中考数学代数式知识点汇总
中考数学复习知识点归纳总结7篇
中考数学复习知识点归纳总结7篇篇1一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
中考中可能会涉及自然数的连续性及自然数的个数等问题。
复习时需要注意对自然数概念的理解及运用。
2. 整数的认识:整数包括正整数、零和负整数。
在中考复习中,需要掌握整数的性质、运算规则以及与分数的区别等知识点。
(二)代数式与方程1. 代数式的认识:代数式是由数字、字母和数学符号组成的一种数学表达式。
在中考复习中,需要掌握代数式的简化、代入计算等知识点。
同时还需要加强对代数式在实际问题中应用的能力培养。
如与面积计算、路程问题等结合出题的情况很常见。
例如“给出多边形的一条边长为a米,与其相邻的两边之差的代数式是:______________”。
因此类题目较为灵活,需要考生具备一定的数学思维和解题技巧。
(三)数的运算与性质篇2一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
2. 整数的认识:整数是自然数中的一部分,包括正整数和负整数。
它们在日常生活中的应用非常广泛。
3. 小数、分数与百分数的认识:熟练掌握小数、分数与百分数的概念及其相互转化,对于数学计算和应用题的解答至关重要。
(二)代数知识1. 代数式的认识与运算:掌握代数式的概念、性质及运算规则,能够熟练进行代数式的化简、求值等。
2. 方程与不等式的应用:掌握一元一次方程、不等式及其解法,能够灵活运用方程与不等式解决实际问题。
二、几何知识(一)平面几何1. 图形的认识:熟练掌握各种基本图形的性质、分类及相互之间的关系。
2. 图形的测量:掌握各种图形的周长、面积等测量方法,能够熟练计算图形的面积和周长。
3. 图形的变换:了解图形的平移、旋转、翻折等变换方式,掌握其性质和应用。
(二)立体几何1. 长方体与正方体的认识:掌握长方体与正方体的性质、体积和表面积的计算方法。
中考数学知识点归纳总结
中考数学知识点归纳总结一、数与代数。
(一)有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如:3是正整数, - 5是负整数,0.25(可化为(1)/(4))是有限小数属于分数,0.3̇(可化为(1)/(3))是无限循环小数属于分数。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
- 例如:3 + 5=8;-3+(-5)= - 8;3+(-5)= - 2;5+(-5)=0。
- 减法:减去一个数,等于加上这个数的相反数。
即a - b=a+(-b)。
- 例如:5 - 3 = 5+(-3)=2;3 - 5=3+(-5)= - 2。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。
- 例如:3×5 = 15;-3×(-5)=15;3×(-5)= - 15;0×5 = 0;(-2)×(-3)×(-4)= - 24(3个负因数,积为负)。
- 除法:除以一个不等于0的数,等于乘这个数的倒数。
即a÷b=a×(1)/(b)(b≠0)。
两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 例如:15÷3 = 5;-15÷(-3)=5;15÷(-3)= - 5;0÷5 = 0。
- 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
a^n 中,a叫做底数,n叫做指数。
- 例如:2^3 = 2×2×2 = 8;(-2)^3=-2× - 2× - 2=-8。
中考数学专题:实数与代数式
专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。
中考数学知识点总结 代数式 (5大知识点+例题) 新人教版
中考数学知识点总结 代数式 (5大知识点+例题) 新人教版基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。
单独一个数或者一个字母也是代数式。
2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。
3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。
单独一个数或字母也是单项式。
单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。
单项式的系数:单项式中的数字因数叫单项式的系数。
(2)多项式:几个单项式的和叫做多项式。
多项式的项:多项式中每一个单项式都叫多项式的项。
一个多项式含有几项,就叫几项式。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。
不含字母的项叫常数项。
升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。
去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。
