∠A+∠B+优角∠BCD+∠D=360°,根据周角的定义可得优角∠BCD+钝角∠BCD=360°´,再利用等式的性质得出钝角∠BCD=∠A+∠B+∠D;理由②:连接AC并延长,根据三角形外角的性质即可得出结论.【详解】解:(1)∵∠1、∠2互为组角,且∠1=135°,∴∠2=360°-∠1=225°,故答案为:225°;(2)钝角∠BCD=∠A+∠B+∠D.理由如下:理由①:∵在四边形ABCD中,∠A+∠B+优角∠BCD+∠D=360°,又∵优角∠BCD+钝角∠BCD=360°´,∴钝角∠BCD=∠A+∠B+∠D;理由②:如下图,连接AC并延长,∵∠BAC+∠B=∠BCE,∠DAC+∠D=∠DCE(三角形外角的性质),∴钝角∠BCD=∠BCE+∠DCE=∠BAC+∠B+∠DAC+∠D=∠A+∠B+∠D.【点睛】本题考查三角形的外角,四边形内角和.能正确作出辅助线,将四边形分成两个三角形是理由②的关键.。
人教版数学八年级上册《全等三角形》单元测试题附答案
∴∠DFB=180°-∠D-∠FMD=180°-95°-25°=60°.
故选D.
【点睛】本题考查了全等三角形的性质,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.
5.如图为 个边长相等的正方形的组合图形,则
A. B. C. D.
【答案】B
【解析】
【分析】
故选B.
【点睛】本体考查了全等三角形的判定、直角三角形全等的判定,解题的关键是知道直角三角形也可用判定一般三角形的全等方法进行判定.
7.不能使两个直角三角形全等的条件()
A. 一条直角边及其对角对应相等
B. 斜边和一条直角边对应相等
C. 斜边和一锐角对应相等
D. 两个锐角对应相等
【答案】D
【解析】
【分析】
人教版数学八年级上学期
《全等三角形》单元测试
(时间:120分钟 满分:150分)
卷I(选择题)
一、选择题(共12小题,每小题3分,共36分)
1.在下列各组图形中,是全等的图形是()
A. B. C. D.
2.如图, , ,则 的对应边是()
A. B. C. D.
3.如图,用 , 直接判定 理由是()
A. B. C. D.
故选C.
点评:本题考查的是全等形的识别,属于较容易的基础题.
2.如图, , ,则 的对应边是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据全等三角形中对应角所对的边是对应边,可知BC=DA.
【详解】∵ABC≌△CDA,∠BAC=∠DCA,
∴∠BAC与∠DCA是对应角,
∴BC与DA是对应边(对应角对的边是对应边).
人教版数学八年级上学期《三角形》单元测试(含答案)
考试时间:90分钟满分:100分
一、选择题
1.已知△A B C中,A B=6,B C=4,那么边A C的长可能是下列哪个值()
A.11B.5C.2D.1
2.在同一平面内,线段A B=7,B C=3,则A C长为( )
A A C=10B.A C=10或4C. 4<A C<10D. 4≤A C≤10
[详解]解:∵∠A=70°,
∴∠A DE+∠AED=180°-70°=110°,
∵△A B C沿着DE折叠压平,A与A′重合,
∴∠A′DE=∠A DE,∠A′ED=∠AED,
∴∠1+∠2=180°-(∠A′ED+∠AED)+180°-(∠A′DE+∠A DE)=360°-2×110°=140°.
故选:B.
拓展研究:
(2)如图③,∠C BO= ∠D B C,∠B CO= ∠EC B,∠A=α,请猜想∠BOC=_____(用α表示),并说明理由.
类比研究:
(3)BO、CO分别是△A B C的外角∠D B C、∠EC B的n等分线,它们交于点O,∠C BO= ∠D B C,∠B CO= ∠EC B,∠A=α,请猜想∠BOC=______.
已知条件即可求出∠A的度数.
考点:三角形内角和定理.
11.已知三角形的两边长是2Cm,3Cm,则该三角形的周长l的取值范围是( )
A.1<l<5B.1<l<6
C.5<l<9D.6<l<10
[答案]D
[解析]
试题分析:已知三角形 两边长是2Cm,3Cm,则第三条边范围是1<x<5,所以三角形的周长的取值范围是6<C<10.故选D.
