高考数学大一轮复习 第二章 8指数函数课件 文
(江苏专版)高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第五节指数与指数函数实用课件文
答案:-1967
第十页,共45页。
39
2. a 2 a-3÷ 3 a-73 a13=________.
解析:原式=(a
9 2
a
3 2
)
1 3
÷(a
7 3
a
13 3
)
1 2
=(a3)
1 3
÷(a2)
1 2
=a÷a=1.
答案:1
4
1
3. 4b
a 3 -8a 3 b
2 3
+23
ab+a
2 3
÷a
2 3
3
1.指数函数的图象
函数
y=ax(a>0,且 a≠1)
0<a<1
a>1
图象
在 x 轴_上__方_,过定点_(0_,_1_)
图象
特征 当 x 逐渐增大时,图象逐渐 当 x 逐渐增大时,图象
下___降_
逐渐_上__升_
第十五页,共45页。
2.指数函数图象画法的三个关键点 画指数函数 y=ax(a>0,且 a≠1)的图象,应抓住三个关键 点:(1,a),(0,1),-1,1a. 3.指数函数的图象与底数大小的比较 如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx 的图 象,底数 a,b,c,d 与 1 之间的大小关系为 c>d>1>a>b.
2
1
2
又因为 a=2 3 =4 3 ,c=25 3 =5 3 ,
2
由函数 y=x 3 在(0,+∞)上为增函数知,a<c.
综上得 b<a<c. [答案] c>a>b
第二十九页,共45页。
[方法技巧] 比较指数式大小的方法
比较两个指数式大小时,尽量化同底或同指. (1)当底数相同,指数不同时,构造同一指数函数,然后利 用指数函数性质比较大小. (2)当指数相同,底数不同时,构造两个指数函数,利用图 象比较大小. (3)当底数不同,指数也不同时,常借助 1,0 等中间量进行 比较.
高考数学一轮复习:2.5指数与指数函数课件(文) (共39张PPT)
知识梳理
2.有理数指数幂 (1)幂的有关概念 ①正分数指数幂:a ②负分数指数幂:a
m n
n
=________(a>0,m,n∈N*,且 n>1);
1
m
am
1
m - n
am a>0,m,n∈N*,且 n>1); =________ =________( a n
n
0 无意义. ③0 的正分数指数幂等于________ ,0 的负分数指数幂________
5 3 -1=2-2-1=0.
1 3 3 1 3 1 3 2 3 1 2 1 5
(2)原式=
a -2b a×a ÷ × 1 1 1 1 1 1 a 3 2 3 3 3 2 2 3 a +a ×2b +2b a ×a a
1 3
1 3
[a -2b ]
1 3 3
=a
易错剖析
n n 根式化简与指数运算的误区:混淆“ an”与“( a)n”;误用性质. 4 (1) a-b4=____________________________;
7 (2)化简[(-2) ] -(-1)0 的结果为________ .
1 6 2
a-ba≥b, |a-b |= b-aa<b
1 3
a 3 3 2 (a -2b )× 1 1 × 1 =a ×a×a =a . a 3 -2b 3 a 6
1 3
a
5 6
1
2
归纳小结
[点石成金] 指数幂的运算规律 (1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数. (3)底数是负数,先确定符号,底数是小数,先化成分数,底数是 带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用 指数幂的运算性质来解答. 易错提醒:运算结果不能同时含有根号和分数指数,也不能既有 分母又含有负指数,形式力求统一.
2019届高考数学一轮复习第二章基本初等函数导数的应用第6讲指数与指数函数课件文
第6讲 指数与指数函数
1.根式的概念 如果 xn=a,那么 x 叫做 a 的 n 次方根.当 n 是奇数时,正 数的 n 次方根是一个正数,负数的 n 次方根是一个负数;当 n 是偶数时,正数的 n 次方根有两个,这两个数互为相反数.
2.幂的有关概念
m
(1)正分数指数幂:a n =
——函数与不等式交汇探索
设 a>0,b>0,则下列说法一定正确的序号是 __①______. ①若 2a+2a=2b+3b,则 a>b; ②若 2a+2a=2b+3b,则 a<b; ③若 2a-2a=2b-3b,则 a>b; ④若 2a-2a=2b-3b,则 a<b.
【解析】 因为 a>0,b>0, 所以 2a+2a=2b+3b>2b+2b. 令 f(x)=2x+2x(x>0), 则函数 f(x)为单调增函数. 所以 a>b.
a≠1,函数 1
f(x)=42xa, -x,x≥x<0,0,
若 f(1-a)=f(a-1),则 a 的值为____2________.
(3)(2018·苏北四市高三质量检测)设 f(x)是定义在 R 上的奇函
数,当 x>0 时,f(x)=2x-3,则不等式 f(x)≤-5 的解集为
_(-___∞__,__-__3_]___.
【解析】 (1)因为 a0=1, 所以该函数的图象过点(2 018,2 019). (2)当 a<1 时,41-a=21,所以 a=12;当 a>1 时,代入不成 立.
(3)因为当 x>0 时,f(x)=2x-3, 所以当 x<0,即-x>0 时,f(-x)=2-x-3,因为函数 f(x) 是 定义在 R 上的奇函数, 所以 f(-x)=2-x-3=-f(x),所以 f(x)=-2-x+3. 当 x>0 时,不等式 f(x)≤-5 等价为 2x-3≤-5, 即 2x≤-2,无解,故 x>0 时,不等式不成立; 当 x<0 时,不等式 f(x)≤-5 等价为-2-x+3≤-5, 即 2-x≥8, 得 x≤-3; 当 x=0 时,f(0)=0,不等式 f(x)≤-5 不成立. 综上,不等式 f(x)≤-5 的解集为(-∞,-3].
