高三一轮复习:集合1--2

合集下载

2022届高三数学(理)一轮总复习练习-第一章 集合与常用逻辑用语 1-2 Word版含答案

2022届高三数学(理)一轮总复习练习-第一章 集合与常用逻辑用语 1-2 Word版含答案

课时规范训练[A级基础演练]1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析:选A.否命题是原命题的条件和结论同时否定,故选A.2.给定两个命题p,q.若﹁p是q的必要而不充分条件,则p是﹁q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由q⇒﹁p且﹁p⇒/q可得p⇒﹁q且﹁q⇒/p,所以p是﹁q的充分而不必要条件.3.命题“若x2>y2,则x>y”的逆否命题是()A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”答案:C4.设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是()A.a.若a≠-b,则|a|≠|b| B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-b D.若|a|=|b|,则a=-b解析:选D.条件与结论相互交换.即若|a|=|b|则a=-b5.“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B.由ln(x+1)<0得0<x+1<1,∴-1<x<0即(-1,0)(-∞,0)∴“x<0”是“ln(x+1)<0”的必要不充分条件.6.“0≤m≤1”是“函数f(x)=sin x+m-1有零点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.要使函数f(x)=sin x+m-1有零点,则m-1=-sin x∈[-1,1],可知0≤m≤2.当0≤m≤1时,明显能得到0≤m≤2,即函数f(x)=sin x+m-1有零点,但反之不肯定成立,故选A.7.设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选D.依据充要条件的定义,举特例说明.设a=1,b=-2,则有a>b,但a2<b2,故a>b⇒/a2>b2;设a=-2,b=1,明显a2>b2,但a<b,即a2>b2⇒/a>b.故“a>b”是“a2>b2”的既不充分也不必要条件.8.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是__________.解析:否命题既否定题设又否定结论.答案:若f(x)不是奇函数,则f(-x)不是奇函数9.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是__________.解析:①原命题的否命题为“若a≤b则a2≤b2”,假命题.②原命题的逆命题为:“x,y互为相反数,则x+y=0”真命题.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”真命题.答案:②③10.下列命题:①若ac2>bc2,则a>b;②若sin α=sin β,则α=β;③“实数a=0”是“直线x-2ay=1和直线2x-2ay=1平行”的充要条件;④若f(x)=log2x,则f(|x|)是偶函数.其中正确命题的序号是__________.解析:对于①,ac2>bc2,c2>0,则a>b正确;对于②,sin 30°=sin 150°⇒/30°=150°,所以②错误;对于③,l1∥l2⇔A1B2=A2B1,即-2a=-4a⇒a=0且A1C2≠A2C1,所以③正确;④明显正确.答案:①③④[B级力量突破]1.假如x,y是实数,那么“x≠y”是cos x≠cos y的()A.充要条件B.充分不必要条件C.必要不充分条件D.即不充分又不必要条件解析:选C.若cos x=cos y⇒/x=y,反之成立,“cos x=cos y”是“x=y”的必要不充分条件,“x≠y”是“cos x≠cos y”的必要不充分条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则() A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:选C.利用命题和逆命题的真假来推断充要条件,留意推断为假命题时,可以接受反例法.当f′(x0)=0时,x=x0不肯定是f(x)的极值点,比如,y=x3在x=0时,f′(0)=0,但在x=0的左右两侧f′(x)的符号相同,因而x=0不是y=x3的极值点.由极值的定义知,x=x0是f(x)的极值点必有f′(x0)=0.综上知,p是q的必要条件,但不是充分条件.3.已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是() A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3]解析:选A.法一:设P={x|x>1或x<-3},Q={x|x>a},由于q是p的充分不必要条件,所以Q P,因此a≥1,故选A.法二:令a=-3,则q:x>-3,则由命题q推不出命题p,此时q不是p的充分条件,排解B,C,D,选A.4.设条件p:实数x满足x2-4ax+3a2<0,其中a<0;条件q:实数x满足x2+2x-8>0,且q是p的必要不充分条件,则实数a的取值范围是________.解析:本题考查必要不充分条件的应用与一元二次不等式的解法.由x2-4ax+3a2<0得3a<x<a,由x2+2x-8>0得x<-4或x>2,由于q是p的必要不充分条件,则⎩⎪⎨⎪⎧a<0,a≤-4,所以a≤-4.答案:(-∞,-4]5.以下关于命题的说法正确的有__________(填写全部正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,该命题的逆命题是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.答案:②④。

高三一轮复习1-2命题及其关系、充分条件与必要条件

高三一轮复习1-2命题及其关系、充分条件与必要条件

换,因此逆命题为“若一个数的平方是正数,则它是负数”.
答案:B
高考总复习 RJ · A版(理)数学
3.已知p:不等式x2+2x+m>0的解集为R;q:指数函数 1x f(x)=(m+ ) 为增函数,则p是q的( ) 4 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:由x2+2x+m>0的解集为R,得Δ=4-4m<0,即 m>1. 1x 1 3 由指数函数f(x)=(m+ ) 为增函数,得m+ >1,即m> , 4 4 4 3 3 3 因此,p:m>1,q:m> ,由m>1> ,但m> 时不一定有 4 4 4 m>1,故选A. 答案:A
高考总复习 RJ · A版(理)数学
4.(2011年皖南八校第二次联考)“a=-1”是“函数f(x)
=ax2+2x-1只有一个零点”的( A.充分必要条件 C.必要不充分条件 ) B.充分不必要条件 D.非充分非必要条件
解析:a=-1⇒a=-1或a=0⇔f(x)=ax2+2x-1只有一个 零点. 答案:B
高考总复习 RJ · A版(理)数学
变式迁移3 已知a、b是实数,求证:a4-b4-2b2=1成立 的充分条件是a2 -b2 =1.该条件是否为必要条件?试证明你的 结论. 证明:∵a2 -b2 =1,∴a4 -b4 -2b2 =(a2 -b2)(a2 +b2)- 2b2=(a2+b2)-2b2=a2-b2=1. 即a4-b4-2b2=1成立的充分条件是a2-b2=1. 另一方面又a4 -b4 -2b2 =1,即为a4 -(b4 +2b2 +1)=0.a4 -(b2+1)2=0, (a2-b2-1)(a2+b2+1)=0,又a2+b2+1≠0,∴a2-b2-1 =0,即a2-b2=1. 因此a2-b2=1既是a4-b4-2b2=1的充分条件,也是a4- b4-2b2=1的必要条件.

高三数学一轮复习 第1章 集合与常用逻辑用语第1课时 集合的概念与运算精品课件

高三数学一轮复习 第1章 集合与常用逻辑用语第1课时 集合的概念与运算精品课件
• (3)五个关系式A⊆B、A∩B=A,A∪B=B,∁UB⊆∁UA以及A∩(∁UB) =∅是两两等价的.
• 集合是高中数学的基础内容,也是高考数学的必考内容,难度 不大,一般是一道选择题或填空题.通过对近两年高考试题的统 计分析可以看出,对集合内容的考查一般以两种方式出现:一是 考查集合的概念、集合间的关系及集合的运算.
• (3){x|x2-ax-1=0}和{a|方程x2-ax-1=0有实根}的意义不 同.{x|x2-ax-1=0}表示由二次方程x2-ax-1=0的解构成的集 合,而集合{a|方程x2-ax-1=0有实根}表示方程x2-ax-1=0有 实数解时参数a的范围构成的集合.
【变式训练】 1.现有三个实数的集合,既可以表示为a,ba,1, 也可表示为{a2,a+b,0},则 a2 011+b2 011=________.
命题与量 词、 基本 逻辑 联结 词
1.了解命题的概念. 2.了解逻辑联结词“或”、“且”、“非”的含义. 3.理解全称量词与存在量词的含义. 4.能正确地对含有一个量词的命题进行否定.
充分条件、
必要
条件 1.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四
与命
种命题的相互关系.
题的 2.理解必要条件、充分条件与充要条件的意义.
①集合 S={a+b 3|a,b 为整数}为封闭集; ②若 S 为封闭集,则一定有 0∈S; ③封闭集一定是无限集; ④若 S 为封闭集,则满足 S⊆T⊆R 的任意集合 T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)
序号 结论
理由
• 【全解全析】对于任意整数 a1,b1,a2,b2,有 a1+b1 3+a2+b2 3
B.{a|a≤2或a≥4}

数学高三一轮复习用书全套(1000页)

数学高三一轮复习用书全套(1000页)