C.由三角形的内角和定理与对顶角相等,∠1+∠3+∠6﹦180°成立,故本选项错误;
人教版八年级上册数学《全等三角形》单元综合测试卷(含答案)
人教版数学八年级上学期《全等三角形》单元测试(时间:120分钟满分:150分)一、选择题(每小题3分,共30分)1. 下列图形中,与已知图形全等的是( )A. B. C. D.2. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是( )学*科*网...A. 3B. -3C. 2D. -23. 如图4,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是( )A. 5B. 8C. 10D. 154. 如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带哪块玻璃碎片去玻璃店?( )A. ①B. ②C. ③D. ④5. 如图6所示,在△ABC和△ABD中,∠C=∠D=90°,要利用“HL”判定△ABC≌△ABD成立,还需要添加的条件是( )A. ∠BAC=∠BADB. BC=BD或AC=ADC. ∠ABC=∠ABDD. AB为公共边6. 已知图7中的两个三角形全等,则∠α的度数为( )A. 105°B. 75°C. 60°D. 45°7. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是( )A. BC=FD,AC=EDB. ∠A=∠DEF,AC=EDC. AC=ED,AB=EFD. ∠A=∠DEF,BC=FD8. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论正确的是( )A. ∠1=∠EFDB. BE=ECC. BF=CDD. FD∥BC9. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是( )A. 小惠的作法正确,小雷的作法错误B. 小雷的作法正确,小惠的作法错误C. 两人的作法都正确D. 两人的作法都错误10. 如图,每个小方格都是边长为1的小正方形,△ABC是格点三角形(即顶点恰好是小正方形的顶点),在图中与△ABC全等且有一条公共边的所有格点三角形的个数是( )A. 5B. 4C. 3D. 2第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11. 如图,△ABC≌△ADE,BC的延长线交DE于点G.若∠B=24°,∠CAB=54°,∠DAC=16°,则∠DGB=________.12. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=________.13. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E,若AE=12 cm,则DE的长为________cm.14. 如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.有下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是________.15. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC=2,则S△ABC=________.16. 如图16,在Rt△ABC中,∠C=90°.E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是________.三、解答题(共52分)17. 如图17,已知△ABC.求作:直线MN,使MN经过点A,且MN∥BC.(尺规作图,保留作图痕迹,不写作法)18. 如图18,△ABC≌△ADE,∠BAD=40°,∠D=50°,AD与BC相交于点O.探索线段AD与BC的位置关系,并说明理由.19. 如图19,△ACF≌△ADE,AD=9,AE=4,求DF的长.20. 如图,C是AB的中点,AD=CE,CD=BE.求证:∠A+∠ECA=180°.21. 如图21所示,海岛上有A,B两个观测点,点B在点A的正东方,海岛C在观测点A的正北方,海岛D在观测点B的正北方,从观测点A看海岛C,D的视角∠CAD与从观测点B看海岛C,D的视角∠CBD 相等,那么海岛C,D到观测点A,B所在海岸的距离相等吗?为什么?22. 如图22,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C 在∠AOB的平分线上.23. 在Rt△ABC中,BC=AC,∠ACB=90°,D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE,BF.(1)当点D在线段AB上时(点D不与点A,B重合),如图23(a).①请你将图形补充完整;②线段BF,AD所在直线的位置关系为________,线段BF,AD的数量关系为________.(2)当点D在线段AB的延长线上时,如图23(b).在(1)中②问的结论是否仍然成立?如果成立,请进行证明;如果不成立,请说明理由.24. 如图24①,点A,B,C,D在同一直线上,AB=CD,作EC⊥AD于点C,FB⊥AD于点B,且AE=DF.