液位升降过程控制系统设计
液位过程控制课程设计

中南大学《过程控制仪表》课程设计报告设计题目液位控制系统设计指导老师王莉吴同茂设计者龚晓辉专业班级自动化09级05班02号设计日期2012年5月目录第一章过程控制仪表设计的目的意义 (1)1.1 设计目的 (1)1.2课程在教学计划中的地位和作用 (2)第二章液位控制系统实验控制设计与调试 (3)2.1 液位控制系统的工艺及控制要求 (3)2.2 液位系统控制实验方案设计 (5)2.3 系统调试与控制效果 (7)第三章火力发电气泡水位控制系统设计 (8)3.1 火力发电厂生产工艺及控制要求 (8)3.2 系统总体方案设计 (9)3.3 系统硬件设计 (11)3.4 系统软件设计 (14)第四章收获、体会和建议 (16)参考文献第一章过程控制仪表设计的目的意义1.1 设计目的本课程设计是为《过程控制仪表》课程而开设的综合实践教学环节,是对《现代检测技术》、《自动控制理论》、《过程控制仪表》、《计算机控制技术》等前期课堂学习内容的综合应用。
其目的在于培养学生综合运用理论知识来分析和解决实际问题的能力,使学生通过自己动手对一个工业过程控制对象进行仪表设计与选型,促进学生对仪表及其理论与设计的进一步认识。
其主要是设计工业生产过程经常遇到的压力、流量、液位及温度控制系统,使学生将理论与实践有机地结合起来,有效的巩固与提高理论教学效果。
1.2课程在教学计划中的地位和作用课程设计对过程控制课程有重要的实践意义,可以加深学生对所学知识的理解与运用。
主要的内容是通过对典型工业生产过程中常见的典型工艺参数的测量方法、信号处理技术和控制系统的设计,掌握测控对象参数检测方法、变送器的功能、测控通道技术、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高学生解决实际工程问题的能力。
基本要求如下:1. 掌握变送器功能原理,能选择合理的变送器类型型号;2. 掌握执行器、调节阀的功能原理,能选择合理的器件类型型号;3. 掌握PID调节器的功能原理,完成相应的压力、流量、液位及温度控制系统的总体设计,并画出控制系统的原理图和系统主要程序框图。
液位控制系统方案设计PPT课件

调节器
SP
-
4~20mA
执行器
被控对象
测量变送装置
进
PLC控制系统
料
口
监
控
变
plc
送
器
+
控制器
SP -
执 行 器
4~20mA
D/A
4~20mA
A/D
执行器
被控对象
测量变送装置
数字信号
DCS控制系统
进 料 口
变 送 器
I/O
站
控
制
控
柜
制
站
执 行 器
组态王
上位机监控
JX300
控制方案确定
被控对象:锅炉 被控变量:锅炉液位 操纵变量:锅炉给水 干 扰:蒸汽用量等。
一 单回路液位控制系统 蒸汽
出口控制
LT
LC
由于水在气化过程中特 别是沸腾时的汽泡迅速 增加,将水位抬高,造成 “虚假液位”现象。
气开/气闭形式的选择
四种组合方式
序 执行机 阀
(a)
正
正
(b)
正
反
(c)
反
正
(d)
反
反
调节 气关 气开 气开 气关
气开式
选择原则:
1.首先要从生产安全出发; 2.从保证产品质量出发; 3.从降低原料、成品、动力 损耗来考虑; 4.从介质的特点考虑。
正作用与反作用(保证系统是负反馈的)
输出信号随输入信号的增加而增加的环节称为正作用环节 输出信号随输入信号的增加而减小的环节称为反作用环节 例如:对于调节器来说,测量值增大,输出增大,称为正作用调节器
液位 控制系统设计
第 一 设 计 组
液位控制系统设计

摘要本文主要设计了一种液位控制器,它以8051作为控制器,通过8051单片机和模数转换器等硬件系统和软件设计方法,实现具有液位检测报警和控制双重功能,并对液位值进行显示。
本系统是基于单片机的液位控制,在设计中主要有水位检测、按键控制、水位控制、显示部分、故障报警等几部分组成来实现液位控制。
主要用水位传感器检测水位,用六个控制按键来实现按健控制,用三位7段LED显示器来完成显示部分,用变频器来控制循环泵的转速,并且通过模数转换把这些信号送入单片机中。
把这些信号与单片机中内部设定的值相比,以判断单片机是否需要进行相应的操作,即是否需要开启补水泵或排水泵,来实现对液面的控制,从而实现单片机自动控制液面的目的。
本设计用单片机控制,易于实现液位的控制,而且有造价低、程序易于调试、一部分出现故障不会影响其他部分的工作、维修方便、等优点.关键词: 8051单片机; 模数转换;水位控制; 自动控制目录1 前言 (3)1.1课题背景 (3)1。
2国内外研究的现状 (3)1.3使用单片机实现水体液位控制的优点 (4)2 系统硬件设计 (6)2。
1核心芯片8051单片机 (6)2.2液位传感器设计 (9)2.4ADC0809A/D转换器 (13)2.5键盘及显示接口 (16)2。
6自动报警电路 (17)下列二种情况发生系统报警。
(18)1)当水位达到上限极限水位时报警,水位到达上限极限水位时系统发出报警; (18)2)当水位达到下限极限水位时报警,水位到达下限极限水位时系统发出报警 (18)3 系统软件的设计 (19)3。
1软件设计流程图 (19)致谢 (23)1 前言1。
1 课题背景液位控制系统是以液位为被控参数的控制系统,它在工业生产的各个领域都有广泛的应用。
在工业生产过程中,有很多地方需要对容器内的介质进行液位控制,使之高精度地保持在给定的数值,如在建材行业中,玻璃窑炉液位的稳定对窑炉的使用寿命和产品的质量起着至关重要的作用。
液位自动控制系统设计