课堂过关第一章 集合与常用逻辑用语第1课时 集合的概念(对应学生用书(文)、(理)1~2页)了解集合的含义;体会元素与集合的“属于”关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的数学对象或数学问题;了解集合之间包含与相等的含义;能识别给定集合的子集;了解全集与空集的含义.① 学会区分集合与元素,集合与集合之间的关系. ② 学会自然语言、图形语言、集合语言之间的互化. ③ 集合含义中掌握集合的三要素.④ 不要求证明集合相等关系和包含关系.1. (必修1P 7第1题改编)集合{x ∈N |x<5}可以用列举法表示为________. 答案:{0,1,2,3,4}解析:∵ x<5且x ∈N ,∴ x =0,1,2,3,4,特别注意0∈N .2. (必修1P 7第4题改编)已知集合A ={(x ,y)|-1≤x ≤1,0≤y<2,x 、y ∈Z },用列举法可以表示集合A 为________.答案:{(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}解析:用集合A 表示不等式组⎩⎪⎨⎪⎧-1≤x ≤1,x ∈Z ,0≤y<2,y ∈Z 确定的平面区域上的格点集合,所以用列举法表示集合A 为{(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}.3. (必修1P 17第6题改编)已知集合A =[1,4),B =(-∞,a),A ⊆ B ,则a ∈________. 答案:[4,+∞)解析:在数轴上画出A 、B 集合,根据图象可知.4. (必修1P 7第4题改编)由x 2,x 组成一个集合A ,A 中含有2个元素,则实数x 的取值不可以是________.答案:0和1解析:由x 2=x 可解得.5. (必修1P 17第8题改编)已知集合A ={1,2,3,4,5},B ={(x ,y)|x ∈A ,y ∈A ,x -y ∈A},则B 中所含元素的个数为________个.答案:10解析:x =5,y =1,2,3,4,x =4,y =1,2,3,x =3,y =1,2,x =2,y =1,共10个.1. 集合的含义及其表示(1) 集合的定义:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.其中集合中的每一个对象称为该集合的元素.(2) 集合中元素的特征:确定性、互异性、无序性.(3) 集合的常用表示方法:列举法、描述法、V enn 图法.(4) 集合的分类:若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类可分为点集、数集等.应当特别注意空集是一个特殊而又重要的集合,解题时切勿忽视空集的情形.(5) 常用数集及其记法:自然数集记作N ;正整数集记作N 或N +;整数集记作Z ;有理数集记作Q ;实数集记作R ;复数集记作C .2. 两类关系(1) 元素与集合之间的关系包括属于与不属于关系,反映了个体与整体之间的从属关系. (2) 集合与集合之间的关系① 包含关系:如果集合A 中的每一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆ B 或B ⊇ A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”.② 真包含关系:如果A ⊆B ,并且A ≠B ,那么集合A 称为集合B 的真子集,读作“集合A 真包含于集合B ”或“集合B 真包含集合A ”.③ 相等关系:如果两个集合所含的元素完全相同,即A 中的元素都是B 中的元素且B 中的元素都是A 中的元素,则称这两个集合相等.(3) 含有n 个元素的集合的子集共有2n 个,真子集共有2n -1个,非空子集共有2n -1个,非空真子集有2n -2个.题型1 集合的基本概念例1 已知集合A ={x|ax 2-3x +2=0,a ∈R }. (1) 若A 是空集,求a 的取值范围;(2) 若A 中只有一个元素,求a 的值,并将这个元素写出来; (3) 若A 中至多有一个元素,求a 的取值范围.解: (1) 若A 是空集,则Δ=9-8a <0,解得a >98.(2) 若A 中只有一个元素,则Δ=9-8a =0或a =0,解得a =98或a =0;当a =98时,这个元素是43;当a =0时,这个元素是23.(3) 由(1)(2)知,当A 中至多有一个元素时,a 的取值范围是a ≥98或a =0.变式训练下列三个集合:① {x|y =x 2+1};② {y|y =x 2+1};③ {(x ,y)|y =x 2+1}. (1) 它们是不是相同的集合? (2) 它们的各自含义是什么? 解:(1) 它们是不相同的集合.(2) 集合①是函数y =x 2+1的自变量x 所允许的值组成的集合.因为x 可以取任意实数,所以{x|y =x 2+1}=R .集合②是函数y =x 2+1的所有函数值y 组成的集合.由二次函数图象知y ≥1,所以{y|y =x 2+1}={y|y ≥1}.集合③是函数y =x 2+1图象上所有点的坐标组成的集合.备选变式(教师专享)已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值.解:∵ -3∈A ,∴ -3=a -3或-3=2a -1.若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意;若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.题型2 集合间的基本关系例2 若集合A ={x|-2≤x ≤5},B ={x|m +1≤x ≤2m -1},且B ⊆ A ,求由m 的可取值组成的集合.解:当m +1>2m -1,即m<2时,B =∅,满足B ⊆A ;若B ≠∅ ,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴ 2≤m ≤3.故m<2或2≤m ≤3,即所求集合为{m|m ≤3}. 变式训练已知集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1,集合B ={a 2,a +b ,0},若A =B ,求a 2 014+b 2 015的值.解:由于a ≠0,由ba=0,得b =0,则A ={a ,0,1},B ={a 2,a ,0}.由A =B ,可得a 2=1.又a 2≠a ,则a ≠1,则a =-1.所以a 2 014+b 2 015=1.备选变式(教师专享)若集合P ={x|x 2+x -6=0},S ={x|ax +1=0},且S ⊆P ,求由a 的可取值组成的集合. 解:P ={-3,2}.当a =0时,S =∅,满足S ⊆P ;当a ≠0时,方程ax +1=0的解为x =-1a ,为满足S ⊆P 可使-1a =-3或-1a =2,即a =13或a =-12.故所求a 的取值的集合为⎩⎨⎧⎭⎬⎫0,13,-12.题型3 根据集合的关系求参数的取值范围例3 (2015·南通期末)已知集合A ={x|0<ax +1≤5},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x ≤2.若B ⊆A ,求实数a 的取值范围.解:当a =0时,显然B ⊆A ;当a<0时,若B ⊆A ,如图,则⎩⎨⎧4a ≤-12,-1a>2,∴ ⎩⎪⎨⎪⎧a ≥-8,a>-12, ∴ -12<a<0;当a>0时,如图,若B ⊆A ,则⎩⎨⎧-1a ≤-12,4a≥2,∴ ⎩⎪⎨⎪⎧a ≤2,a ≤2,∴ 0<a ≤2.综上知,当B ⊆A 时,-12<a ≤2.备选变式(教师专享)已知A ={-1,1},B ={x|x 2-ax +b =0}.若B ⊆A ,求实数a ,b 的值. 解:∵ B ⊆A ={-1,1},∴ B =∅或B ={-1}或B ={1}或B ={-1,1}. 若B =∅,则方程x 2-ax +b =0无实数根, 即Δ=(-a)2-4×1×b<0,此时a 2<4b.若B ={-1},则方程x 2-ax +b =0有且只有一个实数根-1,即Δ=(-a)2-4b =0,且(-1)2-a ×(-1)+b =0,此时a =-2,b =1.若B ={1}时,则方程x 2-ax +b =0有且只有一个实数根1, 即Δ=(-a)2-4b =0,且12-a ×1+b =0,若B ={-1,1},则方程x 2-ax +b =0有两个不相等的实数根-1,1,即(-1)2-a ×(-1)+b =0,12-a ×1+b =0,此时a =0,b =-1.综上所述,当a 2<4b 时,不论a ,b 取何值,A ⊆B ; 当⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =0,b =-1时,B ⊆A. 1. (2015·南京、盐城一模)设集合M ={2,0,x},集合N ={0,1},若N ⊆M ,则实数x 的值为________.答案:1解析:由N ⊆M 知1∈M ,则x =1. 2. (2015·南师附中模拟)若A ={a},B ={0,a 2},A ⊆B ,则A =________. 答案:{1}解析:若a =0,则a 2=0,B 中元素不满足互异性;若a =a 2,则a =0(舍)或a =1(满足互异性).3. 若x ∈A ,则1x ∈A ,就称A 是“伙伴关系集合”,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是________.答案:3解析:具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.4. 已知集合M ⊆{2,3,5},且M 中至少有一个奇数,则这样的集合共有________个. 答案:6解析:当M 中奇数只有3时:{3},{2,3};当M 中奇数只有5时:{5},{2,5};当M 中奇数有3,5时:{3,5},{2,3,5},∴ 共有6个这样的集合.5. (2015·昌平期中)若a ,b ∈R ,集合{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,b a ,b ,求b -a 的值.解: 由{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,b a ,b 可知a ≠0,则只能a +b =0,则有以下对应法则:⎩⎪⎨⎪⎧a +b =0,ba =a ,b =1① 或⎩⎪⎨⎪⎧a +b =0,b =a ,b a =1.②由①得⎩⎪⎨⎪⎧a =-1,b =1,符合题意;②无解.∴ b -a =2.1. (2015·浙江)已知集合A{x|x 2-x -2<0},B ={x|-1<x<1},则A 与B 的关系是________. 答案:B A解析:A ={x|-1<x<2},∴ B 真属于A. 2. (2015·佛山期中)若集合A ={-1,1},B ={0,2},则集合{z ︱z =x +y ,x ∈A ,y ∈B}中的元素的个数为________.答案: 3解析:容易看出x +y 只能取-1、1、3这三个数值.故共有3个元素.3. 已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ax -1x -a <0,且2∈A ,3∉ A ,则实数a 的取值范围是________.答案:⎣⎡⎭⎫13,12∪(2,3]解析:因为2∈A ,所以2a -12-a<0,即(2a -1)(a -2)>0,解得a >2或a <12.①若3∈A ,则3a -13-a<0,即(3a -1)(a -3)>0,解得a >3或a <13,所以3∉A 时,13≤a ≤3.②由①②可知,实数a 的取值范围为⎣⎡⎭⎫13,12∪(2,3].4. 若集合A 中有且仅有三个数1、0、a ,若a 2∈A ,求a 的值. 解:若a 2=0,则a =0,不符合集合中元素的互异性,∴ a 2≠0. 若a 2=1,则a =±1,∵ 由元素的互异性知a ≠1,∴ a =-1时适合.若a 2=a ,则a =0或1,由上面讨论知均不符合集合中元素互异性的要求. 综上可知a =-1.1. 研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x|y =f(x)}、{y|y =f(x)}、{(x ,y)|y =f(x)}三者的不同.对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2. 空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A ⊆B ,则需考虑A =∅ 和A ≠∅两种可能的情况.3. 判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.4. 已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、V enn 图帮助分析.请使用课时训练(A )第1课时(见活页).第2课时集合的基本运算(对应学生用书(文)、(理)3~4页)理解两个集合的交集与并集的含义;会求两个简单集合的交集与并集,理解给定集合的一个子集的补集的含义;会求给定子集的补集,会用韦恩图表示集合的关系及运算.①在给定集合中会求一个子集的补集,补集的含义在数学中就是对立面.②会求两个简单集合的交集与并集;交集的关键词是“且”,并集的关键词是“或”.③会使用韦恩图(Venn)表达集合的关系及运算;对于数集有时也可以用数轴表示.1. (必修1P13第3题改编)已知集合A={x|-2<x<2},B={x|x≤1},则A∩B=________.答案:(-2,1]解析:本题考查集合概念及基本运算.2. (必修1P13习题2题改编)已知集合A={x|x2-16=0},B={x|x2-x-12=0},则A∪B =________.答案:{-4,-3,4}解析:∵ A={-4,4},B={-3,4},∴A∪B={-4,-3,4}.3. (必修1P14习题10改编)已知全集U=R,集合A={1,2,3,4,5},B=[3,+∞),则图中阴影部分所表示的集合为________.答案:{1,2}解析:由题意,阴影部分表示A∩(∁U B).因为∁U B={x|x<3},所以A∩(∁U B)={1,2}.4. (必修1P13习题2题改编)设集合I={x||x|<3,x∈Z},A={1,2},B={-2,-1,2},则A∪(∁I B)=________.答案:{0,1,2}解析:I={-2,-1,0,1,2},∁I B={0,1},∴A∪(∁I B)={0,1,2}.5. (必修1P10习题4题改编)设集合A、B都是全集U={1,2,3,4}的子集,已知(∁U A)∩(∁U B)={2},(∁U A)∩B={1},A∩B= ,则A=________.答案:{3,4}解析:画出韦恩图,知A={3,4}.1. 集合的运算(1) 交集:由属于A且属于B的所有元素组成的集合,叫做集合A与B的交集,记作A∩B,即A∩B={x|x∈A且x∈B}.(2) 并集:由属于A或属于B的所有元素组成的集合,叫做集合A与B的并集,记作A∪B,即A∪B={x|x∈A或x∈B}.作一个全集,通常用U 来表示.一切所研究的集合都是这个集合的子集.(4) 补集:集合A 是集合S 的一个子集,由S 中所有不属于A 的元素组成的集合叫做A 的补集(或余集),记作∁S A ,即∁S A ={x|x ∈S ,但x ∉ A}.2. 常用运算性质及一些重要结论(1) A ∩A =A ,A ∩∅ =∅,A ∩B =B ∩A ; (2) A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A ; (3) A ∩(∁U A)=∅,A ∪(∁U A)=U ;(4) A ∩B =A ⇔ A ⊆B ,A ∪B =A ⇔B ⊆A ;(5) ∁U (A ∩B)=(∁U A)∪(∁U B),∁U (A ∪B)=(∁U A)∩(∁U B). [备课札记]题型1 集合的运算 例1 全集U ={1,2,3,4,5},A ={x|x 2-5x +m =0},B ={x|x 2+nx +12=0},且(∁U A)∪B ={1,3,4,5},则m +n 的值为________.答案:-1解析:∵ U ={1,2,3,4,5},(∁U A)∪B ={1,3,4,5},∴ 2∈A.又A ={x|x 2-5x +m =0},∴ 2是关于x 的方程x 2-5x +m =0的一个根,得m =6且A ={2,3},∴ ∁U A ={1,4,5}.而(∁U A)∪B ={1,3,4,5},∴ 3∈B.又B ={x|x 2+nx +12=0},∴ 3一定是方程x 2+nx +12=0的一个根,∴ n =-7且B ={3,4},∴ m +n =-1.变式训练设集合A ={x 2,2x -1,-4},B ={x -5,1-x ,9},若A ∩B ={9},求A ∪B. 解:由9∈A ,可得x 2=9或2x -1=9,解得x =±3或x =5.当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;当x =-3时,A ={9,-7,-4},B ={-8,4,9},A ∩B ={9}满足题意,故A ∪B ={-8,-7,-4,4,9};当x =5时,A ={25,9,-4},B ={0,-4,9},此时A ∩B ={-4,9}与A ∩B ={9}矛盾,故舍去.综上所述,A ∪B ={-8,-7,-4,4,9}.题型2 根据集合的运算求参数的取值范围例2 设A ={x|a ≤x ≤a +3},B ={x|x<-1或x>5},当a 为何值时, (1) A ∩B ≠∅ ; (2) A ∩B =A ; (3) A ∪(∁R B)=∁R B.解:(1) A ∩B ≠∅,∵ 集合A 的区间长度为3, ∴ 由图可得a<-1或a +3>5,解得a<-1或a>2, ∴ 当a<-1或a>2时,A ∩B ≠∅.(2) ∵ A ∩B =A ,∴ A ⊆ B.由图得a +3<-1或a>5,即a<-4或a>5时,A ∩B =A.(3) 由补集的定义知∁R B ={x|-1≤x ≤5}, ∵ A ∪(∁R B)=∁R B ,∴ A ⊆∁R B.由图得⎩⎪⎨⎪⎧a ≥-1,a +3≤5,解得-1≤a ≤2.变式训练已知A ={x|ax -1>0},B ={x|x 2-3x +2>0}. (1) 若A ∩B =A ,求实数a 的取值范围; (2) 若A ∩∁R B ≠∅,求实数a 的取值范围.解:(1) 由于A ∩B =A 得A ⊆B ,由题意知B ={x|x>2或x<1}.若a>0,则x>1a≥2,得0<a ≤12;若a =0,则A =∅,成立;若a <0,则x <1a <1,根据数轴可知均成立.综上所述,a ≤12.(2) ∁R B ={x|1≤x ≤2},若a =0,则A =∅,不成立;若a <0,则x <1a<1,不成立;若a >0,则x >1a ,由1a <2得a >12.综上所述,a >12.备选变式(教师专享)已知集合A ={x|x 2-3x +2=0},B ={x|0≤ax +1≤3}.若A ∪B =B ,求实数a 的取值组成的集合.解:∵ A ∪B =B ,∴ A ∅B ,∴ ⎩⎪⎨⎪⎧0≤a +1≤3,0≤2a +1≤3,∴ ⎩⎪⎨⎪⎧-1≤a ≤2,-12≤a ≤1.∴ -12≤a ≤1.∴ 实数a 的取值组成的集合为⎣⎡⎦⎤-12,1. 题型3 集合的综合应用例3 设U =R ,集合A ={x|x 2+3x +2=0},B ={x|x 2+(m +1)x +m =0},若(∁U A)∩B =,求m 的值.解:A ={-2,-1},由(∁U A)∩B =∅,得B ⊆A , 当m =1时,B ={-1},符合B ⊆A ; 当m ≠1时,B ={-1,-m},而B ⊆A , ∴ -m =-2,即m =2. ∴ m =1或2.备选变式(教师专享)50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数有___________人.答案:25解析:全班分4类人:设两项测验成绩都及格的人数为x 人;仅跳远及格的人数为40-x 人;仅铅球及格的人数为31-x 人;两项测验成绩都不及格的人数为4人 .∴ 40-x +31-x +x +4=50,∴ x =25.题型4 集合运算有关的新定义问题例4 定义集合A 、B 的运算A*B ={x|x ∈A ,或x ∈B ,但x A ∩B},设A ={1,2,3,4},B ={1,2,5,6,7},则(A*B)*A =________.答案:{1,2,5,6,7}解析:A *B ={3,4,5,6,7},∴ (A *B)A ={1,2,5,6,7}. 备选变式(教师专享)(必修1P 14习题13改编)对任意两个集合M 、N ,定义:M -N ={x|x ∈M 且x ∉ N},M*N =(M -N)∪(N -M),设M ={y|y =x 2,x ∈R },N ={y|y =3sinx ,x ∈R },则M*N =________.答案:{y|y>3或-3≤y<0}解析:∵ M ={y|y =x 2,x ∈R }={y|y ≥0},N ={y|y =3sinx ,x ∈R }={y|-3≤y ≤3},∴M -N ={y|y>3},N -M ={y|-3≤y<0},∴ M*N =(M -N)∪(N -M)={y|y>3}∪{y|-3≤y<0}={y|y>3或-3≤y<0}.1. (2015·安徽)已知集合A ={0,2,4,6},∁U A ={-1,1,-3,3},∁U B ={-1,0,2},则集合B =________.答案:{1,4,6,-3,3}解析:∵ ∁U A ={-1,1,-3,3},∴ U ={-1,1,0,2,4,6,-3,3}.又∁U B ={-1,0,2},∴ B ={1,4,6,-3,3}.2. (2015·泰州调研)设全集U =R ,集合A ={x|x<-1或2≤x<3},B ={x|-2≤x<4},则(∁U A)∪B =________.答案:{x|x ≥-2}解析:由图1数轴得∁U A ={x|-1≤x<2或x ≥3},再由图2数轴得(∁U A)∪B ={x|x ≥-2}.图1图23. (2015·射阳中学期末)已知函数f(x)=x +1,g(x)=x 2,集合D =[-1,a](a>-1),集合A ={y|y =f(x),x ∈D}与集合B ={y|y =g(x),x ∈D}相等,则实数a 的值等于________.答案:0或1+52解析:一次函数f(x)=x +1,x ∈[-1,a](a>-1)是单调递增函数,∴ A =[0,a +1].而B 集合是指定了定义域的二次函数的值域,分如下三类情况讨论:① 若a ∈(-1,0),则g(x)单调递减,B =[a 2,1],不可能与集合A 相等;② 若a ∈[0,1],则B =[0,1],要与A 相等,须a +1=1,∴ a =0;③ 若a ∈(1,+∞),则B =[0,a 2],要与A 相等,须a +1=a 2,∴ a=1±52,但1-52<1,舍去.综上得a =0或1+52.4. (2015·淮阴中学期末)已知集合A ={1,3,m},B ={1,m},A ∪B =A ,则m =________. 答案:0或3 解析:因为A ∪B =A ,所以B A ,所以m =3或m =m.若m =3,则A ={1,3,3},B ={1,3},满足A ∪B =A.若m =m ,解得m =0或m =1.若m =0,则A ={1,3,0},B ={1,0},满足A ∪B =A.若m =1,A ={1,3,1},B ={1,1},显然不成立.综上m =0或m =3.5. (2015·宿迁中学期中)设集合A ={x|x 2-3x +2=0},B ={x|x 2+2(a +1)x +(a 2-5)=0}. (1) 若A ∩B ={2},则实数a 的值为________;(2) 若A ∪B =A ,则实数a 的取值范围为________. 答案:(1)-1或-3 (2)a ≤-3解析:(1) ∵ A ={1,2},A ∩B ={2},∴ 2∈B ,代入B 中的方程,得a 2+4a +3=0a =-1或a =-3.当a =-1时,B ={x|x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x|x 2-4x +4=0}={2},满足条件.综上,a 的值为-1或-3.(2) 对于集合B ,Δ=4(a +1)2-4(a 2-5)=4(2a +6), ∵ A ∪B =A ,∴ B ⊆A.① 当Δ<0,即a<-3时,B =∅ ,满足条件; ② 当Δ=0,即a =-3时,B ={2},满足条件; ② 当Δ>0,即a>-3时,B =A ={1,2}.由韦达定理得⎩⎪⎨⎪⎧1+2=-2(a +1),1×2=a 2-5⇒ ⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤- 3.1. 已知A 、B 均为集合U ={1,2,3,4,5,6}的子集,且A ∩B ={3},(∁U B)∩A ={1},(∁U A)∩(∁U B)={2,4},则B ∩(∁U A)=________.答案:{5,6}解析:依题意及韦恩图可得,B ∩(∁U A)={5,6}.2. (2015·山东)已知集合A ={x||x -1|<2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -b x +2<0.若A ∩B ≠∅ ,则实数b 的取值范围是________.答案:(-1,+∞)解析:A ={x|-1<x<3},B ={x|(x -b)(x +2)<0}.因为A ∩B ≠∅,所以b>-1. 3. (2015·无锡期中)已知A ={x||x -a|<4},B ={x||x -2|>3}. (1) 若a =1,求A ∩B ;(2) 若A ∪B =R ,求实数a 的取值范围.解:(1) 当a =1时,A ={x|-3<x<5},B ={x|x<-1或x>5}. ∴ A ∩B ={x|-3<x<-1}.(2) ∵ A ={x|a -4<x<a +4},B ={x|x<-1或x>5},且A ∪B =R , ∴ ⎩⎪⎨⎪⎧a -4<-1,a +4>51<a<3. ∴ 实数a 的取值范围是(1,3).4. 某校高一年级举行语、数、英三科竞赛,高一(2)班共有32名同学参加三科竞赛,有16人参加语文竞赛,有10人参加数学竞费,有16人参加英语竞赛,同时参加语文和数学竞赛的有3人,同时参加语文和英语竞赛的有3人,没有人同时参加全部三科竞赛,问:同时参加数学和英语竞赛的有多少人?只参加语文一科竞赛的有多少人?解:设所有参加语文竞赛的同学组成的集合用A 表示,所有参加数学竞赛的同学组成的集合用B 表示,所有参加英语竞赛的同学组成的集合用C 表示,设只参加语文竞赛的有x 人,只参加数学竞赛的有y 人,只参加英语竞赛的有z 人,同时参加数学和英语竞赛的有m 人.根据题意,可作出如图所示Venn 图,则有⎩⎪⎨⎪⎧x +3+3+y +m +z =32,x +3+3=16,y +m +3=10,z +m +3=16,解得x =10,y =3,z =9,m =4.答:同时参加数学和英语竞赛的有4人,只参加语文一科竞赛的有10人.1. 集合的运算结果仍然是集合.进行集合运算时应当注意:(1) 勿忘对空集情形的讨论;(2) 勿忘集合中元素的互异性;(3) 对于集合A的补集运算,勿忘A必须是全集的子集;(4) 已知两集合间的关系求参数或参数范围问题时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常合理利用数轴、Venn 图化抽象为直观.还要注意“回代检验”,从而对所求数值进行合理取舍.2. 在集合运算过程中应力求做到“三化”(1) 意义化:首先明确集合的元素的意义,它是怎样的类型的对象(数集、点集,图形等)?是表示函数的定义域、值域,还是表示方程或不等式的解集?(2) 具体化:具体求出相关集合中函数的定义域、值域或方程、不等式的解集等;不能具体求出的,也应力求将相关集合转化为最简形式.(3) 直观化:借助数轴、直角坐标平面、韦恩图等将有关集合直观地表示出来,从而借助数形结合思想解决问题.请使用课时训练(B)第2课时(见活页).[备课札记]第3课时简单的逻辑联结词、全称量词与存在量词(对应学生用书(文)、(理)5~6页)了解命题的逆命题、否命题与逆否命题的意义;理解必要条件、充分条件、充要条件的意义;了解逻辑联结词“或”“且”“非”的含义;了解全称量词与存在量词的意义;了解含有一个量词的命题的否定的意义.①会分析四种命题的相互关系.②会判断必要条件、充分条件与充要条件.③能用“或”“且”“非”表述相关的数学内容(真值表不做要求).④能用全称量词与存在量词叙述简单的数学内容.⑤能正确地对含有一个量词的命题进行否定.1. (课本习题改编)命题“若x=3,y=5,则x+y=8”的逆命题是________.答案:若x+y=8,则x=3,y=5解析:将原命题的条件和结论互换,可得逆命题.2. (课本习题改编)命题“当AB=AC时,△ABC为等腰三角形”以及它的逆命题、否命题、逆否命题中,真命题的个数是________.答案:2解析:当AB=AC时,△ABC为等腰三角形为真,故逆否命题为真,逆命题:△ABC 为等腰三角形,则AB=AC为假,故否命题为假.3. (课本习题改编)已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的________条件.答案:必要而不充分解析:由a-c>b-d变形为a-b>c-d,因为c>d,所以c-d>0,所以a-b>0,即a>b,所以a-c>b-d a>b.而a>b并不能推出a-c>b-d,所以a>b是a-c>b-d的必要而不充分条件.4. (课本习题改编)若命题p:2是偶数;命题q:2是3的约数,则下列结论中正确的是________.(填序号)①“p∨q”为假;②“p∨q”为真;③“p∧q”为真.答案:②解析:命题p为真命题,命题q为假命题,故“p∨q”为真命题.5. (课本习题改编)命题p:∀x>1,log2x>0,则⌝p是________.答案:x>1,log2x≤0解析:全称命题的否定是存在性命题.1. 四种命题及其关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系(3) 四种命题的真假关系两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.2. 充分条件与必要条件(1) 如果p⇒q,那么称p是q的充分条件,q是p的必要条件.(2) 如果p⇒q,且q⇒p,那么称p是q的充要条件,记作p⇒q.(3) 如果p⇒q,q⇒/p,那么称p是q的充分不必要条件.(4) 如果q⇒p,p⇒/q,那么称p是q的必要不充分条件.(5) 如果p⇒/ q,且q⇒/ p,那么称p是q的既不充分也不必要条件.3. 简单的逻辑联结词(1) 用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(2) 用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(3) 一个命题p的否定记作⌝p,读作“非p”或“p的否定”.(4) 命题p∧q,p∨q,⌝p的真假判断p∧q中p、q有一假为假,p∨q有一真为真,p与非p必定是一真一假.4. 全称量词与存在量词(1) 全称量词与全称命题短语“所有”“任意”“每一个”等表示全体的量词在逻辑中称为全称量词,并用符号“x”表示.含有全称量词的命题,叫做全称命题.全称命题“对M中任意一个x,都有p(x)成立”可用符号简记为x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2) 存在量词与存在性命题短语“有一个”“有些”“存在一个”等表示部分的量词在逻辑中称为存在量词,并用符号“x”表示.含有存在量词的命题,叫做存在性命题.存在性命题“存在M中的一个x,使p(x)成立”可用符号简记为x∈M,p(x),读作“存在一个x属于M,使p(x)成立”.5. 含有一个量词的命题的否定命题命题的否定x∈M,p(x) ∃x∈M,⌝p(x)∃x∈M,p(x) ∀x∈M,⌝p(x)题型1四种命题及其相互关系例1写出下列命题的逆命题、否命题、逆否命题,并分别判断其真假.(1) 如果两圆外切,那么两圆的圆心距等于两圆半径之和;(2) 奇数不能被2整除.解:(1) 逆命题:如果两圆的圆心距等于两圆半径之和,那么两圆外切,真;否命题:如果两圆不外切,那么两圆心距不等于两圆半径之和,真;逆否命题:如果两圆心距不等于两圆半径之和,那么两圆不外切,真.(2) 逆命题:不能被2整除的数是奇数,假;否命题:不是奇数的数能被2整除,假;逆否命题:能被2整除的数不是奇数,真.变式训练判断命题“已知a,x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则判断a≥1”的逆否命题的真假.解:原命题:已知a,x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1.逆否命题:已知a,x为实数,如果a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.判断如下:抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.∵a<1,∴4a-7<0,即抛物线y=x2+(2a+1)x+a2+2与x轴无交点,∴关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,故逆否命题为真.备选变式(教师专享)设原命题为“已知a、b是实数,若a+b是无理数,则a、b都是无理数”.写出它的逆命题、否命题和逆否命题,并分别说明它们的真假.解:逆命题:已知a、b为实数,若a、b都是无理数,则a+b是无理数.如a=2,b=-2,a+b=0为有理数,故为假命题.否命题:已知a、b是实数,若a+b不是无理数,则a、b不都是无理数.由逆命题为假知,否命题为假.逆否命题:已知a、b是实数,若a、b不都是无理数,则a+b不是无理数.如a=2,b=2,则a+b=2+2是无理数,故逆否命题为假.题型2充分条件和必要条件例2 证明:“方程ax2+bx+c=0有一根为1”的充要条件是“a+b+c=0”.证明:充分性:∵a+b+c=0,∴c=-a-b,∴ax2+bx+c=ax2+bx-a-b=0,∴a(x-1)(x+1)+b(x-1)=0,∴(x-1)[a(x+1)+b]=0,∴x=1或a(x+1)+b=0,∴x=1是方程ax2+bx+c=0的一个根.必要性:∵x=1是方程ax2+bx+c=0的一个根,∴a+b+c=0.综上,命题得证.备选变式1(教师专享)不等式x 2-2mx -1>0对一切1≤x ≤3都成立,求m 的取值范围. 解:令f(x)=x 2-2mx -1.要使x 2-2mx -1>0对一切1≤x ≤3都成立,只需f(x)=x 2-2mx -1在[1,3]上的最小值大于0即可. 当m ≤1时,f(x)在[1,3]上是增函数, f(x)min =f(1)=-2m>0,解得m<0, 又m ≤1,∴ m<0;当m ≥3时,f(x)在[1,3]上是减函数,f(x)min =f(3)=8-6m>0,解得m<43,又m ≥3,∴ 此时不成立; 当1<m<3时,f(x)min =f(m)=-m 2-1=-(m 2+1)>0不成立. 综上所述,m 的取值范围为m<0. 备选变式2(教师专享)下列各题中,p 是q 的什么条件? (1) p :x =1;q :x -1=x -1.(2) p :-1≤x ≤5;q :x ≥-1且x ≤5.(3) p :三角形是等边三角形;q :三角形是等腰三角形. 解:(1) 充分不必要条件.当x =1时,x -1=x -1成立; 当x -1=x -1时,x =1或x =2.(2) 充要条件.-1≤x ≤5x ≥-1且x ≤5.(3) 充分不必要条件.等边三角形一定是等腰三角形,而等腰三角形不一定都是等边三角形.题型3 逻辑联结词例3 命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,q :函数f(x)=(3-2a)x 是增函数,若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.解:设g(x)=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,∴ 函数g(x)的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴ -2<a<2.∵ 函数f(x)=(3-2a)x 是增函数, ∴ 3-2a>1, ∴ a<1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.若p 真q 假,则⎩⎪⎨⎪⎧-2<a<2,a ≥1,∴ 1≤a<2;若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2或a ≥2,a<1,∴ a ≤-2.综上可知,所求实数a 的取值范围为1≤a<2,或a ≤-2. 备选变式1(教师专享)已知p :⎝⎛⎭⎫x -432≤4,q :x 2-2x +1-m 2≤0(m>0),若“⌝ p ⇒ ⌝q ”为假命题,“⌝q ⇒⌝p ”为真命题,求m 的取值范围.解:设p ,q 分别对应集合P ,Q ,则P ={x|-2≤x ≤10},Q ={x|1-m ≤x ≤1+m}, 由⌝q ⇒⌝p 为真,⌝p ⇒⌝q 为假,得P ⊆ Q ,∴ ⎩⎪⎨⎪⎧1-m ≤-2,1+m>10,m>0或⎩⎪⎨⎪⎧1-m<-2,1+m ≥10,m>0,解得m ≥9. 备选变式2(教师专享)已知命题p :|x 2-x|≥6,q :x ∈Z ,若“p ∧q ”与“⌝q ”都是假命题,求x 的值. 解:非q 假.∴ q 真. 又p 且q 假,∴ p 假.∴ ⎩⎪⎨⎪⎧|x 2-x|<6,x ∈Z ,即⎩⎪⎨⎪⎧-6<x 2-x<6,x ∈Z , ∴ ⎩⎪⎨⎪⎧-2<x<3,x ∈Z , ∴ x =-1、0、1、2.题型4 全称命题与存在命题例4 已知命题p :“x ∈R ,m ∈R 使4x -2x +1+m =0”,若命题⌝p 是假命题,则实数m 的取值范围为________.答案:m ≤1解析:命题⌝p 是假命题,即命题p 是真命题,也就是关于x 的方程4x -2x +1+m =0有实数解,即m =-(4x -2x +1),令f(x)=-(4x -2x +1),由于f(x)=-(2x -1)2+1,所以当x ∈R 时f(x)≤1,因此实数m 的取值范围是m ≤1.备选变式1(教师专享) 写出下列命题的否定.(1) 所有自然数的平方是正数;(2) 任何实数x 都是方程5x -12=0的根; (3) 对任意实数x ,存在实数y ,使x +y>0; (4) 有些质数是奇数.解:(1) 有些自然数的平方不是正数. (2) 存在实数x 不是方程5x -12=0的根. (3) 存在实数x ,对所有实数y ,有x +y ≤0. (4) 所有的质数都不是奇数. 备选变式2(教师专享)若命题“∃ x ∈R ,有x 2-mx -m<0”是假命题,则实数m 的取值范围是________. 答案:-4≤m ≤0解析:“∃x ∈R ,有x 2-mx -m<0”是假命题,则“∀ x ∈R 有x 2-mx -m ≥0”是真命题,即Δ=m 2+4m ≤0,∴ -4≤m ≤0.1. (2015·徐州期中)命题“若a +b ≥2,则a 、b 中至少有一个不小于1”及其逆否命题的真假情况是________.答案:真解析:因为原命题“若a +b ≥2,则a 、b 中至少有一个不小于1”的逆否命题为“若a 、b 都小于1,则a +b<2”,显然为真,所以原命题为真.2. (2015·盐城三模)若函数f(x)=2x -(k 2-3)·2-x ,则k =2是函数f(x)为奇函数的________(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)条件.答案:充分不必要解析:由k =2,得f(x)=2x -2-x ,f(-x)=-f(x),则f(x)为奇函数;反之,f(x)为奇函数,f(-x)=-f(x),得k 2=4,则k =±2,而不是k =2.故k =2是函数f(x)为奇函数的充分不必要条件.3. (2015·南京三模)记不等式x 2+x -6<0的解集为集合A ,函数y =lg(x -a)的定义域为集合B.若“x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为________.答案:(-∞,-3]解析:由A =(-3,2),B =(a ,+∞),AB ,则a ∈(-∞,-3].4. (2015·芜湖调研)命题p :ax +b>0的解集为x>-ba;命题q :(x -a)(x -b)<0的解为a<x<b.则p ∧q 是________(填“真”或“假”)命题.答案:假解析:命题p 与q 都是假命题.5. (2015·山东)若“∀x ∈⎣⎡⎦⎤0,π4,tanx ≤m ”是真命题,则实数m 的最小值为________.答案:1解析:若“∀x ∈⎣⎡⎦⎤0,π4,tanx ≤m ”是真命题,则m 大于或等于函数y =tanx 在⎣⎡⎦⎤0,π4的最大值.因为函数y =tanx 在⎣⎡⎦⎤0,π4上为增函数,所以函数y =tanx 在⎣⎡⎦⎤0,π4上的最大值为1,所以m ≥1,即实数m 的最小值为1.1. (2015·南通二调)命题“x ∈R ,2x >0”的否定是“________”.答案: ∀x ∈R ,2x ≤0解析:含有量词的命题否定要将存在换成任意,p 改成非p. 2. (2015·象山中学调研)“b =c =0”是“二次函数y =ax 2+bx +c 的图象经过原点”的________条件.答案:充分不必要解析:若b =c =0,则二次函数y =ax 2+bx +c =ax 2经过原点;若二次函数y =ax 2+bx +c 过原点,则c =0.3. 已知命题p :x 2-5x +6≥0;命题q :0<x<4.若p 是真命题,q 是假命题,求实数x 的取值范围.解:由x 2-5x +6≥0得x ≥3或x ≤2. ∵ 命题q 为假, ∴ x ≤0或x ≥4.则{x|x ≥3或x ≤2}∩{x|x ≤0或x ≥4}={x|x ≤0或x ≥4}. ∴ 满足条件的实数x 的范围为(-∞,0]∪[4,+∞). 4. (2015·无锡期中)已知命题“非空集合M 的元素都是集合P 的元素”是假命题,那么下列说法:① M 的元素都不是P 的元素; ② M 中有不属于P 的元素; ③ M 中有P 的元素;④ M 中元素不都是P 的元素. 其中正确的个数为________个. 答案:2解析:结合韦恩图可知②④正确.1. 在判断四个命题间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性与等价性,判断四种命题真假的关键是熟悉四种命题的概念与互为逆否命题是等价的,即“原命题与逆否命题同真同假,逆命题与否命题同真同假”,而互逆命题、互否命题是不等价的,当一个命题直接判断不易进行时,通常可转化为判断其等价命题的真假;而判断一个命题为假命题只需举出反例即可.2. 充要条件的三种判断方法(1) 定义法:根据p⇒q,q⇒p进行判断;(2) 集合法:根据p、q成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.3. 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1) 把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解;(2) 要注意区间端点值的检验.4. 含有逻辑联结词的命题真假的判断规律(1) p∨q:p、q中有一个为真,则p∨q为真,即有真为真;(2) p∧q:p、q中有一个为假,则p∧q为假,即有假即假;(3) 綈p:与p的真假相反,即一真一假,真假相反.5. 要写一个命题的否定,需先分清其是全称命题还是存在性命题,对照否定结构去写,并注意与否命题区别;否定的规律是“改量词,否结论”.判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每个元素x,证明p(x)成立;要判断存在性命题是真命题,只要在限定集合内至少能找到一个x=x0,使p(x0)成立.请使用课时训练(A)第3课时(见活页).[备课札记]。