(1)求证:EF平分线段BC;(2)若将△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.参考答案一、选择题(每小题3分,共30分)1. 下列图形中,与已知图形全等的是()A. B. C. D.【答案】B【解析】【分析】根据全等图形的定义:能够完全重合的两个图形是全等图形.【详解】根据全等图形的定义可得:B选项中图形能够与已知图形完全重合,故选B.【点睛】本题主要考查全等图形的定义,解决本题的关键是要熟练掌握全等图形的定义.2. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...A. 3B. -3C. 2D. -2【答案】A【解析】【分析】过点D作DE⊥AB于E,由于AD是∠OAB的平分线,根据角平分线上的点到角两边的距离相等可得: DE=OD=3, 即点D到AB的距离是3.【详解】如图,∵点D的坐标是(0,-3),∴OD=3,过点D作DE⊥AB于E,∵AD是∠OAB的平分线,∴DE=OD=3,即点D到AB的距离是3,故选A.【点睛】本题主要考查角平分线的性质,解决本题的关键是要熟练掌握角平分线的性质.3. 如图4,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是()A. 5B. 8C. 10D. 15【答案】A【解析】分析:由全等三角形对应边相等可得AC=EF,所以AC-EC=EF-EC,即CF=AE=15-10.详解:因为,△ABC≌△EDF,DF=BC,AB=ED,所以,AC=EF,所以,AC-EC=EF-EC,所以,CF=AE=15-10=5.故选:A点睛:本题考核知识点:全等三角形性质. 解题关键点:熟练掌握全等三角形性质并运用.4. 如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带哪块玻璃碎片去玻璃店?()A. ①B. ②C. ③D. ④【答案】D【解析】试题分析:根据两角和一边可以确定唯一的一个三角形.考点:三角形的确定5. 如图6所示,在△ABC和△ABD中,∠C=∠D=90°,要利用“HL”判定△ABC≌△ABD成立,还需要添加的条件是()A. ∠BAC=∠BADB. BC=BD或AC=ADC. ∠ABC=∠ABDD. AB为公共边【答案】B【解析】【分析】在两个直角三角形中,斜边和任意一条直角边分别对应相等,两直角三角形全等,即HL定理.【详解】需要添加的条件为BC=BD或AC=AD,理由为:若添加的条件为BC=BD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL),若添加的条件为AC=AD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL),故选B【点睛】本题主要考查全等三角形的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理.6. 已知图7中的两个三角形全等,则∠α的度数为()A. 105°B. 75°C. 60°D. 45°【答案】B【解析】【分析】因为两三角形全等,对应边相等,对应角相等,根据全等三角形的性质进行求解即可求出.【详解】因为两个三角形全等,所以∠α=180°-45°-60°=75°,故选B.【点睛】本题主要考查全等三角形的性质,解决本题的关键是要熟练掌握全等三角形的性质.7. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A. BC=FD,AC=EDB. ∠A=∠DEF,AC=EDC. AC=ED,AB=EFD. ∠A=∠DEF,BC=FD【答案】C【解析】利用三角形的全等的判定方法:SSS、SAS、ASA、AAS、HL进行分析即可.解:A、增加BC=FD,AC=ED可利用SAS判定△ABC≌△EFD,故此选项不合题意;B、增加∠A=∠DEF,AE=ED可利用ASA判定△ABC≌△EFD,故此选项不合题意;C、增加AE=ED,AB=EF,不能判定△ABC≌△EFD,故此选项合题意;D、增加∠ABC=∠EFD,BC=FD,可利用ASA判定△ABC≌△EFD,故此选项不合题意;故选C.8. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论正确的是()A. ∠1=∠EFDB. BE=ECC. BF=CDD. FD∥BC【答案】D【解析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.解:在△ADF与△ABF中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF,又∵∠ABF=∠C=90°-∠CBF,∴∠ADF=∠C,∴FD∥BC.故选B.9. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A. 小惠的作法正确,小雷的作法错误B. 小雷的作法正确,小惠的作法错误C. 两人的作法都正确D. 两人的作法都错误【答案】A【解析】试题分析:AB=b,AB是斜边,小惠作的斜边长是b符合条件,而小雷作的是直角边长是b.故小惠正确,小雷错误.故选A.考点:作图—复杂作图.10. 