电磁感应与交变电流

合集下载

高二物理电磁感应交变电流测试卷

高二物理电磁感应交变电流测试卷

高二物理电磁感应交变电流测试卷及参考答案一、选择题(不定项,每题4分,共40分)1、用比值法定义物理量是物理学中一种很重要的思想方法,下列哪个物理量的确定是由比值法定义的:()A、加速度a=mFB、感应电动势t∆∆=φεC、电阻SLRρ=D、磁感应强度B=IlF2、一矩形线圈绕垂直于匀强磁场方向、并位于线圈平面内的固定轴转动,线圈中的感应电动势e随时间t的变化情况如图所示,则( )A.t1时刻穿过线圈的磁通量为零B.t2时刻穿过线圈的磁通量最大C.t3时刻穿过线圈的磁通量变化率为零D.t4时刻穿过线圈的磁通量变化率为零3、.一直导线长L=1m,放在磁感应强度为B=2T的匀强磁场中以速率v=3m/s运动,则感应电动势的大小是( )A.6vB.2vC.0D.8v4、如图所示,直导线与导线框位于同一平面,要使导线框中产生如图所示方向的感应电流,则直导线中电流方向及其变化情况是()(A)电流方向为M到N,电流不变(B)电流方向为N到M,电流逐渐增大(C)电流方向为M到N,电流逐渐增大(D)电流方向为N到M,电流不变5、如图所示的电路中,A1和A2是完全相同的灯泡,线圈L的电阻可以忽略.下列说法中正确的是()(A)合上开关K接通电路时,A2先亮,A1后亮,最后一样亮(B)合上开关K接通电路时,A1和A2始终一样亮(C)断开开关K切断电路时,A2立刻熄灭,A1过一会儿才熄灭(D)断开开关K切断电路时,A1和A2都要过一会儿才熄灭6、发电厂发电机的输出电压为U1。

发电厂到学校的输电导线总电阻为R,通过导线的电流为I,学校得到的电压为U2,则输电线上损耗的功率可表示为()A、U12/ RB、(U1—U2)2/ RC、I2RD、I(U1—U2)7、一正弦交流电的电压随时间变化的规律如图示,由图可知()A.该交流电的电压的有效值为100 VB.该交流电的频率为25 HzC.该交流电压瞬时值的表达式为u=100sin 25t VD.若将该交流电压加在阻值为100 Ω的电阻两端,该电阻消耗的功率为50 W8、如图示理想变压器原副线圈匝数之比:n1:n2=4:1,原线圈两端连接光滑导轨,副线圈与电阻R连接组成闭合回路,当直导线AB在匀速强磁场中沿导轨匀速地向左作切割磁感线运动时,安培表A1的读数为12mA,那么安培表A2的读数为 ( )A.0B.3mAC.48mAD.与R值大小无关9、如图示电路中,L1、L2、L3是三盏相同的电灯,当电源为220 V的交流电源时,L1、L2、L3的发光情况相同.如将电源改为220 V的直流电源,则稳定后观察到的现象是( )A.L1、L2、L3三盏电灯的亮度保持不变B.L1不亮,L2、L3两盏电灯的亮度保持不变C.L2变得最亮D.L3变得最亮10、如图所示,质量为m、带电量为q的带正电粒子,以初速度v0垂直进入正交的匀强电场E和匀强磁场B中,从P点离开该区域,此时侧向位移为s,则(重力不计)()A、粒子在P所受的磁场力可能比电场力大B、粒子的加速度为(Eq-Bqv0)/mC、粒子在P点的速率为m/E q s2v2+D、粒子在P点的动能为mv02/2+Eqs二、填空题(每空3分,共24分)11、把一内阻不计的交流发电机的转子的转速提高一倍,并把输出端接在原、副线圈匝数比为5∶2的变压器的原线圈两端。

(期末复习学案)第四章 电磁感应 第五章 交变电流

(期末复习学案)第四章 电磁感应 第五章 交变电流

第四、五章 电磁感应与交变电流 期末复习 学案【复习重点提要】1、楞次定律的应用2、法拉第电磁感应定律3、带电粒子在复合场中的运动。

如粒子选择器等。

【复习思路指导】第一步、掌握用楞次定律的判断感应电流的步骤。

第二步、法拉第电磁感应定律的应用(E= nΔΦ/Δt E= BLv Sinθ 第三步、交变电流产生的过程,关于交变电流的物理量。

第四步、理想变压器工作规律和远距离输电【复习方法指导】在复习的过程中要循序渐进,注重基础。

比如,各种磁体磁感线的分布。

【基础自主复习】一、电磁感应1.产生感应电流的条件是_______________________________。

2.在匀强磁场中_________与________磁场方向的面积的乘积叫穿过这个面的磁通量。

单位为______,符号为_____。

磁通量发生变化有如下三种情况:⑴_____________________⑵_____________________⑶________________3.楞次定律:感应电流具有这样的方向,感应电流的磁场总是_____引起感应电流的_____________。

应用楞次定律判断感应电流的方向的具体步骤为(1)明确_____________(2)判断_____________(3)确定_____________的方向(4)利用_____________反推感应电流的方向。

4.导体切割磁感线产生感应电流的方向用__________来判断较为简便。

5.楞次定律中的“阻碍”作用正是_____________________的反映。

愣次定律的另一种表述:感应电流的效果总是反抗引起感应电流的原因。

当问题不涉及感应电流的方向时,用另一种表述判断比较方便。

6.法拉第电磁感应定律: 电路中感应电动势的大小跟_______________________________,表达式为E=__________ 。

当导体在匀强磁场中做切割磁感线的相对运动时E=__________ ,θ是B 与v 之间的夹角。

高二月考题(电磁感应、交变电流)

高二月考题(电磁感应、交变电流)

2013-2014学年第二学期高二第一次月考试题物 理(本试题满分100分,考试时间90分钟)卷I (52分)选择题:本题共13小题,每小题4分。

在每小题给出的四个选项中,第1-7题只有一项符合题目要求,第8-13题有多项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分。

1.如图,一个宽度为L 的有界匀强磁场区域,磁场方向垂直纸面向外,一个矩形闭合导线框abcd ,bc 边长为d (d <L ),导线框由图中实线所示位置沿纸面向右运动到图中虚线所示位置,则 A .导线框进入磁场时,感应电流方向为逆时针方向 B .导线框离开磁场时,感应电流方向为逆时针方向 C .从实线位置运动到虚线位置过程中,导线框中一直有感应电流产生D .导线框进入磁场时,受到的安培力水平向右2.如图所示,A 、B 都是很轻的铝环,环A 是闭合的,环B 是断开的,横梁可以绕中间的支点自由转动。