添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。
整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。
(2)整式的乘除:幂的运算法则:其中m 、n 都是正整数同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)(积的乘方:n n n b a ab =)(。
中考数学代数知识点总结
中考数学代数知识点总结一、基本代数运算1. 加减乘除加减乘除是代数运算的基本内容,也是中考考查的重点。
在加减乘除的运算中,学生需要掌握整数、分数、小数等相关概念,以及它们在运算中的应用。
2. 整式的加减乘除整式是由字母和数字及其运算符号组成的代数式,整式的加减乘除是中考代数题中的必考内容,需要学生掌握整式的加减乘除法则,例如同类项相加、互化成法等方法。
3. 代数式的计算在代数式的计算中,学生需要掌握二项式和多项式的加减乘除法则,以及含有方程式的复合运算等内容。
二、一元一次方程1. 一元一次方程的概念一元一次方程是解决实际问题中常见的代数问题,学生需要掌握一元一次方程的定义、解法以及应用。
2. 一元一次方程的解法一元一次方程的解法包括整式移项、合并同类项、去括号、去分母、得到等价方程、方程变形、化简、合并同类项、移项、通分、求解等步骤。
3. 一元一次方程的应用一元一次方程是一种常用的数学模型,学生需要学会将实际问题转化为代数方程,并求解出方程的未知数的值。
三、一元一次不等式1. 一元一次不等式的概念一元一次不等式是一元一次方程的推广,学生需要掌握不等式的概念、性质以及解法。
2. 一元一次不等式的解法解一元一次不等式的方法包括整式移项、合并同类项、去括号、去分母、得到等价不等式、不等式变形、化简、合并同类项、移项、通分、求解等步骤。
四、二元一次方程组1. 二元一次方程组的概念二元一次方程组是由两个关于同两个未知数的一次方程组成的代数方程组,解二元一次方程组需要用到方程相加消元的方法。
2. 二元一次方程组的解法解二元一次方程组的方法包括加法、减法、代入法等,学生需要掌握这些解法,并且能够根据实际问题将其转化为方程组进行求解。
五、一元二次方程1. 一元二次方程的概念一元二次方程是一元二次多项式的零点集合,学生需要掌握一元二次方程的定义、性质以及应用。
2. 一元二次方程的解法解一元二次方程的方法包括配方法、因式分解、公式法、求判别式、根的关系、三种情况等。
中考数学代数知识点精选全文
精选全文完整版(可编辑修改)中考数学代数知识点中考考点总结一、数与式:(约18个考点,以概念考察与简单计算为主,大题主要是化简计算题)1、实数:倒数、相反数、绝对值等概念、比较大小、科学计数法、近似数和有效数字、简单计算、规律题;2、整式:代数式求值、整式基本运算、幂的运算、乘法公式、分解因式;3、分式:概念及性质、化简(并求值);4、二次根式:相关概念及有意义条件、非负性、相关计算a bcd m2的值为______. 典型例题1、已知a与b互为相反数,c与d互为倒数,m的绝对值是1,则2m2、|a|>|b|,a>0,b<O,把a、b、-a、-b按由小到大的顺序排列.3、我国第六次人口普查显示,全国人口为***-*****75人,将这个总人口数(保留三个有效数字)用科学计数法表示为()A、1.37×109 B、1.37×107 C、1.37×108 D、1.37×10104、计算(-4)的值等于______ 23425、某种细菌在繁殖过程中,每半小时分裂一次,由一个分裂成两个,2.5小时后,这种细菌可分裂为______ 个26、已知代数式3x 4x 6的值为12,则x4x 6的值为()37、先化简,再求值:5x (3x 5x) (4y 7xy),其中x= C 1 y =1 28、分解因式ab 2ab a 9、化简2232222a 516( a 3)2a 6a 3210、若m 3 (n 2) 0,则m 2n的值为______11、已知最简二次根式2b 1和7 b是同类二次根式,求b 的值。
12、先化简,再求值:,其中x1x 1x 113、(π 1) ______=二、方程与不等式(约13个考点,小题题型相对少,且常考大题是它们的解法及应用题)1、一次方程:二元一次方程组的解法、应用题;2、一元二次方程:判别式、根与系数的关系、解方程(三种)、应用题、综合题;3、分式方程:增根讨论、解方程、应用题;4、一元一次不等式:解集的讨论及应用、解不等式(数轴表示)、应用题;典型例题21、若方程kx-6x+1=0有两个不相等的实数根,则k的取值范围是2222、设x1、x2是方程3x+4x-5=0的两根,则1 1 ,.x1+x2=3、解方程1 22会出现的增根是()x 1x 1A.x 1 B.x 1 C. x 1或x 1 D.x 24、已知关于x的不等式(a 2)x 10 a的解集是x>3,求a的值5、解方程或不等式x 2y 9 22(1)y 3x 1 (2) 3x-4x-1=0(用公式法)(3) 4x-8x+1=0(用配方法);2x 3 01x2 .(5) 写出不等式组的整数解3 x(4)x 3 3x 7 06、某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554 台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 % .