高三数学第一轮基础知识复习资料

高三数学第一轮基础知识复习资料

高三数学一轮基础知识复习第一部分 集合1.理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ;2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.(1)含n 个元素的集合的子集数为2n,真子集数为2n -1;非空真子集的数为2n -2; (2);B B A A B A B A =⇔=⇔⊆ 注意:讨论的时候不要遗忘了φ=A 的情况。

4.φ是任何集合的子集,是任何非空集合的真子集。

第二部分 函数与导数12⑤换元法 法3(1① 若f(x)解出 ② 若 (2); ③根据“45⑵)(x f 是奇函数f(-x)=-f(x);是偶函数f(-x)= f(x) ⑶奇函数)(x f 在原点有定义,则0)0(=f ;⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; ⑸若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 6.函数的单调性 ⑴单调性的定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <;②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >;⑵单调性的判定定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号; ②导数法(见导数部分)③复合函数法;④图像法。

注:证明单调性主要用定义法和导数法。

7.函数的周期性(1)周期性的定义:对定义域内的任意x ,若有)()(x f T x f =+ (其中T 为非零常数),则称函数)(x f 为周期函数,T 为它的一个周期。

所有正周期中最小的称为函数的最小正周期。

如没有特别说明,遇到的周期都指最小正周期。

【金版教程】2022届高三语文一轮总复习练习 1-2辨析并修改病句b

【金版教程】2022届高三语文一轮总复习练习 1-2辨析并修改病句b

综合•进阶特训第一练题苑撷真1.[2022·辽宁高考]下列各句中,没有语病的一句是()A. 一切儿童文学作品都应当永久持着守护童年的立场,遵循儿童思维进展规律,富有丰富的想象力,布满爱与期望,传递古老传统中的善与美。

B. 在深化改革的关键阶段,我们是否能够保持乐观的精神状态,关系到我省经济的长远进展,关系到全省人民的福祉,就必需防止“精神懈怠”。

C. 自从实施飞行员培训方案后,学员报名格外踊跃,有航空爱好者,有想开飞机节省时间的企业家,还有一些家长想给孩子增加一项有用技能。

D. 今年,辽宁农信连续推动“阳光信贷工程”,致力于为农户打造公开透亮、规范高效的信贷绿色通道,切实解决宽敞农夫“贷款难”的问题。

解析A项,搭配不当。

“持着”与“立场”不搭配,可把“持着”改为“坚守”。

“传递”与“善与美”不搭配,可把“传递”改为“表现”。

另外,“富有”可改为“布满”。

B项,表意不明、成分赘余。

“我们是否”包含两种状况,与后面内容不搭配,一面对两面。

另外,“就必需防止‘精神懈怠’”赘余。

C项,句式杂糅或语序不当。

应删除后半句中的“想给孩子增加一项有用技能”,或调整为“还有一些想给孩子增加一项有用技能的家长”。

答案 D2.[2022·山东高考]下列各句,没有语病、句意明确的一项是()A. 这次聘请,一半以上的应聘者曾多年担当外资企业的中高层管理岗位,有较丰富的管理阅历。

B. 我父亲是建筑学家,很多人以为我母亲后来进入建筑领域,是受我父亲影响,其实不是这样的。

C. 生疏他的人都知道,生活中的他不像在银幕上那样,是共性格开朗外向、不拘小节的人。

D. 近年来,随着房地产市场的进展和商品房价格的持续上涨,引起了有关部门的高度重视。

解析A项,搭配不当,“担当……岗位”,动宾搭配不当。

C项,表意不明,“是共性格开朗外向、不拘小节的人”是在“生活中”还是“银幕上”,无法确定。

D项,成分残缺,滥用介词造成主语残缺,应删去“随着”。

高三一轮复习课第2课集合教学设计

高三一轮复习课第2课集合教学设计

高三一轮复习课第一课集合的概念与运算一、教材分析集合的概念、集合间的关系及运算是高考重点考查的内容,正确理解概念是解决此类问题的关键。

二、教学目标(一)集合的含义与表示1、了解集合的含义、元素与集合的“属于”关系2、能用自然语言、图形语言、集合语言描述不同的具体问题(二)集合间的基本关系1、理解集合之间包含与相等的含义,能识别给定集合的子集。

2、在具体情境中,了解全集与空集的含义(三)集合的基本运算1、理解两个集合的的并集与交集的含义,会求两个检点集合的并集与交集。

2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

三、教学重点了解集合的含义,理解集合间包含与相等的含义,理解俩个集合的并集与交集的含义,会用集合语言表达数学对象或数学内容。

四、教学难点集合相关的概念与符号的理解。

教学过程设计:基础知识自查1、集合与元素(1)集合元素的三个特征:______________ _____________ ________________(2)元素与集合的关系是:______________和______________关系,符号是:______________(3)集合的表示方法:________________________________________________________(4)集合的分类:按集合中元素的个数,集合可分为:_____ _____ _____2、集合间的基本关系(1)子集A 是B 的子集,符号:_____或_____(2)真子集:A 是B 的真子集,符号:_____或_____(3)等集:A B ⊆且B A ⊆⇔_____3、集合间的运算及性质(1)并集:符号__________ 图形语言:__________(2)交集: 符号语言__________ 图形语言:__________(3)补集: 符号语言__________ 图形语言:__________4、集合的运算性质并集的性质:(1) A ∪A= ;(2)A ∪∅= ;(3)A ∪B=交集性质: (1) A ∩A= ;例1 是(. 考点2、集合与集合的关系例2、(2010高考浙江卷)设{}4<=x x P ,{}42<=x x Q 则 A Q P ⊆ B P Q ⊆ C ⊆P ∁Q R D ⊆Q ∁P R分析:判断集合间的关系常转化为元素与集合的关系,对描述法表示的集合要抓住元素的属性,可列举出来或借助数轴、韦恩图或函数图像等手段解决。