若用磁铁分别接近这两个圆环,则下面说法正确的是A .用磁铁的任意一磁极接近A 环时,A 环均被排斥B .用磁铁N 极接近B 环时,B 环被推斥,远离磁铁运动C .图中磁铁N 极远离A 环时,A 环先被排斥,而后随磁铁运动D .图中磁铁N 极接近A 环时,A 环先被吸引,而后被推开3.如图所示,线圈L 匝数足够多,其直流电阻为3Ω,先合上电键K ,过一段时间突然断开K ,则下列说法中正确的有A .灯泡R 立即熄灭B .灯泡R 不熄灭C .灯泡R 会逐渐熄灭,且灯泡R 中电流方向与K 断开前方向相同D .灯泡R 会逐渐熄灭,且灯泡R 中电流方向与K 断开前方向相反dC D4.如下图所示,属于交流电的是5.交流发电机在工作时的电动势e=E m sinωt,如果将其电枢的转速提高一倍,同时将电枢所围面积减小一半,其它条件不变,则其电动势变为A.e=E m sinωt B.e=4E m sin2ωtC.e=E m sin2ωt D.e=4E m sinωt6.右图表示一交流电的电流随时间而变化的图像,此交流电流的有效值是A.5 2 A B.5A C.3.5 2 A D.3.5A7.如图所示,理想变压器原、副线圈的匝数比为4 : 1,原线圈接在u=311sin100πt V的交流电源上,副线圈所接的负载电阻R=11Ω,则副线圈中电流表示数是A.5A B.11A C.20A D.55A8.法拉第最初发现电磁感应现象的实验如图所示。

电磁感应现象与交变电流频率的关系分析

电磁感应现象与交变电流频率的关系分析

电磁感应现象与交变电流频率的关系分析近年来,随着科技的快速发展,电磁感应现象正逐渐引起人们的广泛关注。

在电磁学领域中,电磁感应现象是一种重要的现象,它描述了导体受到磁场影响时所产生的电流。

在电磁感应现象的研究中,交变电流频率是一个非常关键的因素。

交变电流是指在指定时间内,电流方向和大小都不断变化的电流。

频率则表示在一秒钟内变化的次数。

因此,交流电的频率是描述交替方向的快慢程度,频率越高,方向变化的速度越快。

交变电流频率对电磁感应现象有着重要的影响。

首先,交变电流频率的改变会对电磁感应产生不同的效果。

根据法拉第电磁感应定律,磁场的变化会产生感应电流。

当交变电流频率较低时,磁场的变化较为缓慢,感应电流产生的速度相对较慢。

随着频率的增加,磁场的变化速度也会加快,因此感应电流产生的速度也会增加。

这一现象使得电磁感应现象在不同频率下具有不同的特性。

其次,交变电流频率对电磁感应的产生和传导也有一定的影响。

电磁感应现象的产生需要磁场和导体之间的相对运动。

当交变电流频率较低时,导体与磁场的相对运动相对较慢,因此电磁感应现象的传导速度相对较慢。

随着频率的增加,相对运动速度也随之增加,从而加快了电磁感应现象的传导速度。

这一特性在电磁感应技术中具有重要的应用价值。

交变电流频率还会对电磁感应现象的强度产生一定的影响。

根据法拉第电磁感应定律,感应电动势与导体中感应电流的大小成正比。

当交变电流频率较低时,感应电流产生的速度相对较慢,因此感应电动势较小。

当频率增加时,感应电流产生的速度加快,从而使得感应电动势增大。

因此,随着频率的增加,电磁感应的强度也会增大。

此外,在实际应用中,交变电流频率还会对传输和利用电能的效率产生一定的影响。

交变电流的频率越高,电能的传输效率也越高。

这是因为高频交流电在导线中的传输损耗较低,能更有效地传输电能。

因此,现代电力系统中采用的交流电频率通常为几十到几百赫兹,以及低于一千赫兹范围内。

总结起来,电磁感应现象与交变电流频率之间存在紧密的关系。

电磁感应交变电流习题

电磁感应交变电流习题

a b 电磁感应交变电流习题1. 用电阻为18Ω的均匀导线弯成图中直径D=0.80m 的封闭金属圆环,环上AB 弧所对圆心角为60°。

将圆环垂直于磁感线方向固定在磁感应强度B =0.50T 的匀强磁场中,磁场方向垂直于纸面向里。

一根每米电阻为1.25Ω的直导线PQ ,沿圆环平面向左以3.0m /s 的速度匀速滑行(速度方向与PQ 垂直),滑行中直导线与圆环紧密接触(忽略接触处电阻),当它通过环上AB 位置时,求:(1)直导线AB 段产生的感应电动势,并指明该段直导线中电流的方向. (2)此时圆环上发热损耗的电功率.2. 如图,一个边长为l 的正方形虚线框内有垂直于纸面向里的匀强磁场; 一个边长也为l 的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab 与导线框的一条边垂直,ba 的延长线平分导线框。

在t=0时,使导线框从图示位置开始以恒定速度沿ab 方向移动,直到整个导线框离开磁场区域。

以i 表示导线框中感应电流的强度,取逆时针方向为正。

下列表示i -t 关系的选项中,可能正确的是( )3. 如图所示,在PQ 、QR 区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面。

一导线框abcdef 位于纸面内,各邻边都相互垂直,bc 边与磁场的边界P 重合。

导线框与磁场区域的尺寸如图所示。

从t =0时刻开始,线框匀速横穿两个磁场区域。

以a →b →c →d →e →f 为线框中的电动势E 的正方向,以下四个E -t 关系示意图中正确的是( )A B CD4. 如图所示,EOF 和E ′O ′F ′为空间一匀强磁场的边界,其中EO ∥E ′O ′,FO ∥F ′O ′,且EO ⊥OF ;OO ′为∠EOF 的角平分线,OO ′ 间的距离为l ;磁场方向垂直于纸面向里。