根据 Nyquist 稳定性判据 I :如果开 环是稳定的,那么闭环稳定的条件是: 当ω 由-∞→∞时,Wk( j ω ) 的轨迹不包 围(-1,j0)点。所以由图5中可以看 出,该控制系统的Nyquist图中开环传 递函数没有包围( -1 , j0 )这个点, 即液位控制系统的闭环传递函数是稳 定的。 接着研究液位自动控制系统的对数 频率曲线,同样的用 matlab 软件绘制 bode图,进一步分析系统的稳定性及 稳态误差。
得到系统最佳稳定状态,以实现该系统的功能。
二、液位自动控制系统原理
如图1所示:当电位器电 刷位于中点位置时,电动 机不动,控制阀门有一定 的开度,使水箱中流入水 量与流出水量相等,从而 液面保持在希望高度上。 一旦流入水量或流出水量 发生变化,水箱液面高度 便相应变化。
三、系统分解
相关参数如下: 1) 放大器增益Kθ ; 2) Gf(s)代表浮子,杠杆部分传递函数; 3) Gm(s) 代表直流电动机部分传递函数; 4) Gs(s)代表水箱控制部分传递函数; 5) Gv(s)代表阀门控制部分传递函数。
3.1 各部分传递函数
浮子、杠杆部分 式中Ku为电压与液位高度之 比,传递函数为: 阀门部分 传递函数为:
水箱控制部分 传递函数为:
电动机控制部分 传递函数为:
3.2 系统整体传递函数
则系统的开环传递函数为: 从而得出系统的闭环传递函数为 :
四、时域分析
四、时域分析
• 2、当给定输入信号为单位阶跃信号时,用MATLAB 软件绘制出系统 输出信号的响应曲线图,同时求出系统过程中的超调量 pos、峰值时 间tp、调节时间ts。 • 程序1如下:
四、时域分析
• 输出信号的响应曲线 图如下图所示:
液位控制系统——过程控制课程设计

参考文献
[1]林锦国.过程控制.第3版.南京.东南大学出版社.2011
[2]范永久.化工测量及仪表.北京.化工工业出版社.2002
2个中间结果参数:PVn-1为上一次的归一化测量值;Mx是计算中的中间参量,是积分之和。可见,9个参数中有:1个输出变量,1个输入变量,5个常数,2个中间变量。设定值SPn、采样时间Ts和3个PID参数共5个常数应事先确定,并在程序初始化时、或在每次执行PID模块指令前,存放到数值存储区,以供调用。
[7]潘新民.微型计算机控制技术.第2版.北京.电子工业出版社.2011
[8]廖常初.PLC编程及应用.北京.机械工业出版社.2002
MOVR0.0,VD124//关闭微分作用
MOVB 100, SMB34 //100ms放入特殊内存字节SMB34,用于控制中断0的时间间隔
ATCH INT_0, 10//调用中断程序
ENI//全局性启用中断
INT0
LD SM0.0//RUN模式下,SM0.0=1
ITDAIW0, AC0//模拟量输入映像寄存器AIW0的数转双精度数存入AC0寄存器
可得到:Mn = Kc*(SPn-PVn)+Kc*(Ts/Ti)* (SPk-PVk)
+Kc*(Td/Ts)*[(SPn—PVn)-(SPn-PVn-1)]
=Kc*(SPn-PVn)+Kc*(Ts/Ti)*(SPn-PVn)
+Kc*(Td/Ts)*[PVn-1—PVn]+Mx
液位升降过程控制系统设计

《过程控制与集散系统》课程设计题目:液位升降过程控制系统设计学院信息科学与工程学院班级学号学生姓名指导教师周红军一、设计题目、任务及要求1.设计题目:液位升降过程控制系统设计2.设计任务:图1所示为某工业生产中的液位控制设备,设计任务是通过控制系统向水箱注入工业用水,经过液位调节后,使其满足下道工序要求。
水箱注水工艺过程为:工业用水由水泵驱动,经送水管道注入水箱内;水箱具有出水口,向下道工序送水;由于工艺对水箱内水压有要求,水箱内液位高度必须达到一定的液位高度;水箱底板具有液位传感器,输水管道上具有流量传感器;输水管道上装有一个调节阀,用以控制向水箱注水的流量,已达到控制水箱液位的目的。
水源图1 工业水箱液位控制系统由于水箱时间常数大,且扰动的因素多,单回路反馈控制系统不能满足工艺对水箱液位的要求。
为了提高控制质量,采用串级控制系统,运用输水管流量副回路的快速作用,有效地提高控制质量,满足生产要求。
3.设计要求(1) 绘制水箱液位单回路反馈控制系统结构框图。
(2) 以水箱液位为主变量,选择滞后较小的管道流量作为副变量,构成水箱液位串级控制系统,要求绘制该串级控制系统结构图。
(3) 假设主对象的传递函数为01()(1)(2)G s s s =++学号后两位,副对象的传递函数为02()(1)G s s =+学号后两位,主、副控制器的传递函数分别为s K s G c c 21)(11+=,22)(c c K s G =,1)()(21==s G s G m m ,请确定主、副控制器的参数(要求写出详细的参数估算过程)。
(4) 利用simulink 实现单回路系统仿真和串级系统仿真,分别给出系统输出响应曲线。
二、设计任务分析(一)系统采用单回路反馈控制系统结构框图(二)串级控制系统在送水管道中有一个电动调节阀,根据反馈情况用来控制调节水流量,但由于水流量干扰较多,如水流量不稳定,管道不通畅等众多干扰,因此单回路反馈控制系统不能满足对水箱液位的控制要求。
液位控制系统设计

液位控制系统设计(总22页) --本页仅作预览文档封面,使用时请删除本页--目录第1章绪论 ........................................................................................................................... - 3 -第2章设计方案................................................................................................................... - 4 -方案举例 .......................................................................................................................... - 4 -方案比较 .......................................................................................................................... - 5 -方案确定 .......................................................................................................................... - 5 -第3章硬件设计................................................................................................................... - 6 -控制系统 .......................................................................................................................... - 6 - AT89C51单片机....................................................................................................... - 6 -AT89C51的信号引脚............................................................................................... - 8 -单片机最小系统 ...................................................................................................... - 9 -感应系统 ........................................................................................................................ - 10 -指示系统 ........................................................................................................................ - 11 -液位控制系统 ................................................................................................................ - 12 -电机与报警系统 ............................................................................................................ - 13 -第4章软件设计................................................................................................................. - 16 -延时子程序 .................................................................................................................... - 16 -感应系统程序 ................................................................................................................ - 16 -指示系统程序 ................................................................................................................ - 17 -电机和警报系统程序 .................................................................................................... - 17 -液位预选系统程序 ........................................................................................................ - 17 -系统主流程图 ................................................................................................................ - 17 -第5章系统测试................................................................................................................. - 17 -仿真测试过程 ................................................................................................................ - 19 -仿真结果 ........................................................................................................................ - 20 -总结 ..................................................................................................................................... - 20 -致谢 ....................................................................................................................................... - 20 -参考文献 ................................................................................................................................. - 20 -附录1系统仿真电路.......................................................................................................... - 22 -附录2 源程序 ........................................................................................................................ - 23 -第1章绪论21世纪,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。
程序(液位控制系统)