该厂第一季度生产甲、乙两种机器各多少台?7、某商店4月份销售额为50万元,第二季度的总销售额为182万元,若5、6两个月的月增长率相同,求月增长率.8、甲、乙两组工人合作完成一项工程,合作5天后,甲组另有任务,由乙组再单独工作1天就可完成,若单独完成这项工程乙组比甲组多用2天,求甲、乙两组单独完成这项工程各需几三、函数(约17个考点,图像及性质是小题的重点,常考大题是求函数解析式、应用题及图像综合题(也是代数部分的难点)1、坐标系及函数概念:坐标系内点的坐标特征、函数自变量取值范围、函数图像;2、一次函数:图像及性质、解析式(两点)、应用题、与方程或不等式的关系、综合题;3、反比例函数:图像及性质、k的几何意义(及相关面积问题)、解析式(两点)、应用题、综合题;4、二次函数:图像及性质、解析式(两点)、应用题、综合题;1、点A(―3,2)关于y轴对称的点的坐标是()2、函数y 1中,自变量x的取值范围是x 13、3、一天,亮亮发烧了,早晨他烧得厉害,吃过药后感觉好多了, 中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么烫了. 图中能基本上反映出亮亮这一天(0时~24时)体温的变化情况的是( )4、二次函数y ax2 bx c(a 0)的图象如图所示,则下列结论:①a>0;②c>0;③ b-4ac>0,其中正确的个数是( ) A. 0个B. 1个C. 2个D. 3个ABD5、函数y ax2与y ax b(a 0,b 0)在同一坐标系中的大致图象是()6、已知一次函数物图象经过A(-2,-3),B(1,3)两点.求这个一次函数的解析式.7、已知反比例函数图象经过点P(m,4),已知点P到x轴的距离是到y轴的距离2倍.求这个反比例函数的解析式。
中考数学总复习知识点总结:第二章 代数式
第二章代数式考点一、整式的有关概念(3分)1.代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2.单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如是6次单项式。
考点二、多项式(11分)1.多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数, 叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母, 按照代数式指明的运算, 计算出结果, 叫做代数式的值。
注意: (1)求代数式的值, 一般是先将代数式化简, 然后再将字母的取值代入。
(2)求代数式的值, 有时求不出其字母的值, 需要利用技巧, “整体”代入。
2.同类项所有字母相同, 并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3.去括号法则(1)括号前是“+”, 把括号和它前面的“+”号一起去掉, 括号里各项都不变号。
(2)括号前是“﹣”, 把括号和它前面的“﹣”号一起去掉, 括号里各项都变号。
4.整式的运算法则整式的加减法: (1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数)(n m a a mn n m = )()(都是正整数n b a ab n n n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:注意: (1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘, 结果是一个多项式, 其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题, 多项式的每一项都包括它前面的符号, 同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中, 有同类项的要合并同类项。
初中数学中考必考知识点汇总盘点
初中数学中考必考知识点汇总盘点一、代数部分1 .科学记数法:设N>0,则N=aX10"(比中lWa<10, n 为整数)。
2、有效数字:,个近似数,从左边第•个不是0的数.到精确到的数位为止,所仃的数字.叫做这个数的仃效数 字。
格确度的形式1两种:⑴精确到那字:(2)保印几个有效数字,3、代数式的分类:无理式4、整式的乘除:系的运算法则:其中m 、n 都是正整数 同底数州相乘:代数式有理式整代分式单项式多项式 席的乘方: ST =L 积的乘力:5、乘法公式: 平方差公式:(a + b)(a -b) = a 2 -b 2:完全平方公式:(a + b)2=a 2+2ab+b\ (a-b)2 =a 2-2ab + b 26,因式分解的股步骤:(1)如果多项式的各项有公因式,那么先提公因式:(2)提出公因式或无公因式可提,再号虑可否运用公式或卜字相乘法:7、分式定义:形呜的式门叫分式,其中A 、B 是脍式,II.R 中含勺字明<1)分式无意义:B=”时,分式无意义:BWO 时,分式仃意义. (2)分式的值为0: A=0, BWO 时,分式的值等「00 X 、分式的基本性质:<1)人=土也也是W (购整式):(2)B B • M从二次根式的性质:13(M 是关。