一边长为l 的正方形导线框沿OO ′方向匀速通过磁场,t =0时刻恰好位于图示位置。

规定导线框中感应电流沿逆时针方向时为正,则感应电流i 与时间t 的关系图线可能正确的是( )5. 矩形导线框abcd 放在匀强磁场中,在外力控制下处于静止状态,如图甲所示,磁感线方向与导线框所在平面垂直,磁感应强度B 随时间变化的图象如图乙所示。

高三物理一轮复习第9章电磁感应交变电流实验14探究感应电流方向的规律课件

高三物理一轮复习第9章电磁感应交变电流实验14探究感应电流方向的规律课件

图3
【解析】 (1)探究电磁感应现象的实验电路分两部分,电源、开关、滑动 变阻器、原线圈组成闭合电路,检流计与副线圈组成另一个闭合电路;电路图 如图所示;
(2)在实验过程中,除了查清流入检流计电流方向与指针偏转方向之间的关 系之外,还应查清原线圈 L1 与副线圈 L2 的绕制方向.由电路图可知,闭合开关 之前,应将滑动变阻器的滑动头 P 处于右端,此时滑动变阻器接入电路的阻值 最大.
精选最新中小学教学课件
20
尖子生好方法:听课时应该始终跟着老师的节奏,要善于抓住老师讲解中的关键词,构建自己的知识结构。利用老师讲课的间隙,猜想老师还会讲什么,会怎样讲, 怎样讲会更好,如果让我来讲,我会怎样讲。这种方法适合于听课容易分心的同学。
2019/5/21
精选最新中小学教学课件
19
thank
you!
2019/5/21
二、同步听课法
有些同学在听课的过程中常碰到这样的问题,比如老师讲到一道很难的题目时,同学们听课的思路就“卡壳“了,无法再跟上老师的思路。这时候该怎么办呢?
如果“卡壳”的内容是老师讲的某一句话或某一个具体问题,同学们应马上举手提问,争取让老师解释得在透彻些、明白些。
如果“卡壳”的内容是公式、定理、定律,而接下去就要用它去解决问题,这种情况下大家应当先承认老师给出的结论(公式或定律)并非继续听下去,先把问题记 下来,到课后再慢慢弄懂它。
【导学号:81370351】
图4 A.如果磁铁的下端是 N 极,则磁铁正在远离线圈 B.如果磁铁的下端是 S 极,则磁铁正在远离线圈 C.如果磁铁的下端是 N 极,则磁铁正在靠近线圈 D.如果磁铁的下端是 S 极,则磁铁正在靠近线圈
AD [根据题图甲,可以知道电流表的指针向电流流入的方向偏转,螺线管 相当于一个电源,电源的正极在上端.根据安培定则,螺线管上端是 S 极.如 果磁铁的下端是 N 板,则磁铁正在远离线圈;如果磁铁的下端是 S 极,则磁铁 正在靠近线圈,故 A、D 正确.]

电磁感应与交变电流

电磁感应与交变电流

Ff=μ FN
FN=mg
F0 解得μ = 2mg
(2)根据功能关系可知导体棒MN克服安培力做功将 机械能转化为电能,在电路中电能转化为电热,电路 1 F0 中的总电热Q总=x 2 设导体棒的电阻值为r,根据电路串联关系可知
r Q总 Q R Q总
解得r=R(1-
(3)两位同学画的图线都不正确. 设导体棒运动的速度大小为v,产生的感应电动势为E, 感应电流为I F安=BIl I= E=Blv
电磁感应中能量转化问题
例3 (2009·徐州市第三次调研)如图6-1-8所示,
正方形线框abcd放在光滑绝缘的
水平面上,其边长L=0.5m、质量m =0.5kg、电阻R=0.5Ω ,M、N分别 为线框ad、bc边的中点.图示两个 图6-1-8 虚线区域内分别有竖直向下和向上的匀强磁场,磁感
应强度均为B=1T,PQ为其分界线,线框从图示位置以
1 2 mvm +Q1+Q2 mgLsinθ = 2 解得vm=4m/s
(2分) (1分)
(3)棒到底端时回路中产生的感应电流
Bdvm Im= =2A Rr
(1分)
根据牛顿第二定律有mgsinθ -BImd=ma
解得a=3m/s2 答案 (1)0.6V (2)4m/s (3)3m/s2
(1分)
(1分)
3.线圈穿越方向相反的两磁场时,要注意有两条
边都切割磁感线产生感应电动势.
预测演练1 如图6-1-3所示,在MM′、NN′区域中 存在垂直纸面向里,宽为2L的匀 强磁场.一导线框abcdefg位于纸 面内,总电阻为R,其中ab、bc、
de、ga四边长度均为L,fg、cd 图6-1-3 1 边长度为 L ,ab边与磁场边界MM′重合.从t=0时 2 刻开始,线框以速度v匀速穿过磁场区域,以逆时针方

高频电磁加热原理

高频电磁加热原理

高频电磁加热原理
高频电磁加热原理是指利用高频电磁场对物体进行加热的一种方法。

高频电磁加热主要依靠电磁场对物体内部的自由电荷进行激发和振动,从而使其产生热量。

高频电磁加热原理主要包括以下几个方面:
1. 电磁感应:高频交变电流通过线圈产生变化的磁场,在物体中引发感应电流。

根据法拉第电磁感应定律,感应电流会形成闭合回路,产生磁场能量并加热物体。

2. 导体损耗:高频电磁场中的电磁波通过导体时,会引发导体内部电荷的欧姆损耗。

这是由于导体内部电荷在电场和磁场作用下发生摩擦,产生热量,使导体加热。

3. 界面效应:高频电磁场作用在物体表面时,会引发物体表面的电荷分布变化。

这种变化使电荷在物体表面发生摩擦,并由于内阻发热。

这种效应在涂料干燥、胶水固化等工艺中广泛应用。

4. 电磁波温差加热:高频电场通过物体时,会产生温差效应。

当电磁波在物体中传播时,由于物体不同部分电阻的差异,会引起温度的差异。

这种温差效应可以对物体进行局部加热或控制温度分布。

总之,高频电磁加热原理通过电磁场的感应、导体损耗、界面效应以及温差效应对物体进行加热。

这种加热方式具有快速、
高效、均匀的特点,被广泛应用于工业生产、医疗器械和烹饪等领域。

电磁感应与交变电流

电磁感应与交变电流

十二、电磁感应1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源.(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流.2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和.3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便.(2)对楞次定律的理解①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量.②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).★★★★ 4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsin θ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路. (3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.10.电磁感应中图像问题电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断.十三、交变电流1.交变电流:大小和方向都随时间作周期性变化的电流,叫做交变电流.按正弦规律变化的电动势、电流称为正弦交流电.2.正弦交流电 ----(1)函数式:e=E m sinωt (其中★E m =NBSω)(2)线圈平面与中性面重合时,磁通量最大,电动势为零,磁通量的变化率为零,线圈平面与中心面垂直时,磁通量为零,电动势最大,磁通量的变化率最大.(3)若从线圈平面和磁场方向平行时开始计时,交变电流的变化规律为i=I m cosωt.. (4)图像:正弦交流电的电动势e、电流i、和电压u,其变化规律可用函数图像描述。