第一章 集合 —2022届高三数学一轮复习备考

第一章 集合 —2022届高三数学一轮复习备考

第一章 第一节 集合1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法2.集合的基本关系⎪⎩⎪⎨⎧⊂⊄⊆=⊆⊆⊆≠),,(),,()()1(B A A B B A B A A B B A B A 则若真包含则若相等包含其中,若B A ⊆,则称A 是B 的子集,若B A ≠⊂,则称A 是B 的真子集.(2)空集:不含任何元素的集合叫做空集,记为φ.规定:空集是任何集合的子集、空集是任何非空集合的真子集.(3)集合中元素个数与子集个数的关系:若有限集合A 中有n 个元素,则集合A 的子集个数为2n ,真子集个数为2n -1,非空真子集个数为2n -2. 3.集合的基本运算(1)并集的常考性质A ⊆A ∪B,B ⊆A ∪B.A ⊆B ⇔A ∪B=B. A ∪B=∅⇔A=B=∅. (2)交集的常考性质A ∩B ⊆A,A ∩B ⊆B.A ⊆B ⇔A ∩B=A. A ∩B=A ∪B ⇔A=B. (3)补集的常考性质A ∪(∁U A)=U A ∩(∁U A)=∅∁U (∁U A)=A∁U (A ∩B)=(∁U A)∪(∁U B)∁U (A ∪B)=(∁U A)∩(∁U B).考点1 集合的含义与表示1.已知集合A ={0,1,2},则集合B =中元素的个数是( ) A .1 B .3C .5D .92.若集合A ={−1,1},B ={0,2},则集合{z|z =x +y,x ∈A,y ∈B}中的元素的个数为( ) A .5 B .4 C .3 D .23.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x −y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .104.已知集合A ={(x,y)|x,y ∈N ∗,y ≥x},B ={(x,y)|x +y =8},则A ∩B 中元素的个数为() A .2 B .3C .4D .65.已知集合A ={(x,y)│x 2+y 2=1},B ={(x,y)│y =x},则A ∩B 中元素的个数为( ) A .3B .2C .1D .06.已知集合A ={(x , y)|x 2+y 2≤3 , x ∈Z , y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .47.已知集合A ={(x,y)|x,y 为实数,且x 2+y 2=1},B ={(x,y)|x,y 为实数,且x +y =1},则A ∩B 的元素个数为( )A .4B .3C .2D .1{}|,x y x A y A -∈∈8.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=.9.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4B.2C.0D.0或410.已知集合A={x|ax=1},B={x|x2-1=0},若A⊆B,则a的取值构成的集合是( )A.{-1}B.{1}C.{-1,1}D.{-1,0,1}11.已知M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值为( )(A)1 (B)-1 (C)1或-1 (D)0或1或-112.设集合A={x|(x-a)2<1},且2∈A,3∉A,则实数a的取值范围为________.考点2 集合间关系1.若P={x|x<1},Q={x|x>−1},则( )A.P⊆Q B.Q⊆P C.C R P⊆Q D.Q⊆C R P2.已知集合A={x|x2-2x>0},B={x||x−2|≤5},则( )A、A∩B=B、A∪B=RC、B⊆AD、A⊆B3.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是( ) A.(−∞,−1] B.[1,+∞) C.[−1,1] D.(−∞,−1] ∪[1,+∞)4.已知集合M={0,1,2,3,4},N={1,3,4,5},P=M∩N,则P的真子集共有( ) (A)2个(B)4个(C)6个(D)7个5.已知集合A={x|x2−3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1 B.2 C.3 D.46.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( ) A.∅B.S C.T D.Z∪B=A,则m= .7.已知集合8.若集合A={1,a,b},B={a,a2,ab},且A∪B=A∩B,则实数a的取值集合是.9.已知a ∈R,b ∈R,若{ a,ln(b+1),1}={a 2,a+b,0},则a2018+b2018=________.考点3 集合间的基本运算1.已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A ∩B= ( )(A){1,4} (B){2,3} (C){9,16}(D){1,2}2.已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A ∩B 中的元素个数为( )(A) 5 (B)4 (C)3 (D)23.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则C U A ∩B =( ) A. {}1- B. {}0,1 C. {}1,2,3- D. {}1,0,1,3-4.已知全集U =R,A ={x|x ≤0},B ={x|x ≥1},则集合C U (A ∪B)=( ) A .{x|x ≥0} B .{x|x ≤1} C .{x|0≤x ≤1} D .{x|0<x <1}5.已知集合P ={x |x 2−2x ≥0},Q ={x |1<x ≤2},则(∁R P)∩Q =( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]6.设集合{}1,1,2,3,5A =-,{}2,3,4B = ,C ={x ∈R|1⩽x <3} ,则()A C B =( )A. {2}B. {2,3}C. {-1,2,3}D. {1,2,3,4}7.已知集合均为全集的子集,且C U (AUB )={4},,则A ∩C U B =( )A.{3} B .{4}C .{3,4}D .8.若全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},则集合{5,6}等于( ) A .M ∪N B .M ∩N C .(C n M )∪(C n N ) D .(C n M )∩(C n N )B A 、}4,3,2,1{=U {1,2}B =∅9.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩C I M =∅,则M ∪N =( )A .MB .NC .ID .∅10.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =() A .–4 B .–2 C .2 D .411.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}12.设集合A ={x ∈Z||x+1|≤3},B ={x|32x≤1},则A ∩B =( )A .{﹣4,﹣3,﹣2,0,2}B .{2}C .{﹣4,﹣3,﹣2,﹣1,2}D .{1,2}13.已知集合104x A xx ⎧⎫-=<⎨⎬-⎩⎭,{}2230B x x x =--≥,则A B 等于( )A .(-1,1]B .(](),11,-∞-+∞C .[3,4)D .(][),13,-∞-+∞14.已知集合02xA x x ⎧⎫=≤⎨⎬+⎩⎭,集合{}0B x x =>,则A B =( )A .{}2x x ≥-B .{}2x x >-C .{}0x x ≥D .{}0x x >15.已知全集为,集合,,则( )A .B .{x|2≤x ≤4}C .D .16.设集合 则=( )A .B .C .D .17.设全集U=R,集合A={x|2x-x 2>0},B={y|y=e x +1},则A ∪B 等于( ) A.{x|x<2}B.{x|1<x<2}C.{x|x>1}D.{x|x>0}R 112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{}2|680B x x x =-+≤R A C B ={}|0x x ≤{}|024x x x ≤<>或{}|024x x x <≤≥或2{|2,},{|10},x A y y x B x x ==∈=-<R AB (1,1)-(0,1)(1,)-+∞(0,)+∞18.设集合A ={x||x −1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( )A .[0,2]B .(1,3)C .[1,3)D .(1,4)19.设集合M ={x|x 2=x},N ={x|lg x ≤0},则M ∪N =( )A .[0,1]B .(0,1]C .[0,1)D .(−∞,1]20.已知全集为R,集合A={x|lgx ≤1},B={x|x 2-6x+8≤0},则A ∩(∁R B)=.21.已知U={y|y=log 2x,x>1}, P={y|y =1x ,x >2},则∁U P= ( )11A.[) B.(0,)221C.(0,)D. (,0][,)2+∞ +∞ -∞⋃+∞,22.已知集合A ={x |0<log 4x <1},B ={x |e x-2≤1},则A ∪B =( ) A .(﹣∞,4) B .(1,4)C .(1,2)D .(1,2]。

高三一轮复习集合知识点和题型

高三一轮复习集合知识点和题型

第一章 集合与常用逻辑用语1.1集合的概念知识点1.元素和集合的概念元素:一般地,我们把研究对象统称为元素集合:把一些元素组成的总体叫做集合(简称为集)。

集合通常用大写的字母表示,如A B C 、、、……;元素通常用小写的字母表示,如a b c d 、、、……。

知识点2.集合中元素的特性(1)确定性:给定一个集合,它的元素必须是确定的。

设A 是一个给定的集合,x 是某一具体的对象,则x 或者是A 的元素,或者不是A 的元素,二者必居其一,不能模棱两可.(2)互异性: 给定一个集合,它的任意两个元素是互不相同的。

也就是说集合中的元素是不重复出现的。

集合中相同的元素只能算是一个。

(3)无序性:集合中的元素是不分先后顺序的.知识点3.元素与集合的关系一般地,如果a 是集合A 的元素,就说a 属于A ,记作a A ∈;如果a 不是集合的元素,就说a 不属于A ,记作A a ∉。

特别注意:(1)集合和元素是两个不同的概念,它们之间是个体与整体的关系,并且这种关系是相对的;(2)元素与集合之间不存在大小与相等的关系,只存在属于或不属于的关系。

如2与{}3,只能是{}23∉,不能写成{}23≠。

知识点4.集合的第一种表示方法自然语言和常用数集及记法上面举的例子:中国的直辖市组成的集合。

还比如:地球上的四大洋组成的集合;小于10的所有自然数组成的集合等等我们是可以用自然语言表示一个集合。

数学中有一些常用数集,就是自然语言表示的, 这些常用数集及记法如下: (1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N 。

(2)所有正整数组成的集合称为正整数集,记作*N 或+N 。

(3)全体整数组成的集合称为整数集,记作Z 。

(4)全体有理数数组成的集合称为有理数集,记作Q 。

(5)全体实数组成的集合称为实数集,记作R 。

知识点5.集合的表示方法 (1)自然语言 (2)列举法列举法概念:像这样把集合中的元素一一列举出来,并用大括号括起来表示集合的方法叫做列举法。

高三物理一轮复习 1-1-2:匀变速直线运动规律及应用课件

高三物理一轮复习 1-1-2:匀变速直线运动规律及应用课件

答案:(1)8 s (2)大小为10 m/s,方向与初速度方向相反
1.任意相邻两个连续相等的时间里的位移之差是一个恒量,
即x2-x1=x3-x2=…=xn-xn-1=at2. 2.某段时间内的平均速度,等于该时间的中间时刻的瞬时
速度,

.
3和.一某半段的位平移方中根点,的即瞬时速度等于初速度.v0和末速度vt平方
4.初速度为零的匀加速直线运动的规律(设T为等分时间间隔)
(1)1T内、2T内、3T内……位移之比x1∶x2∶x3…= 12∶22∶32 … . (2)1 T末、2T末、3T末……速度之比v1∶v2∶v3…= 1∶2∶3 … .
(3) 第 一 个 T 内 、 第 二 个 T 内 、 第 三 个 T 内 …… 的 位 移 之 比 为
把运动过程的“末态”作为“初态”的反向研究问题的方 法.一般用于末态已知的情况
应用v t图象,可把较复杂的问题转变为较为简单的数学问题 解决
对一般的匀变速直线运动问题,若出现相等的时间间隔问题, 应优先考虑用Δx=at2求解
1-1 一个匀加速直线运动的物体,在头4 s内经过的位 移为24 m,在第二个4 s内经过的位移是60 m.求这个物 体的加速度和初速度各是多少?
2.竖直上抛运动的重要特性
(1)对称性
如图1-2-2,物体以初速度v0竖直上抛,
图1-2-2
A、B为途中的任意两点,C为最高点,则
①时间对称性
物体上升过程中从A→C所用时间tAC和下降过程中 从C→A所用时间t 相等,同理t =t .
②速度对称性 物体上升过程经过A点的速度与下降过程经过A点
分别为AB=2.40 cm,BC=7.30 cm,CD=12.20 cm,DE=17.10 cm.由此可知,

高三数学一轮复习知识点讲解1-2全称量词与存在量词、充要条件

高三数学一轮复习知识点讲解1-2全称量词与存在量词、充要条件

高三数学一轮复习知识点讲解专题1.2 全称量词与存在量词、充要条件【考纲解读与核心素养】1.理解命题的必要条件、充分条件、充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件.2.全称量词与存在量词(1)理解全称量词与存在量词的意义. (2)能正确地对含有一个量词的命题进行否定.3.培养学生数学抽象、逻辑推理、数学运算、直观想象能力.【知识清单】1. 充分条件与必要条件(1)若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件; (2)若p ⇒q ,且q ⇒/p ,则p 是q 的充分不必要条件; (3)若p ⇒/q 且q ⇒p ,则p 是q 的必要不充分条件; (4)若p ⇔q ,则p 是q 的充要条件;(5)若p ⇒/q 且q ⇒/p ,则p 是q 的既不充分也不必要条件. 2. 全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示. (2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M 中任意一个x ,有p (x )成立”可用符号简记为,()x M p x ∀∈,读作“对任意x 属于M ,有p (x )成立”.2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示. (2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M 中的一个x 0,使p (x 0)成立”可用符号简记为00,()x M p x ∃∈,读作“存在M 中的元素x 0,使p (x 0)成立”. 3.全称命题与特称命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)“p 或q ”的否定为:“非p 且非q ”;“p 且q ”的否定为:“非p 或非q ”. (3)含有一个量词的命题的否定命题命题的否定,()x M p x ∀∈ 00,()x M p x ∃∈⌝00,()x M p x ∃∈,()x M p x ∀∈⌝【典例剖析】高频考点一 充要条件的判定例1.(2019年高考浙江)若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,2a b ab +≥,则当4a b +≤时,有24ab a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.例2.(2018年浙江卷)已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】A 【解析】 因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.【思路点拨】一般地,充分、必要条件判断方法有三种.本题难度较小,根据线面平行的判定定理可得充分性成立,而由无法得到m 平行于平面内任一直线,即必要性不成立.例3.(2019·北京高考真题(理))设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件, 故选C. 【规律方法】充要关系的几种判断方法(1)定义法:若 ,p q q p ⇒≠> ,则p 是q 的充分而不必要条件;若,p q q p ≠>⇒ ,则p 是q 的必要而不充分条件;若,p q q p ⇒⇒,则p 是q 的充要条件; 若,p q q p ≠>≠> ,则p 是q 的既不充分也不必要条件.(2)等价法:即利用p q ⇒与q p ⌝⌝⇒;q p ⇒与p q ⌝⌝⇒;p q ⇔与q p ⌝⌝⇔的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3) 集合关系法:从集合的观点理解,即若满足命题p 的集合为M ,满足命题q 的集合为N ,则M 是N 的真子集等价于p 是q 的充分不必要条件,N 是M 的真子集等价于p 是q 的必要不充分条件,M =N 等价于p 和q 互为充要条件,M ,N 不存在相互包含关系等价于p 既不是q 的充分条件也不是q 的必要条件 【变式探究】1.(2019年高考天津理)设x ∈R ,则“250x x -<”是“|1|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.2.(2019·北京高考真题(文))设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】时,,为偶函数;为偶函数时,对任意的恒成立,,得对任意的恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.3.(2017·浙江省高考真题)已知等差数列{}n a 的公差为d,前n 项和为n S ,则“d>0”是465"+2"S S S >的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C . 高频考点二:充分条件与必要条件的应用例4.(江西省新八校2019届高三第二次联考)若“3x >”是“x m >”的必要不充分条件,则m 的取值范围是________. 【答案】3m >因为“3x >”是“x m >”的必要不充分条件, 所以(),m +∞是()3,+∞的真子集,所以3m >, 故答案为3m >. 【规律方法】1.充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.2.把握探求某结论成立的充分、必要条件的3个方面 (1)准确化简条件,也就是求出每个条件对应的充要条件;(2)注意问题的形式,看清“p 是q 的……”还是“p 的……是q”,如果是第二种形式,要先转化为第一种形式,再判断;(3)灵活利用各种方法判断两个条件之间的关系,充分、必要条件的判断常通过“⇒”来进行,即转化为两个命题关系的判断,当较难判断时,可借助两个集合之间的关系来判断. 【变式探究】(安徽省江南片2019届高三开学联考)设p :实数x 满足(3)()0x a x a --<,q :实数x 满足302x x +>+. (Ⅰ)当1a =时,若p q ∨为真,求实数x 的取值范围;(Ⅱ)当0a <时,若p 是q ⌝的必要条件,求实数a 的取值范围. 【答案】(1)()(),32,-∞--+∞;(2)()2,1--. 【解析】(Ⅰ)当1a =时,p :13x <<,q :3x <-或2x >-. 因为p q ∨为真,所以p ,q 中至少有一个真命题. 所以13x <<或3x <-或2x >-, 所以3x <-或2x >-,所以实数x 的取值范围是()(),32,-∞-⋃-+∞. (Ⅱ)当0a <时,p :3a x a <<,由302x x +>+得:q :3x <-或2x >-, 所以q ⌝:32x -≤≤-,因为p 是q ⌝的必要条件,所以{|32}{|3}x x x a x a -≤≤-⊆<<, 所以332a a <-⎧⎨>-⎩,解得21a -<<-,所以实数a 的取值范围是()2,1--. 【特别警示】根据充要条件求解参数范围的方法及注意点(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)注意点:区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的错误. 高频考点三:全称量词与存在量词例5.(2018贵州凯里一中模拟)命题p :0x R ∃∈,()02f x ≥,则p ⌝为( ) A . x R ∀∈, ()2f x < B . x R ∀∈, ()2f x ≥ C . 0x R ∃∈, ()2f x ≤ D . 0x R ∃∈, ()2f x < 【答案】A【解析】根据特称命题的否定,易知原命题的否定为: (),2x R f x ∀∈<,故选A . 例6.(2013·重庆高考真题(文))命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0 D .存在x 0∈R ,使得x 02<0【答案】D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .例7. 有下列四个命题,其中真命题是( ). A.n ∀∈R ,2n n ≥B.n ∃∈R ,m ∀∈R ,m n m ⋅=C.n ∀∈R ,m ∃∈R ,2m n <D.n ∀∈R ,2n n <【答案】B 【解析】对于选项A ,令12n =,则2111242⎛⎫=< ⎪⎝⎭,故A 错;对于选项B ,令1n =,则m ∀∈R ,1⋅=m m 显然成立,故B 正确; 对于选项C ,令1n =-,则21<-m 显然无解,故C 错; 对于选项D ,令1n =-,则2(1)1-<-显然不成立,故D 错. 故选:B 【规律方法】1.全称命题真假的判断方法(1)要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,证明p (x )成立; (2)要判断一个全称命题是假命题,只要能举出集合M 中的一个特殊值x =x 0,使p (x 0)不成立即可. 2.特称命题真假的判断方法要判断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.3.全称命题与特称命题真假的判断方法汇总命题名称 真假 判断方法一 判断方法二 全称命题真所有对象使命题真否定为假假 存在一个对象使命题假 否定为真 特称命题真存在一个对象使命题真否定为假假所有对象使命题假否定为真4.常见词语的否定形式有:原语句 是 都是 > 至少有一个 至多有一个 对任意x ∈A 使p (x )真 否定形式不是不都是≤一个也没有至少有两个存在x 0∈A 使p (x 0)假【变式探究】1.(2015·全国高考真题(理))设命题2:,2nP n N n ∃∈>,则P 的否定为( )A .2,2n n N n ∀∈>B .2,2n n N n ∃∈≤C .2,2n n N n ∀∈≤D .2,2n n N n ∃∈=【答案】C 【解析】根据否命题的定义,即既否定原命题的条件,又否定原命题的结论,特称命题的否定为全称命题,所以命题的否命题应该为2,2nn N n ∀∈≤,即本题的正确选项为C.2.(2019·江苏省如东高级中学高三月考)命题“20,0x x ∀><都有”的否定是________.【答案】20,0x x ∃<≤有 【解析】全称量词改存在,再否定结论,即“20,0x x ∀><都有”的否定是:20,0x x ∃<≤有 故答案为:20,0x x ∃<≤有 3.给出下列命题:(1)x ∀∈R ,20x >;(2)x ∃∈R ,210x x ++≤;(3)a ∃∈RQ ,Rb ∈Q ,使得a b +∈Q .其中真命题的个数为______. 【答案】1 【解析】对于(1),当0x =时,20x =,所以(1)是假命题;对于(2),2213310244x x x ⎛⎫++=++≥> ⎪⎝⎭,所以(2)是假命题;对于(3),当22a =,32b =+时,5a b +=,所以(3)是真命题. 所以共有1个真命题, 故填:1. 【易错提醒】1.命题的否定与否命题的区别:“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.2.弄清命题是全称命题还是特称命题是写出命题否定的前提.3.注意命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定.。