的箱式)(1) (4a)2 =a(a>0);(3) 7ab = & , b ya2O, b 》O); 10、二次根式的运算:(1) .次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根(2)二次根式的乘法:yjTi - \ib = 4ab (a^O, b>0)o(3):次根式的除法:二产= 4h二次根式运算的最终结果如果是根式,要化成坡简二次根式”11、一元一次方程(1)•儿,次方程的标准形式:ax+b=O (其中x)未知数,a、b是已知数,aWO)(2)•元•次方程的最简形式:ax=b (其中x是未知数,a、b是已知数,,壬0)12、一元二次方程(3)•几二次方程的般形式:ax2 + bx + c = 0 ( 11:中x是未知数,a、b、c是已知数,a^O)(4)•元.次力程的解法:■按开平方法、配方法、公式法、因式分解法(5)一元(次方界解法的选择顺序是:先特殊后一般,如没有要求.一般不用配方法。
中考数学专题02 代数式【考点巩固】(解析版)
专题02 代数式考点1:代数式的概念与求值1.(2021·四川自贡市·中考真题)已知23120x x --=,则代数式2395x x -++的值是( ) A .31 B .31-C .41D .41-【答案】B 【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可. 【详解】解:∵23120x x --=, ∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .2.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .元【答案】D 【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可. 【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元, ∴应缴水费为17a +3(a +1.2)=20a +3.6(元), 故选:D .3.(2021·浙江嘉兴市·中考真题)观察下列等式:,,,…按此规律,则第个等式为__________________.【答案】.()20 3.6a +22110=-22321=-22532=-n 21n -=()221n n --【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可. 【详解】解:∵,, ,…∴第个等式为:故答案是:.4.(2021·浙江台州市·中考真题)将x 克含糖10的糖水与y 克含糖30的糖水混合,混合后的糖水含糖( ) A .20 B .C .D .【答案】D 【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解. 【详解】解:混合之后糖的含量:, 故选:D .5.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:,…,则第个式子是___________.【答案】【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【详解】解:∵当n 为奇数时,;当n 为偶数时,,∴第n 个式子是:.22110=-22321=-22532=-n ()22211n n n -=--()221n n --%%%+100%2x y⨯+3100%20x y⨯+3100%10+10x yx y⨯10%30%3100%1010x y x yx y x y++=⨯++2335472,2,2,2a b a b a b a b +-+-n ()12112n nn a b +-+-⋅()111n +-=()111n +-=-()1211·2n n n a b +-+-故答案为:考点2:整式相关概念6.多项式 是一个关于x 的三次四项式,它的次数最高项的系数是﹣5,二次项的系数是34,一次项的系数是﹣2,常数项是4.【分析】直接利用多项式的次数与项数确定方法分析得出答案. 【解答】解:由题意可得,此多项式可以为: ﹣5x 3+34x 2﹣2x +4. 故答案为:﹣5x 3+34x 2﹣2x +4.7.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可. 【解答】解:根据题意得:m =﹣1,3+n +5=9, 解得:m =﹣1,n =1, 则m +n =﹣1+1=0. 故答案为:0. 考点3:整式的运算8.(2021·广西来宾市·中考真题)下列运算正确的是( ) A . B .C .D .【答案】A 【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解. 【详解】解:A. ,原选项计算正确,符合题意; B. ,原选项计算错误,不合题意; C. ,原选项计算错误,不合题意;D. ,不是同类项,无法相减,原选项计算错误,不合题意. 故选:A9.(2021·四川达州市·中考真题)已知,满足等式,则___________.