高考数学一轮复习 第2章 函数概念与基本初等函数Ⅰ8 指数与指数函数课时训练 文(含解析)-人教版高
【课时训练】指数与指数函数一、选择题1.(2019某某某某调研)函数f (x )=2|x -1|的大致图象是( )A B C D 【答案】B【解析】由f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x -1,x <1,可知f (x )在[1,+∞)上单调递增,在(-∞,1)上单调递减.故选B.2.(2018某某某某一中月考)已知函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定【答案】A【解析】由题意可知a >1, f (-4)=a 3,f (1)=a 2,由y =a t(a >1)的单调性知a 3>a 2,所以 f (-4)>f (1).3.(2018某某某某调研)若函数f (x )=a |2x -4|(a >0,且a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]【答案】B【解析】由f (1)=19得a 2=19,又a >0,所以a =13,因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.因为g (x )=|2x -4|在[2,+∞)上单调递增,所以f (x )的单调递减区间是[2,+∞).4.(2018某某某某一模)已知奇函数y =⎩⎪⎨⎪⎧fx ,x >0,g x ,x <0.如果f (x )=a x(a >0,且a ≠1)对应的图象如图所示,那么g (x )=( )A .⎝ ⎛⎭⎪⎫12-x B .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x【答案】D【解析】由题图可知f (1)=12,∴a =12,f (x )=⎝ ⎛⎭⎪⎫12x .由题意得g (x )=-f (-x )=-⎝ ⎛⎭⎪⎫12-x=-2x.故选D.5.(2018某某省实验中学分校月考)函数y =16-2x的值域是( ) A .[0,+∞) B .[0,4] C .[0,4) D .(0,4)【答案】C【解析】函数y =16-2x中,因为16-2x≥0,所以2x≤16.因此2x∈(0,16],所以16-2x∈[0,16).故y =∈[0,4).故选C.6.(2018某某某某第一中学月考)已知集合A ={x |(2-x )·(2+x )>0},则函数f (x )=4x-2x +1-3(x ∈A )的最小值为( )A .4B .2C .-2D .-4【答案】D【解析】由题知集合A ={x |-2<x <2}.又f (x )=(2x )2-2×2x -3,设2x=t ,则14<t <4,所以f (x )=g (t )=t 2-2t -3=(t -1)2-4,且函数g (t )的对称轴为直线t =1,所以最小值为g (1)=-4.故选D.7.(2018某某某某联考)已知函数f (x )=e x,如果x 1,x 2∈R ,且x 1≠x 2,则下列关于f (x )的性质:①(x 1-x 2)[f (x 1)-f (x 2)]>0;②y =f (x )不存在反函数;③f (x 1)+f (x 2)<2f ⎝ ⎛⎭⎪⎫x 1+x 22;④方程f (x )=x 2在(0,+∞)上没有实数根.其中正确的是( )A .①②B .①④C .①③D .③④【答案】B8.(2018某某某某联考)若函数f (x )=2x -a +1+x -a -a 的定义域与值域相同,则a =( )A .-1B .1C .0D .±1【答案】B【解析】∵函数f (x )=2x -a +1+x -a -a ,∴函数f (x )的定义域为[a ,+∞). ∵函数f (x )的定义域与值域相同, ∴函数f (x )的值域为[a ,+∞).又∵函数f (x )在[a ,+∞)上是单调递增函数,∴当x =a 时,f (a )=2a -a +1-a =a ,解得a =1.故选B.二、填空题9.(2018某某某某一模)已知函数f (x )=e x -e -xe x +e -x ,若f (a )=-12,则f (-a )=________. 【答案】12【解析】∵f (x )=e x-e -xe x +e -x ,f (a )=-12,∴e a -e -a e a +e -a =-12.∴f (-a )=e -a -e a e -a +e a =-e a -e -ae a +e -a =-⎝ ⎛⎭⎪⎫-12=12. 10.(2018某某一中月考)若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________.【答案】 3【解析】当a >1时,f (x )=a x -1在[0,2]上为增函数,则a 2-1=2,∴a =± 3.又a >1,∴a = 3.当0<a <1时,f (x )=a x-1在[0,2]上为减函数,又f (0)=0≠2,∴0<a <1不成立.综上可知,a = 3.11.(2018某某十校联考)已知max (a ,b )表示a ,b 两数中的最大值.若f (x )=max {e |x |,e|x -2|},则f (x )的最小值为________.【答案】e【解析】由于f (x )=max {e |x |,e |x -2|}=⎩⎪⎨⎪⎧e x,x ≥1,e 2-x,x <1.当x ≥1时,f (x )≥e,且当x =1时,取得最小值e ;当x <1时,f (x )>e.故f (x )的最小值为f (1)=e.12.(2018某某某某海阳一中期中)已知函数f (x )=2|x -2|-1在区间[0,m ]上的值域为[0,3],则实数m 的取值X 围为________.【答案】[2,4] 【解析】函数f (x )=2|x -2|-1的对称轴为直线x =2,且在(-∞,2]上单调递减,在(2,+∞)上单调递增.由于函数f (x )=2|x -2|-1在区间[0,m ]上的值域为[0,3]且函数关于直线x =2对称,f (0)=f (4)=3,f (2)=0,所以结合图象可知m ∈[2,4].三、解答题13.(2018某某余姚中学月考)已知定义在R 上的函数 f (x )=2x-12|x |.(1)若f (x )=32,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,某某数m 的取值X 围. 【解】(1)当x <0时,f (x )=0,无解; 当x ≥0时,f (x )=2x-12x ,由2x -12x =32,得2·22x -3·2x-2=0,将上式看成关于2x的一元二次方程, 解得2x =2或2x=-12,∵2x>0,∴x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t-1)≥-(24t-1),∵22t-1>0, ∴m ≥-(22t+1),∵t ∈[1,2],∴-(22t+1)∈[-17,-5], 故实数m 的取值X 围是[-5,+∞).。
高考数学一轮复习第二章函数导数及其应用第8讲指数与指数函数精选教案理
第8讲指数与指数函数1.根式(1)根式的概念(2)两个重要公式①na n=⎩⎨⎧!!!a###(n为奇数),|a|=⎩⎪⎨⎪⎧!!!a###(a≥0),!!!-a###(a<0)(n为偶数);②(na )n=__a __(注意:a 必须使na 有意义). 2.有理数的指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1);②负分数指数幂:a -mn =!!! 1a n###=!!! 1 ###(a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于__0__,0的负分数指数幂__无意义__. (2)有理数指数幂的性质 ①a r a s=__ar +s__(a >0,r ,s ∈Q );②(a r )s =__a rs__(a >0,r ,s ∈Q ); ③(ab )r=__a r b r__(a >0,b >0,r ∈Q ). 3.指数函数的图象与性质1.思维辨析(在括号内打“√”或“×”). (1)na n与(na )n 都等于a (n ∈N *).( × ) (2)2a·2b=2a b .( × )(3)函数y =3·2x与y =2x +1都不是指数函数.( √ )(4)若a m<a n(a >0且a ≠1),则m <n .( × ) (5)函数y =2-x在R 上为单调减函数.( √ ) 解析 (1)错误.当n 为偶数,a <0时,na 不成立.(2)错误.2a ·2b =2a +b≠2ab.(3)正确.两个函数均不符合指数函数的定义. (4)错误.当a >1时,m <n ;而当0<a <1时,m >n .(5)正确.y =2-x=⎝ ⎛⎭⎪⎫12x ,根据指数函数的性质可知函数在R 上为减函数.2.函数f (x )=1-2x的定义域是( A ) A .(-∞,0] B .[0,+∞) C .(-∞,0)D .(-∞,+∞)解析 ∵1-2x≥0,∴2x≤1,∴x ≤0. 3.