工控网实习:液位控制系统设计设计题目:液位控制系统。
1.控制要求:1)整个系统设置两个带限位的电动阀门,一个控制进水管进水,一个控制出水管出水。
2)每个阀门的操作方式均为手动与自动两种。
由实验箱中的开关作为转换开关来决定操作方式。
转换开关选择到手动模式时,由实验箱来操作阀门,设开阀/关阀/停止/故障复位按钮,阀门的限位信号由实验箱的开关模拟,阀门的正向/反向运行指示以及故障指示由实验箱中的LED灯模拟。
转换开关选择到自动模式时,由程序根据液位的高度来自动控制。
3)控制过程:开启进水阀门进水,液位增加,关闭进水阀门停止进水。
开启出水阀门出水,液位减少,关闭出水阀门停止出水。
液位高度的变化由实验箱上电位器调节电压来模拟,电压0~5V模拟液位高度0~5M。
液位设置上限值4M及下限值1M,超过4M进行上限报警,并需要关闭进水阀门同时打开出水阀门,确保液位能保持为正常的高度;低于4M进行下限报警,并需要关闭出水阀门同时打开进水阀门,确保液位能保持为正常的高度。
报警指示由实验箱中的LED灯来显示,设置报警确认按钮,出现上限或下限报警,报警指示灯以1Hz的频率闪烁,直至报警确认按钮按下,按下报警确认按钮后,根据液位的实际高度进行显示,若依旧处于报警状态,则对应的指示灯常亮,若故障已经消除,则对应的指示灯熄灭。
4)(选作)设计上位监控界面,通过HMI界面监控整个液位控制系统,并设置液位高度的趋势图及报警状态的记录。
2.硬件选型:1)采用西门子S7-300系列PLC2)电源模块:PS 307 5A(序列号:6ES7 307-1EA00-0AA0)3)CPU模块:CPU 315-2DP (序列号:6ES7 315-2AG10-0AB0,版本号:V2.6)4)以太网通讯模块:CP 343-1(序列号:6GK7 343-1EX30-0XE0,版本号:V2.0)5)DI模块:16点24V DI模块(序列号:6ES7 321-1BH02-0AA0)6)DO模块:16点24V DO模块(序列号:6ES7 322-1BH01-0AA0)7)AI/AO模块:4点AI/2点AO模块(序列号:6ES7 334-0CE01-0AA0)3.网络要求:1)若有以太网通讯模块,S7-300 PLC与上位监控计算机采用以太网连接,PLC的IP地址为:192.168.0.102)S7-300 PLC作为主站连接至Profibus-DP网络中,网络地址为2,DP网络的传输速率为1.5Mbps。
PLC液位自动控制系统设计

PLC液位自动控制系统设计摘要:在传统的水塔供水的基础上,加入了PLC器件,利用PLC来实现水塔水位的控制,提供了一种实用的水塔水位控制方案。
本控制器能够控制水泵或电磁阀供水塔自动上水,并具有结构简单、使用可靠等优点。
关键词: PLC;自动控制;液位;水塔Key word: PLC; automatically controls; water level; water tower 1.引言现今社会,自动化装置无所不在,水塔水位的监测和控制,再也不需要人工进行操作。
为保证供水的可靠性和安全性,在楼层特别高或用水高峰时能够可靠供水,新的供水系统的供水方式和控制系统就是在原来的水塔供水系统上加上一个辅助系统,本文所介绍的就是此辅助系统,即利用可编程控制器(PLC)控制的电机给水装置系统,水塔水位自动控制器。
它具有适应各种液体液位的检测和控制的功能,设计中分析了利弊,考虑了各种液体的阻值大小,是可以投入实际生产的产品。
2. 可编程控制器(PLC)的概述可编程序控制器(programmable Logic controller)实质上是一台工业控制专业计算机,其结构原理与一般微型计算机相同,它由控制器、存储器、I/O、接口等组成,能够实现各种逻辑运算,顺序控制、定时、计数及在线监控等功能,采用面向用户的梯形图,编程简单、易于修改和使用。
PLC 机以其可靠性较高、控制灵活、使用方便以及能经受恶劣环境的考验,在工业控制领域获得广泛的应用。
3、PLC的选择由于该系统为中型PLC自动控制系统,要求PLC能够提供可编程逻辑分析功能,采用三菱公司的F系列产品的FX-30MR可编程控制器,由于其紧凑的设计,良好的扩展性,低廉的价格,以及强大的命令,使得F系列可以近乎完美地满足小规模的控制要求。
此外,丰富的CPU类型和电压等级使其在解决工业自动化问题时,具有很强的适应性。
根据实际的控制点数和系统需要实现的控制要求,其中,输入端:按钮和转换开关用10个点;电接点压力表用2个点;过载继电器用2个点,加一个COM点,共计15个点。
液位自动控制系统设计

液位自动控制系统设计引言:液位自动控制系统是一种常见的自动化控制系统,广泛应用于化工、石油、食品等各个行业中。
液位的自动控制可以有效地提高生产效率、减少人力成本和降低事故风险。
本文将介绍液位自动控制系统的设计原理、组成部分和工作过程。
一、设计原理:液位自动控制系统的设计基于液位测量和控制原理。
液位测量通过传感器(如浮子式液位传感器、电容式液位传感器等)实现,传感器将液位信号转换为电信号,并传送给控制器。
控制器通过对液位信号的处理和判断,来决定是否进行控制操作。
二、组成部分:1.液位传感器:用于测量液位,并将信号转化为电信号。
常见的液位传感器包括浮子式液位传感器、电容式液位传感器等。
2.控制器:接收液位传感器传来的信号,并进行处理和判断。
控制器通常包括控制算法、输入输出接口、控制逻辑等。
3.执行器:根据控制器的指令,进行相应的控制操作。
常见的执行器包括电动阀门、电动泵等。
4.电源:为液位自动控制系统提供电能供应。
5.信号传输线路:用于传送液位传感器的信号到控制器。
三、工作过程:1.液位传感器感知液位,并将液位信号转换为电信号。
2.电信号通过信号传输线路送到控制器。
3.控制器接收电信号,并进行处理和判断。
4.控制器根据预设的控制算法和控制逻辑,判断是否需要进行控制操作。
5.如果需要进行控制操作,控制器通过输出接口向执行器发送控制指令。
6.执行器接收控制指令,并进行相应的控制操作(打开或关闭阀门、启停泵等)。
7.控制器周期性地对液位进行监测和判断,以维持液位在设定范围内的稳定。
设计注意事项:在液位自动控制系统的设计中,需要注意以下几个方面:1.液位传感器的选择要符合实际应用场景的要求,具有较高的精度和可靠性。
2.控制器的控制算法和控制逻辑要合理和可靠,能够满足实际生产过程的需求。
3.执行器的选择要考虑其控制能力和响应速度,确保能够及时准确地执行控制指令。
4.信号传输线路的设计要保证信号传输的可靠性和稳定性,避免信号干扰导致控制误差。
全自动液位控制系统的设计