【答案】-3()1211·2n n n a b +-+-235a a a ⋅=623a a a ÷=()325a a =2232a a a -=235a a a ⋅=624a a a ÷=()326a a =232a a -ab 2690a a ++=20212020a b =【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解. 【详解】解:由,变形得, ∴, ∴, ∴.故答案为:-310.(2021·广东中考真题)若且,则_____. 【答案】 【分析】 根据,利用完全平方公式可得,根据x 的取值范围可得的值,利用平方差公式即可得答案. 【详解】 ∵, ∴, ∵, ∴, ∴=, ∴==, 故答案为: 考点4:整式化简求值2690a a ++=()230a +=130,03a b +=-=13,3a b =-=()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1136x x +=01x <<221x x-=6536-1136x x +=2125(36x x -=1x x-1136x x +=2211125()(436x x x xxx -=+-⋅=01x <<1x x <1x x -56-221x x -=11()(x x x x +-135(66⨯-6536-6536-11.(2021·吉林长春市·中考真题)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =+.【答案】a - 【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 【详解】()()()221a a a a +-+-224a a a =-+-当时,原式.12.(2021·贵州安顺市·中考真题)(1)有三个不等式,请在其中任选两个不等式,组成一个不等式组,并求出它的解集: (2)小红在计算时,解答过程如下:第一步第二步 第三步小红的解答从第_________步开始出错,请写出正确的解答过程. 【答案】(1)x <-3;(2)第一步,正确过程见详解 【分析】(1)先挑选两个不等式组成不等式组,然后分别求出各个不等式的解,再取公共部分,即可;(2)根据完全平方公式、去括号法则以及合并同类项法则,进行化简,即可. 【详解】解:(1)挑选第一和第二个不等式,得,由①得:x <-2, 由②得:x <-3,∴不等式组的解为:x <-3;4a =-4a =44-=()231,515,316x x x +--->()()211a a a +--2(1)(1)a a a +--22(1)a a a =+--221a a a =+--1a =-231515x x +<-⎧⎨->⎩①②(2)小红的解答从第一步开始出错,正确的解答过程如下:.故答案是:第一步 考点5:因式分解13.(2021·四川成都市·中考真题)因式分解:__________. 【答案】 【详解】解:=; 故答案为14.(2021·云南中考真题)分解因式:=______. 【答案】x (x +2)(x ﹣2). 【详解】试题分析:==x (x+2)(x ﹣2). 故答案为x (x+2)(x ﹣2).15.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____. 【答案】(a +1)2 【分析】直接利用完全平方公式分解. 【详解】a 2+2a +1=(a +1)2. 故答案为.考点6:分式有意义及分式为零的条件 16.(2021·浙江宁波市·中考真题)要使分式有意义,x 的取值应满足( ) A . B .C .D .【答案】B 【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】2(1)(1)a a a +--22(21)a a a a =+--+2221a a a a =+-+-31a =-24x -=(x+2)(x-2)24x -=222x -(2)(2)x x +-(2)(2)x x +-34x x -34x x -2(4)x x -()21+a 12x +0x ≠2x ≠-2x ≥-2x >-解: 分式有意义,故选: 考点7:分式性质17.(2021·四川自贡市·中考真题)化简:_________. 【答案】 【分析】利用分式的减法法则,先通分,再进行计算即可求解. 【详解】 解:, 故答案为:. 考点8:分式化简与运算18.(2021·四川南充市·中考真题)下列运算正确的是( )A .B .C .D .【答案】D 【分析】根据分式的加减乘除的运算法则进行计算即可得出答案 【详解】12x +20,x ∴+≠2.x ∴≠-.B 22824a a -=--22a +22824a a ---()()28222a a a =--+-()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+22a +232496b a b a b ⋅=2312332b b ab a ÷=11223a a a +=2112111a a a -=-+-解:A.,计算错误,不符合题意; B. ,计算错误,不符合题意;C.,计算错误,不符合题意; D.,计算正确,符合题意; 故选:D19.(2021·江苏盐城市·中考真题)先化简,再求值:,其中. 【答案】,3 【分析】先通分,再约分,将分式化成最简分式,再代入数值即可. 