如图,每个小方格都是边长为1的小正方形,△ABC是格点三角形(即顶点恰好是小正方形的顶点),在图中与△ABC全等且有一条公共边的所有格点三角形的个数是()A. 5B. 4C. 3D. 2【答案】B【解析】考点:全等三角形的判定.分析:根据全等三角形的判定分别求出以BC为公共边的三角形,以AB为公共边的三角形,以AC为公共边的三角形的个数,相加即可.解答:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个.共3+0+1=4个,故选D.点评:本题考查了全等三角形的判定的应用,找出符合条件的所有三角形是解此题的关键.第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11. 如图,△ABC≌△ADE,BC的延长线交DE于点G.若∠B=24°,∠CAB=54°,∠DAC=16°,则∠DGB =________.【答案】70【解析】【分析】因为两三角形全等,对应边相等,对应角相等,根据全等三角形的性质进行求解即可求出.【详解】因为△ABC≌△ADE,∴∠ACB=∠E=180°-24°-54°=102°,∴∠ACF=180°-102°=78°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即24°+∠DGB=16°+78°,解得∠DGB=70°.故答案为:70°.【点睛】本题主要考查全等三角形的性质和三角形内角和和外角性质,解决本题的关键是要熟练掌握全等三角形的性质和三角形的内角和和外角性质.12. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=________.【答案】125【解析】【分析】由于在Rt△ABC中,∠C=90°,∠B=20°,先根据三角形内角和可计算出∠CAB=70,再根据角平分线的定义可得∠CAD=∠BAD=35°,最后根据三角形内角和可计算出∠ADB=180°-20°-35°=125°.【详解】由题意可得:AD平分∠CAB,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°-20°-35°=125°,故答案为:125°.【点睛】本题主要考查三角形的内角和和角平分线的定义,解决本题的关键是要熟练掌握三角形的内角和和角平分线的定义.13. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E,若AE =12 cm,则DE的长为________cm.【答案】12【解析】连接BE,∵D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,∴在Rt△DBE和Rt△ABE中,BD=AB(已知),BE=EB(公共边),∴Rt△DBE≌Rt△ABE(HL),∴AE=ED,又∵AE=12cm,∴ED=12cm.故填12.14. 如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.有下列结论:①AC⊥BD;②CB =CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是________.【答案】①②③【解析】试题解析:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS,SAS,ASA,AAS,以及HL,是解题的关键.15. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC=2,则S△ABC=________.【答案】7【解析】【分析】先过点P作PF⊥AB于G,由于∠ABC和∠ACB的外角平分线BP,CP交于P,根据角平分线的性质可得PF=PG=PE=2,根据,可得,解得BC=2,再根据△ABC的周长为11,可得AC+AB=11-2=9,继而可得==7.【详解】如图,过点P作PF⊥AB于G,因为∠ABC和∠ACB的外角平分线BP,CP交于P,所以PF=PG=PE=2,因为,所以,解得BC=2,因为△ABC的周长为11,所以AC+AB=11-2=9,所以,=,=7故答案为:7.【点睛】本题主要考查角平分线上的点到角两边的距离相等,解决本题的关键是要熟练掌握角平分线的性质.16. 如图16,在Rt△ABC中,∠C=90°.E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是________.【答案】16【解析】四边形FBCD周长=BC+AC+DF;当时,四边形FBCD周长最小为5+6+5=16三、解答题(共52分)17. 如图17,已知△ABC.求作:直线MN,使MN经过点A,且MN∥BC.(尺规作图,保留作图痕迹,不写作法)【答案】见解析【解析】【分析】根据平行的判定,直接过点A作一个角等于角B,即角所在直线即为所求直线.【详解】解:如图所示,作∠MAB=∠B,则直线MN即为所求.【点睛】本题主要考查过已知一点作已知线段的平行线,解决本题的关键是要熟练掌握作平行线的方法.18. 如图18,△ABC≌△ADE,∠BAD=40°,∠D=50°,AD与BC相交于点O.探索线段AD与BC的位置关系,并说明理由.【答案】AD⊥BC,理由见解析【解析】【分析】由于△ABC≌△ADE,∠D=50°,根据全等三角形对应角相等可得∠B=∠D=50°,再根据三角形内角和定理可得:∠AOB=180°-∠BAD-∠B=180°-40°-50°=90°,即可求证.