选 , 泥 分 级 回收 , 水 闭 路 循 环 。 o 5年 1 份 进 行 了 高定 位 煤 洗 2o 月 技术改造 , 2 0 于 O 5年 7月 份 投 入 使 用 , 术 改 造 后 洗 选 能 力 达 技 到 7 O万 吨/ 。 高 定 位 技 术 改 造增 加 了 动筛 系 统 ,0 o 年 5 mm 以上
电极 度 式 液 位 计 研 发 了 一 种 全 自动 液 位 控 制 系统 。该 系统 投 入 使 用 后 成 功 解决 了 以 上难 题 。
1 全 自动 液 位控 制 系统 设 计
十
∞]
一
— 卜一 [
— —
— — ~
— — 一
图 2 3 13 2全 自动 液 位 控 制 原 理 图 5 、5
● 。。。。。 。。。。。 — 。’。 。。。。。 。。。—— — 。一
要 负责 二 、 三个 平 面 的设 备 , 动 强 度 大 。 由 于洗 煤 方 式 以 水 洗 劳
:
,
… ‘
为 主 , 池 较 多 , 小 共计 1 水 大 2个 。 由于 工 艺 要 求 , 液位 开 泵 , 高 低 液 位 停 泵 , 泵 开 停 十 分 频 繁 , 容 易 出 现 误 操 作 , 成 烧 泵 事 水 且 造 故 。为 了解 决 以 上 问题 , 深 人 现 场 研 究 和 翻 阅 有 关 资 料 , 经 利用
水 位 信 号
s
.
童
一
一
}
I . 1。 1
~ — 毒 r
L一
高
中
低
L —
—一 , — j
水 位 信 号
— —
i
液位控制系统设计

液位控制系统设计液位测量是液位控制系统设计的基础,常用的液位传感器有浮球式、电容式、超声波等。
浮球式液位传感器通过测量悬挂在容器内的浮球悬浮的高度来获取液位信息,适用于液位要求较低的场合。
电容式液位传感器采用电容原理进行测量,能够实现较高精度的液位测量,适用于液位要求较高的场合。
超声波液位传感器通过测量超声波在液体和气体界面之间传播的时间来获取液位信息,具有非接触式、测量范围大的特点,适用于对容器形状较为复杂的场合。
液位控制系统的控制方法分为开环控制和闭环控制两种。
开环控制是指通过设定液位设定值,根据液位传感器测量值,直接调节控制阀门或启停泵等执行器的开度或启停,以实现设定的液位控制精度。
闭环控制则是在开环控制的基础上,将液位测量值与设定值进行比较,通过控制器调节执行器的开度或启停,使液位保持在设定值附近,从而实现闭环控制。
闭环控制相比开环控制具有更高的控制精度,但也更加复杂。
液位控制系统的控制策略有多种,常见的有比例控制、比例-积分控制和模糊控制等。
比例控制是指根据液位偏差与设定值之间的比例关系,调节执行器的开度或启停,以实现液位控制。
比例-积分控制在比例控制的基础上引入积分环节,用来消除永久性偏差,提高控制精度。
模糊控制则是通过模糊逻辑运算,根据液位偏差和变化率的大小,调节执行器的开度或启停,以实现液位控制。
模糊控制相比传统控制方法,在非线性、时变和多变量系统中具有更好的适应性和鲁棒性。
在设计液位控制系统时,需要综合考虑测量精度、响应速度、控制精度和系统稳定性等因素。
同时,还需要结合具体应用场景的要求,选择合适的液位传感器、控制方法和控制策略,以实现高效、稳定、可靠的液位控制。
总之,液位控制系统设计需要综合考虑液位测量、控制方法和控制策略等方面的要素,以实现对液位的精确控制。
在设计过程中,需要选取合适的液位传感器,确定控制方法和控制策略,并进行系统调试和优化,以实现系统的高效性、稳定性和可靠性。
PLC课程--液位升降自动控制系统设计

一、设计题目:液位升降自动控制系统设计二、设计任务和要求某进出水系统由进水阀门、储水罐及出水阀门组成,储水罐储水高度为50cm。
水位升降分为手动控制和自动控制,通过选择开关进行选择。
1、手动控制通过上升按钮、下降按钮和停止按钮控制水位高度(1)上升过程:按下上升按钮,进水阀开,水位以1cm/s开始上升,水位满时,进水阀门自动关闭;按下停止按钮,阀门关闭,水位停止在当前位置。
(2)下降过程:按下下降按钮,出水阀开,水位以1cm/s开始下降,水位空时,出水阀门自动关闭;按下停止按钮,阀门关闭,水位停止在当前位置。
2、自动控制通过启动按钮和停止按钮进行控制:(1)按下启动按钮,进水阀开,水位以1cm/s开始上升;水位满时,进水阀门关,出水阀打开,水位以1cm/s开始下降,水位空,出水阀门关;然后进水阀重新打开,重复以上过程。
(2)按下停止按钮,阀门全部关闭,水位停止在当前位置。
3、报警手动和自动过程中,当液位达到高低报警值时,进行灯闪烁报警,闪烁频率位0.5s。
三、题目分析思路一、利用PLC模拟开关功能,进行开关量的控制,采用传感器来检测液位的位置,然后相应的模拟开关动作。
思路二、利用PLC的模拟量输入,采用模拟,不需要采用传感器,并且需要的硬件数量较少。
现用思路一,采用分部程序设计方法,利用无参功能编写。
四、流程图和硬件图(见附录1)五、硬件配置图,及PLC操作步骤1、建立工程2、选择CPU3、添加硬件4、符号表5、建立模块6、复位模块图7、主程序模块10、定时模块六、设计心得体会通过这次课程设计,巩固《PLC技术》课程学过的知识,了解了一些典型硬件设备,熟悉PLC系统设计流程,能简单运用基本指令。
熟悉梯形图的设计和结构思路,在原有的学习基础上,了解了PLC的编程思想,编程结构,在一定程度上在加深对理论联系实际的方面有了一定的认识。
七、参考书目西门子S7300PLC应用教程深入浅出西门子S7-300 PLC[M]。
基于组态王的液位过程控制系统设计