2019年中考物理填空专题复习——《电与磁》填空题(二)(答案解析)

2019年中考物理填空专题复习——《电与磁》填空题(二)(答案解析)

2019年中考物理填空专题复习——《电与磁》填空题(二)答案解析1.(2018•台州)将表面有金属镀层的磁铁吸在干电池的负极,将一根硬铜线折成导线框abcd搭在干电池的正极和磁铁上(如图),导线框abcd就会以干电池为轴转动起来。

(1)图中4条弧线为磁感线,请在答题纸上标出它们的方向。

(2)如果将磁铁的N、S极对调,导线框将反转。

(3)通电时间稍长,干电池会明显发热,原因是干电池被短路。

【分析】(1)磁场外部磁感线的方向,从北极出发回到南极;(2)通电导体在磁场中会受到力的作用,受力方向与电流方向和磁场方向有关;(3)用导线将干电池两极连起来,形成短路,根据Q=I2Rt分析发热的原因。

【解答】解:(1)磁场外部磁感线的方向,都是从北极出发回到南极;如图示:(2)通电导体在磁场中会受到力的作用,受力方向与电流方向和磁场方向有关,其中一个因素变化,导体受力分析改变,若两个同时改变,受力方向不变,故如果将磁铁的N、S极对调,线圈的受力方向改变,导线框将反转;(3)用导线价格电源的正负极相连会造成电源被短路,电流很大,根据Q=I2Rt,通电时间稍长,干电池会明显发热。

故答案为:(1)如图示:(2)反转;(3)干电池被短路。

【点评】本题考查磁感线的方向,磁场对通电导体的作用,以及短路时会产生较大的电流,是基础题。

2.(2018•安徽)实验发现,两条平行放置的直导线,当通以相同的电流时相互吸引(如图),这是因为电流能够产生磁场,而磁场对电流又有力的作用。

我们可以这样分析它的受力,对a导线:通电导线b产生的磁场对它具有向右的作用力;对b导线:通电导线a产生的磁场对它具有向左的作用力。

【分析】磁场对通电导线有力的作用,物体间力的作用是相互的。

【解答】解:由题知,两直导线通以相同的电流时相互吸引;对a导线:通电导线b产生的磁场对它具有向右的作用力;由于物体间力的作用是相互的,对b导线:通电导线a产生的磁场对它具有向左的作用力。

专题06 电磁感应、交变电流(第02期)-2014年高考总复习物理选择题百题精练

专题06 电磁感应、交变电流(第02期)-2014年高考总复习物理选择题百题精练

1.(多选)交流发电机电枢中产生的交变电动势为t E e m ωsin =,如果要将交变电动势的有效值提高一倍,而交流电的周期不变,可采取的方法是( )A .将电枢转速提高一倍,其他条件不变B .将磁感应强度增加一倍,其他条件不变C .将线圈的面积增加一倍,其他条件不变D .将磁感应强度增加一倍,线圈的面积缩小一半,其它条件不变2.有以下物理现象:在平直公路上行驶的汽车制动后滑行一段距离,最后停下;流星在夜空中坠落并发出明亮的光;降落伞在空中匀速降落;条形磁铁在下落过程中穿过闭合线圈,并在线圈中产生感应电流。

在这些现象所包含的物理过程中,运动物体具有的相同特征是( )A. 都有重力做功B. 物体都要克服阻力做功C. 都有动能转化为其他形式的能D. 都有势能转化为其他形式的能3.如图所示,一导线弯成直径为d 的半圆形闭合回路.虚线MN 右侧有磁感应强度为B 的匀强磁场,方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止,下列说法中正确的是( )A.感应电流的方向先沿顺时针方向,后沿逆时针方向B.CD段直导线始终不受安培力C.感应电动势的最大值E = BdvD.感应电动势的平均值18E Bdvπ=4.(多选)如图所示,A为多匝线圈,与电键、滑动变阻器相连后接入M、N间的交流电源,B为一接有小灯珠的闭合多匝线圈,下列关于小灯珠发光说法正确的是()A.闭合电键后小灯珠可能发光B.若闭合电键后小灯珠发光,则再将B线圈靠近A,则小灯珠更亮C.闭合电键瞬间,小灯珠才能发光D.若闭合电键后小灯珠不发光,将滑动变阻器滑臂左移后,小灯珠可能会发光5.如图甲是阻值为5 Ω的线圈与阻值为15 Ω的电阻R构成的回路。

线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动,产生的电动势随时间变化的规律如图乙所示。

则()A.电压表的示数为14.14 VB.通过电阻的电流为0.707 AC.电阻R上消耗的功率为3.75 WD.通过电阻的电流方向每秒变化100次6.如图所示,质量为m的金属环用线悬挂起来,金属环有一半处于水平且与环面垂直的匀强磁场中,从某时刻开始,磁感应强度均匀减小,则在磁感应强度均匀减小的过程中,关于线拉力大小的下列说法中正确的是()A.大于环重力mg,并逐渐减小B.始终等于环重力mgC.小于环重力mg,并保持恒定D.大于环重力mg,并保持恒定7.(多选)如图所示平行的金属双轨与电路处在竖直向下的匀强磁场B中,一金属杆放在金属双轨上在恒定外力F 作用下做匀速运动,则在开关S ( )A .闭合瞬间通过金属杆的电流增大B .闭合瞬间通过金属杆的电流减小C .闭合后金属杆先减速后匀速D .闭合后金属杆先加速后匀速8.(多选)如图所示,边长为L 、不可形变的正方形导线框内有半径为r 的圆形磁场区域,其磁感应强度B 随时间t 的变化关系为B= kt (常量k>0)。