已知函数f (x )=4+a x -1的图象恒过定点P ,则点P 的坐标是( A )A .(1,5)B .(1,4)C .(0,4)D .(4,0)解析 当x =1时,f (x )=5.4.不等式2x 2-x <4的解集为__{x |-1<x <2}__.解析 不等式2x 2-x <4可化为2x 2-x <22,由指数函数y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}.5.若函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a解析 由题意知0<a 2-1<1,即1<a 2<2,得-2<a <-1或1<a < 2.一 指数幂的化简与求值指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.【例1】 计算:(1)3a 92 a -3÷3a -73a 13;(2)(0.027) -13 -⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫27912 -(2-1)0;(3)已知m 12 +m -12=4,求m 32 -m -32m 12 -m -12 .解析 (1)原式=(a 92 a -32 )13 ÷(a -73 a 133 )12 =(a 3)13 ÷(a 2)12 =a ÷a =1.(2)原式=⎝ ⎛⎭⎪⎫271 000-13 -72+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45.(3)∵m 12 +m -12 =4,∴m +m -1+2=16,∴m +m -1=14, ∴m 32 -m -32 m 12 -m -12 =(m 12 -m -12 )(m +m -1+1)m 12 -m -12=m +m -1+1=14+1=15.二 指数函数的图象及应用指数函数图象的画法及应用(1)画指数函数y =a x(a >0,a ≠1)的图象,应抓住三个关键点(1,a ),(0,1),⎝ ⎛⎭⎪⎫-1,1a 和一条渐近线y =0.(2)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换,得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解. 【例2】 (1)函数y =a x-1a(a >0,且a ≠1)的图象可能是( D )(2)若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是__[-1,1]__.解析 (1)函数y =a x-1a(a >0,且a ≠1)的图象必过点(-1,0),故选D .(2)曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].三 指数函数的性质及应用指数函数性质问题的类型及解题思路(1)比较指数幂大小问题.常利用指数函数的单调性及中间值(0或1).(2)简单的指数不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.【例3】 已知函数f (x )=e x -e -x(x ∈R ,且e 为自然对数的底数). (1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由.解析 (1)∵f (x )=e x-⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )=e x+⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )>0对任意x ∈R 都成立,∴f (x )在R 上是增函数.∵f (x )的定义域为R ,且f (-x )=e -x-e x=-f (x ),∴f (x )是奇函数.(2)存在,由(1)知f (x )在R 上是增函数和奇函数,则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立⇔x 2-t 2≥t -x 对一切x ∈R 都成立⇔t 2+t ≤x 2+x =⎝ ⎛⎭⎪⎫x +122-14对一切x ∈R 都成立⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝ ⎛⎭⎪⎫t +122≤0,又⎝ ⎛⎭⎪⎫t +122≥0,∴⎝ ⎛⎭⎪⎫t +122=0,∴t =-12,∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立.1.(2018·山东德州一模)已知a =⎝ ⎛⎭⎪⎫3525 ,b =⎝ ⎛⎭⎪⎫2535 ,c =⎝ ⎛⎭⎪⎫2525 ,则( D ) A .a <b <c B .c <b <a C .c <a <bD .b <c <a解析 ∵y =⎝ ⎛⎭⎪⎫25x为减函数,∴b <c ,又∵y =x 25 在(0,+∞)上为增函数,∴a >c ,∴b <c <a ,故选D .2.(2018·北京模拟)已知函数f (x )=a x,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)=( A )A .1B .aC .2D .a 2解析 ∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,∴x 1+x 2=0,又∵f (x )=a x,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,故选A .3.函数y =4x+2x +1+1的值域为( B )A .(0,+∞)B .(1,+∞)C .[1,+∞)D .(-∞,+∞)解析 令2x=t (t >0),则函数y =4x+2x +1+1可化为y =t 2+2t +1=(t +1)2(t >0).∵函数y =(t +1)2在(0,+∞)上递增,∴y >1.∴所求值域为(1,+∞),故选B .4.函数f (x )=a x+log a (x +1)(a >0,且a ≠1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( B )A .14 B .12 C .2D .4解析 ∵在[0,1]上y =a x与y =log a (x +1)具有相同的单调性,∴f (x )=a x+log a (x +1)在[0,1]上单调,∴f (0)+f (1)=a ,即a 0+log a 1+a 1+log a 2=a ,化简得1+log a 2=0,解得a =12.易错点 忽视对含参底数的讨论错因分析:对数函数、指数函数的底数含字母参数时,要分底数大于1和大于0小于1讨论.【例1】 已知函数f (x )=|a -1|a 2-9(a x -a -x)(a >0且a ≠1)在R 上为增函数,求a 的取值范围.解析 ①当a >1时,a x 在R 上为增函数,y =a -x =⎝ ⎛⎭⎪⎫1a x 在R 上为减函数,∴y =a x -a-x为增函数.∵f (x )为增函数,∴|a -1|a 2-9>0,解得a >3或a <-3,又∵a >1,∴a >3.②当0<a <1时,y =a x 在R 上为减函数,y =a -x在R 上为增函数, ∴y =a x-a -x在R 上为减函数.∵f (x )为增函数,∴|a -1|a 2-9<0,解得-3<a <1或1<a <3.又∵0<a <1,∴此时0<a <1.综上,a 的取值范围为(0,1)∪(3,+∞).【跟踪训练1】 (2018·东北三校联考)若关于x 的方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根,则a 的取值范围是( D )A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D .⎝ ⎛⎭⎪⎫0,12 解析 方程|a x-1|=2a (a >0,且a ≠1)有两个实数根转化为函数y =|a x-1|与y =2a 有两个交点.①当0<a <1时,如图①,∴0<2a <1,即0<a <12;②当a >1时,如图②, 而y =2a >1不符合要求.∴0<a <12.课时达标 第8讲[解密考纲]本考点主要考查指数的运算、指数函数的图象与性质、简单的复合函数的单调性等,通常以选择题、填空题的形式呈现,题目难度中等或中等偏上.一、选择题1.(2016·全国卷Ⅲ)已知a =243 ,b =425 ,c =2513 ,则( A ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析 因为a =243 =1613 ,b =425 =1615 ,c =2513 ,且幂函数y =x 13 在R 上单调递增,指数函数y =16x在R 上单调递增,所以b <a <c .2.(2018·河南洛阳模拟)已知函数f (x )=2x-2,则函数y =|f (x )|的图象可能是( B )解析 |f (x )|=|2x-2|=⎩⎪⎨⎪⎧2x-2,x ≥1,2-2x,x <1,易知函数y =|f (x )|的图象的分段点是x =1, 且过点(1,0),(0,1),⎝ ⎛⎭⎪⎫-1,32,故选B .3.