《控制系统分析与综合》任务书题目:液位控制系统设计一、工程训练任务本实训综合运用自动化原理、PLC技术以及组态软件等相关课程,通过本实训的锻炼,使学生掌握自动化系统的基础理论、技术与方法,巩固和加深对理论知识的理解。
本课题针对液位控制系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面, 运用PID控制算法对水箱液位进行控制。
二、工程训练目的通过本次工程训练使学生掌握运用组态王软件及PLC构建工业控制系统的能力,增强学生对PLC控制系统以及组态王软件的应用能力,培养学生解决实际问题的能力,为今后从事工程技术工作、科学研窕打下坚实的基础.三、工程训练内容1)确定PLC的I/O分配表:2)根据PID控制算法理论,运用PLC程序实现PID控制算法:3)编写整个液位控制系统实训项目的PLC控制程序;4)在组态王中定义输入输出设备:5)在组态王中定义变量;6)设计上位机监控画面;7)进行系统调试。
四、工程训练报告要求报告中提供如下内容:1、目录2、任务书3、正文4、收获、体会5、参考文献五、工程训练进度安排周次工作日工作内容1布置课程设计任务,查找相关资料第2完成总体设计方案—3完成PLC程序设计周45完成监控画面设计第1调试2二3准备训练报告周4完成训练报告并于下午两点之前上交5答辩六、工程训练考核办法本工程训练满分为IOO分,从工程训练平时表现、工程训练报告及工程训练答辩三个方面进行评分,其所占比例分别为20%、40%、40%o总体设计方案2o 1关于组态王的概述组态王软件是一种通用的工业监控软件,它融过程控制设计、现场操作以及工厂资源管理于一体,将一个企业内部的各种生产系统和应用以及信息交流汇集在一起,实现最优化管理.它基于Microsoft Windows XP/NT/2000操作系统,用户可以在企业网络的所有层次的各个位置上都可以及时获得系统的实时信息。
液位控制系统设计报告

液位控制系统设计报告题目:基于智能仪表和PLC的液位控制系统设计院系:常州纺院机电工程系班级:电气103A班姓名:李玉强学号:20210362012摘要微电子技术和计算机技术的不断发展,引起了仪表结构的根本性变革,以微型计算机(单片机)为主体,将计算机技术和检测技术有机结合,组成新一代“智能化仪表”,在测量过程自动化、测量数据处理及功能多样化方面与传统仪表的常规测量电路相比较,取得了巨大进展。
智能仪表不仅能解决传统仪表不易或不能解决的问题,还能简化仪表电路,提高仪表的可靠性,更容易实现高精度、高性能、多功能的目的。
可编程控制器(Programmable Logic Controller---PLC)是一种应用广泛非常的自动控制装置,它将传统的继电器控制技术、计算机技术和通讯技术融为一体,具有控制能力强、操作灵活方便、可靠性高、适宜长期连续工作的特点,非常适合液位控制的要求。
本文介绍了基于智能仪表、可编程控制器(PLC)、组态软件的液位控制系统的设计方案。
系统采用PID算法,实现液位的自动控制。
一、智能仪表智能仪表由硬件和软件两大部分组成。
硬件部分包括微控制器及其接口电路、模拟量输入输出电路、开关量输入输出电路、数据通信接口电路、人机交互通道,以及其他外围设备。
智能仪表的软件,包括监控程序、中断服务程序以及实现各种算法的功能模块。
智能仪表的工作过程如下:输入信号要经过开关量输入电路或模拟量输入电路进行变换、放大、整形、补偿等处理。
对于模拟量信号,需经A/D转换器转换成数字信号,再通过接口送入微控制器。
由CPU对输入数据进行加工处理、计算分析等一系列工作,通过接口送至显示器或打印机,也可输出开关量信号或经模拟量输出电路的D/A转换器转换成模拟量输出信号。
还可通过串行接口实现数据通信,完成更复杂的测量和控制任务。
水泵仪表的模块接线图如:二、可编程控制器PLC 即可编程逻辑控制器,英文全称是Programmable Logic Controller ,是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。
液位计算机控制系统设计方案

液位计算机控制系统设计方案1、系统设计方案1.1 系统设计方案比较对于水位进行控制的方式有很多,而应用较多的主要有2种,一种是简单的机械式控制装置控制,一种是复杂的控制器控制方式。
两种方式的实现如下:(1)简单的机械式控制方式。
其常用形式有浮标式、电极式等,这种控制形式的优点是结构简单,成本低廉。
存在问题是精度不高,不能进行数值显示,另外很容易引起误动作,且只能单独控制,与计算机进行通信较难实现。
(2)复杂控制器控制方式。
这种控制方式是通过安装在水泵出口管道上的压力传感器,把出口压力变成标准工业电信号的模拟信号,经过前置放大、多路切换、A/D 变换成数字信号传送到单片机,经单片机运算和给定参量的比较,进行PID运算,得出调节参量;经由D/A变换给调压/变频调速装置输入给定端,控制其输出电压变化,来调节电机转速,以达到控制水位的目的。
本设计利用单片机设计一个水位控制系统,要求选择合适的水位,当设定完水位后,系统根据水位情况控制电磁阀的开启和关断。
1.2 系统设计总框图图2-1 系统总体框图1.3 A/D转换模块设计方案TLC1543美国TI司生产的多通道、低价格的模数转换器。
采用串行通信接口,具有输入通道多、性价比高、易于和单片机接口的特点,可广泛应用于各种数据采集系统。
TLC1543为20脚DIP装的CMOS 10位开关电容逐次A/D逼近模数转换器,引脚排列如图1 所示。
其中A0~A10(1~9 、11、12脚)为11 个模拟输入端,REF+(14脚,通常为VCC)和REF-(13脚,通常为地)为基准电压正负端,CS(15脚)为片选端,在CS端的一个下降沿变化将复位部计数器并控制和使能ADDRESS、I/O CLOCK (18脚)和DATA OUT(16脚)。
ADDRESS(17脚)为串行数据输入端,是一个1的串行地址用来选择下一个即将被转换的模拟输入或测试电压。
DATA OUT 为A/D 换结束3态串行输出端,它与微处理器或外围的串行口通信,可对数据长度和格式灵活编程。
自控课程设计-液位控制系统