【详解】 解:原式.∵∴原式.20.(2021·山东威海市·中考真题)先化简,然后从,0,1,3中选一个合适的数作为a 的值代入求值.【答案】2(a -3),当a =0时,原式=-6;当a =1时,原式=-4. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a 的值,继而代入计算可得答案. 【详解】= 2324916b a a b b⋅=2231213=333221b a ab a ab b b÷=⨯23111=2222a a a a a+=++--=--+---22211112=11111a a a a a a a 21111m m m-⎛⎫+ ⎪-⎝⎭2m =1m +11(1)(1)1m m m m m-+-+=⋅-(1)(1)1m m m m m-+=⋅-1m =+2m =213=+=2211(1)369a a a a a a -+--÷--+1-2211(1)369a a a a a a -+--÷--+()()()221311333a a a a a a a +-⎡⎤-+-÷⎢⎥---⎣⎦= = = =2(a -3), ∵a ≠3且a ≠-1, ∴a =0,a =1,当a =0时,原式=2×(0-3)=-6; 当a =1时,原式=2×(1-3)=-4.21.(2021·内蒙古通辽市·中考真题)先化简,再求值:,其中x 满足. 【答案】x (x +1);6 【分析】先求出方程的解,然后化简分式,最后选择合适的x 代入计算即可. 【详解】解:∵ ∴x =2或x =-1 ∴ = = ==x (x +1)∵x =-1分式无意义,∴x =2当x =2时,x (x +1)=2×(2+1)=6.()2223123331a a a a a a a -⎛⎫----⋅⎪--+⎝⎭()222312331a a a a a a ---++⋅-+()()221331a a a a +-⋅-+2212(1)121x x x x x x +++-÷+++220x x --=220x x --=220x x --=2212(1)121x x x x x x +++-÷+++()221212()111x x x x x x +++÷+++-()2222()11x x x x x ++÷++()()22112x x x x x ++⨯++22.(2021·四川遂宁市·中考真题)先化简,再求值:,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】; 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解: , ∵m 是已知两边分别为2和3的三角形的第三边长, ∴3-2<m <3+2,即1<m <5, ∵m 为整数, ∴m =2、3、4, 又∵m ≠0、2、3 ∴m =4, ∴原式=. 23.(2021·四川凉山彝族自治州·中考真题)阅读以下材料,苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler .1707-1783年)才发现指数与对数之间的联系. 对数的定义:一般地.若x a N =(且),那么x 叫做以a 为底N 的对数, 记作,比如指数式可以转化为对数式,对数式可以转化为指数式.我们根据对数的定义可得到对数的一个性质:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭32m m --12322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭=2223m m m m ÷--=2232m m m m-⋅-=32m m --=431422-=-0a >1a ≠log a x N =4216=24log 16=32log 9=239=,理由如下:设,则..由对数的定义得又.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①___________;②_______,③________; (2)求证:; (3)拓展运用:计算.【答案】(1)5,3,0;(2)见解析;(3)2【分析】(1)直接根据定义计算即可;(2)结合题干中的过程,同理根据同底数幂的除法即可证明;(3)根据公式:log a (M •N )=log a M +log a N 和log a=log a M -log a N 的逆用,将所求式子表示为:,计算可得结论. 【详解】解:(1)①∵,∴5,②∵,∴3,③∵,∴0;(2)设log a M =m ,log a N =n ,∴,,∴, ∴, ∴; (3)= log ()log log (0,1,0,0)a a a M N M N a a M N ⋅=+>≠>>log ,log a a M m N n ==,n m M a N a ==m n m n M N a a a +∴⋅=⋅=log ()a m n M N +=⋅log log a a m n M N +=+ log ()log log a a a M N M N ∴⋅=+2log 32=3log 27=7log l =log log log (0,1,0,0)a a a M M N a a M N N=->≠>>555log 125log 6log 30+-M N 5125630log ⨯5232=2log 32=3327=3log 27=071=7log 1=m a M =n a N =m n m n M a a a N-÷==log aM m n N =-log log log a a a M M N N=-555log 125log 6log 30+-5125630log ⨯==2.25.