【详解】解:AD⊥BC.理由如下:∵△ABC≌△ADE,∠D=50°,∴∠B=∠D=50°.在△AOB中,∠AOB=180°-∠BAD-∠B=180°-40°-50°=90°,∴AD⊥BC.【点睛】本题主要考查全等三角形的性质和三角形内角和定理,解决本题的关键是要熟练掌握全等三角形的性质和三角形内角和定理.19. 如图19,△ACF≌△ADE,AD=9,AE=4,求DF的长.【答案】5【解析】【分析】由于△ACF≌△ADE.根据全等三角形对应角相等可得AF=AE,,再根据线段的和差关系可得:DF=AD-AF =AD-AE=9-4=5.【详解】解:∵△ACF≌△ADE,∴AF=AE,∴DF=AD-AF=AD-AE=9-4=5.【点睛】本题主要考查全等三角形的性质,解决本题的关键是要熟练掌握全等三角形的性质.20. 如图,C是AB的中点,AD=CE,CD=BE.求证:∠A+∠ECA=180°.【答案】见解析【解析】【分析】先由C是AB的中点,可得AC=CB,在△ACD和△CBE中,由AC=CB,AD=CE,CD=BE,根据全等三角形的判定方法可证△ACD≌△CBE,根据全等三角形的性质可得∠A=∠ECB,根据平行线的判定方法可得AD∥CE,再根据平行线的性质可得∠A+∠ECA=180°.【详解】证明:∵C是AB的中点,∴AC=CB,在△ACD和△CBE中,AC=CB,AD=CE,CD=BE,∴△ACD≌△CBE(SSS),∴∠A=∠ECB,∴AD∥CE,∴∠A+∠ECA=180°.【点睛】本题主要考查全等三角形的判定定理和性质,平行线的判定和性质,解决本题的关键是要熟练掌握全等三角形的判定定理和性质,平行线的判定和性质.21. 如图21所示,海岛上有A,B两个观测点,点B在点A的正东方,海岛C在观测点A的正北方,海岛D在观测点B的正北方,从观测点A看海岛C,D的视角∠CAD与从观测点B看海岛C,D的视角∠CBD 相等,那么海岛C,D到观测点A,B所在海岸的距离相等吗?为什么?【答案】相等,理由见解析.【解析】【分析】设AD,BC相交于点O,由于∠CAD=∠CBD,∠COA=∠DOB, 得∠C=∠D.再根据∠CAB=∠DBA=90°,∠C=∠D, AB=BA,可判定△CAB≌△DBA,根据全等三角形的性质可得: CA=DB.【详解】解:相等.理由:设AD,BC相交于点O.∵∠CAD=∠CBD,∠COA=∠DOB,∴由三角形内角和定理,得∠C=∠D.由已知得∠CAB=∠DBA=90°.在△CAB和△DBA中,∠C=∠D,∠CAB=∠DBA,AB=BA,∴△CAB≌△DBA(AAS),∴CA=DB,∴海岛C,D到观测点A,B所在海岸的距离相等.【点睛】本题主要考查全等三角形的判定定理和性质,解决本题的关键是要熟练掌握全等三角形的判定定理和性质.22. 如图22,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C 在∠AOB的平分线上.【答案】见解析【解析】【分析】过点C分别作CG⊥OA于点G,CF⊥OB于点F,在△MOE和△NOD中,根据OM=ON,∠MOE=∠NOD,OE=OD,可判定△MOE≌△NOD,根据全等三角形的性质可得:S△MOE=S△NOD,继而可得S△MOE-S四边形ODCE=S△NOD -S四边形ODCE,即S△MDC=S△NEC.由三角形面积公式得DM·CG=EN·CF.由于OM=ON,OD=OE,所以DM=EN,CG=CF.根据CG⊥OA,CF⊥OB,可证点C在∠AOB的平分线上.【详解】证明:过点C分别作CG⊥OA于点G,CF⊥OB于点F,如图.在△MOE和△NOD中,OM=ON,∠MOE=∠NOD,OE=OD,∴△MOE≌△NOD(SAS),∴S△MOE=S△NOD,∴S△MOE-S四边形ODCE=S△NOD-S四边形ODCE,即S△MDC=S△NEC.由三角形面积公式得DM·CG=EN·CF.∵OM=ON,OD=OE,∴DM=EN,∴CG=CF.又∵CG⊥OA,CF⊥OB,∴点C在∠AOB的平分线上.【点睛】本题主要考查全等三角形的判定定理和角平分线的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理和角平分线的判定定理.23. 在Rt△ABC中,BC=AC,∠ACB=90°,D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE,BF.(1)当点D在线段AB上时(点D不与点A,B重合),如图23(a).①请你将图形补充完整;②线段BF,AD所在直线的位置关系为________,线段BF,AD的数量关系为________.(2)当点D在线段AB的延长线上时,如图23(b).在(1)中②问的结论是否仍然成立?如果成立,请进行证明;如果不成立,请说明理由.【答案】(1)①见解析;②垂直,相等;(2)成立,理由见解析.【解析】【分析】(1)①如图所示.②根据CD⊥EF,可得∠DCF=90°.由于∠ACB=90°,可得∠ACB=∠DCF,∠ACD=∠BCF.根据AC=BC,CD=CF,可判定△ACD≌△BCF,根据全等三角形的性质可得AD=BF,∠BAC=∠FB C,继而可得∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.