自控课程设计-液位控制系统1. 介绍液位控制系统是一种自动化控制系统,用于监测和控制液体的容器中的液位高度。
该系统包括液位传感器、控制器和执行器等基本部件,可以应用于诸多场合,如水处理、油田、化工等。
本文设计一套液位控制系统,并简述其原理、流程和实现方法。
2. 原理液位控制系统根据水位传感器的反馈信号,调整容器里的水泵或阀门的开关状态,以实现液位的控制。
通常,控制系统需要有两个目标水位,高水位和低水位,当水位超过高水位时,系统会自动关闭出水口;当水位小于低水位时,系统会自动开启水泵或阀门,将水源输送到容器中。
3. 流程液位控制系统主要有以下流程:(1)线性传感器检测液位传感器的信号,并将其转换成电信号。
(2)控制器通过比较检测到的电信号与预设的目标水位的大小,计算出控制执行器的操作信号。
(3)执行器接收来自控制器的操作信号,并将其转换为实际的控制信号,例如启动电机或控制阀门的打开和关闭。
(4)线性传感器检测水位的变化,并将其反馈给控制器以更新系统状态。
4. 实现方法液位控制系统的具体实现方法包括以下步骤:(1)搭建实验平台为了验证液位控制系统的可行性,需要先搭建一套实验平台。
实验平台包括一个容器(例如水箱)、一个水泵和一个阀门。
(2)安装液位传感器将液位传感器安装在容器中,连接线性传感器与控制器。
(3)预设目标水位根据实验平台的需求,设定高水位和低水位的位置。
(4)编写程序利用 Arduino IDE 编写程序,实现液位传感器与控制器的数据通信,以及控制执行器输出操作信号的任务,来完成对液位控制的控制。
(5)测试和调试经过程序的上传和调试,对实验平台进行测试,验证液位控制系统的可行性和优劣。
5. 结论液位控制系统是一种自动化控制系统,可以在水处理、化工等多种领域中得到广泛应用。
本文介绍了液位控制系统的原理、流程和实现方法,并且在实验平台上进行了验证和测试。
该系统具有简单、实用和可靠的特点,是实现液位自动控制的有力手段。
液位控制设计

题目:液位控制系统设计方案设计一、基本思想1、通过在水箱底部安装1根直径为5mm的软管,一端安装在水箱底部;另一端与压电传感器连接。
水箱水位高度发生变化时,引起软管内气压变化,然后传感器把气压转换成电压信号,输送到电压比较器。
经比较后的输出电压有高低两种电平,高电平时启动接在后面的三极管电子开关,集电极继电器导通,电流流经灯泡,从而实现水位的显示控制。
2、设计的组成:水位检测、水位控制、显示部分。
二、硬件设计硬件组成:压电传感器电压比较器三极管电子开关继电器显示灯通过在水箱底部安装1根直径为5mm的软管,一端安装在水箱底部;另一端与压电传感器连接。
水箱水位高度发生变化时,引起软管内气压变化,然后传感器把气压转换成电压信号,输送到电压比较器。
经比较后的输出电压有高低两种电平,高电平时启动接在后面的三极管电子开关,集电极继电器导通,电流流经灯泡,从而实现水位的显示控制。
1、传感器的选用传感器使用SY一9411L—D型变送器,它内部含有1个压力传感器和相应的放大电路。
压力传感器是美国SM公司生产的555—2型OEM压阻式压力传感器,其有全温度补偿及标定(O~70℃),传感器经过特殊加工处理,用坚固的耐高温塑料外壳封装。
其引脚分布如图3所示。
1脚为信号输出(一);2脚为信号输出(一);3脚为激励电压;4脚为地;5脚为信号输出(+);6脚为信号输出(+)。
图3 SY-9411L-D型变送器引脚结构图在水箱底部安装1根直径为5mm的软管,一端安装在水箱底部;另一端与传感器连接。
水箱水位高度发生变化时,引起软管内气压变化,然后传感器把气压转换成电压信号.2、电压比较器LM339类似于增益不可调的运算放大器。
每个比较器有两个输入端和一个输出端。
两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。
用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。
液位控制系统课程设计.

目录第1章系统总体方案选择 (5)第2章系统结构框图与工作原理 (7)2.1 系统机构框图 (7)2.2 工作原理 (8)第3章各单元软硬件 (9)3.1 模拟控制对象系统 (9)3.2 控制台 (9)3.3 上位机及控制软件系统 (9)3.4 模拟量输入模块ICP-7017 (10)3.5 模拟量输出模块ICP-7024 (11)3.6 电动调节阀 (11)3.7 液位传感器 (12)第4章软件设计与说明 (13)4.1 用户窗口 (13)4.2 实时数据库 (16)第5章系统调试 (17)5.1 设备连接 (17)5.2 系统调试 (17)5.3 调试结果 (18)5.3 注意事项 (19)第6章总结 (20)附录程序清单 (21)第1章系统总体方案选择随着工业生产的迅速发展,工艺条件越来越复杂。
对过程控制的要求越来越高。
过程控制系统的设计是以被控过程的特性为依据的。
由于工业过程的复杂、多变,因此其特性多半属多变量、分布参数、大惯性、大滞后和非线性等等。
为了满足上述特点与工艺要求,过程控制中的控制方法是十分丰富的。
通常有单变量控制系统,也有多变量控制系统,有复杂控制系统,也有满足特定要求控制系统。
在工业生产过程中,液体贮槽设备如进料罐、成品罐、中间缓冲容器、水箱等应用十分普遍,为保证生产正常进行,物料进出需均衡,以保证过程的物料平衡,因此工艺要求贮槽内的液位需维持在某个给定值上下,或在某一小范围内变化,并保证物料不产生溢出,要求设计一个液位控制系统。
对分析设计的要求,生产工艺比较简单要求并不高,所以采用管道流量控制系统进行设计。
管道流量控制系统又称简单控制系统,是指由一个被控系统、一个检测元件及变送器、一个调节器和一个执行器所构成的闭合系统。
管道流量控制系统是最简单、最基本、最成熟的一种控制方式。
管道流量控制系统根据被控量的系统、液位管道流量控制系统等。
管道流量控制系统的结构比较简单,所需的自动化装置数量少,操作维护也比较方便,因此在化工自动化中使用很普遍,这类系统占控制回路的绝大多数。
液位控制系统设计说明