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 (用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2 ;(2);(3)1008块【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 故答案为:2 ;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;所以当地砖有n 块时,等腰直角三角形地砖有()块;故答案为:;(3)令 则5log25 24n +24n +24n +242021n +=1008.5n =当时,此时,剩下一块等腰直角三角形地砖 需要正方形地砖1008块1008n =242020n +=∴。
中考数学知识点总结归纳完整版
中考数学知识点总结归纳完整版
数学是一门重要的科学学科,对于我们的学习和生活都有着重要的作用。
而中考数学则是衡量学生数学水平的重要指标。
下面是对中考数学知识点的总结归纳:
一、整数和分数
1.整数的四则运算和混合运算
2.分数的四则运算和混合运算
3.整数与分数之间的互换
4.带分数的化简与计算
二、代数式和方程
1.代数式的定义和求值
2.合并同类项和提取公因式
3.一元一次方程和一元一次不等式
4.一元一次方程组的解法
5.一元一次不等式组的解法
三、几何
1.几何图形的基本概念和性质
2.平行线和三角形的性质
3.相似与全等的判定
4.三角形的面积和勾股定理
5.弧长和扇形的面积
6.圆的性质和相关定理
7.正多边形的性质和圆周角的证明
四、函数
1.函数的基本概念和表示方法
2.常用函数的图象和性质(线性函数、二次函数、绝对值函数等)
3.函数的增减性和最值的求解方法
4.函数的复合和反函数
5.解直接变比例和反比例的问题
五、统计与概率
1.统计图表的制作和分析
2.随机事件和概率的定义
3.事件间的关系和计算方法
4.排列和组合的计算方法
5.抽样调查和样本误差的计算
六、数与式的计算
1.取正负有理数的方法
2.科学记数法的转换和计算
3.根式的定义和运算
4.多项式的加减乘除运算
5.代数式的乘法和因式分解
七、解决实际问题
1.信息的理解和抽象
2.利用数学知识解决实际问题的方法
3.分析问题和建立模型
4.计算结果的验证和解释
5.问题的探究和拓展。
代数式知识点总结精编版
第一章 有理数1、有理数(1) 有理数的定义:能写成)0p q ,p (pq ≠为整数且形式的数。
(2) 有理数的分类:① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;(不是有理数。
2、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3、相反数(1) 只有符号不同的两个数;0的相反数还是0;(2) 相反数的和为0 ( a+b=0 ( a 、b 互为相反数;(3) 数a 的相反数是-a ,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是04、绝对值(1) 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 注意:绝对值的意义是数轴上表示某数的点离原点的距离。
(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a 。
5、倒数:乘积为1的两个数互为倒数;注意:0没有倒数。
若 a ≠0,那么a 的倒数是a1;若ab=1( a 、b 互为倒数;若ab=-1( a 、b 互为负倒数)。
6、有理数比大小(1) 正数的绝对值越大,这个数越大;(2) 正数永远比0大,负数永远比0小;(3) 正数大于一切负数;(4) 两个负数比大小,绝对值大的反而小;(5) 数轴上的两个数,右边的数总比左边的数大。
7、有理数加法法则(1) 同号两数相加,取相同的符号,并把绝对值相加;(2) 异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3) 一个数与0相加,仍得这个数。
8、有理数加法的运算律(1) 加法的交换律:a+b=b+a ;(2) 加法的结合律:(a+b)+c=a+(b+c)。
9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
人教版中考数学复习:第1章课时3 代数式、整式与因式分解
按照这种规律摆下去,第n个图形用的棋子个数为
( D)
A. 3n
B. 6n
C. 3n+6
D. 3n+3
考点巩固训练
4. 如图1-1-3-6所示的图形都是由同样大小的小圆圈按
一定规律组成的,其中第①个图形中一共有1个空心小圆