集合-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版

集合-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版

2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第01练集合(精练)1.了解集合的含义,体会元素与集合的属于关系,能用自然语言、图形语言、集合语言列举法或描述法描述不同的具体问题.2.理解集合间包含与相等的含义,能识别给定集合的子集.在具体情境中,了解全集与空集的含义.3.理解两个集合的并集、交集与补集的含义,会求两个简单集合的并集、交集与补集.能使用Venn 图表示集合间的基本关系及集合的基本运算.一、单选题1.(2023·全国·高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A .{}0,2,4,6,8B .{}0,1,4,6,8C .{}1,2,4,6,8D .U2.(2023·全国·高考真题)已知集合{}2,1,0,1,2M =--,260N x x x =--≥,则M N ⋂=()A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出.-3.(2023·全国·高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A .2B .1C .23D .1-4.(2023·全国·高考真题)设全集Z U =,集合{31,},{32,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,()U M N ⋃=ð()A .{|3,}x x k k =∈Z B .{31,}xx k k Z =-∈∣C .{32,}xx k k Z =-∈∣D .∅【答案】A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z =,所以,(){}|3,U M N x x k k ==∈Z ð.故选:A .5.(2023·全国·高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .126.(2022·全国·高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M ∈C .4M ∉D .5M∉【答案】A【分析】先写出集合M ,然后逐项验证即可【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A7.(2022·全国·高考真题)若集合{4},{31}M x N x x ==≥∣,则M N ⋂=()8.(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【A 级基础巩固练】一、单选题1.(2024·北京丰台·一模)已知集合{}220A x x x =-≤,{}10B x x =->,则A B ⋃=()A .{}0x x ≥B .{}01x x ≤<C .{}1x x >D .{}12x x <≤2.(2024·北京顺义·二模)设集合24U x x =∈≤Z ,{}1,2A =,则U A =ð()A .[]2,0-B .{}0C .{}2,1--D .{}2,1,0--【答案】DA .(]0,2B .31,2⎛⎤ ⎥C .()0,2D .30,2⎛⎤4.(23-24高三下·四川成都·阶段练习)已知集合{}{}1,2,2,3A B ==,则集合{},,C z z x y x A y B ==+∈∈的子集个数为()A .5B .6C .7D .85.(2024·陕西安康·模拟预测)已知集合{}{}3N 0log 2,21,Z A x x B x x k k =∈<<==+∈∣∣,则A B = ()A .{}1,3,5,7B .{}5,6,7C .{}3,5D .{}3,5,7【答案】D【分析】先求出集合A ,再根据交集的定义即可得解.【详解】{}{}{}3N0log 2N192,3,4,5,6,7,8A x x x x =∈<<=∈<<=∣∣,所以{}3,5,7A B = .故选:D.6.(23-24高三下·四川雅安·阶段练习)若集合{}2,1,4,8A =-,{}2,B x y x A y A =-∈∈∣,则B 中元素的最大值为()A .4B .5C .7D .10【答案】C【分析】根据B 中元素的特征,只需满足()2max minx y-即可得解.【详解】由题意,()()222max maxmin817x y x y -=-=-=.故选:C7.(2024·四川成都·三模)设全集{}1,2,3,4,5U =,若集合M 满足{}1,4U M ⊆ð,则()A .4M ÎB .1M ∉C .2M ∈D .3M∉8.(2024·河北沧州·模拟预测)已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B =⋂,则集合P 的子集共有()A .2个B .3个C .4个D .8个9.(2024·全国·模拟预测)若集合{}()(){}28,158A x x B x x x =∈<=+->-Z ,则()A B ⋂=R ð()A .{}0,1,2B .{0x x ≤<C .{1x x ≤≤D .{}1,210.(2024·四川泸州·三模)已知集合2230A x x x =--<,{}0,B a =,若A B ⋂中有且仅有一个元素,则实数a 的取值范围为()A .()1,3-B .(][),13,-∞-+∞C .()3,1-D .(][),31,-∞-⋃+∞11.(2024·北京东城·一模)如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是()A .AB ⋂B .A B⋃C .()U A B ⋂ðD .()U A B ⋃ð【答案】D【分析】由给定的韦恩图分析出阴影部分所表示的集合中元素满足的条件,再根据集合运算的定义即可得解.【详解】由韦恩图可知阴影部分所表示的集合是()U A B ð.二、多选题12.(2024·甘肃定西·一模)设集合{}{}26,,A x x x B xy x A y A =-≤=∈∈∣∣,则()A .AB B= B .Z B ⋂的元素个数为16C .A B B⋃=D .A Z I 的子集个数为64取值可能是()A .3-B .1C .1-D .014.(2024·广西·二模)若集合M 和N 关系的Venn 图如图所示,则,M N 可能是()A .{}{}0,2,4,6,4M N ==B .{}21,{1}M xx N x x =<=>-∣∣C .{}{}lg ,e 5x M xy x N y y ====+∣∣D .(){}(){}22,,,M x y x y N x y y x ====∣∣三、填空题15.(2024高一上·全国·专题练习)已知集合{}22,4,10A a a a =-+,且3A -∈,则=a .【答案】3-【分析】根据题意,列出方程,求得a 的值,结合集合元素的互异性,即可求解.【详解】因为3A -∈,所以23a -=-或243a a +=-,解得1a =-或3a =-,当1a =-时,23a -=,243a a +=-,集合A 不满足元素的互异性,所以1a =-舍去;当3a =-时,经检验,符合题意,所以3a =-.故答案为:3-.16.(2024高三下·全国·专题练习)集合(){}22,2,,x y x y x y +<∈∈Z Z 的真子集的个数是.17.(23-24高一上·辽宁大连·期中)设{}50A x x =-=,{}10B x ax =-=,若A B B = ,则实数a 的值为.18.(2024·安徽合肥·一模)已知集合{}{}24,11A x x B x a x a =≤=-≤≤+∣∣,若A B ⋂=∅,则a 的取值范围是.【答案】()(),33,-∞-+∞ 【分析】利用一元二次不等式的解法及交集的定义即可求解.【详解】由24x ≤,得()()220x x -+≤,解得22x -≤≤,所以{}22A xx =-≤≤∣.因为A B ⋂=∅,所以12a +<-或12a ->,解得3a <-或3a >,所以a 的取值范围是()(),33,-∞-+∞ .故答案为:()(),33,-∞-+∞ .19.(2024高三·全国·专题练习)设集合(){}2|1A x x a =-<,且2A ∈,3A ∉,则实数a 的取值范围为.【答案】(]1,2【分析】首先解一元二次不等式求出集合A ,再根据2A ∈且3A ∉得到不等式组,解得即可.【详解】由()21x a -<,即11x a -<-<,解得11a x a -<<+,即(){}{}2|11|1A x x a x a x a =-<=-<<+,因为2A ∈且3A ∉,所以121213a a a -<⎧⎪+>⎨⎪+≤⎩,解得12a <≤,即实数a 的取值范围为(]1,2.故答案为:(]1,2四、解答题20.(23-24高一上·广东湛江·期末)已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.21.(2024高三·全国·专题练习)设M 是由直线0Ax By C ++=上所有点构成的集合,即{}(,)0M x y Ax By C =++=,在点集M 上定义运算“⊗”:对任意()11,,x y M ∈()22,,x y M ∈则()()11221212,,x y x y x x y y ⊗=+.(1)若M 是直线230x y -+=上所有点的集合,计算()()1,52,1⊗--的值.(2)对(1)中的点集M ,能否确定(3,)(,5)a b ⊗(其中,a b ∈R )的值?(3)对(1)中的点集M ,若(3,)(,)0a b c ⊗<,请你写出实数a ,b ,c 可能的值.【B 级能力提升练】一、单选题1.(2024·全国·模拟预测)已知集合{}{}2210,2log 10M x x P x x =->=-<,则M P ⋂=()A .12x x ⎧<<⎨⎩B .142x x ⎧⎫<<⎨⎬⎩⎭C .{}4x <<D .{}24x x <<2.(2024·宁夏银川·一模)设全集{0,1,2,3,4,5,6},{1,2,3,4,5},{Z 2}U A B x ===∈<,则集合{4,5}=()A .()U AB ⋂ðB .()U A B ⋂ðC .()U A B ∩ðD .()()U U A B ⋂痧所以{}{}Z |041,2,3B x x =∈<<=,所以{}0,4,5,6U B =ð,所以(){}4,5U A B Ç=ð,故ABD 错误,故C 正确;故选:C3.(23-24高三上·内蒙古赤峰·阶段练习)已知集合{}24xA x =>,集合{}B x x a =<∣,若A B ⋃=R ,则实数a 的取值范围为()A .(],2-∞B .[)2,+∞C .(),2-∞D .()2,+∞【答案】D【分析】先求出集合A ,然后根据A B ⋃=R ,即可求解.【详解】由24x >,得2x >,所以()2,A =+∞,因为(),B a =-∞,A B ⋃=R ,所以2a >,故D 正确.故选:D.4.(23-24高一上·全国·期末)已知m ∈R ,n ∈R ,若集合{}2,,1,,0n m m m n m ⎧⎫=+⎨⎬⎩⎭,则20232023m n +的值为()A .2-B .1-C .1D .25.(23-24高三下·湖南长沙·阶段练习)已知全集{}N |010U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B ⋂=ð,则集合B 的元素个数为()A .6B .7C .8D .不确定【答案】B【分析】由已知求出全集,再由(){}U 1,3,5,7A B ⋂=ð可知A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,从而可求出B 中的元素.【详解】因为全集{}{}N |0100,1,2,3,4,5,6,7,8,9,10U A B x x =⋃=∈≤≤=,(){}1,3,5,7U A B ⋂=ð,所以A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,A 和B 中都有可能有0,2,4,6,8,9,10,且除了1,3,5,7,A 中有的其他数字,B 中也一定会有,A 中没有的数字,B 中也一定会有,所以{}0,2,4,6,8,9,10B =,故选:B6.(23-24高三下·甘肃·阶段练习)如果集合U 存在一组两两不交(两个集合交集为空集时,称为不交)的非空子集()*122,,,,k A A A k k ≥∈N ,且满足12k A A A U =U U L U ,那么称子集组12,,,k A A A 构成集合U 的一个k 划分.若集合I 中含有4个元素,则集合I 的所有划分的个数为()A .7个B .9个C .10个D .14个二、多选题7.(2024·江苏泰州·模拟预测)对任意,A B ⊆R ,记{},A B x x A B x A B ⊕=∈⋃∉⋂,并称A B ⊕为集合,A B的对称差.例如:若{}{}1,2,3,2,3,4A B ==,则{}1,4A B ⊕=.下列命题中,为真命题的是()A .若,AB ⊆R 且A B B ⊕=,则A =∅B .若,A B ⊆R 且A B ⊕=∅,则A B =C .若,A B ⊆R 且A B A ⊕⊆,则A B ⊆D .存在,A B ⊆R ,使得A B A B⊕≠⊕R R痧三、填空题8.(2024·浙江绍兴·二模)已知集合{}20A x x mx =+≤,1,13B m ⎧⎫=--⎨⎬⎩⎭,且A B ⋂有4个子集,则实数m 的最小值是.9.(2024·湖南·二模)对于非空集合P ,定义函数()1,,P f x x P ⎧=⎨∈⎩已知集合{01},{2}A x x B x t x t=<<=<<∣∣,若存在x ∈R ,使得()()0A B f x f x +>,则实数t 的取值范围为.【C 级拓广探索练】一、单选题1.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .8【答案】A【分析】设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,分析可知4n ≥,然后对n 的取值由小到大进行分析,验证题中的条件是否满足,即可得解.【详解】解:设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,若3n =,则12A A ⋂≠∅,不合乎题意.①假设集合B 中含有4个元素,可设{}112,A x x =,则{}24634,A A A x x ===,{}35712,A A A x x ===,这与17A A ⋂=∅矛盾;②假设集合B 中含有5个元素,可设{}1612,A A x x ==,{}2734,A A x x ==,{}351,A x x =,{}423,A x x =,{}545,A x x =,满足题意.综上所述,集合B 中元素个数最少为5.故选:A.【点睛】关键点点睛:本题考查集合元素个数的最值的求解,解题的关键在于对集合元素的个数由小到大进行分类,对集合中的元素进行分析,验证题中条件是否成立即可.二、多选题2.(2024·浙江宁波·二模)指示函数是一个重要的数学函数,通常用来表示某个条件的成立情况.已知U 为全集且元素个数有限,对于U 的任意一个子集S ,定义集合S 的指示函数()()U 1,1,10,S S x Sx x x S∈⎧=⎨∈⎩ð若,,A B C U ⊆,则()注:()x Mf x ∈∑表示M 中所有元素x 所对应的函数值()f x 之和(其中M 是()f x 定义域的子集).A .1()1()A A x Ax Ux x ∈∈<∑∑B .1()1()1()A B A A B x x x ⋂⋃≤≤C .()1()1()1()1()1()A B A B A B x Ux Ux x x x x ⋃∈∈=+-∑∑D .()()()11()11()11()1()1()A B C U A B C x Ux Ux Ux x x x x ⋃⋃∈∈∈---=-∑∑∑【答案】BCD【分析】根据()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð,即可结合选项逐一求解.【详解】对于A ,由于A U ⊆,所以1()1()1()1(),uA A A A x U x A x A x Ax x x x ∈∈∈∈=+=∑∑∑∑ð故1()1()A A x Ax Ux x ∈∈=∑∑,故A 错误,对于B ,若x A B ∈ ,则1()1,1()1,1()1A B A A B x x x ⋂⋃===,此时满足1()1()1()A B A A B x x x ⋂⋃≤≤,若x A ∈且x B ∉时,1()0,1()1,1()1A B A A B x x x ⋂⋃===,若x B ∈且x A ∉时,1()0,1()0,1()1A B A A B x x x ⋂⋃===,若x A ∉且x B ∉时,1()0,1()0,1()0A B A A B x x x ⋂⋃===,综上可得1()1()1()A B A A B x x x ⋂⋃≤≤,故B 正确,对于C ,()()()()()1()1()1()1()1()1()1()1()1()1()1()1()U UAB A B AB A B AB A B x Ux A B x B A x x x x x x x x x x x x ∈∈⋂∈⋂+-=+-++-∑∑∑痧()()()()1()1()1()1()1()1()1()1()U ABABABABx A B x A Bx x x x x x x x ∈⋂∈⋃++-++-∑∑ð()()()()()()()1()1()1()1()1()1()1()1()1()1()1()1()0U U U ABABABABABABx A B x A B x A B x B A x x x x x x x x x x x x ∈⋂∈⋃∈⋂∈⋂=+-++-++-+∑∑∑∑ð痧()()1()1()1()1()ABABx A B x x x x ∈⋃=+-∑而()1()1()1()1()U A B A BA B A Bx Ux A Bx A Bx A Bx x x x ⋃⋃⋃⋃∈∈⋃∈⋃∈⋃=+=∑∑∑∑ð,由于()()()U 1,10,A B x A Bx x A B ⋃∈⋃⎧=⎨∈⋃⎩ð,所以1()1()1()1()1()A B A B A B x x x x x ⋃+-=故()1()1()1()1()1()A B AB A B x U x Ux x x x x ⋃∈∈=+-∑∑,C 正确,()1()1()1()U UA B C U x Ux Ux A B C x x x ⋃⋃∈∈∈⋃⋃-=∑∑∑ð,当x A B C ∈⋃⋃时,此时()()()1,1,1A B C x x x 中至少一个为1,所以()()()11()11()11()0A B C x x x ---=,当()x A B C ∉⋃⋃时,此时()()()1,1,1A B C x x x 均为0,所以()()()11()11()11()1A B C x x x ---=,故()()()()()()()()11()11()11()11()11()11()1()UU A B C A B C A B C U x U x x A B C x x x x x x x ⋃⋃∈∈∈⋃⋃---=---=∑∑∑痧,故D 正确,故选:BCD【点睛】关键点点睛:充分利用()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð以及()x M f x ∈∑的定义,由此可得()x A B C ∉⋃⋃时,此时1(),1(),I ()A B C x x x 均为0,x A B C ∈⋃⋃时,此时1(),1(),I ()A B C x x x 中至少一个为1,结合()1S x 的定义化简求解.三、填空题3.(23-24高三上·江西·期末)定义:有限集合{}++,,N ,N i A x x a i n i n ==≤∈∈,12n S a a a =+++ 则称S 为集合A 的“元素和”,记为A .若集合(){}+12,,N ,N i P x x i i n i n +==+≤∈∈,集合P 的所有非空子集分别为1P ,2P ,…,k P ,则12k P P P +++=.四、解答题4.(2024·浙江台州·二模)设A ,B 是两个非空集合,如果对于集合A 中的任意一个元素x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的元素y 和它对应,并且不同的x 对应不同的y ;同时B 中的每一个元素y ,都有一个A 中的元素x 与它对应,则称f :A B →为从集合A 到集合B 的一一对应,并称集合A 与B 等势,记作A B =.若集合A 与B 之间不存在一一对应关系,则称A 与B 不等势,记作A B ≠.例如:对于集合*N A =,{}*2N B n n =∈,存在一一对应关系()2,y x x A y B =∈∈,因此A B =.(1)已知集合(){}22,1C x y x y =+=,()22,|143x y D x y ⎧⎫=+=⎨⎬⎩⎭,试判断C D =是否成立?请说明理由;(2)证明:①()()0,1,=-∞+∞;②{}**N N x x ≠⊆.【答案】(1)成立,理由见解析(2)①证明见解析;②证明见解析5.(2024·北京延庆·一模)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.若正整数()221t h k =+,其中*N,N t k ∈∈,则当1221t k +>+时,由等差数列的性质可得:()()()()()()()22122...2221...21221...212t t t t t t t t t t t h k k k k k =+=+++=-+-+++-++++++-++,此时结论成立,当1221t k +<+时,由等差数列的性质可得:()()()()()()()()2121...2121...112...2t t h k k k k k k k k k =++++++=-+++-++++++++,此时结论成立,对于数列n a n =,此问题等价于数列1,2,3,...n 其相应集合T 中满足2024m b ≤有多少项,由前面证明可知正整数1,2,4,8,16,32,64,128,256,512,1024不是T 中的项,所以m 的最大值为2013.。