专题06 电磁感应、交变电流(第01期)-2014年高考总复习物理选择题百题精练

专题06 电磁感应、交变电流(第01期)-2014年高考总复习物理选择题百题精练

1.关于电磁感应现象中,通过线圈的磁通量与感应电动势关系正确的是()A.穿过线圈的磁通量不变,感应电动势不为零且不变B.穿过线圈的磁通量增大,感应电动势也一定增大C.穿过线圈的磁通量减小,感应电动势也一定减小D.穿过线圈的磁通量增大,感应电动势可能不变2.物理课上,老师做了一个奇妙的“跳环实验”.如图,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环,闭合开关S的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复实验,线圈上的套环均未动,对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是()A.线圈接在了直流电源上B.电源电压过高C.直流电源的正负极接反了D.所用套环的材料与老师的不同3.如图所示,虚线表示a、b两个相同圆形金属线圈的直径,圆内的磁场方向如图所示,磁感应强度大小随时间的变化关系B=kt(k为常量)。

当a中的感应电流为I时,b中的感应电流为()A. 0B. 0.5IC.ID.2I4.如图所示,矩形闭合线圈放置在水平薄板上,薄板左下方有一条形磁铁,当磁铁匀速自左向右通过线圈下方时,线圈始终保持静止,那么线圈中产生感应电流的方向(从上向下看) 和线圈受到薄板的摩擦力方向分别是()A.感应电流的方向先逆时针方向,后顺时针方向B.感应电流的方向先顺时针方向,后逆时针方向C.摩擦力方向先向左、后向右D.摩擦力方向先向右、后向左5.如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0。

使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流;现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt的大小应()A.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π考点:本题考查电磁感应。

高考物理——电磁感应与正弦式交流电综合的新题归纳与解题策略

高考物理——电磁感应与正弦式交流电综合的新题归纳与解题策略

高考物理——电磁感应与正弦式交流电综合的新题归纳与解题策略在新高考的背景下,将电磁感应与正弦式交变电流这两部分知识进行综合考查的新题型越来越多,此类试题不仅可以考查对感应电动势、感应电流、安培力和正弦式交变电流的产生以及“四值”的应用等重要知识点,还可以考查学生的空间思维能力以及应用数学知识处理物理问题的能力。

由于电磁感应和交变电流都是高考必考的章节,因此有必要对这两部分知识进行综合考查的新题型进行深入研究。

笔者现对这些试题进行归纳总结,并探索解题策略。

题型1 线圈在匀强磁场中绕垂直磁场的轴匀速转动该题型是涉及正弦式交变电流产生的常规题型,核心要点有:1.若计时起点在中性面,则感应电动势瞬时值的表达式为e=Emsinωt,其中Em =NBSω;若计时起点在垂直中性面的位置,则感应电动势的瞬时值表达式为e=Emcosωt。

2.每经过中性面一次,电流方向改变一次,则线圈转动一圈,电流的方向改变两次。

3.在中性面时,穿过线圈的磁通量最大,但此刻磁通量的变化率为零,感应电动势为零;在经过与中性面垂直的位置时,穿过线圈的磁通量为零,但此刻磁通量的变化率最大,感应电动势最大。

除了这些基本的知识点以外,还有以下几点需要强调说明。

①线圈不管是圆形、矩形或其他形状,以上结论均相同。

②只要转轴与磁场垂直,即使轴的位置发生改变,以上结论均相同。

③当磁场或永磁体旋转、线圈静止不动时,以上结论均相同。

④当只有部分线框处于磁场中时,公式中的面积S是线框位于磁场中的有效面积。

【例1】(2022·江苏南通考前模拟·12)如图1所示,矩形线圈abcd匝数为N,总电阻为R,ab边和ad边长分别为L和3L,O、O′为线圈上两点,OO′与cd边平行且与cd边的距离为L,OO′左侧空间有垂直纸面向里的匀强磁场,磁感应强度大小为B。