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( C )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)解析 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在[2,4]上是增函数,f (x )min =f (2)=1,f (x )max =f (4)=9,故选C .4.(2018·山西太原模拟)函数y =2x -2-x是( A ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减解析 令f (x )=2x -2-x ,则f (-x )=2-x -2x=-f (x ),所以函数f (x )是奇函数,排除C 项,D 项.又函数y =-2-x,y =2x 均是R 上的增函数,故y =2x -2-x在R 上为增函数,故选A .5.(2018·浙江丽水模拟)当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是( C )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)解析 原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x .∵函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,∴⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2, 当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2,故选C .6.(2018·山东济宁模拟)已知函数f (x )=|2x-1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( D )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a<2cD .2a+2c<2解析 作出函数f (x )=|2x-1|的图象,如图,∵a <b <c ,且f (a )>f (c )>f (b ), 结合图象知0<f (a )<1,a <0,c >0, ∴0<2a<1.∴f (a )=|2a -1|=1-2a<1, ∴f (c )<1,∴0<c <1,∴1<2c<2, ∴f (c )=|2c -1|=2c-1, 又∵f (a )>f (c ),∴1-2a >2c-1, ∴2a +2c<2,故选D . 二、填空题7.已知函数f (x )=a -x(a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是__(0,1)__.解析 因为f (x )=a -x=⎝ ⎛⎭⎪⎫1ax ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增,所以1a>1,解得0<a <1.8.已知函数y =a 2x +2a x-1(a >1)在区间[-1,1]上的最大值是14,则a =__3__.解析 y =a 2x +2a x -1(a >1),令a x =t ,则y =t 2+2t -1⎝ ⎛⎭⎪⎫1a≤t ≤a ,此二次函数图象开口向上,对称轴为t =-1,又a >1,所以当t =a ,即x =1时取最大值,所以a 2+2a -1=14, 解得a =3.9.(2018·皖南八校联考)对于给定的函数f (x )=a x-a -x(x ∈R ,a >0,a ≠1),下面给出五个命题,其中真命题是__①③④__(只需写出所有真命题的编号).①函数f (x )的图象关于原点对称; ②函数f (x )在R 上不具有单调性; ③函数f (|x |)的图象关于y 轴对称; ④当0<a <1时,函数f (|x |)的最大值是0; ⑤当a >1时,函数f (|x |)的最大值是0.解析 ∵f (-x )=-f (x ),∴f (x )为奇函数,f (x )的图象关于原点对称,①真;当a >1时,f (x )在R 上为增函数,当0<a <1时,f (x )在R 上为减函数,②假;y =f (|x |)是偶函数,其图象关于y 轴对称,③真;当0<a <1时,y =f (|x |)在(-∞,0)上为增函数,在[0,+∞)上为减函数,∴当x =0时,y =f (|x |)取最大值为0,④真;当a >1时,f (|x |)在(-∞,0)上为减函数,在[0,+∞)上为增函数,∴当x =0时,y =f (|x |)取最小值为0,⑤假.综上,真命题是①③④.三、解答题10.化简:(1)a 3b 23ab 2(a 14 b 12 )4a -13 b 13(a >0,b >0);(2)⎝ ⎛⎭⎪⎫-278 -23+(0.002)-12-10(5-2)-1+(2-3)0. 解析 (1)原式=(a 3b 2a 13b 23 ) 12ab 2a -13 b 13=a 32 +16 +13 -1·b 1+13 -2-13 =ab -1.(2)原式=⎝ ⎛⎭⎪⎫-278-23 +⎝ ⎛⎭⎪⎫1500-12 -105-2+1 =⎝ ⎛⎭⎪⎫-82723 +50012 -10(5+2)+1=49+105-105-20+1=-1679. 11.已知函数f (x )=⎝ ⎛⎭⎪⎫13a x 2-4x +3. (1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.解析 (1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3=a ⎝ ⎛⎭⎪⎫x -2a 2+3-4a,∵f (x )有最大值,∴g (x )应有最小值,且g (x )min =3-4a(a >0), ∴f (x )max =⎝ ⎛⎭⎪⎫133-4a =3,∴3-4a =-1,∴a =1. 12.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数. (1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0.解析 (1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b 2+a=0,解得b =1,所以f (x )=-2x +12x +1+a. 又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2. (2)由(1)知f (x )=-2x+12x +1+2=-12+12x +1. 由上式易知f (x )在(-∞,+∞)上为减函数.又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t 2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式可得解集为t ⎪⎪⎪⎭⎬⎫t >1或t <-13.精美句子1、善思则能“从无字句处读书”。
新高考数学一轮复习第二章函数导数及其应用课时作业8指数与指数函数课件
由上式易知 f(x)在 R 上为减函数,又因为 f(x)是奇函数,从 而不等式 f(t2-2t)+f(2t2-k)<0 等价于 f(t2-2t)<-f(2t2-k)=f(- 2t2+k).
因为 f(x)是 R 上的减函数, 由上式推得 t2-2t>-2t2+k. 即对一切 t∈R 有 3t2-2t-k>0, 从而 Δ=4+12k<0,解得 k<-13. 故 k 的取值范围为-∞,-13.
由 m·g(x)+h(x)≤0 得 m≤22xx+-22--xx=44xx-+11=1-4x+2 1,因为 y=1-4x+2 1为增函数,所以当 x∈[-1,1]时,(1-4x+2 1)max=1 -4+2 1=35,故选 B.
解法 2:由解法 1 知 g(x)=2x+22-x,h(x)=2-x2-2x.
①函数 f(x)的图象关于原点对称; ②函数 f(x)在 R 上不具有单调性; ③函数 f(|x|)的图象关于 y 轴对称; ④当 0<a<1 时,函数 f(|x|)的最大值是 0; ⑤当 a>1 时,函数 f(|x|)的最大值是 0.
解析:∵f(-x)=-f(x),x∈R,∴f(x)为奇函数, ∴f(x)的图象关于原点对称,①正确; 当 a>1 时,f(x)在 R 上为增函数,当 0<a<1 时, f(x)在 R 上为减函数,②错误; y=f(|x|)是偶函数,其图象关于 y 轴对称;③正确; 当 0<a<1 时,y=f(|x|)在(-∞,0)上为增函数,在[0,+∞) 上为减函数,∴当 x=0 时,y=f(|x|)取得最大值,为 0,④正确; 当 a>1 时,y=f(|x|)在(-∞,0)上为减函数,在[0,+∞)上 为增函数,∴当 x=0 时,y=f(|x|)取得最小值,为 0,⑤错误.综 上,正确结论是①③④.