中职对口升学-高三数学第一轮复习:集合的关系及运算

中职对口升学-高三数学第一轮复习:集合的关系及运算

典例解析
例5 U为全集 ,集合M⫋U ,N⫋U ,且N⊆M , 则 ( ).
解析 根据各集合之间的关系作图(见图1-4),
这样就很容易做出判断,故选 之间的关系,用图形解答比较方便. (2)在数学中利用“数形结合”的思想,往往能使 问题简单化.
同学们!再见!
技巧 点拨
考查对集合运算的理解及性质的运用.
典例解析
例4 已知集合 求实数a的取值范围.
解析
如图1-3所示,要使
必须满足
解得-1≤a≤2
所以实数a的取值范围为{a|-1≤a≤2}.
技巧 点拨
图1-3
解题时利用数轴表示集合,便于寻求满足条件的实
数a.特别需要注意的是“端点值 ”的问题,要明
确是能取“=”还是不能取“=”.
技巧 两个集合包含或相等关系的问题,通过建立方程(组),然后 点拨 解出未知数,最后利用集合 元素的特征进行检验即可.
扩展:函数 y = ax^2 + bx + c :1、对称轴方程 x = -b/2a。 2、顶点坐标(-b/2a,(4ac-
典例解析
例3 设全集U=R,集合
集合
求A∩B,A∪B,
解析 所以
性质:任何一个集合是它本身的子集,即A ⊆ A ;空集是任何集合的子集,即∅ ⊆ A ;对集合A , B ,C,若A ⊆ B , B ⊆ C,则A ⊆ C.
注意:不能把子集说成由原来集合中的部分元素组成的集合,因为A的子集包括 它本身,而这个子集由A的全体元素组成;空集也是A的子集,但这个子集中不包 括A中的任何元素.
知识点二 集合的运算
1.交集
一般地,由既属于集合A 又属于集 合B 的所有元素组成的集合,称为

2023年新高考数学一轮复习1-2 全称量词与存在量词、充要条件(真题测试)解析版

2023年新高考数学一轮复习1-2  全称量词与存在量词、充要条件(真题测试)解析版

专题1.1集合(真题测试)一、单选题1.(2021·天津·高考真题)已知a ∈R ,则“6a >”是“236a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】由充分条件、必要条件的定义判断即可得解.【详解】由题意,若6a >,则236a >,故充分性成立;若236a >,则6a >或6a <-,推不出6a >,故必要性不成立;所以“6a >”是“236a >”的充分不必要条件.故选:A.2.(2021·北京·高考真题)已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】【分析】利用两者之间的推出关系可判断两者之间的条件关系.【详解】若函数()f x 在[]0,1上单调递增,则()f x 在[]0,1上的最大值为()1f ,若()f x 在[]0,1上的最大值为()1f , 比如()213f x x ⎛⎫=- ⎪⎝⎭, 但()213f x x ⎛⎫=- ⎪⎝⎭在10,3⎡⎤⎢⎥⎣⎦为减函数,在1,13⎡⎤⎢⎥⎣⎦为增函数, 故()f x 在[]0,1上的最大值为()1f 推不出()f x 在[]0,1上单调递增,故“函数()f x 在[]0,1上单调递增”是“()f x 在[]0,1上的最大值为()1f ”的充分不必要条件,故选:A.3.(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B【解析】【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====-,当AB OC ⊥时,a b -与c 垂直,,所以成立,此时a b ≠,∴不是a b =的充分条件,当a b =时,0a b -=,∴()00a b c c -⋅=⋅=,∴成立,∴是a b =的必要条件, 综上,“”是“”的必要不充分条件 故选:B.4.(2021·全国·高考真题(理))等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案.【详解】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .5.(2021·全国·高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨【答案】A【解析】【分析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于sin0=0,所以命题p 为真命题;由于x y e =在R 上为增函数,0x ≥,所以||01x e e ≥=,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .6.(2020·天津·高考真题)设a ∈R ,则“1a >”是“2a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.求解二次不等式2a a >可得:1a >或0a <,据此可知:1a >是2a a >的充分不必要条件.故选:A.7.(2020·北京·高考真题)已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12k k k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件.故选:C.8.(2018·北京·高考真题(理))设向量,a b 均为单位向量,则“|3||3|a b a b -=+”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 【答案】C 【解析】【分析】根据向量数量积的应用,结合充分条件和必要条件的定义进行判断即可.【详解】因为向量,a b 均为单位向量所以|3||3|a b a b -=+⇔()()2233a b a b -=+ ⇔22226996a a b b a a b b -⋅+=+⋅+⇔169961a b a b -⋅+=+⋅+⇔0a b ⋅=⇔a b ⊥所以“|3||3|a b a b -=+”是“a b ⊥”的充要条件故选:C9.(2019·北京·高考真题(文))设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断.【详解】 0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.10.(2019·浙江·高考真题)若0,0a b >>,则“4a b +≤”是 “4ab ≤”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 11.(2019·北京·高考真题(理))设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】【分析】 由题意结合向量的减法公式和向量的运算法则考查充分性和必要性是否成立即可.【详解】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.12.(2007·山东·高考真题(理))命题“对任意的x ∈R ,3210x x -+≤”的否定是A .不存在x ∈R ,3210x x -+≤B .存在x ∈R ,3210x x -+≤C .存在x ∈R ,3210x x -+>D .对任意的x ∈R ,3210x x -+> 【答案】C【解析】【详解】注意两点:1)全称命题变为特称命题;2)只对结论进行否定.“对任意的x ∈R ,3210x x -+≤”的否定是:存在x ∈R ,3210x x -+>选C.13.(2018·北京·高考真题(理))设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉C .当且仅当a <0时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ 【答案】D【解析】【详解】分析:求出(2,1)A ∈及(2,1)A ∉所对应的集合,利用集合之间的包含关系进行求解.详解:若(2,1)A ∈,则32a >且0a ≥,即若(2,1)A ∈,则32a >,此命题的逆否命题为:若32a ≤,则有(2,1)A ∉,故选D. 点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据,p q 成立时对应的集合之间的包含关系进行判断. 设{|()},{|()}A x p x B x q x ==,若A B ⊆,则p q ⇒;若A B =,则p q =,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式. 14.(2018·浙江·高考真题)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】【详解】 m α⊄,n ⊂α,所以当//m n 时,//m α成立,即充分性成立;当//m α时, //m n 不一定成立,可能是异面直线,故必要性不成立;所以//m n 是//m α的充分不必要条件,故选:A15.(2018·天津·高考真题(理))设R x ∈,则“11||22x -<”是“31x <”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】【详解】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系. 详解:绝对值不等式1122x -<⇔111222x -<-<⇔01x <<, 由31x <⇔1x <. 据此可知1122x -<是31x <的充分而不必要条件. 本题选择A 选项.二、填空题16.(2022·江苏省天一中学高二期中)下列命题正确的是( )A .命题“2R,10x x x ∃∈++≥”的否定是“2R,10x x x ∀∈++<”B .0a b +=的充要条件是1b a=- C .2R,0x x ∀∈> D .11a b >>,是1ab >的充分条件 【答案】AD【解析】【分析】根据含量词的命题的否定方法判断A ,根据充分条件和必要条件的定义判断B ,D ,根据全称量词命题的真假的判断方法判断C.【详解】命题“2R,10x x x ∃∈++≥”的否定是“2R,10x x x ∀∈++<”,A 对,当0a b 时,0a b +=但b a 不存在,所以0a b +=不是1b a=-的充分条件,B 错, 当0x =时,20x =,C 错,由11a b >>,可得1ab >,所以11a b >>,是1ab >的充分条件,D 对, 故选:AD.17.(2022·湖北·鄂南高中模拟预测)给定命题:p x m ∀>,都有28x >.若命题p 为假命题,则实数m 可以是( )A .1B .2C .3D .4【答案】AB【解析】【分析】命题p 的否定:x m ∃>,28x ≤是真命题. 再把选项取值代入检验即得解.【详解】解:由于命题p 为假命题,所以命题p 的否定:x m ∃>,28x ≤是真命题.当1m =时,则1x >,令22,28x =<,所以选项A 正确;当2m =时,则2x >,令22.5,2.58x =<,所以选项B 正确;当3m =时,则3x >,29x >,28x ≤不成立,所以选项C 错误;当4m =时,则4x >,216x >,28x ≤不成立,所以选项D 错误.故选:AB18.(2022·山东省实验中学模拟预测)已知直线l ⊄平面α,直线m ⊂平面α,则( )A .若l 与m 不垂直,则l 与α一定不垂直B .若l 与m 所成的角为30,则l 与α所成的角也为30C .//l m 是//l α的充分不必要条件D .若l 与α相交,则l 与m 一定是异面直线【答案】AC【解析】【分析】利用反证法可判断A 选项;利用线面角的定义可判断B 选项;利用线面平行的判定定理和性质可判断C 选项;根据已知条件直接判断l 与m 的位置关系,可判断D 选项.【详解】对于A ,当l 与m 不垂直时,假设l α⊥,因为m α⊂,则l m ⊥,这与已知条件矛盾,因此l 与α一定不垂直,A 正确;对于B 选项,由线面角的定义可知,l 与α所成的角是直线l 与平面α内所有直线所成角中最小的角, 若l 与m 所成的角为30,则l 与α所成的角θ满足030θ≤≤,B 错;对于C 选项,若//l m ,m α⊂,l α⊄,则//l α,即l m l α⇒////,若//l α,因为m α⊂,则l 与m 平行或异面,即l m l α⇐/////.所以,//l m 是//l α的充分不必要条件,C 对; 对于D 选项, 若l 与α相交,则l 与m 相交或异面,D 错.故选:AC.三、填空题19.(2021·江西·丰城九中高二阶段练习)命题“1x ∀>,20x x ->”的否定是_______【答案】1x ∃>,20x x -≤,【解析】【分析】根据全称量词命题的否定即可求解.【详解】“1x ∀>,20x x ->”的否定是:1x ∃>,20x x -≤,故答案为:1x ∃>,20x x -≤,20.(2022·北京·人大附中三模)能够说明“若,,a b m 均为正数,则b m b a m a+>+”是真命题的充分必要条件为___________.【答案】a b >【解析】【分析】利用充分必要条件的定义判断.【详解】 解:()()0a b m b m b a m a a a m -+-=>++, 因为,,a b m 均为正数,所以a b >,反之也成立,故“若,,a b m 均为正数,则b m b a m a +>+”是真命题的充分必要条件为a b >, 故答案为:a b >21.(2022·上海市奉贤中学高二阶段练习)已知n 为平面α的一个法向量,l 为一条直线,则“l n ⊥”是“l α∥”的________条件(填充分性和必要性)【答案】必要性【解析】【分析】根据l n l α⊥⇒∥或l α⊂,l l n α→⇒⊥∥得出结果.【详解】 n 为平面α的一个法向量,l 为一条直线, l n l α∴⊥⇒∥或l α⊂,l l n α→⇒⊥∥, ∴“l n ⊥”是“l α∥”的必要性.故答案为:必要性四、双空题22.(2021·江苏省天一中学高一期中)已知命题p :01,22x ⎡⎤∃∈⎢⎥⎣⎦,200210x x λ-+<,则命题p 的否定为___________;若命题p 为真命题,则λ的取值范围为___________.【答案】 1,22x ⎡⎤∀∈⎢⎥⎣⎦,2210x x λ-+≥ ()+∞【解析】【分析】利用特称命题的否定为全称命题可写出命题p的否定;命题p为真,将已知变形为1,22x⎡⎤∃∈⎢⎥⎣⎦,使得12xxλ>+成立,即min12xxλ⎛⎫+⎪⎝⎭>,利用基本不等式求得最小值即可得解.【详解】命题p:01 ,2 2x ⎡⎤∃∈⎢⎥⎣⎦,200210x xλ-+<为特称命题,特称命题的否定为全称命题,所以命题p的否定为1,22x⎡⎤∀∈⎢⎥⎣⎦,2210x xλ-+≥命题p为真,即01 ,2 2x ⎡⎤∃∈⎢⎥⎣⎦,200210x xλ-+<成立,则1,22x⎡⎤∃∈⎢⎥⎣⎦,使得12xxλ>+成立,所以min12xxλ⎛⎫+⎪⎝⎭>又12xx+≥=12xx=,即x=min12xx⎛⎫∴+=⎪⎝⎭λ>所以λ的取值范围为()+∞故答案为:1,22x⎡⎤∀∈⎢⎥⎣⎦,2210x xλ-+≥;λ>。

高三数学(理科)一轮复习全套导学案(完整版)

高三数学(理科)一轮复习全套导学案(完整版)

高三数学理科复习1----集合的概念及运算【高考要求】:集合及其表示(A );子集(B );交集、并集、补集(B ). 【教学目标】: 1.了解集合的含义,体会元素与集合的“属于”关系.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受 集合语言的意义和作用.2.理解集合之间包含与相等的含义,能识别给定集合的子集(不要求证明集合的相等关 系、包含关系).了解全集与空集的含义.3.理解两个集合的并集与交集的含义;会求两个简单集合的并集与交集. 理解给定集合的一个子集的补集的含义;会求给定子集的补集. 会用Venn 图表示集合的关系及运算. 课前预习:1、 用适当的符号(),,,,⊃⊂=∉∈填空:{}{}{}.,12___,12;___;____14.3;___*z k k x x Z k k x x N N Q Q ∈-=∈+=π2、 用描述法表示下列集合:(1)由直线y=x+1上所有点的坐标组成的集合; . (2){}49,36,25,16,9,4,1,0------- . 3、 集合A={}c b a ,,的子集个数为_____________,真子集个数为 . 4、 若,B B A = 则A____B; 若A B=B,则A______B; A B_____A B.5、 已知集合A={}a ,3,1,B={}1,12+-a a ,且B ⊆A,则a =_________________. 6、 设集合⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,214,则M 与N 的关系是___. 例题评析:例1、已知集合{}620≤+<=ax x A ,{}421≤<-=x x B (1)若B A ⊆,求实数a 的取值范围;(2)A,B 能否相等?若能,求出a 的值;若不能,请说明理由.例2、(1)已知R 为实数集,集合{}0232≤+-=x x x A .若 B R A C R =,{}0123R B C A x x x =<<<<或,求集合B;(2)已知集合{}0,a M =,{}Z x x x x N ∈<-=,032,而且{}1=N M ,记,N M P =写出集合P 的所有子集.例3、已知集合(){}02,2=+-+=y mx x y x A ,(){}20,01,≤≤=+-=x y x y x B ,如果φ≠B A ,求实数m 的范围.课后巩固:1、已知集合{}a a a A ++=22,2,若3A ∈,则a 的值为 .2、已知A={}R x x x y y A ∈--==,122,{}82<≤-=x x B ,则集合A 与B 的关系是____.3、设{}0962=+-=x ax x M 是含一个元素的集合,则a 的值为__________________.4、设{}03522=--=x xx M ,{}1==mx x N .若M N ⊂,则实数m 的取值集合为_____. 5、设集合{}Z x x x I ∈<=,3,{}2,1=A ,{}2,1,2--=B ,则()=B C A I ___________. 6、已知集合{}3<=x x M ,{}1log 2>=xx N ,则N M =_______________________.7、设集合(){}32log ,5+=a A ,集合{}b a B ,=.若{}2=B A ,则B A =_______________. 8、设集合{}30≤-≤=m x x A ,{}30><=x x x B 或分别求满足下列条件的实数m 的取值范围.(1);φ=B A (2)A B A = .9、设{}042=+=x x x A ,{}01)1(222=-+++=a x a x x B (1)若B B A = ,求a 的值; (2)若B B A = ,求a 的值.矫正反馈:高三数学理科复习2----函数的概念【高考要求】:函数的有关概念(B).【教学目标】理解函数的概念;了解构成函数的要素(定义域、值域、对应法则),会求一些简单函数的定义域和值域;了解映射的概念. 【教学重难点】:函数概念的理解. 【知识复习与自学质疑】1、 设集合M= {}02x x ≤≤,N= {}02y y ≤≤,从M 到N 有五种对应如下图所示:其中能表示为M 到N 的函数关系的有 ____. 2、 函数0y=的定义域 ____________.3、函数21()lg()1f x x R x =∈+的值域为 _. 4、若函数(1)f x +的定义域为[]0,1,则函数(31)f x -的定义域为 _. 5、已知2(2)443()f x x x x R +=++∈,则函数()f x 的值域为 . 【交流展示与互动探究】例1、 求下列函数的定义域:(1) 12y x =-y = (3)已知()f x 的定义域为[]0,1,求函数24()()3y f x f x =++的定义域.例2、 若函数y =R ,求函数a 的取值范围.例3、 求下列函数的值域:(1) 242y x x =-+- [)0,3x ∈ (2) y x =+221223x x y x x -+=-+【矫正反馈】(A)1、从集合{}0,1A =到集合{},,B a b c =的映射个数共有 个.(A)2、函数y 的值域为 ____________. (A)3、函数(32)(21)log x x y --=的定义域为 ________________.(A)4、设有函数组:①211()x x f x --=,()1g x x =+;②()f x =()g x =③()f x ()1g x x =-;④()21f x x =-,()21g t t =-。