现使线圈绕OO′以角速度ω匀速转动,求:(1)从图1 位置开始转过60°过程中通过导线截面电荷量q;图1(2)线圈在转动一周过程中产生的焦耳热Q。

变压器工作原理:电磁感应变换电压

变压器工作原理:电磁感应变换电压

变压器工作原理:电磁感应变换电压
变压器是一种电气设备,其主要功能是通过电磁感应原理,将输入的交流电压转换为输出的交流电压,可以提高或降低电压水平。

以下是变压器的基本工作原理:
1. 基本构造:
铁芯:变压器内部有一个铁芯,通常由硅钢片叠压而成,用于增加磁通的传导性能。

初级线圈(原线圈):被连接到电源的线圈,通常被称为初级线圈,负责接收输入电压。

次级线圈:与负载相连接的线圈,通常被称为次级线圈,产生输出电压。

2. 电磁感应原理:
交变电流流过初级线圈:当交变电流流过初级线圈时,产生一个交变磁场。

磁场感应次级线圈:由于铁芯的存在,磁场会感应到次级线圈中,引起次级线圈中的电流变化。

3. 电压变换:
电磁感应导致电压变化:电磁感应原理导致次级线圈中的电压发生变化,从而在次级线圈产生一个输出电压。

变比关系:输出电压与输入电压之间的变比关系取决于初级线圈
和次级线圈的匝数比例。

4. 能量传递:
能量传递:输入端的电能通过磁场的感应传递到输出端,实现电压的转换。

5. 性能特点:
理想性:在理想情况下,变压器是无损耗的,即功率在输入与输出之间保持一致。

效率:实际变压器存在一些损耗,如铁芯和线圈的电阻损耗,因此存在一定的效率损失。

6. 类型:
升降压变压器:根据变压器的设计,可以实现升压或降压的功能。

隔离变压器:变压器还可以用于隔离电路,防止电源噪声和保护设备。

变压器通过电磁感应的原理,实现了电能的有效传递和电压水平的调整,广泛应用于电力系统、电子设备和各种电气设备中。

交变电流的产生原理

交变电流的产生原理

交变电流的产生原理
交变电流的产生原理是通过改变导体中的电场和磁场来实现的。

当导体在磁场中运动时,导体中的自由电子受到磁场力的作用而产生电流。

这个过程可以通过法拉第电磁感应定律进行解释。

根据法拉第电磁感应定律,当导体通过磁场的变化时,导体中会产生感应电动势。

当导体形成闭合回路时,这个感应电动势会驱动自由电子在导体内部流动,形成一定方向的电流。

交变电流的产生是通过使导体在磁场中运动来实现的。

如果一个导体在磁场中运动,并且运动的速度或导体与磁场的相对运动速度发生变化,那么导体中的自由电子就会感受到不断变化的磁场,从而产生交变电动势。

具体来说,当导体移动时,导体中的自由电子会感受到磁场力的作用而受到一定方向的力。

这个力会将自由电子推向导体的一端,使得该端电荷的分布变得不均匀。

而根据库伦定律,不均匀电荷分布会产生电场。

因此,导体的一端就会出现电场。

当导体移动的方向改变时,自由电子会受到相反方向的磁场力作用,导致电荷分布发生相反的变化,从而产生相反方向的电场。

这一过程不断重复,使得导体的两端交替出现电场变化,从而产生了交变电动势和交变电流。

总结起来,交变电流的产生原理是通过改变导体中的电场和磁场来实现的。

当导体在磁场中运动时,导体中的自由电子受到磁场力的作用,从而产生交变电动势和交变电流。

高考冲刺物理百题精练 专题06 电磁感应、交变电流(含解析)

高考冲刺物理百题精练 专题06 电磁感应、交变电流(含解析)

2015年高考冲刺物理百题精练 专题06 电磁感应、交变电流(含解析)1.如图甲所示,相距为L 的光滑平行金属导轨水平放置,导轨一部分处在以OO ′为右边界匀强磁场中,匀强磁场的磁感应强度大小为B ,方向垂直导轨平面向下,导轨右侧接有定值电阻R ,导轨电阻忽略不计。

在距边界OO ′也为L 处垂直导轨放置一质量为m 、电阻r 的金属杆ab 。

(1)若金属杆ab 固定在导轨上的初位置,磁场的磁感应强度在t 时间内由B 均匀减小到零,求此过程中电阻R 上产生的电量q 。

(2)若ab 杆在恒力作用下由静止开始向右运动3L 距离,其速度—位移的关系图象如图乙所示(图中所示量为已知量)。

求此过程中电阻R 上产生的焦耳热Q 1。

(3)若ab 杆固定在导轨上的初始位置,使匀强磁场保持大小不变绕OO ′轴匀速转动。

若磁场方向由图示位置开始转过2π的过程中,电路中产生的焦耳热为Q 2. 则磁场转动的角速度ω大小是多少?1. 【解析】则 422)(4L B Q r R πω+=考点:本题考查了法拉第电磁感应定律。

2.如图所示,宽度为L 的足够长的平行金属导轨固定在绝缘水平面上,导轨的两端连接阻值R 的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度为B ,一根质量m 的导体棒M N 放在导轨上与导轨接触良好,导体棒的有效电阻也为R ,导体棒与导轨间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.导体棒M N 的初始位置与导轨最左端距离为L ,导轨的电阻可忽略不计.(1)若用一平行于导轨的恒定拉力F 拉动导体棒沿导轨向右运动,在运动过程中保持导体棒与导轨垂直,求导体棒最终的速度;(2)若导体棒的初速度为0v ,导体棒向右运动L 停止,求此过程导体棒中产生的焦耳热;(3)若磁场随时间均匀变化,磁感应强度0B B kt =+(k >0),开始导体棒静止,从t =0 时刻起,求导体棒经过多长时间开始运动以及运动的方向.2. 【解析】(3)22B E L kL t∆==∆ 2EI R=导体棒恰好运动时0()B kt IL mg μ+= 解得0232mgR B t k L kμ=- 由楞次定律得导体棒将向左运动 考点:本题考查了法拉第电磁感应定律。

高中物理电磁感应和交变电流

高中物理电磁感应和交变电流

2、中性面:与磁场方向垂直的平面
特点:
①线圈通过中性面时,穿过线圈的磁通 量最大,但磁通量的变化率为零,感应 电动势为零;
②线圈平面每次转过中性面时,线圈中 感应电流方向改变一次,线圈转动一周 两次通过中性面,故线圈转动一周,线 圈中电流方向改变两次
• 3、交流电的图象
练习1.一个按正弦规律变化的交流电流,如图 所示,根据图像可以知道
瞬时值 有效值
周期、频率 电感、电容的作用
交流电路
变压器
远距离输电
专题一 交变电流的产生及其变化规律
一、交变电流的产生
1、产生:闭合矩形线圈在匀强磁场中,绕垂直 于磁感线的轴线做匀角速转动时,闭合线圈中就 有交流电产生
A
L1
L2
D
B
C
L2
线圈平面 与磁感线 垂直位置 开始计时
e=NBωSsinωt
d
上海高考题例4:在绕制变压器时,某人误将两个线圈
一、感应电动势
(影响感应电动势大小的因素)
⒈在电磁感应现象中产生的电动势叫做感应电动势。
说明
①电路闭合时有感应电动势,感应电流。 ②电路断开时有感应电动势,但无感应电流。
问2、题大2量:试影验响表感明应:电穿动过线势圈大的小磁的通因量素变?化越快感
应电动势越大
实验结论:感应电动势ΔE的φ大小与磁通量的变化快慢 有3、关。磁通量的变化率Δt
问题3:磁通量大,磁通量变化一定大吗? 磁通量变化大,磁通量的变化率一定大吗?
磁通量的变化率和磁通量、磁通量的变化不 同。磁通量为零,磁通量的变化率不一定为零;磁 通量的变化大,磁通量的变化率也不一定大。
(可以类比速度、速度的变化和加速度.)
交变电流的产生及其变化规律

高中物理选修3-2电磁感应第五章《交变电流》(人教版)

高中物理选修3-2电磁感应第五章《交变电流》(人教版)