2016届高三数学一轮总复习课件:第二章 函数、导数及其应用2-8
A.y=f(|x|) C.y=f(-|x|)
①
②
B.y=|f(x)|
D.y=-f(|x|)
第十六页,编辑于星期五:二十点 十三分。
解析 y=f(-|x|)=ff-x,x,x<x0≥. 0, 答案 C
第十七页,编辑于星期五:二十点 十三分。
知识点三 用图 4.若关于x的方程|x|=a-x只有一个解,则实数a的取值范围 是________.
第四十四页,编辑于星期五:二十点 十三分。
【规律方法】 (1)从图象的左右分布,分析函数的定义域; 从图象的上下分布,分析函数的值域;从图象的最高点、最低 点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶 性;从图象的走向趋势,分析函数的单调性、周期性等.
(2)利用函数的图象可解决方程和不等式的求解问题,比如判 断方程是否有解,有多少个解,数形结合是常用的思想方法.
则当直线y=x+a过点(1,0)时,a=-1; 当直线y=x+a与抛物线y=-x2+4x-3相切时,
第四十三页,编辑于星期五:二十点 十三分。
由yy= =x-+xa2+,4x-3, 得x2-3x+a+3=0. 由Δ=9-4(3+a)=0,得a=-34. 由图象知当a∈-1,-34时,方程至少有三个不等实根.
第七页,编辑于星期五:二十点 十三分。
归纳拓展:(1)平移变换: y=f(x)hh><―00, ,―右 左→移 移y=f(x-h); y=f(x)kk><―00, ,―上 下→移 移y=f(x)+k. (2)伸缩变换: y=f(x)0<ω―ω><1―,1→,缩伸y=f(ωx); y=f(x)0<A―A><1―,1,→伸缩y=Af(x);
2024届高考数学一轮总复习第二章函数导数及其应用第五讲指数与指数函数课件
7-2-1=98.
3212
54
(2)原式=
a2 a
b b2
2
a6
1
a3
b6
1
b3
a3 b3
27
a3 b3
a. b
【题后反思】指数幂运算的一般原则 (1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数. (3)底数是负数,先确定符号;底数是小数,先化成分数;底 数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示, 运用指数幂的运算性质来解答.
解析:因为函数 y=ax-b 的图象经过第二、三、四象限,所 以函数 y=ax-b 单调递减且其图象与 y 轴的交点在 y 轴的负半轴
上.令 x=0,则 y=a0-b=1-b,由题意得01<-ab<<10,,
解得0b<>a1<,1, 故 ab∈(0,1). 答案:(0,1)
考点三 指数函数的性质及应用 考向 1 利用指数函数的单调性比较大小 通性通法:比较指数式的大小时,能化成同底数的先化成同 底数幂,再利用单调性比较大小;不能化成同底数的,一般引入 “1”等中间量比较大小.
2.通过具体实例,了解指数函数的实际意义,理 问题.
解指数函数的概念.
2.题型一般为选择、填空
3.能用描点法或借助计算工具画出具体指数函数 题,若题型为解答题,
的图象,探索并理解指数函数的单调性与特殊点 则题目中等偏难
1.根式 (1)一般地,如果 xn=a,那么 x 叫做 a 的 n 次方根,其中 n>1, 且 n∈N*.
即函数 f(x)在定义域 R 上单调递增.
(3)解:f(2x-1)+f(x-2)>0,且 f(x)为奇函数, ∴f(2x-1)>f(-x+2), ∵函数 f(x)在 R 上单调递增, ∴2x-1>-x+2,∴x>1, ∴不等式的解集为(1,+∞).
2018年高考数学一轮复习第二章函数导数及其应用第8讲指数与指数函数课件理2017041501166
第一页,共31页。
考纲要求
考情分析
命题趋势
1.了解指数函数模型的实际背 景.
2.理解有理数指数幂的含义, 了解实数指数幂的意义,掌握 幂的运算.
3.理解指数函数的概念,理解 指数函数的单调性,掌握指数 函数图象通过的特殊点.
4.知道指数函数是一类重要的 函数模型.
零的 n 次方根是零
当 n 是偶函数时,正数的 n 次方根有 ___两__个___,这两个数互为__相__反___数_
n ± a(a>0)
负数没有偶次方根
第四页,共31页。
(2)两个重要公式
a
①n
an=|a|=
n为奇数
a -a
a≥0, a<0
n为偶数
②(n a)n=____a____(注意:a 必须使n a有意义).
第五页,共31页。
2.有理数的指数幂
(1)幂的有关概念
m
①正分数指数幂:an
=___n__a_m__(a>0,m,n∈N*,且
n>1);
1
1
m
②负分数指数幂:a-n
=___a_mn____=___n_a_m___(a>0,m,n∈N*,且 n>1).
③0 的正分数指数幂等于____0____,0 的负分数指数无幂意___义___(y__ìy.ì)
∴m21
-m-2
1
=m2
-m-2
1
m+1 m-1+1=m+m-1+1=14+1=15.
m2 -m-2
m2 -m-2
第十八页,共31页。
•二 指数函数的图象(tú xiànɡ)及应用
高考数学一轮总复习 第2章 函数、导数及其应用 2.5 指数与指数函数课件 理
1 3
的值为(
)
A.0 B.13 C.3 D.4
解析 原式=1-(1-4)÷32=3,故选 C.
2. 函数 f(x)=ax-2+1(a>0 且 a≠1)的图象必经 过点
(
)
A.(0,1)
B.(1,1)
C.(2,0)
D.(2,2)
解析 ∵a0=1 故 x-2=0 时 f(x)=2,即 x=2 时 f(x)= 2,故选 D.
4.[2017·广西桂林模拟]当 x<0 时,函数 f(x)=(2a-1)x
的值恒大于 1,则实数 a 的取值范围是(
)
A.12,1 C.(1,+∞)
B.(1,2) D.(-∞,1)
解析 由题意可得 0<2a-1<1,解得12<a<1,故选 A.
板块二 典例探究·考向突破
考向 指数幂的化简与求值
3.[课本改编]已知 a=20.2,b=0.40.2,c=0.40.6,则(
)
A.a>b>c
B.a>c>b
C.c>a>b
D.b>c>a
解析 由 0.2<0.6,0.4<1,并结合指数函数的图象可知 0.40.2>0.40.6,即 b>c;因为 a=20.2>1,b=0.40.2<1,所以 a>b. 综上,a>b>c.
22×10-1×26×23-
3=
2 865.
(2)原式=a-13
b
1 2
·a-
1 2
1
5
高考数学一轮复习 第二章 函数、导数及其应用 2.5 指数与指数函数课件 文
知识点一 指数与指数幂的运算
1.根式
(1)根式的概念:
根式 如果________,那么 x 叫做 a 的 n 次 方根 当 n 为奇数时,正数的 n 次方根是一 个____数,负数的 n 次方根是一个 ____数 当 n 为偶数时,正数的 n 次方根有 ____个,它们互为______
符号表示
n a
=
a>0,m,n∈N+,且mn 为既约分数.