高三数学第一轮复习-知识点

高三数学第一轮复习-知识点

高三数学第一轮复习-知识点高中数学一轮复习知识点第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01.集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为AA;②空集是任何集合的子集,记为A;③空集是任何非空集合的真子集;如果AB,同时BA,那么A=B.如果AB,BC,那么AC.[注]:①Z={整数}(√)②已知集合S中A的补集是一个有限集,则集合A也是有限集.(某)(例:S=N;A=N,则CA={0})③空集的补集是全集.④若集合A=集合B,则CBA=,CAB=CS(CAB)=D(注:CAB=).3.①{(某,y)|某y=0,某∈R,y∈R}:坐标轴上的点集.②{(某,y)|某y<0,某∈R,y∈R:二、四象限的点集.第1页共73页③{(某,y)|某y>0,某∈R,y∈R}:一、三象限的点集.[注]:①对方程组解的集合应是点集.例:某y3解的集合{(2,1)}.2某3y12②点集与数集的交集是.(例:A={(某,y)|y=某+1}B={y|y=某+1}则A∩B=)4.①n个元素的子集有2个.②n个元素的真子集有2-1个.③n个元素的非空真子n集有2-2个.5.⑴①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题.②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.例:①若ab5,则a2或b3应是真命题.解:逆否:a=2且b=3,则a+b=5,成立,所以此命题为真.②某1且y2,某y3.解:逆否:某+y=3某1且y2nn某=1或y=2.某y3,故某y3是某1且y2的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若某5,某5或某2.4.集合运算:交、并、补.交:AB{某|某A,且某B}并:AB{某|某A或某B}补:CUA{某U,且某A}5.主要性质和运算律(1)包含关系:AA,A,AU,CUAU,AB,BCAC;ABA,ABB;ABA,ABB.(2)等价关系:ABA(3)集合的运算律:交换律:ABBA;ABBA.BAABBCBUUA结合律:(AB)CA(BC);(AB)CA(BC)分配律:.A(BC)(AB)(AC);A(BC)(AB)(AC)0-1律:A,AA,UAA,UAU等幂律:AAA,AAA.求补律:A∩CUA=φA∪CUA=UCUU=φCUφ=U反演律:CU(A∩B)=(CUA)∪(CUB)CU(A∪B)=(CUA)∩(CUB)6.有限集的元素个数第2页共73页定义:有限集A的元素的个数叫做集合A的基数,记为card(A)规定card(φ)=0.基本公式:(1)card(AB)card(A)card(B)card(AB)(2)card(ABC)card(A)card(B)c ard(C)card(AB)card(BC)card(Ccard(ABC)A)(3)card(UA)=card(U)-card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(某-某1)(某-某2)…(某-某m)>0(<0)形式,并将各因式某的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(某的系数化“+”后)是“>0”,则找“线”在某轴上方的区间;若不等式是“<0”,则找“线”在某轴下方的区间.某1某2某3某m-3-某m-2某m-1+-某m+某(自右向左正负相间)则不等式a0某a1某nn1a2某n2an0(0)(a00)的解可以根据各区间的符号确定.2特例①一元一次不等式a某>b解的讨论;②一元二次不等式a某+b 某+c>0(a>0)解的讨论.000二次函数ya某2b某c(a0)的图象一元二次方程有两相异实根有两相等实根无实根a某2b某c0a0的根a某2b某c0(a0)的解集a某2b某c0(a0)的解集某1,某2(某1某2)b某1某22a某某某或某某12b某某2aR某某1某某2第3页共73页2.分式不等式的解法(1)标准化:移项通分化为f(某)f(某)f(某)f(某)>0(或<0);≥0(或≤0)的形式,g(某)g(某)g(某)g(某)(2)转化为整式不等式(组)3.含绝对值不等式的解法f(某)f(某)f(某)g(某)00f(某)g(某)0;0g(某)0g(某)g(某)(1)公式法:a某bc,与a某bc(c0)型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布2一元二次方程a某+b某+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高三文科一轮复习集合(知识点+配套练习)

高三文科一轮复习集合(知识点+配套练习)