液位控制系统设计说明1.引言2.系统组成2.1液位传感器:用于实时测量液体容器中的液位,并将测量值传输给控制器。
常见的液位传感器有浮球式液位传感器、压力式液位传感器等。
2.2控制器:接收液位传感器传输的液位信息,并根据预设的液位设定值进行控制动作。
控制器可以采用PLC(可编程逻辑控制器)或微处理器等。
2.3执行机构:根据控制器的指令,对液位进行调节。
常见的执行机构有阀门、泵等。
3.设计考虑在液位控制系统的设计过程中,需要考虑以下几个方面:3.1系统准确度:液位控制系统需要具备较高的测量准确度和控制精度。
因此,需要选择合适的液位传感器和控制器,并进行校准以提高系统的准确度。
3.2系统稳定性:液位控制系统需要具备良好的稳定性,以保证液位控制的精确性。
在设计过程中,可以采用反馈控制方法来提高系统的稳定性。
3.3安全性:液位控制系统需要具备良好的安全性,以避免因液位控制不准确导致的安全事故。
在设计过程中,需要考虑故障判断与报警系统,以及紧急停机装置等。
4.系统设计步骤4.1确定液位控制的目标和要求:明确需要控制的液位范围、控制精度等指标。
4.2选择合适的液位传感器:根据液体性质和工艺要求,选择适合的液位传感器,并确定传感器的测量范围和准确度。
4.3选择合适的控制器:根据需要控制的液位范围和控制精度,选择适合的控制器,并确定控制器的输出信号类型。
4.4确定执行机构:根据需要的控制方式,选择适合的执行机构,并确定执行机构的控制动作方式和控制信号类型。
4.5进行系统集成:将液位传感器、控制器和执行机构进行连接,并进行系统调试和测试。
4.6系统优化与改进:根据实际运行情况,对液位控制系统进行优化和改进,以提高系统稳定性和控制精度。
5.结论液位控制系统是工业生产过程中常见的一种控制系统,其设计涉及液位传感器、控制器和执行机构等多个组成部分。
在设计过程中,需要考虑系统的准确度、稳定性和安全性等因素。
通过合理的设计和优化,可以实现对液位的精确测量和控制,满足工业生产过程对液位的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《过程控制与集散系统》课程设计题目:液位升降过程控制系统设计学院信息科学与工程学院班级学号学生姓名指导教师周红军一、设计题目、任务及要求1.设计题目:液位升降过程控制系统设计2.设计任务:图1所示为某工业生产中的液位控制设备,设计任务是通过控制系统向水箱注入工业用水,经过液位调节后,使其满足下道工序要求。
水箱注水工艺过程为:工业用水由水泵驱动,经送水管道注入水箱内;水箱具有出水口,向下道工序送水;由于工艺对水箱内水压有要求,水箱内液位高度必须达到一定的液位高度;水箱底板具有液位传感器,输水管道上具有流量传感器;输水管道上装有一个调节阀,用以控制向水箱注水的流量,已达到控制水箱液位的目的。
水泵工业水箱给定值输出值变频器流量输出值去下一工序传感器调节器传感器调节器水源电动调节阀图1 工业水箱液位控制系统由于水箱时间常数大,且扰动的因素多,单回路反馈控制系统不能满足工艺对水箱液位的要求。
为了提高控制质量,采用串级控制系统,运用输水管流量副回路的快速作用,有效地提高控制质量,满足生产要求。
3.设计要求(1) 绘制水箱液位单回路反馈控制系统结构框图。
(2) 以水箱液位为主变量,选择滞后较小的管道流量作为副变量,构成水箱液位串级控制系统,要求绘制该串级控制系统结构图。
(3) 假设主对象的传递函数为01()(1)(2)G s s s =++学号后两位,副对象的传递函数为02()(1)G s s =+学号后两位,主、副控制器的传递函数分别为s K s G c c 21)(11+=,22)(c c K s G =,1)()(21==s G s G m m ,请确定主、副控制器的参数(要求写出详细的参数估算过程)。
(4) 利用simulink 实现单回路系统仿真和串级系统仿真,分别给出系统输出响应曲线。
二、设计任务分析(一)系统采用单回路反馈控制系统结构框图(二)串级控制系统在送水管道中有一个电动调节阀,根据反馈情况用来控制调节水流量,但由于水流量干扰较多,如水流量不稳定,管道不通畅等众多干扰,因此单回路反馈控制系统不能满足对水箱液位的控制要求。
为提高控制质量,采用串级反馈控制系统,以水箱液位为主变量,选择滞后较小的管道流量作为副变量,构成水箱液位串级控制系统,提高控制质量,满足工艺要求。
串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。
前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。
三、详细设计(一)主被控参数的选择应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量的参数。
在水箱液位单回路反馈控制系统中水箱液位为系统的主被控参数,因为水箱液位是整个控制作用的关键,要求水箱液位高度维持在某给定值上下。
如果其调节欠妥当,会造成整个系统控制设计的失败。
(二) 副被控制参数的选择从整个系统来看,滞后较小的管道流量虽然不是我们要控制的直接目标,但是滞后的管道流量会很大程度上影响水箱进水速度及液位高度,因此我们选择滞后的管道流量为副被控参数。
(三) 控制器的选择主控制器的选择:主被控变量是工艺操作的主要指标(液位高度),允许波动的范围很小,一般要求无余差,主控制器应选PI控制规律。
副被控变量的设置是为了保证主被控变量的控制质量,提高系统的反应速度,提高控制质量,可以允许在一定范围内变化,允许有余差,因此副控制器要选P控制规律。
副被控变量的设置是为了保证主被控变量的控制质量,提高系统的反应速度,提高控制质量,可以允许在一定范围内变化,允许有余差,因此副控制器只要选P控制规律就可以了。
在工程实践中,串级控制系统常用的整定方法有以下三种:逐步逼近法;两步整定法;一步整定法。