②负分数指数幂
-
a
m n
=____(a>0,m,n∈N+,且mn 为既约分数).
7
③ 0 的 正 分 数 指 数 幂 等 于 ____ , 0 的 负 分 数 指 数 幂 __________________________________________________________ ______________.
第二章
函数、导数及其应用
1
第五节 指数与指数函数
2
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数 指数幂的意义,掌握幂的运算. 3.理解指数函数的概念,理解指数函数 的单调性,掌握指数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型.
3
主干知识·整合 01
课前热身 稳固根基
14
4.函数 y= 1-12x的定义域为________.
解析:要使函数有意义,需 1-12x≥0,即12x≤1,∴x≥0, 即定义域为[0,+∞).
答案:[0,+∞)
15
5.函数 y=ax+2 012+2 011(a>0 且 a≠1)的图象恒过定点 ________.
解析:∵y=ax(a>0 且 a≠1)恒过定点(0,1),∴y=ax+2 012+2 011 恒过定点(-2 012,2 012).
第04讲 指数与指数函数(八大题型)(课件)高考数学一轮复习(新教材新高考)
(1)一般地,如果xn=a,那么 x 叫做a的n次方根,其中n>1,且n∈N*.
n
(2)式子 a叫做 根式 ,这里 n 叫做根指数,a 叫做被开方数.
n
(3)( a)n= a .
2、根式的性质:
当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.
当n为偶数时,正数的n次方根有两个,它们互为相反数.
【答案】10
【解析】由题可知,1 , 2 也是 = 2 , = log 2 与 = − + 10图象交点的横坐标,
在同一坐标系中,作图如下:
数形结合可知,1 , 2 为, 两点对应的横坐标;
根据指数函数和对数函数的性质可知, = 2 , = log 2 关于 = 对称;
A.−1
B.−2
C.−4
D.−9
【答案】C
【解析】因为函数 = () =
1
( )
2
+
1 0
图象过原点,所以( )
2
+ = 0,
得 + = 0,又该函数图象无限接近直线 = 2,且不与该直线相交,
所以 = 2,则 = −2,所以 = −4.故选:C
【方法技巧】
对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过伸缩、
【解析】(1)原式=
49
9
1
2
2
+ 10 +
+ 2
1
1
2 + 2
2 + 2
64
27
2
3
10
27
2
3
− 100π0 ;
的值.
7
2022高考数学一轮总复习第二章函数概念与基本初等函数第8讲对数函数学案文(含答案)
高考数学一轮总复习学案:第8讲 对数函数1.对数函数的图象与性质a >1 0<a <1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数2.反函数指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称. 常用结论对数函数图象的特点1.当a >1时,对数函数的图象呈上升趋势;当0<a <1时,对数函数的图象呈下降趋势.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝⎛⎭⎪⎫1a,-1,函数图象只在第一、四象限.3.在直线x =1的右侧:当a >1时,底数越大,图象越靠近x 轴;当0<a <1时,底数越小,图象越靠近x 轴,即“底大图低”.一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =log 2x 及y =log 133x 都是对数函数.( )(2)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( ) (3)函数y =ln 1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( )(4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),函数图象只经过第一、四象限.( )答案:(1)× (2)× (3)√ (4)√ 二、易错纠偏常见误区| (1)忽略真数大于零致误; (2)忽视对底数的讨论致误.1.函数f (x )=log 2x 2的单调递增区间为____________.解析:设t =x 2,因为y =log 2t 在定义域上是增函数,所以求原函数的单调递增区间,即求函数t =x 2的单调递增区间,所以所求区间为(0,+∞).答案:(0,+∞)2.函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________. 解析:分两种情况讨论:①当a >1时,有log a 4-log a 2=1,解得a =2;②当0<a <1时,有log a 2-log a 4=1,解得a =12,所以a =2或12.答案:2或12对数函数的图象及应用(典例迁移)(1)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )(2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为____________.【解析】 (1)由于y =a |x |的值域为{y |y ≥1},所以a >1,则y =log a |x |在(0,+∞)上是增函数,又函数y =log a |x |的图象关于y 轴对称.因此y =log a |x |的图象应大致为选项B .(2)构造函数f (x )=4x和g (x )=log a x , 当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象, 可知,只需两图象在⎝ ⎛⎦⎥⎤0,12上有交点即可, 则f ⎝ ⎛⎭⎪⎫12≥g ⎝ ⎛⎭⎪⎫12,即2≥log a 12,则a ≤22, 所以a 的取值范围为⎝ ⎛⎦⎥⎤0,22. 【答案】 (1)B (2)⎝⎛⎦⎥⎤0,22 【迁移探究】 (变条件)若本例(2)的条件变为:当0<x ≤12时,4x<log a x ,则a 的取值范围为________.解析:构造函数f (x )=4x和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象,可知f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1.答案:⎝⎛⎭⎪⎫22,1对于较复杂的不等式恒成立问题,可借助函数图象解决,具体做法如下: (1)对不等式变形,使不等号两边分别对应两函数f (x ),g (x ); (2)在同一平面直角坐标系下作出两个函数f (x )与g (x )的图象; (3)比较当x 在某一范围内取值时图象的上下位置来确定参数的取值.1.函数y =2log 4(1-x )的图象大致是( )解析:选C .函数y =2log 4(1-x )的定义域为(-∞,1),排除A ,B ;函数y =2log 4(1-x )在定义域上单调递减,排除D .选C .2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:如图,在同一平面直角坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上的截距.由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点. 答案:(1,+∞)对数函数的性质及应用(多维探究) 角度一 解对数方程、不等式(1)方程log 2(x -1)=2-log 2(x +1)的解为________.(2)设f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,则方程f (a )=f (-a )的解集为________.【解析】 (1)原方程变形为log 2(x -1)+log 2(x +1)=log 2(x 2-1)=2,即x 2-1=4,解得x =±5,又x >1,所以x = 5.(2)当a >0时,由f (a )=log 2a =log 12⎝ ⎛⎭⎪⎫1a =f (-a )=log 12a ,得a =1;当a <0时,由f (a )=log 12(-a )=log 2⎝ ⎛⎭⎪⎫-1a =f (-a )=log 2(-a ),得a =-1. 所以方程f (a )=f (-a )的解集为{1,-1}. 【答案】 (1)x = 5 (2){-1,1}【迁移探究】 (变问法)本例(2)中,f (a )>f (-a )的解集为________.解析:由题意,得⎩⎪⎨⎪⎧a >0,log 2a >log 12a 或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),解得a >1或-1<a <0. 