物理选修3-2第五章交变电流第一节交变电流肥城市第六高级中学汪顺安●教学目标一、知识目标1.使学生理解交变电流的产生原理,知道什么是中性面.2.掌握交变电流的变化规律及表示方法.3.理解交变电流的瞬时值和最大值及中性面的准确含义.二、技能目标1.掌握描述物理量的三种基本方法(文字法、公式法、图象法).2.培养学生观察能力,空间想象能力以及将立体图转化为平面图形的能力.3.培养学生运用数学知识解决物理问题的能力.三、情感态度目标培养学生理论联系实际的思想.●教学重点交变电流产生的物理过程的分析.●教学难点交变电流的变化规律及应用.●教学方法演示法、分析法、归纳法.●教学用具手摇单相发电机、小灯泡、示波器、多媒体教学课件、示教用大的电流表.●课时安排1课时●教学过程一、引入新课[师]出示单相交流发电机,引导学生首先观察它的主要构造.[演示]将手摇发电机模型与小灯泡组成闭合电路.当线框快速转动时,观察到什么现象?[生]小灯泡一闪一闪的.[师]再将手摇发电机模型与示教电流表组成闭合电路,当线框缓慢转动(或快速摆动)时,观察到什么?[生]电流表指针左右摆动.[师]线圈里产生的是什么样的电流?请同学们阅读教材后回答.[生]转动的线圈里产生了大小和方向都随时间做周期性变化的交变电流.[师]现代生产和生活中大都使用交流电.交流电有许多优点,今天我们学习交流电的产生和变化规律.二、新课教学1.交变电流的产生[师]为什么矩形线圈在匀强磁场中匀速转动时线圈里能产生交变电流?[生]对这个问题有浓厚的兴趣,讨论热烈.[师]多媒体课件打出下图.当abcd线圈在磁场中绕OO′轴转动时,哪些边切割磁感线?[生]ab与cd.[师]当ab边向右、cd边向左运动时,线圈中感应电流的方向如何?[生]感应电流是沿着a→b→c→d→a方向流动的.[师]当ab边向左、cd边向右运动时,线圈中感应电流的方向如何?[生]感应电流是沿着d→c→b→a→d方向流动的.[师]正是这两种情况交替出现,在线圈中产生了交变电流.当线圈转到什么位置时,产生的感应电动势最大?[生]线圈平面与磁感线平行时,ab边与cd边线速度方向都跟磁感线方向垂直,即两边都垂直切割磁感线,此时产生感应电动势最大.[师]线圈转到什么位置时,产生的感应电动势最小?[生]当线圈平面跟磁感线垂直时,ab边和cd边线速度方向都跟磁感线平行,即不切割磁感线,此时感应电动势为零.[师]利用多媒体课件,屏幕上打出中性面概念:(1)中性面——线框平面与磁感线垂直位置.(2)线圈处于中性面位置时,穿过线圈Φ最大,但=0.(3)线圈越过中性面,线圈中I感方向要改变.线圈转一周,感应电流方向改变两次.2.交变电流的变化规律设线圈平面从中性面开始转动,角速度是ω.经过时间t,线圈转过的角度是ωt,ab边的线速度v的方向跟磁感线方向间的夹角也等于ωt,如右图所示.设ab边长为L1,bc边长L2,磁感应强度为B,这时ab边产生的感应电动势多大?[生]e ab=BL1vsinωt=BL1·ωsinωt=BL1L2sinωt[师]cd边中产生的感应电动势跟ab边中产生的感应电动势大小相同,又是串联在一起,此时整个线框中感应电动势多大?[生]e=e ab+e cd=BL1L2ωsinωt[师]若线圈有N匝时,相当于N个完全相同的电源串联,e=NBL1L2ωsinωt,令E m=NBL1L2ω,叫做感应电动势的最大值,e叫做感应电动势的瞬时值.请同学们阅读教材,了解感应电流的最大值和瞬时值.[生]根据闭合电路欧姆定律,感应电流的最大值I m=,感应电流的瞬时值i=I m s i nωt.[师]电路的某一段上电压的瞬时值与最大值等于什么?[生]根据部分电路欧姆定律,电压的最大值U m=I m R,电压的瞬时值U=U m sinωt.[师]电动势、电流与电压的瞬时值与时间的关系可以用正弦曲线来表示,如下图所示:3.几种常见的交变电波形三、小结本节课主要学习了以下几个问题:1.矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动时,线圈中产生正弦式交变电流.2.从中性面开始计时,感应电动势瞬时值的表达式为e=NBSωs i nω t,感应电动势的最大值为E m=NBSω.3.中性面的特点:磁通量最大为Φm,但e=0.六、本节优化训练设计1.一矩形线圈,绕垂直于匀强磁场并位于线圈平面内的固定轴转动,线圈中的感应电动势E随时间t的变化如图所示,则下列说法中正确的是A.t1时刻通过线圈的磁通量为零B.t2时刻通过线圈的磁通量的绝对值最大C.t3时刻通过线圈的磁通量变化率的绝对值最大D.每当电动势E变换方向时,通过线圈的磁通量的绝对值都为最大2.一台发电机产生的按正弦规律变化的感应电动势的最大值为311 V,线圈在磁场中转动的角速度是100π rad/s.(1)写出感应电动势的瞬时值表达式.(2)若该发电机只与含电阻的负载组成闭合电路,电路中的总电阻为100 Ω,试写出通过负载的电流强度的瞬时表达式.在t= s时电流强度的瞬时值为多少?3.一个矩形线圈在匀强磁场中转动产生交流电压为u=220s i n100πt V,则A.它的频率是50 HzB.当t=0时,线圈平面与中性面重合C.电压的平均值是220 VD.当t= s时,电压达到最大值4.交流发电机工作时的电动势的变化规律为e=E m s i nωt,如果转子的转速n提高1倍,其他条件不变,则电动势的变化规律将变化为A.e=E m s in2ωtB.e=2E m s in2ωtC.e=2E m s in4ωtD.e=2E m s inωt参考答案:1.D2.解析:因为电动势的最大值E m=311 V,角速度ω=100 π rad/s,所以电动势的瞬时值表达式是e=311s in100πt V.根据欧姆定律,电路中电流强度的最大值为I m= A=3.11 A,所以通过负载的电流强度的瞬时值表达式是i=3.11s in100πt A.当t= s时,电流的瞬时值为i=3.11s in(100π·)=3.11×A=1.55 A.3.ABD4.B四、作业问题与练习第3、4题五、板书设计●教后记注重与电磁感应的联系,重视交变电流产生的原理,多与现实生活和生产联系,并注重知识的灵活应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20(楞次定 16(右手 19(扇形 21(落 18(电磁 19(感生与