逐步逼近法费时费力,在实际中很少使用。
两步整定法虽然比逐步逼近法简化了调试过程,但还是要做两次4:1衰减曲线法的实测。
对两步整定法进行简化,在总结实践经验的基础上提出了一步整定法。
为了简便起见,本设计采用一步整定法。
所谓一步整定法,就是根据经验先确定副调节器的参数,然后将副回路作为主回路的一个环节,按单回路反馈控制系统的整定方法整定主调节器的参数。
具体的整定步骤为:(1)在工况稳定,系统为纯比例作用的情况下,根据K02/δ2=0.5这一关系式,通过副过程放大系数K02,求取副调节器的比例放大系数δ2或按经验选取,并将其设置在副调节器上。
(2)按照单回路控制系统的任一种参数整定方法来整定主调节器的参数。
(3)改变给定值,观察被控制量的响应曲线。
根据主调节器放大系数K1 和副调节器放大系数K2的匹配原理,适当调整调节器的参数,使主参数品质最佳。
(4)如果出现较大的振荡现象,只要加大主调节器的比例度δ或增大积分时间常数TI,即可得到改善。
对于该液位串级控制系统,在一定范围内,主、副控制器的增益可以相互匹配。
根据表1,可以大致确定副控制器的增益Kc2及比例带。
表1. 副控制器参数经验设置值副变量类型副控制器比例度δ2(%)副控制器比例放大倍数KT2 温度20~60 1.7~5压力30~70 1.4~3流量40~80 1.25~2.5液位20~80 1.25~5根据本设计,适当选取Kc2=2.5(整定时可以根据具体情况再做适当调整)。
然后在副回路已经闭合的情况下按单回路控制器参数整定方法整定主控制器,本方案采用衰减曲线法整定,考虑到4:1衰减太慢,因此采用10:1衰减曲线法整定主控制器参数。
一般地取Kv=1,将学号最后两位83带入可计算出主对象的传递函数。
衰减曲线法是在闭环系统中,先把调节器设置为纯比例作用,然后把比例度由大逐渐减小,加阶跃扰动观察输出响应的衰减过程,直至10:1衰减过程为止。
这时的比例度称为10:1衰减比例度,用δS表示之。
相邻两波峰间的距离称为10:1衰减周期TS。
根据δS和TS,运用表2所示的经验公式,就可计算出调节器预整定的参数值。
表2. 衰减曲线法整定计算公式衰减比整定参数调节规律δ/(%)Ti/min Td/min4:1PPIPIDδs1.2δs0.8δs0.5Ts0.3Ts 0.1Ts10:1PPIPIDδ’s1.2δ’s0.8δ’s2Tr1.2Tr 0.4Tr衰减曲线法的第一步就是获取系统的衰减曲线,采用10:1衰减曲线法。
在Simulink中,如图5,把积分输出线断开,Kc1的值从大到小进行试验,观察示波器的输出,直到输出10:1衰减振荡曲线为止。
图6即为系统10:1衰减曲串级系统Simulink模型:图7当Kc1=1.9时,在t1=2.27s时出现第一峰值,为1.22;在t2=4.7时出现第二峰值,为1.00,曲线稳定值为0.98,可计算出衰减度为(1.22-1.02):(1.00-0.98)=10:1。
因此,当Kc1=1.9时,系统出现10:1衰减振荡,且Ts=t2-t1=4.7-2.27=2.43s,根据表2可知,积分时间常数Ti=2Ts=4.86s。
将Kc1的值设置为1.9,将积分器的输出连线连上,如图7所示,运行仿真后,得到如下图所示的结果,它即为PI控制时系统的单位阶跃响应。
根据结果可知,参数整定后系统达到比较理想的效果。
综上可知,主、副控制器参数整定结果为:Kc1=1.9,Kc2=1.0,Ti=4.86s,Kv=0.98。
一、单回路系统和串级系统仿真输出响应曲线对比单回路控制系统的模型如下:单回路控制系统的输出响应曲线:五、串级控制系统性能分析上两图比较可知,串级系统输出曲线第一峰值出现时间明显比单回路系统更早,缩短了上升时间,减小了对象时间常数,系统快速性增强。
串级系统输出曲线的调节时间缩短,使系统更早进入稳定状态,系统振荡幅度明显得到改善,增强了系统的稳定性。
对串级控制系统和单回路控制系统阶跃响应输出曲线对比可知,串级控制系统由于增加了副控制回路,使控制系统的的抗干扰性能、动态性能、工作频率及自适应能力都得到明显改善。
其性能可归纳为:1、可以显著提高系统对二次扰动的抑制能力,甚至是二次干扰在对主被控量尚未产生明显影响时就被副回路克服了。
由于副回路调节作用的加快,整个系统的调节作用也加快,对一次扰动的抑制能力也得到提高。
2、提高了系统的工作频率,由于副回路性能的改善,使得主控制器的比例带可以更窄,从而提高了系统工作频率。
3、提高了系统的动态性能,由于副回路显著改善了包括控制阀在内的副对象的特性,减少了时间常数和相位滞后,使得整个系统的动态性能得到明显改善。
4、对负荷干扰或操作条件的变化有一定的自适应能力。
包括控制阀在内的副对象在操作条件和负荷变化时,其特性变化对系统的影响显著地削弱。
但串级控制系统也存在一些不足:只有当中间变量能够检测出来时,才可能采用串级控制系统,但许多过程在结构上是不容易以这种方式加以分割的;串级控制系统比单回路控制系统需要更多的仪表,串级控制系统的投放和整定也比单回路控制系统复杂些。
在实际生产中,如果是单回路控制系统能够解决的问题,就不一定非要采用串级控制系统方案,一般当单回路控制方案质量达不到实际要求时,才考虑采用串级控制系统。
设计心得此次的课程涉设计,主要的学习串级控制系统的设计,在设计过程中,参数的设定是难点,涉及多次的调整,不断的修改,终于,在同学的帮助下,得到了较为满意的输出曲线。
然后在与单回路系统得出的系统输出曲线做对比之后,进一步的认识到串级控制系统的优点与不足,对串级系统的学习得到进一步的巩固,加深了相关知识点的印象。
最后,课程设计让我们将理论联系上了实际,提高了我的动手能力,同时,在解决问题的过程中,得到了相应的满足感,以及成就感。
参考文献:1 方康玲《过程控制系统》,武汉理工大学出版社 2007年2 郭阳宽王正林《过程控制工程及仿真》电子工业出版社 2009年4月。