(2)根据CD⊥EF,可得∠DCF=90°,由于∠ACB=90°,可证∠DCF=∠ACB,所以∠DCF+∠BCD=∠ACB+∠BCD,继而可得∠BCF=∠ACD,根据AC=BC,CD=CF,可判定△ACD≌△BCF,根据全等三角形的性质可得AD=BF,∠BAC=∠FBC,所以∠ABF=∠ABC+∠FBC =∠ABC+∠BAC=90°,即BF⊥AD.【详解】解:(1)①如图所示.②∵CD⊥EF,∴∠DCF=90°.∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF.又∵AC=BC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FB C,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直,相等.(2)成立.证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF=∠ACB,∴∠DCF+∠BCD=∠ACB+∠BCD,∴∠BCF=∠ACD,又∵AC=BC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.【点睛】本题主要考查全等三角形的判定定理和性质,解决本题的关键是要熟练掌握全等三角形的判定定理和性质.24. 如图24①,点A,B,C,D在同一直线上,AB=CD,作EC⊥AD于点C,FB⊥AD于点B,且AE=DF.(1)求证:EF平分线段BC;(2)若将△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)现根据CE⊥AD,BF⊥AD,可得∠ACE=∠DBF=90°,由于AB=CD,所以AB+BC=BC+CD,即AC=DB,在Rt△ACE和Rt△DBF中,,可证Rt△ACE≌Rt△DBF,继而可得CE=FB,在Rt△CEG和Rt△BFG中,,可证Rt△CEG≌Rt△BFG,可得CG=BG,即EF平分线段BC.(2)先根据CE⊥AD,BF⊥AD,可得∠ACE=∠DBF=90°,由于AB=CD,可得AB-BC=CD-BC,即AC=DB,在Rt△ACE和Rt△DBF中,,可证Rt△ACE≌Rt△DBF,可得CE=FB,在Rt△CEG和Rt△BFG中,,可证Rt△CEG≌Rt△BFG,可得CG=BG,即EF平分线段BC.【详解】(1)因为CE⊥AD,BF⊥AD,所以∠ACE=∠DBF=90°,因为AB=CD,所以AB+BC=BC+CD,即AC=DB,在Rt△ACE和Rt△DBF中,,所以Rt△ACE≌Rt△DBF,所以CE=FB,在Rt△CEG和Rt△BFG中,,所以Rt△CEG≌Rt△BFG,所以CG=BG,即EF平分线段BC.(2)(1)中结论成立,理由为:因为CE⊥AD,BF⊥AD,所以∠ACE=∠DBF=90°,因为AB=CD,所以AB-BC=CD-BC,即AC=DB,在Rt△ACE和Rt△DBF中,,所以Rt△ACE≌Rt△DBF,所以CE=FB,在Rt△CEG和Rt△BFG中,,所以Rt△CEG≌Rt△BFG,所以CG=BG,即EF平分线段BC.【点睛】本题主要考查全等三角形的判定定理和性质,解决本题的关键是要熟练掌握全等三角形的判定定理和性质.。
人教版数学八年级上学期《全等三角形》单元测试卷(带答案)
A. ①③④B. ②③④C. ①②③D. ①②③④
[答案]D
[解析]
试题分析:①若E为B C中点,则三线合一,AE⊥B C,所以B D=C D; ②若B D=C D,可证得∆A B D≅∆A C D,继而得到 ,所以AE是 的角平分线,B C的垂直平分线,故E是B C的中点;③若AE⊥B C,则三线合一,AE是B C的垂直平分线,得到B D=C D; ④若B D=C D,则可证得∆A B D≅∆A C D,继而得到 ,所以AE是 的角平分线,B C的垂直平分线,故AE⊥B C.所以选D.
8.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()
A.角的内部到角的两边的距离相等的点在角的平分线上
B.角平分线上的点到这个角两边的距离相等
[初步思考]
我们不妨将问题用符号语言表示为:在△A B C和△DEF中,A C=DF,B C=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
[深入探究]
第一种情况:当∠B是直角时,△A B C≌△DEF.
(1)如图①,在△A B C和△DEF,A C=DF,B C=EF,∠B=∠E=90°,根据,可以知道Rt△A B C≌Rt△DEF.
13.如图,A D是△A B C的角平分线,若A B:A C= 4 : 3,则S△A B D: S△A C D=_________,进而B C:C D=_____________.
人教版八年级上册数学《分式》单元综合检测卷(含答案)
∴|m|=1或 ∴m= 1,m=4
∵ ∴m -1,
∴m=1或4
故答案为1或4
【点睛】此题考查了分式的值不为0的条件,以及绝对值等知识,熟练掌握相关知识是解题关键.
15.已知关于x的方程 =3的解是非负数,则m的取值范围是________.
【答案】m≥﹣9且m≠﹣6
【解析】
【分析】
12.当x_____时,分式 有意义.
【答案】≠﹣4.
【解析】
分析】
直接利用分式有意义的条件,即分母不为零,进而得出答案.