一轮复习 集合【1.1.1】集合的含义与表示 (1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 B{x A A =∅=∅ B A ⊆ B B ⊆ B{x A A = A ∅= B A ⊇ B B ⊇补集U A{|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅()()()U U U A B A B =()()()UU U A B A B =【配套练习】一.选择题(共25小题)1.(2015春•安溪县校级期末)下列选项中元素的全体可以组成集合的是()A.蓝溪中学高二年个子高的学生B.蓝溪中学高职班的学生C.蓝溪中学高二年学习好的学生D.校园中茂盛的树木2.(2016春•岳阳校级月考)下列关系式中正确的是()A.0∈∅B.0∈{0} C.0⊆{0} D.{0}⊊∅3.(2015•湛江校级模拟)设集合M={x|x2﹣3≤0},则下列关系式正确的是()A.0∈M B.0∉M C.0⊆M D.3∈M4.(2015春•安溪县校级期末)已知x∈{1,2,x2﹣x},则实数x为()A.0 B.1 C.0或1 D.0或1或25.(2015秋•邯郸校级期中)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4 C.5 D.66.(2012秋•礼县校级期中)给出四个结论:①{1,2,3,1}是由4个元素组成的集合②集合{1}表示仅由一个“1”组成的集合③{2,4,6}与{6,4,2}是两个不同的集合④集合{大于3的无理数}是一个有限集其中正确的是()A.只有③④ B.只有②③④C.只有①② D.只有②7.(2016•邯郸校级模拟)已知集合A={0,1,2},B={z|z=x+y,x∈A,y∈A},则B=()A.{0,1,2,3,4} B.{0,1,2} C.{0,2,4} D.{1,2}8.(2015春•福州校级期末)已知集合A={y|y=x2+2x﹣3},,则有()A.A⊆B B.B⊆A C.A=B D.A∩B=φ9.(2016•石家庄二模)设集合M={﹣1,1},N={x|x2﹣x<6},则下列结论正确的是()A.N⊆M B.N∩M=∅C.M⊆N D.M∩N=R10.(2016•内江四模)集合A={x|x∈N,0<x<4}的子集个数为()A.8 B.7 C.4 D.311.(2016•兴庆区校级一模)已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}12.(2015•上海模拟)设a,b∈R,集合,则b﹣a=()A.1 B.﹣1 C.2 D.﹣213.(2015•衡阳县校级四模)设集合A={1,2,3},B={4,5},C={x|x=b﹣a,a∈A,b∈B},则C中元素的个数是()A.3 B.4 C.5 D.614.(2015秋•哈尔滨校级期中)下列四个集合中,是空集的是()A.{x|x+3=3} B.{(x,y)|y2=﹣x2,x,y∈R}C.{x|x2≤0}D.{x|x2﹣x+1=0,x∈R}15.(2015春•安溪县校级期末)若集合A={x|x2﹣2x+m=0}=∅,则实数m的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,1)C.(1,+∞)D.[1,+∞)16.(2016•衡阳一模)设A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()17.(2016•平度市一模)已知集合P={0,m},Q={x|2x2﹣5x<0,x∈Z},若P∩Q≠∅,则m等于()A.2 B.1 C.1或2 D.1或18.(2016•江门模拟)已知集合M=﹛x|﹣3<x≤5﹜,N=﹛x|x<﹣5或x>5﹜,则M∪N=()A.﹛x|x<﹣5或x>﹣3﹜B.﹛x|﹣5<x<5﹜C.﹛x|﹣3<x<5﹜D.﹛x|x<﹣3或x>5﹜19.(2016•佛山模拟)设集合A={x|2x﹣2<1},B={x|1﹣x≥0},则A∩B等于()A.{x|x≤1}B.{x|1≤x<2} C.{x|0<x≤1}D.{x|0<x<1}20.(2016•常德一模)设全集U={x∈N|x≥1},集合A={x∈N|x2≥3},则∁U A=()A.∅B.{1} C.{1,2} D.{1,2,3}21.(2016•嘉兴二模)已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(∁U B)=()A.{2} B.{2,3} C.{3} D.{1,3}22.(2016•上饶二模)设U=R,已知集合A={x|x>1},B={x|x>a},且(∁U A)∪B=R,则a的范围是()A.(﹣∞,1)B.(1,+∞)C.(﹣∞,1] D.[1,+∞)23.(2016•吉林三模)设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为()A.{2} B.{4,6} C.{1,3,5} D.{4,6,7,8}24.(2016春•淄博校级月考)设I为全集,集合M,N,P都是其子集,则图中的阴影部分表示的集合为()A.M∩(N∪P)B.M∩(P∩∁I N)C.P∩(∁I N∩∁I M )D.(M∩N)∪(M∩P)25.(2016春•阜阳校级月考)如图,阴影部分表示的集合是()A.B∩[∁U(A∪C)] B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B)D.[∁U(A∩C)]∪B二.填空题(共1小题)26.(2014秋•缙云县校级月考)设全集为R,集合A={x|﹣5<x<5},则∁U A=.三.解答题27.(2011秋•宝鸡期末)集合A={x|a﹣1<x<2a+1},B={x|0<x<1},若A∩B=∅,求实数a的取值范围.28.(2013秋•蚌埠期中)已知集合A={x|x2﹣3x﹣10≤0},B={x|m+1≤x≤2m﹣1},若A∪B=A,求实数m的取值范围.参考答案与试题解析一.选择题(共25小题)1.(2015春•安溪县校级期末)下列选项中元素的全体可以组成集合的是()A.蓝溪中学高二年个子高的学生B.蓝溪中学高职班的学生C.蓝溪中学高二年学习好的学生D.校园中茂盛的树木【解答】解:A.蓝溪中学高二年个子高的学生,其中“个子高”不具有确定性,因此不能组成集合;B.蓝溪中学高职班的学生是确定的,因此可以组成一个集合.C.蓝溪中学高二年学习好的学生,其中“学习好”不具有确定性,因此不能组成集合;D.校园中茂盛的树木,其中“茂盛的”不具有确定性,因此不能组成集合;故选:B.2.(2016春•岳阳校级月考)下列关系式中正确的是()A.0∈∅B.0∈{0} C.0⊆{0} D.{0}⊊∅【解答】解:对于A、空集不包含任何元素,不能用0∈∅,所以不正确;对于B,0是集合中的一个元素,表述正确.对于C,是元素与集合的关系,错用集合的关系,所以不正确.对于D,是两个集合的关系,用{0}⊋∅表示,所以D不正确;故选B.3.(2015•湛江校级模拟)设集合M={x|x2﹣3≤0},则下列关系式正确的是()A.0∈M B.0∉M C.0⊆M D.3∈M【解答】解:由.所以M=M={x|},考察四个选项,A中0∈M是正确的,B错误,C中⊆符号是合之间关系符号,格式不对,D选项3∈M 显然不成4.(2015春•安溪县校级期末)已知x∈{1,2,x2﹣x},则实数x为()A.0 B.1 C.0或1 D.0或1或2【解答】解:①若x=1,则{1,2,x2﹣x}={1,2,0},成立;②若x=2,则2=x2﹣x,不成立;③当x=x2﹣x时,x=0,或x=2(舍去).故选:C.5.(2015秋•邯郸校级期中)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4 C.5 D.6【解答】解:因为集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},所以a+b的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8,所以M中元素只有:5,6,7,8.共4个.故选B.6.(2012秋•礼县校级期中)给出四个结论:①{1,2,3,1}是由4个元素组成的集合②集合{1}表示仅由一个“1”组成的集合③{2,4,6}与{6,4,2}是两个不同的集合④集合{大于3的无理数}是一个有限集其中正确的是()A.只有③④ B.只有②③④C.只有①② D.只有②【解答】解:对于①集合中元素的互异性可知判,①是不正确的.对于②集合的定义判断②是正确的;对于③集合中元素的无序性判断③{2,4,6}与{6,4,2}是两个不同的集合,是不正确的;对于④集合{大于3的无理数}是一个有限集,集合中元素的个数是无数的,所以④是不正确的.只有②正确.故选D.7.(2016•邯郸校级模拟)已知集合A={0,1,2},B={z|z=x+y,x∈A,y∈A},则B=()A.{0,1,2,3,4} B.{0,1,2} C.{0,2,4} D.{1,2}【解答】解:∵A={0,1,2},B={z|z=x+y,x∈A,y∈A},①当x=0,y=0;x=1,y=1;x=2,y=2时,x+y=0,2,4,②当x=0,y=1;x=1,y=2时,x+y=1,3,③当x=1,y=0;x=2,y=1时,x+y=1,3,④当x=0,y=2时,x+y=2,⑤当x=2,y=0时,x+y=2,综上,集合B中元素有:{0,1,2,3,4}.故选:A.8.(2015春•福州校级期末)已知集合A={y|y=x2+2x﹣3},,则有()A.A⊆B B.B⊆A C.A=B D.A∩B=φ【解答】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴y≥﹣4.∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y≥2},∴B⊆A.故选:B.9.(2016•石家庄二模)设集合M={﹣1,1},N={x|x2﹣x<6},则下列结论正确的是()A.N⊆M B.N∩M=∅C.M⊆N D.M∩N=R【解答】解:集合M={﹣1,1},N={x|x2﹣x<6}={x|﹣2<x<3},则M⊆N,故选:C.10.(2016•内江四模)集合A={x|x∈N,0<x<4}的子集个数为()A.8 B.7 C.4 D.3【解答】解:集合A={x∈N|0<x<4}={1,2,3},则其子集有23=8个,故选:A.11.(2016•兴庆区校级一模)已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}【解答】解:当a=0时,B=∅,B⊆A;当a≠0时,B={}⊆A,=1或=﹣1⇒a=﹣2或2,综上实数a的所有可能取值的集合为{﹣2,0,2}.故选D.12.(2015•上海模拟)设a,b∈R,集合,则b﹣a=()A.1 B.﹣1 C.2 D.﹣2【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.13.(2015•衡阳县校级四模)设集合A={1,2,3},B={4,5},C={x|x=b﹣a,a∈A,b∈B},则C中元素的个数是()A.3 B.4 C.5 D.6【解答】解:A={1,2,3},B={4,5},∵a∈A,b∈B,∴a=1,或a=2或a=3,则x=b﹣a=3,2,1,4,即B={3,2,1,4}.故选:B.14.(2015秋•哈尔滨校级期中)下列四个集合中,是空集的是()A.{x|x+3=3} B.{(x,y)|y2=﹣x2,x,y∈R}C.{x|x2≤0}D.{x|x2﹣x+1=0,x∈R}【解答】解:根据题意,由于空集中没有任何元素,对于选项A,x=0;对于选项B,(0,0)是集合中的元素;对于选项C,由于x=0成立;对于选项D,方程无解.故选:D.15.(2015春•安溪县校级期末)若集合A={x|x2﹣2x+m=0}=∅,则实数m的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,1)C.(1,+∞)D.[1,+∞)【解答】解:∵A={x|x2﹣2x+m=0}=∅,∴方程x2﹣2x+m=0无解,即△=4﹣4m<0,解得:m>1,则实数m的范围为(1,+∞),故选:C.16.(2016•衡阳一模)设A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.a<2 B.a>﹣2 C.a>﹣1 D.﹣1<a≤2【解答】解:∵A={x|﹣1≤x<2},B={x|x<a},若A∩B≠φ,∴两个集合有公共元素,∴a要在﹣1的右边,∴a>﹣1,故选C.17.(2016•平度市一模)已知集合P={0,m},Q={x|2x2﹣5x<0,x∈Z},若P∩Q≠∅,则m等于()A.2 B.1 C.1或2 D.1或【解答】解:Q={x|2x2﹣5x<0,x∈Z}={x|0<x,x∈Z}={1,2}集合P={0,m},P∩Q≠∅,集合P中含有集合Q的元素,∴m=1或2故选C18.(2016•江门模拟)已知集合M=﹛x|﹣3<x≤5﹜,N=﹛x|x<﹣5或x>5﹜,则M∪N=()A.﹛x|x<﹣5或x>﹣3﹜B.﹛x|﹣5<x<5﹜C.﹛x|﹣3<x<5﹜D.﹛x|x<﹣3或x>5﹜【解答】解:在数轴上画出集合M={x|﹣3<x≤5},N={x|x<﹣5或x>5},则M∪N={x|x<﹣5或x>﹣3}.故选A19.(2016•佛山模拟)设集合A={x|2x﹣2<1},B={x|1﹣x≥0},则A∩B等于()A.{x|x≤1}B.{x|1≤x<2} C.{x|0<x≤1}D.{x|0<x<1}B={x|1﹣x≥0}={x|x≤1},∴A∩B={x|x≤1}.故选A.20.(2016•常德一模)设全集U={x∈N|x≥1},集合A={x∈N|x2≥3},则∁U A=()A.∅B.{1} C.{1,2} D.{1,2,3}【解答】解:全集U={x∈N|x≥1},集合A={x∈N|x2≥3},则∁U A={1}.故选:B.21.(2016•嘉兴二模)已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(∁U B)=()A.{2} B.{2,3} C.{3} D.{1,3}【解答】解:∵U={1,2,3,4,5},B={2,5},∴C U B={1,3,4}∵A={3,1,2}∴A∩(C U B)={1,3}故选D.22.(2016•上饶二模)设U=R,已知集合A={x|x>1},B={x|x>a},且(∁U A)∪B=R,则a的范围是()A.(﹣∞,1)B.(1,+∞)C.(﹣∞,1] D.[1,+∞)【解答】解:集合A={x|x>1},∁U A={x|x≤1},B={x|x>a},若(∁U A)∪B=R,则a≤1,即a∈(﹣∞,1].故选C23.(2016•吉林三模)设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为()A.{2} B.{4,6} C.{1,3,5} D.{4,6,7,8}【解答】解:全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},由韦恩图可知阴影部分表示的集合为(C U A)∩B,∵C U A={4,6,7,8},∴(C U A)∩B={4,6}.故选B.24.(2016春•淄博校级月考)设I为全集,集合M,N,P都是其子集,则图中的阴影部分表示的集合为()A.M∩(N∪P)B.M∩(P∩∁I N)C.P∩(∁I N∩∁I M )D.(M∩N)∪(M∩P)【解答】解:由已知中的Venn图可得:阴影部分的元素属于M,属于P,但不属于N,故阴影部分表示的集合为M∩P∩∁I N=M∩(P∩∁I N),25.(2016春•阜阳校级月考)如图,阴影部分表示的集合是()A.B∩[∁U(A∪C)] B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B)D.[∁U(A∩C)]∪B 【解答】解:由已知中阴影部分所表示的集合元素满足不是A的元素或C的元素,且是B的元素即不是A并C的元素,且是B的元素,即是A并C的补集的元素,且是B的元素,故阴影部分所表示的集合是B∩[∁U(A∪C)],故选:A二.填空题(共1小题)26.(2014秋•缙云县校级月考)设全集为R,集合A={x|﹣5<x<5},则∁U A={x|x≥5或x≤﹣5}.【解答】解:∵A={x|﹣5<x<5},∴∁U A={x|x≥5或x≤﹣5},故答案为:{x|x≥5或x≤﹣5}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与常用逻辑用语第1课时集合的概念(对应学生用书1~2页)了解集合的含义;体会元素与集合的“属于”关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的数学对象或数学问题;理解集合之间包含与相等的含义;能识别给定集合的子集;了解全集与空集的含义.①学会区分集合与元素,集合与集合之间的关系.②学会自然语言、图形语言、集合语言之间的互化.③集合含义中掌握集合的三要素.④不要求证明集合相等关系和包含关系.1. (必修1P17第8题改编)满足条件{1}M{1,2,3}的集合M的个数是________.答案:4个解析:满足条件{1}M{1,2,3}的集合M为{1},{1,2},{1,3},{1,2,3},共4个.2. (必修1P17第6题改编)已知集合A=[1,4),B=(-∞,a),A B,则a∈________.答案:[4,+∞)解析:在数轴上画出A、B集合,根据图象可知.3. (必修1P9第4题改编)U=Z,设A={x|x=2k+1,k∈Z},B={x|x=2k,k∈Z},则A=________,B=________.答案:B A解析:A为所有的奇数组成的集合,B为所有的偶数组成的集合,故答案为B,A.4. (必修1P17第10题改编)期中考试,某班数学优秀率为70%,语文优秀率为75%.则上述两门学科都优秀的百分率至少为________.答案:45%解析:根据韦恩图可知70%+75%-1=45%.5. (原创)设集合A={x|x=5-4a+a2,a∈R},B={y|y=4b2+4b+2,b∈R},则A、B的关系是________.答案:A=B解析:化简得A={x|x≥1},B={y|y≥1},∴A=B.1. 集合的概念(1) 集合中元素的三个特征:确定性、互异性、无序性.(2) 集合的表示法:列举法,描述法,V enn图法等.(3) 集合按所含元素个数可分为有限集、无限集.(4) 常用数集符号:N表示自然数集;N*或N+表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.2. 两类关系(1) 元素与集合的关系,用∈或表示.(2) 集合与集合的关系,用或=表示.当A B时,称A是B的子集;当_A B时,称A是B的真子集;当A=B时,称A是与B相等的集合,两集合的元素完全相同.(3) 若集合A中有n(n∈N+)个元素,则A的子集有2n个,真子集有2n-1个,非空真子集有2n-2个.题型1正确理解和运用集合概念例1若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则必有P________Q(填“”、“”或“=”).答案:解析:P、Q中的代表元素都是y,它们分别表示函数y=x2,y=x2+1的值域,由P={y|y≥0},Q ={y|y≥1},知Q P,填“”.变式训练设集合M =⎩⎨⎧⎭⎬⎫x|x =k 2+14,k ∈Z ,N =x|x =k 4+12,k ∈Z ,则M________N.答案:解析:用列举法表示M =⎩⎨⎧⎭⎬⎫…14,34,54,…,N =⎩⎨⎧⎭⎬⎫…14,12,34,1,54,…,可知MN.题型2 集合元素的互异性例2 已知a ,b ∈R ,集合A ={a ,a +b,1},B =⎩⎨⎧⎭⎬⎫b ,b a ,0,且AB ,B A ,求a -b 的值.解:∵A B ,B A ,∴A =B.∵a ≠0,∴a +b =0,即a =-b ,∴ba =-1,∴b =1,a =-1,∴a -b =-2. 备选变式(教师专享)已知集合A ={a ,a +b, a +2b},B ={a ,ac, ac 2}.若A =B ,则c =________. 答案:-12解析:分两种情况进行讨论.① 若a +b =ac 且a +2b =ac 2,消去b 得a +ac 2-2ac =0.当a =0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a ≠0. ∴c 2-2c +1=0,即c =1.但c =1时,B 中的三元素又相同,此时无解. ② 若a +b =ac 2且a +2b =ac ,消去b 得2ac 2-ac -a =0. ∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0. 又c ≠1,故c =-12.题型3 根据集合的含义求参数范围例3 已知集合A ={x|x 2-3x -10≤0},集合B ={x|p +1≤x ≤2p -1}.若B A ,求实数p 的取值范围.解:A ={-2≤x ≤5}. ①当B ≠时,即p +1≤2p -1p ≥2.由B A ,得-2≤p +1且2p -1≤5.即-3≤p ≤3.∴2≤p ≤3.②当B =时,即p +1>2p -1p <2.由①、②,得p≤3.备选变式(教师专享)设A={x|ax2-2x+1=0,x∈R},2∈B={x|x2+bx+2=0},且A B,求实数a的取值范围.解:∵2∈B,∴b=-3,∴B={1,2}.∵A B,由题意a≠0,∴①若A=,则Δ=4-4a<0,即a>1;②若A={1},则a=1;③若A={2},则a无解;④若A={1,2},则a无解.综上所述,a的取值范围是a≥1.1. 设集合A={1,2,3,4,5,6},B={4,5,6,7},则满足S A且S∩B≠的集合S共________个.答案:56解析:集合A的所有子集共有26=64个,其中不含4,5,6,7的子集有23=8个,所以集合S共有56个.2. 在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是________.答案:3个解析:①③④正确.3. 若全集U=R,集合A={x|x≥1}∪{x|x≤0},则U A=________.答案:{x|0<x<1}解析:根据数轴可知U A={x|0<x<1}.4. 设U=R,M={x|x2-2x>0},则U M=________ .答案:[0,2]解析:∴ M ={x|x >2或x <0},U M = [0,2].1. 设集合A ={x||x -a|<1,x ∈R },B ={x||x -b|>2,x ∈R }.若A B ,则实数a ,b 必须满足________.答案:|a -b|≥3解析:集合A 化为A ={x|a -1<x <a +1,x ∈R }, 集合B 化为B ={x|x <b -2或x >b +2,x ∈R }. 若AB ,则满足a +1≤b -2或a -1≥b +2(如图),因此有a -b ≤-3或a -b ≥3,即|a -b|≥3.2. 已知集合P ={(x ,y)||x|+|y|=1},Q ={(x ,y)|x 2+y 2≤1},则P________Q. 答案:解析:集合P 表示正方形,集合Q 表示圆面,作出它们的图形即可.3. 已知集合A ={x|(x -2)[x -(3a +1)]<0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -a x -(a 2+1)<0. (1) 当a =2时,求A ∩B ; (2) 求使BA 的实数a 的取值范围.解:(1) A ∩B ={x|2<x <5}. (2) B ={x|a <x <a 2+1}. ①若a =13时,A =,不存在a 使BA ;②若a >13时,2≤a ≤3;③若a <13时,-1≤a ≤-12.故a 的取值范围是⎣⎡⎦⎤-1,-12∪[2,3]. 4. 已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }.(1) 若A 是空集,求a 的取值范围;(2) 若A 中只有一个元素,求a 的值,并把这个元素写出来; (3) 若A 中至多只有一个元素,求a 的取值范围.解:(1) A 是空集,即方程无解,故Δ<0,得a>98.(2) A 中只有一个元素,有两种情况①a =0,为一次方程满足条件;②a ≠0,则Δ=0,得a =98.∴a =0或a =98.(3) A 中至多只有一个元素,包含0个或一个,即a =0或a ≥98.请使用课时训练第1课时(见活页).第2课时集合的基本运算(对应学生用书3~4页) 考情分析考点新知理解两个集合的交集与并集的含义;会求两个简单集合的交集与并集,理解给定集合的一个子集的补集的含义;会求给定子集的补集,会用韦恩图表示集合的关系及运算.①在具体情景中,了解全集与空集的含义.②在给定集合中会求一个子集的补集,补集的含义在数学中就是对立面.③会求两个简单集合的交集与并集;交集的关键词是“且”,并集的关键词是“或”.④会使用韦恩图(Venn)表达集合的关系及运算;对于数集有时也可以用数轴表示.1. (原创)集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N=________.答案:{-1,0,1}解析:M={-2,-1,0,1},N={-1,0,1,2,3},∴M∩N={-1,0,1}.2. 若集合A={x|(x-1)2<3x+7,x∈R},则A∩Z中有________个元素.答案:6解析:A={x|-1<x<6},∴A∩Z={0,1,2,3,4,5}共6个元素.3. (必修1P 14第8题改编)设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则U(A∩B)=________ .答案:{1,4,5}解析:A∩B={2,3},∴U(A∩B)={1,4,5}.4. (必修1P17第8题改编)满足M{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是________.答案:2个解析:M∩{a1,a2,a3}={a1,a2}的M有{a1,a2},{a1,a2,a4}两个.5. (必修1P17第13题改编)A、B是非空集合,定义A×B={x|x∈A∪B,且x A∩B}.若A={x|y=x2-3x},B={y|y=3x},则A×B=________.答案:(-∞,3)解析:A=(-∞,0]∪[3,+∞),B=(0,+∞).A∪B=R,A∩B=[3,+∞).所以A×B=(-∞,3).1. 集合的运算(1) 全集:如果集合S含有我们所研究的各个集合的全部元素,那么这个集合就可以看作一个全集,通常用U来表示.一切所研究的集合都是这个集合的子集.(2) 交集:由属于A且属于B的所有元素组成的集合,叫做集合A与B的交集,记作A∩B,即A∩B ={x|x∈A且x∈B}.(3) 并集:由属于A或属于B的所有元素组成的集合,叫做集合A与B的并集,记作A∪B,即A∪B ={x|x∈A或x∈B}.(4) 补集:集合A是集合S的一个子集,由S中所有不属于A的元素组成的集合叫做A的补集(或余集),记作S A,即S A={x|x∈S,但x A}.2. 常见结论与等价关系(1) A∩B=A A B;A∪B=A A B.题型1集合的运算例1已知集合A={x||x-a|≤1},B={x|x2-5x+4≥0}.(1) 若a=3,求A;(2) 若A∩B=,求实数a的取值范围.解:(1) 当a =3时,由|x -3|≤1,得-1≤x -3≤1,解得2≤x ≤4,∴A ={x|2≤x ≤4}. (2) 由|x -a|≤1,得a -1≤x ≤a +1, ∴A ={x|a -1≤x ≤a +1}.由x 2-5x +4≥0, 解得 x ≤1或x ≥4,∴B ={x|x ≤1或x ≥4} . ∵A ∩B =,∴⎩⎪⎨⎪⎧a -1>1a +1<4),解得2<a<3, 即a 的取值范围是2<a<3. 备选变式(教师专享)已知集合A ={x|x 2+4x =0},B ={x|x 2+2(a +1)x +a 2-1=0}.当A ∪B =B 时,求实数a 的值. 解:∵A ∪B =B ,∴AB.∵A ={0,-4},∴B ={0,-4}. ∴a =1.题型2 求参数的范围例2 已知集合A ={(x ,y)|x 2+mx -y +2=0},B ={(x ,y)|x -y +1=0,且0≤x ≤2}.如果A ∩B ≠,求实数m 的取值范围.解:由⎩⎪⎨⎪⎧x 2+mx -y +2=0x -y +1=0(0≤x ≤2)),得x 2+(m -1)x +1=0, ①∵A ∩B ≠,∴方程①在区间[0,2]上至少有一个实数解.首先,由Δ=(m -1)2-4≥0,得m ≥3或m ≤-1.当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1>0知,方程①只有负根,不符合要求;当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,方程①只有正根,且必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内,故所求m 的取值范围是m ≤-1.变式训练已知A ={x|ax -1>0},B ={x|x 2-3x +2>0}. (1) 若A ∩B =A ,求实数a 的取值范围; (2) 若A ∩R B ≠,求实数a 的取值范围.解:(1) ∵A ∩B =A ∴A B ,B ={x|x>2或x<1}.若a>0,则x>1a ≥2,得0<a ≤12;若a =0,则A =成立;若a <0,则x <1a <1,根据数轴可知a <0成立.综上所述,a ≤12.(2) R B ={x|1≤x ≤2},若a =0,则A =,题意不成立;若a <0,则x <1a<1,不成立;若a >0,则x >1a ,由1a <2,得a >12.综上,a >12.题型3 集合综合题例3 已知{a n }是等差数列,d 为公差且不为0,a 1和d 均为实数,它的前n 项和记作S n ,设集合A =⎝⎛⎭⎫a n ,S n n n ∈N *,B =(x ,y)14x 2-y 2=1,x ,y ∈R .试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明: (1) 若以集合A 中的元素作为点的坐标,则这些点都在同一条直线上; (2) A ∩B 至多有一个元素; (3) 当a 1≠0时,一定有A ∩B ≠.解:(1) 正确;在等差数列{a n }中,S n =n (a 1+a n )2,则S n n =12(a 1+a n ),这表明点⎝⎛⎭⎫a n ,S n n 的坐标适合方程y =12(x +a 1),于是点⎝⎛⎭⎫a n ,S n n 均在直线y =12x +12a 1上. (2) 正确;设(x ,y)∈A ∩B ,则(x ,y)中的坐标x ,y 应是方程组⎩⎨⎧y =12x +12a 114x 2-y 2=1)的解,由方程组消去y 得2a 1x +a 21=-4(*).当a 1=0时,方程(*)无解,此时A ∩B =;当a 1≠0时,方程(*)只有一个解x=-4-a 212a 1,此时方程组也只有一解⎩⎪⎨⎪⎧x =-4-a 212a 1y =a 21-44a1,故上述方程组至多有一解.∴A ∩B 至多有一个元素.(3) 不正确;取a 1=1,d =1,对一切的n ∈N *,有a n =a 1+(n -1)d =n>0,S nn >0,这时集合A 中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a 1=1≠0.如果A ∩B ≠,那么据(2)的结论,A ∩B中至多有一个元素(x 0,y 0),而x 0=-4-a 212a 1=-52<0,y 0=a 1+x 02=-34<0,这样的(x 0,y 0)A ,产生矛盾,故a 1=1,d =1时A ∩B =,所以a 1≠0时,一定有A ∩B ≠是不正确的.备选变式(教师专享)设集合A ={x|x 2-2x +2m +4=0},B ={x|x<0}.若A ∩B ≠,求实数m 的取值范围.解:解法1:据题意知方程x 2-2x +2m +4=0至少有一个负实数根.设M ={m|关于x 的方程x 2-2x +2m +4=0两根均为非负实数},则⎩⎪⎨⎪⎧ Δ=4(-2m -3)≥0x 1+x 2=2>0, 解得-2≤m ≤-32.x 1x 2=2m +4≥0∴M ={m|-2≤m ≤-32}. 设全集U ={m|Δ≥0}=⎩⎨⎧⎭⎬⎫m|m ≤-32, ∴m 的取值范围是U M ={m|m<-2}.解法2:方程的小根x =1--2m -3<0-2m -3>1-2m -3>1m<-2.解法3:设f(x)=x 2-2x +4,这是开口向上的抛物线.因为其对称轴x =1>0,则据二次函数性质知命题又等价于f(0)<0m<-2.1. 若全集U ={1,2,3,4,5,6},M ={2,3},N =(1,4),则集合{5,6}________.答案:(U M)∩(U N)解析:M ∪N ={1,2,3,4},M ∩N =,(U M)∪(U N)={1,2,3,4,5,6},(U M)∩(U N)={5,6}.2. 设集合A ={x||x -a|<1,x ∈R },B ={x|1<x<5,x ∈R }.若A ∩B =,则实数a 的取值范围是________.答案:a ≤0或a ≥6 解析:集合A 化为A ={x|a -1<x<a +1,x ∈R }.因为B ={x|1<x<5,x ∈R },又A ∩B =,则a +1≤1或a -1≥5,即a ≤0或a ≥6.3. 已知M ,N 为集合I 的非空真子集,且M ,N 不相等.若N ∩I M =,则M ∪N =________.答案:M解析:由韦恩图可知,N 是M 的子集,故M ∪N =M.4. 已知集合A ={(x ,y)|x ,y 为实数,且x 2+y 2=1},B ={(x ,y)|x ,y 为实数,且y =x},则A ∩ B 的元素个数为________.答案:2解析:集合A 表示由圆x 2+y 2=1上的所有的点组成的集合;集合B 表示直线y =x 上所有点组成的集合;直线与圆有两个交点,∴A ∩B 的元素有2个.5. 设集合A =(x ,y)m 2≤(x -2)2+y 2≤m 2,x ,y ∈R ,B ={(x ,y)|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠,则实数m 的取值范围是________.答案:⎣⎡⎦⎤12,2+2解析:若m <0,则符合题的条件是:直线x +y =2m +1与圆(x -2)2+y 2=m 2有交点,从而由|2-2m -1|2≤|m|,解之得2-22≤m ≤2+22,矛盾; 若m =0,则代入后可知矛盾;若m>0,则当m 2≤m 2,即m ≥12时,集合A 表示一个环形区域,且大圆半径不小于12,即直径不小于1,集合B 表示一个带形区域,且两直线间距离为22,从而当直线x +y =2m 与x +y =2m +1中至少有一条与圆(x -2)2+y 2=m 2有交点,即可符合题意,从而有|2-2m|2≤|m|或|2-2m -1|2≤|m|,解之得2-22≤m ≤2+ 2.因12>2-22,所以综上所述,实数m 的取值范围是12≤m ≤2+ 2.1. 设全集U =M ∪N ={1,2,3,4,5},M ∩U N ={2,4},则N =________.答案:{1,3,5}解析:画出韦恩图,可知N ={1,3,5}.2. 设集合M ={x|x 2+x -6<0},N ={x|1≤x ≤3},则M ∩N =________.答案:[1,2)解析:因为M ={x|-3<x<2},所以M ∩N =[1,2).3. 已知A ={x|x 2≥9},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x -7x +1≥0,C ={x||x -2|<4}. (1)求A ∩B ;(2)求A ∩U (B ∩C).解:A ={x|x 2≥9}=(-∞,-3]∪ [3,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x -7x +1≥0=(-∞,-1)∪[7,+∞), C ={x||x -2|<4}=(-2,6).(1) A ∩B =(-∞,-3]∪[7,+∞).(2) B ∩C =(-2,-1),U (B ∩C)=(-∞,-2]∪[-1,+∞), ∴ A ∩U (B ∩C)=(-∞,-3]∪[3,+∞). 4. 设全集U =R ,函数f(x)=lg(|x +1|+a -1)(a <1)的定义域为A ,集合B ={x|cosπx =1}.若(U A)∩B 恰好有2个元素,求a 的取值集合.解:|x +1|+a -1>0|x +1|>1-a ,当a <1时,1-a >0,∴ x >-a 或x <a -2,∴A =(-∞,a -2)∪(-a ,+∞).∵cosπx =1,∴πx =2kπ,∴ x =2k(k ∈Z ),∴ B ={x|x =2k ,k ∈Z }.当a <1时,U A =[a -2,-a]在此区间上恰有2个偶数.∴⎩⎪⎨⎪⎧ a <1a ≤-a <2-2<a ≤0-4<a -2≤-2.请使用课时训练第2课时(见活页).。

相关文档
最新文档