答案:(-1,0)∪(1,+∞)解对数方程、不等式的方法(1)形如log a x ≥log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x ≥b 的不等式,需先将b 化为以a 为底的对数式的形式. 角度二 对数型函数的综合问题已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间; (2)若f (x )的最小值为0,求a 的值.【解】 (1)因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,即a =-1, 所以f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,即函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3.则g (x )在(-1,1)上单调递增,在[1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是[1,3). (2)若f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,3a -1a=1,解得a =12.故实数a 的值为12.解与对数函数有关的函数的单调性问题的步骤1.设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析:选D .当x ≤1时,21-x≤2,解得x ≥0,所以0≤x ≤1;当x >1时,1-log 2x ≤2,解得x ≥12,所以x >1.综上可知x ≥0.2.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( ) A .[1,2) B .[1,2] C .[1,+∞)D .[2,+∞)解析:选A .令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1, 解得1≤a <2,即a ∈[1,2).比较指数式、对数式的大小(师生共研)(1)(2020·高考全国卷Ⅲ)设a =log 32,b =log 53,c =23,则( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b(2)已知奇函数f (x )在R 上是增函数.若a =-f ⎝ ⎛⎭⎪⎫log 215,b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小有关系为( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b【解析】 (1)因为23<32,所以2<323,所以log 32<log 3323=23,所以a <c .因为33>52,所以3>523,所以log 53>log 5523=23,所以b >c ,所以a <c <b ,故选A .(2)因为f (x )为奇函数,所以f (-x )=-f (x ),所以a =-f (-log 25)=f (log 25), 而log 25>log 24.1>2>20.8,且y =f (x )在R 上为增函数, 所以f (log 25)>f (log 24.1)>f (20.8), 即a >b >c ,故选C . 【答案】 (1)A (2)C(1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.1.已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <bD .b <c <a解析:选B .因为y =log 2x 和y =2x是其定义域上的增函数,而y =0.2x是减函数,所以a =log 20.2<log 21=0,b =20.2>20=1,c =0.20.3∈(0,0.20),即c ∈(0,1).所以a <c <b .故选B .2.(2021·江西五校联考)若0<a <b <1,则a b,b a,log 1ab ,log b a 的大小关系为( )A .a b>b a>log b a >log 1abB .b a >a b>log 1ab >log b aC .log b a >a b>b a>log 1abD .log b a >b a>a b>log 1ab解析:选D .因为0<a <b <1,所以0<a b<b b<b a<1,log b a >log b b =1,log 1ab <0,所以log b a >b a>a b>log 1ab ,故选D .思想方法系列5 分类讨论思想研究指数、对数函数的性质已知函数f (x )=log a (2x -a )(a >0且a ≠1)在区间[12,23]上恒有f (x )>0,则实数a 的取值范围是( )A .(13,1)B .[13,1)C .(23,1)D .[23,1)【解析】 当0<a <1时,函数f (x )在区间[12,23]上是减函数,所以log a (43-a )>0,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间[12,23]上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 的取值范围是(13,1).【答案】 A本题利用了分类讨论思想,在研究指数、对数函数的性质时,常对底数a 的值进行分类讨论,实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.已知函数y =a 2x+2a x-1(a >0,且a ≠1),当x ≥0时,求函数的值域.解:y =a 2x+2a x -1,令t =a x, 则y =g (t )=t 2+2t -1=(t +1)2-2.当a >1时,因为x ≥0,所以t ≥1,所以当a >1时,y ≥2. 当0<a <1时,因为x ≥0,所以0<t ≤1.因为g (0)=-1,g (1)=2,所以当0<a <1时,-1<y ≤2. 综上所述,当a >1时,函数的值域是[2,+∞); 当0<a <1时,函数的值域是(-1,2].。
高考数学总复习第二章函数、导数及其应用课时作业8指数与指数函数课件文新人教A版
3.(2019·福建厦门一模)已知 a=120.3,b=log21 0.3,c=ab,则 a,
b,c 的大小关系是( B )
A.a<b<c B.c<a<b
C.a<c<b
D.b<c<a
解析:b=log1 2
0.3>log1 2
12=1>a=120.3,c=ab<a.
∴c<a<b.故选 B.
4.(2019·中山模拟)设函数 f(x)=12x-7,x<0, x,x≥0,
课时作业8 指数与指数函数
1.(2019·河北八所重点中学一模)设 a>0,将
数指数幂的形式,其结果是( C )
a2 表示成分
3 a·
a2
解析:
2.(2019·湖北四市联考)已知函数 f(x)=2x-2,则函数 y=|f(x)|
的图象可能是( B )
解析:y=|f(x)|=|2x-2|=22-x-22x,,xx<≥11,, 易知函数 y=|f(x)|的图象的分段点是 x=1,且过点(1,0),(0,1), |f(x)|≥0. 又|f(x)|在(-∞,1)上单调递减,故选 B.
若 f(a)<1,
则实数 a 的取值范围是( C )
A.(-∞,-3) B.(1,+∞)
C.(-3,1)
D.(-∞,-3)∪(1,+∞)
解析:当 a<0 时,不等式 f(a)<1 可化为12a-7<1,即12a<8, 即12a<12-3,
因为 0<12<1,所以 a>-3, 此时-3<a<0; 当 a≥0 时,不等式 f(a)<1 可化为 a<1, 所以 0≤a<1.故 a 的取值范围是(-3,1).
解:令 t=x2+2x=(x+1)2-1,
∵x∈-32,0,∴t∈[-1,0]. ①若 a>1,函数 f(t)=at 在[-1,0]上为增函数,
2022届高考数学一轮复习(新高考版) 第2章 指数与指数函数
3
<
3 4
3
,故D正确.
(2)设m,n∈R,则“m<n”是“
1 2
m-n>1”的
A.充分不必要条件
B.必要不充分条件
√C.充要条件
D.既不充分也不必要条件
解析 12m-n>1, 即12m-n>120, ∴m-n<0,∴m<n. 故“m<n”是“12m-n>1”的充要条件.
(3)函数f(x)=
[高考改编题] 若ea+πb≥e-b+π-a,下列结论一定成立的是
A.a+b≤0
B.a-b≥0
C.a-b≤0
√D.a+b≥0
解析 ∵ea+πb≥e-b+π-a,
∴ea-π-a≥e-b-πb,
①
令f(x)=ex-π-x,则f(x)是R上的增函数,
①式即为f(a)≥f(-b),
∴a≥-b,即a+b≥0.
解析 原不等式可化为a>-4x+2x+1对x∈R恒成立, 令t=2x,则t>0,∴y=-4x+2x+1=-t2+2t=-(t-1)2+1≤1, 当t=1时,ymax=1,∴a>1.
思维升华
(1)利用指数函数的性质比较大小或解方程、不等式,最重要的是“同 底”原则,比较大小还可以借助中间量. (2)求解与指数函数有关的复合函数问题,要明确复合函数的构成,涉 及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质 分析判断.