【详解】解:分式 有意义,则4+x≠0,
解得:x≠-4.
故答案为≠-4.
【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.
13.若 =3,则 的值为_____.
A.x>2B.x<2C.x≠﹣1D.x<2且x≠﹣1
【答案】B
【解析】
分析:
根据使分式值为负数的条件进行分析解答即可.
详解:
∵无论 取何值,代数式 的值都大于0,
∴要使代数式 的值为负数,需满足: ,
解得: .
故选B.
点睛:本题解题需注意两点:(1)代数式 的值恒为正数;(2)要使分式的值为负数,需满足分子和分母的值一个为正数,另一个为负数.
故答案为D
【点睛】本题考查的知识点是分式的性质,解题关键是熟记分式的性质:分式的分子分母都乘或除以同一个不为0的整式,分式的值不变.
6.化简 的结果为()
A. ﹣ B. ﹣yC. D.
【答案】D
【解析】
【分析】
先因式分解,再约分即可得.
【详解】
故选D.
【点睛】本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.2 cm,3 cm,5 cm
D.8 cm,4 cm,4 cm 3.在△ABC 中,能说明△ABC 是直角三角形的是( )
A.∠A :∠B :∠C=1 :2 :2 C.∠A :∠B :∠C=1 :2 :3 B.∠A :∠B :∠C=3 :4 D.∠A :∠B :∠C=2 :3
:5
:4
4.如图,在△ABC 中,∠A=80°,∠B=40°,D,E 分别是AB,AC 上的点,且DE∥BC,则∠AED 的度数是( )
A.40°B.60°C.80°D.120°5.在下列各图形中,分别画出了△ABC 中BC 边上的高AD,其中正确的是( )
6.如图,△ABC 的角平分线BE,CF 相交于点O,且∠FOE=121°,则∠A 的度
数是( A.52°)
B.62°C.64°D.72°
2019 秋季上册人教数学八年级第一单元测试
时间:100 分钟满分:120 分
一、选择题(每题3 分,共30 分)
1.如图,∠1 的大小等于( )
A.40°B.50°C.60°D.70°
(第1 题)(第4 题)
2.下列长度的三条线段,能组成三角形的是( )
A.2 cm,3 cm,4 cm
C.2 cm,5 cm,10 cm
(第6 题) (第7 题)(第9 题) (第10 题) 7.如图,在△ABC 中,∠C=90°,D,E 是AC 上两点,且AE=DE,BD 平分
∠EBC.下列说法不.正.确.的是( A.BE 是△ABD 的中线C.∠1=∠2=∠3 )
B.BD 是△BCE 的角平分线
D.BC 是△ABE 的高
8.一个多边形的内角和比它的外角和的3 倍少180°,这个多边形的边数是() A.8 B.7 C.6 D.5
9.如图,在△ABC 中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=() A.360°B.180°C.255°D.145°10.如图,∠A,∠B,∠C,∠D,∠E 五个角的和等于()
A.90°B.180°C.360°D.540°
二、填空题(每题 3 分,共24 分)
11.人站在晃动的公交车上,若分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了.12.正十边形每个外角的度数是.
13.已知三角形三边长分别为1,x,5,则整数x=.
14.将一副三角尺按如图所示放置,则∠1=.
(第14 题)(第16 题)(第18 题)
15.一个多边形从一个顶点出发可以画9 条对角线,则这个多边形的内角和为.
16.如图,在△ABC 中,AD 是BC 边上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是.
17.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.若一个“半角三角形”的“半角”为20°,则这个“半角三角形”最大内角的度数为.
18.已知△ABC,有下列说法:
1
∠A ;
(1)如图①,若 P 是∠ABC 和∠ACB 的平分线的交点,则∠P =90° + 2 (2)如图②,若 P 是∠ABC 和外角∠ACE 的平分线的交点,则∠P =90°-∠A ; (3)如图③,若 P 是外角∠CBF 和∠BCE 的平分线的交点,则∠P =90°-1
∠A . 2
其中正确的有 个. 三、解答题(23 题 12 分,24 题 14 分,其余每题 10 分,共 66 分)
19.如图,一艘轮船在 A 处看见巡逻艇 C 在其北偏东 62°的方向上,此时一艘客
船在 B 处看见巡逻艇 C 在其北偏东 13°的方向上.试求此时在巡逻艇上看这两艘船的视角∠ACB 的度数.