律分析电 定则, 匀强磁场 线中的E 炮中的安 动生转换)
容器带电 电路电 中的电磁 大小、 培力与电 20(安培力
情况)
流分析) 感应现象 方向)判 磁感应综 与楞次定律
i-t 图) 断
合) 综合)
考查 要点
电磁 感应
出现 频次
2011海南、2009宁夏 典型2
(6)如图,感应电流i与时间t的关系图线可能正 确的是( B )
E
E′
××
i
i
i
i
××
O
O′
××
O
tO
tO
tO
t
××
F
F′
A
B
C
D
(19)电流随ωt变化的图象是( C )
i
i
i
i
ωt
ωt
ωt
ωt
0 π π 3π 2π 0 π π 3π 2π 0 π π 3π 2π 0 π π 3π 2π
2.不要求判断内电 动势,右手定则”内
Ⅱ 路中各点势的高低”容,但已包含在“法
的两点说明。
拉第电磁感应定律”
I 3.不要求用自感系 和“楞次定律”考点
数计算感应电动势 中。
3.难度升高,注意这
几年的变化。
看归纳
全国新课标卷物理电学选择题考点分布
考查 出现 要点 频次
电磁 9 感应
出处及题号
2007年 2008年 2009年 2010年 2011年 2012年
2
2
2
2
2
2
2
2
A
B
C
D
2011年海南卷
典型2 看发展
11.如图,EOF 和 E ′O ′F ′为空间一匀强磁场 的边界,
其中 EO∥E ′O ′,FO∥F ′O ′,且 EO⊥OF;OO ′
为∠EOF 的角平分线,OO ′间的距离为 形导线框沿 OO ′方向匀速
9
2013年I
2013年Ⅱ
17(在三角形状下,考 16.导线框进入
查平动切割磁感线时电 并通过磁场区 动势的求解、电阻、电 域v-t图像 20 流的计算、图线的判断)(安培力与楞
次定律综合)
2014年I
18.已知次级 电压判断初 级电压的变 化规律
2014年Ⅱ
全国新课标卷物理电学计算题考点分布
考查内容
同轴水平放置,相对的端面之间有一缝隙,铁芯
上绕导线并与电源连接,在缝隙中形成一匀强磁 场.一铜质细直棒 ab 水平置于缝隙中,且与圆柱 轴线等高、垂直.让铜棒从静止开始自由下落,铜 棒下落距离为 0.2R 时铜棒中电动势大小为 E1, 下损磁落耗场距和前离 边 两为 缘 端效 的0.8应极R。性时关,电于下动列E势1判、大断E小2正为的确大E的2小,是和忽铜略棒涡离流开
为 R 的正方形导线框;在导线框右侧有一宽度为
d(d > L )的条形匀强磁场区域,磁场的边界与
导线框的一边平行,磁场方向竖直向下。导线框
以某一初速度向右运动,t = 0 时导线框的右边恰
与磁场的左边界重合,随后导线框进入并通过磁
场区域。下列 v – t 图像中,可能正确描述上述过
程的是 D
画出情景示意图进行分析
2013年I 2013年Ⅱ
25(电磁感应, 第一问基本是 规律、公式的 直接应用涉及 感应电电动势、 电容、电压等 知识点;。第 二问包括微元 法(小量法)、 牛顿定律、受 力分析、运动 学等内容)
2014年I 2014年Ⅱ
25.处于匀 强磁场中 的同心圆 形轨道, 半径切割 时的感应 电流与功 率
“V” 字型导轨。空间存在垂直于纸面的均匀磁
场。用力使MN向右匀速运动,从图示位置开始
计时,运动中MN始终与∠bac的
平分线垂直且和导轨保持良好接
触。下列关于回路中电流 i 与时 间 t 的关系图线,可能正确的是
答案:A
定量、动态、数学综合能力
2013全国2
看比较
典型3
16.如图,在光滑水平桌面上有一边长为 L、电阻
八、电磁感应与交变电流
必考四:《物理3—2》模块 看考纲
新 考点
内容
要 说明
(电磁感应) 求
考点解读
电磁感应现象 磁通量 法拉第电磁感应 定律 楞次定律 自感、涡流
I 1.“导体切割磁感 1.删除了“日光灯”,
I
线时感应电动势的 增加了“涡流”; 计算,只限于l垂 2. 未列出的“导体切
Ⅱ 直于B、v的情况” 割磁感应线时感应电
2012海南
5.如图,一质量为m的条形磁铁用细线悬挂在天 花板上,细线从一水平金属圆环中穿过.现将环 从位置Ⅰ释放,环经过磁铁到达位置Ⅱ.设环经过 磁铁上端和下端附近时细线的张力分别为T1和T2, 重力加速度大小为g,则( )
A.T1>mg,T2>mg B.T1<mg,T2<mg C.T1>mg,T2<mg D.T1<mg,T2>mg
度随时间的变化率 B 的大小应为( ) t
A. 4B0
π
C. B0
π
B. 2B0
π
D. B0 2π 动生与感生等效、定量
看方向
变速定性,匀速定量、半定量 分析综合能力首位 也许会这样 匀速成变速,平衡力成变力? 突出图像 不管怎样,分析综合能力首位
看拓展
适当关注自感 适当关注计算
通过磁场,t=0 时刻恰好位于图示位置。规定导线框中感应
电流沿逆时针方向时为正,则感应电流 i 与时间 t 的关系图
线可能正确的是
匀速、定性、分析综合
E
E′
i
i
i
i
××
××
O × O×′ ××
O
tO
tO
tO
t
F
F′
A
B
C
D
2010新课程
看发展
典型2
21.如图所示,两个端面半径同为 R 的圆柱形铁芯
A、E1 > E2,a 端为正 B、E1 > E2,b 端为正 C、E1 < E2,a 端为正 D、E1 < E2,b 端为正
基本规律,数学能力、分析综合能力
2013全国1
典型2 看试题
17.如图 ,在水平面(纸面)内有三根相同的均匀金
属棒 ab、ac和MN,其中ab、ac 在a点接触,构成
×××
×××
×××
×××
定量成半定量,匀速成变速,分析综合
2012年(全国卷) 典型看4 发展
19.如图,均匀磁场中有一由半圆弧及其直径构成的导线框, 半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里, 磁感应强度大小为 B0.使该线框从静止开始绕过圆心 O、垂直于 半圆面的轴以角速度 ω 匀速转动半周,在线框中产生感应电 流.现使线框保持图中所示位置,磁感应强度大小随时间线性变 化.为了产生与线框转动半周过程中同样大小的电流,磁感应强
相关文档
最新文档