4.指数函数及其性质 (1)概念:函数y=ax(a>0,且a≠1)叫做指数函数,其中指数x是自变量, 函数的定义域是R,a是底数. (2)指数函数的图象与性质
a>1
0<a<1
图象
定义域 值域
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回导航页
结束放映
同类练2.2.不等式 2-x2+2x > (1)x+4的解集为________.
结束放映
考向分层突破一:指数幂的化简与求值
化简下列各式:
(1)(3 2 6)6-4(16)-12 49
解析: (1)原式= =101
返回导航页
结束放映
(2 )(0 .0 2 7 )-1 3-(1 )-2+ (2 7 )1 2-( 2-1 )0
7
9
(3 )(5 a 1 3 b -2 ) (-3 a -1 2 b -1 ) (4 a 3 2 b -3 )1 2a b
∵y= ( 2 ) x (x∈R)为减函数,∴c>b,∴a>c>b. 5
答案:a>c>b
返回导航页
结束放映
同类练1.求f(x)=( 1 ) -x 2 + 2x +1 的单调区间.
2
解析: u=-x2+2x+1在(-∞,1]上是增函数, 在[1,+∞)上为减函数;
而函数y= ( 1 ) u 在R上为减函数, 2
②负分数指数幂:am n =
1
m
an
na1m
ቤተ መጻሕፍቲ ባይዱ
(a>0,m,n∈N*,且n>1).
③0的正分数指数幂等于0,0的负分数指数幂没有意义.
返回导航页
结束放映
2.有理数指数幂
(1)幂的有关概念: ①正分数指数幂:am n =nam(a>0,m,n∈N*,且n>1).
②负分数指数幂:am n =
1
m
an
na1m
) B.x轴对称
C.原点对称 D.直线y=x对称
解析: (1)∵g(x)=21-x=f(-x), ∴f(x)与g(x)的图象关于y轴对称.
返回导航页
结束放映
跟踪训练2:若曲线y=|2x-1|与直线y=b有两个公共 点,求b的取值范围.
解析: 曲线y=|2x-1|与直线y=b的图象如图所示,
由图象可得,如果曲线y=|2x-1|与直线y=b有两个公共点, 则b的取值范围是(0,1).
返回导航页
结束放映
考向分层突破三:指数函数的性质及应用
例2(1)(2014•贵州遵义六校联考)若函数f(x)=a|2x-4|(a>0,a≠1)满足 f(1)= ,则f(x)的单调91 递减区间是( ) A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]
解析:(1)f(1)= 又a>0,所以a=
温馨提示: 请点击相关栏目。
整知识·萃取知识精华 整方法·启迪发散思维
考向分层突破一 考向分层突破二 考向分层突破三 考向分层突破四
考点 • 分类整合
1.根式
(1)根式的概念 ①若xn=a,则x叫做a的n次方根,其中n>1且n∈N*.式子 n a 叫做根式,这里n叫做根指数,a叫做被开方数. ②a的n次方根的表示:
考向大突破二:指数函数的图象及应用
例1:(1)函数f(x)=1-e|x|的图象大致是( )
解析: (1)将函数解析式与图象对比分析, 因为函数f(x)=1-e|x|是偶函数,且值域是(-∞,0], 只有A满足上述两个性质,故选A.
返回导航页
结束放映
(2)方程2x=2-x的解的个数是________.
y=ax(a>0,且a≠1)
a>1
0<a<1
定义域 值域
性质
R
(0,+∞)
过定点(0,1)
当x>0时,y>1; 当x>0时,0<y<1;
x<0时,0<y<1
当x<0时,y>1
在R上是增函数
在R上是减函数
返回导航页
结束放映
考点 • 分类整合
1.指数函数图象的画法
画指数函数y=ax(a>0,且a≠1)的图象,应抓住三个关键点:(1,a), (0,1),(-1,1 )
6
返回导航页
结束放映
指数幂的一般运算步骤:
有括号先算括号里的,无括号先做指数运算,先乘除后加 减,负指数幂化成正指数幂的倒数,底数是负数,先确定符 号,底数是小数,先要化成分数,底数是带分数的,先化成 假分数,若是根式,应化为分数指数幂,尽可能用幂的形式 表示,运用指数运算性质.
返回导航页
结束放映
得a2= . ,因此f(x)=13|2x-4|.
因为g(x)=|2x-4|在[2,+∞)上单调递增, 所以f(x)的单调递减区间是[2,+∞).
返回导航页
结束放映
(2)设a=
,( 3 b) =52
5
,c=(
2 5
)
,53 则a,b,( 2 c) 的52 大小关系是________.
5
2
(2)∵y= x 5 (x>0)为增函数,∴a>c.
a
(2)与指数函数有关的函数的图象的研究,往往利用相应 指数函数的图象,通过平移、对称变换得到其图象.
(3)一些指数方程、不等式问题的求解,往往利用相应的 指数型函数图象数形结合求解.
返回导航页
结束放映
跟踪训练1:在同一直角坐标系中,函数f(x)=2x+1与g(x)=(
)x12-A.1的y图轴象对关称于(
(a>0,m,n∈N*,且n>1).
③0的正分数指数幂等于0,0的负分数指数幂没有意义.
(2)有理数指数幂的性质: ①aras=ar+s(a>0,r,s∈Q);
②(ar)s=ars(a>0,r,s∈Q);
③(ab)r=arbr(a>0,b>0,r∈Q).
返回导航页
结束放映
3.指数函数的图象与性质
函数 图象
a
2.应用指数函数性质时应注意的两点
(1)指数函数y=ax(a>0,a≠1)的图象和性质跟a的取值有关, 要特别注意应分a>1与0<a<1来研究.
(2)对可化为a2x+b•ax+c=0或a2x+b•ax+c≥0(≤0)的指数 方程或不等式,常借助换元法解决,但应注意换元后“新元” 的取值范围.
返回导航页
xn=a x=na(当 n为 奇 数 且 n N *时 ) x=na(当 n为 偶 数 且 n N *时 )
返回导航页
结束放映
(2)根式的性质
①(n a )n =a.(n∈N*).
a,当n为奇数
②
n an
=a
a,a0 =-a,a<0
当n为偶数
(2)分数指数幂的意义 ①正分数指数幂:am n =nam (a>0,m,n∈N*,且n>1).
解析:(2)方程的解可看作函数y=2x和y=2-x的图象交点的横坐标,分别 作出这两个函数图象(如图所示).
由图象得只有一个交点,因此该方程只有一个解. 答案:1
返回导航页
结束放映
指数函数图象的画法及应用 (1)画指数函数y=ax(a>0,a≠1)的图象,应抓住三个关 键点:(1,a),(0,1),( - 1 , 1 )