(第 19 题)
20.如图,BD ,CE 是△ABC 的两条高,它们交于 O 点. (1)∠1 和∠2 的大小关系如何?并说明理由. (2)若∠A =50°,∠ABC =70°,求∠3 和∠4 的度数.
(第 20 题)
21.如图,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,AD,CE 相交于点P,∠BAC=66°,∠BCE=40°.求∠ADC 和∠APC 的度数.
(第21 题)
22.如图,六边形ABCDEF 的内角都相等,CF∥AB.
(1)求∠FCD 的度数;
(2)求证AF∥CD.
(第22 题)
23.如图,在△ABC 中,∠A=30°,一块直角三角尺XYZ 放置在△ABC 上,恰好三角尺XYZ 的两条直角边XY,XZ 分别经过点B,C.
(1)∠ABC+∠ACB=,∠XBC+∠XCB=,∠ABX+∠ACX=
.
(2)若改变直角三角尺XYZ 的位置,但三角尺XYZ 的两条直角边XY,XZ 仍然分
别经过点B,C,则∠ABX+∠ACX 的大小是否变化?请说明理由.
(第23 题)
24.已知∠MON=40°,OE 平分∠MON,点A,B,C 分别是射线OM,OE,ON 上的动点(点A,B,C 均不与点O 重合),连接AC 交射线OE 于点D,设∠OAC=x°.
(1)如图①,若AB∥ON,则
①∠ABO 的度数是.
②当∠BAD=∠ABD 时,x=;当∠BAD=∠BDA 时,x=.
(2)如图②,若AB⊥OM,是否存在这样的x 的值,使得△A DB中有两个相等的角?
若存在,求出x 的值;若不存在,说明理由.
(第24 题)
2019 秋季上册人教数学八年级第一单元测试
一、 1.D 2.A 3.C 4.B 5.B 6.B
7.C 8.B 9.C 10.B
二、11.三角形具有稳定性12.36°
13.5 14.105°15.1 800°16.6
17.120°18.2
三、19.解:由题意可得AD∥BF,
∴∠BEA=∠DAC=62°.
∵∠BEA 是△CBE 的一个外角,
∴∠BEA=∠ACB+∠CBE.
∴∠ACB=∠BEA-∠CBE=62°-13°=49°.
答:此时在巡逻艇上看这两艘船的视角∠ACB 的度数为49°.
20.解:(1)∠1=∠2.理由如下:
∵BD,CE 是△ABC 的两条高,
∴∠AEC=∠ADB=90°.
∵∠A+∠1+∠ADB=180°,
∠2+∠A+∠AEC=180°,
∴∠1=∠2. (2)∵∠A=50°,∠ABC=70°,∠A+∠ABC+∠ACB=180°,
∴∠ACB=60°.
∵在△AEC 中,∠A+∠AEC+∠2=180°,
∴∠2=40°.
∴∠3=∠ACB-∠2=20°.
∵在四边形AE O D 中,∠A+∠AE O+∠4+∠AD O=360°,∠A
=50°,∠AE O=∠AD O=90°,
∴∠4=130°.
21.解:∵CE 是△ABC 的高,
∴∠AEC=90°.
∴∠ACE=180°-∠BAC-∠AEC=24°. ∵AD 是△ABC 的角平分线,
∴∠DAC=1
∠BAC=33°. 2
∵∠BCE=40°,
∴∠ACB=40°+24°=64°.
∴∠ADC=180°-∠DAC-∠ACB=83°.
∴∠A P C=∠ADC+∠BCE=83°+40°=123°.
22.(1)解:∵六边形ABCDEF 的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.
∵CF∥AB,
∴∠B+∠BCF=180°.
∴∠BCF=60°.
∴∠FCD=∠BCD-∠BCF=60°.
(2)证明:∵CF∥AB,
∴∠A+∠AFC=180°.
∴∠AFC=180°-120°=60°.
∴∠AFC=∠FCD.
∴AF∥CD.
23.解:(1)150°;90°;60°
(2)∠ABX+∠ACX 的大小不变.
理由:在△ABC 中,∠A+∠ABC+∠ACB=180°,∠A=30°,
∴∠ABC+∠ACB=180°-30°=150°.
∵∠YXZ=90°,
∴∠X BC+∠X CB=90°.
∴∠AB X+∠AC X=(∠ABC-∠X BC)+(∠ACB-∠X CB)=(∠ABC+∠ACB)-(∠X BC+∠X CB)=150°-90°=60°.
∴∠AB X+∠AC X 的大小不变.
24.解:(1)①20°②120;60
(2)存在.。