圈,第②个图形中一共有6个空心小圆圈,第③个图形中
中考考题精练
考点1 代数(5年未考) 1. (2017自贡)如图1-1-3-1,填在各正方形中四个数之 间都有相同的规律,根据这种规律,m的值为( ) C
A. 180 C. 184
B. 182 D. 186
中考考题精练
2. (2017扬州)在一列数:a1,a2,a3,…,an中,a1=3,a2=7, 从第三个数开始,每一个数都等于它前两个数之积的个
A. 1
B. 2
C. 3
D. 5
考点巩固训练
7. 计算(-xy3)2的结果是( A ) A. x2y6 C. x2y9 8. 下列运算正确的是( C ) A. 3a+4a=12a B. (ab3)2=ab6 C. (5a2-ab)-(4a2+2ab)=a2-3ab D. x12÷x6=x2
B. -x2y6 D. -x2y9
17. 把式子:-6x2+12x-6因式分解,正确的是( )A
A. -6(x-1)2 B. -6(x+1)2 C. -6x(x-2) D. -6x(x+2)
考点巩固训练
18. 把多项式4x2y-4xy2-x3分解因式的结果是( B ) A. 4xy(x-y)-x3 B. -x(x-2y)2 C. x(4xy-4y2-x2) D. -x(-4xy+4y2+x2) 19. 分解因式:ax2-ay2=___a_(x_+_y_)_(_x_-y_)____. 20. 分解因式:4x2-6x=____2_x_(_2_x_-3_)____.
中考数学专题02 代数式【考点精讲】(解析版)
考点1:代数式的概念与求值1.代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式.2.代数式的值:用具体数代替代数式中的字母,按运算顺序计算出的结果叫做代数式的值。
求代数式的值分两步:第一步,代数;第二步,计算.要充分利用“整体”思想求代数式的值。
【例1】(2021·四川乐山市·中考真题)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( )A .8nm (元) B .8nm(元) C .8mn(元) D .8mn(元) 【答案】A【分析】先求出1千克售价,再计算8千克售价即可; 【详解】∵m 千克的售价为n 元, ∴1千克商品售价为n m, ∴8千克商品的售价为8nm(元); 故选A .【例2】(2021·内蒙古中考真题)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3-【答案】C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解. 【详解】解:())22222=111113x x x -+-+=+-+=.故选:C【例3】(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.专题02 代数式【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果. 【详解】解:根据题意可知: 第一项:1111122=+, 第二项:2112242=+, 第三项:3113382=+, 第四项:41144162=+, …则第n 项是12n n +; 故答案为:12n n +.有关代数式的常见题型为用代数式表示数字或图形的变化规律. 数与图形的规律探索问题,关键要能够通过观察、分析、联想与归纳找出数或图形的变化规律,并用代数式表示出来.1.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%【答案】B【分析】设原件为x 元,根据调价方案逐一计算后,比较大小判断即可. 【详解】设原件为x 元,∵先打九五折,再打九五折,∴调价后的价格为0.95x ×0.95=0.9025x 元, ∵先提价50%,再打六折,∴调价后的价格为1.5x ×0.6=0.90x 元, ∵先提价30%,再降价30%, ∴调价后的价格为1.3x ×0.7=0.91x 元, ∵先提价25%,再降价25%,∴调价后的价格为1.25x ×0.75=0.9375x 元, ∵0.90x <0.9025x <0.91x <0.9375x 故选B2.(2021·四川达州市·中考真题)如图是一个运算程序示意图,若开始输入x 的值为3,则输出y 值为___________.【答案】2【分析】根据运算程序的要求,将x=3代入计算可求解. 【详解】 解:∵x =3<4∴把x =3代入1(4)y x x =-≤, 解得:312y =-=, ∴y 值为2, 故答案为:2.3.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n +2n ×(n -1),得出结论即可. 【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯ 第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯ 第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯ 第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯ …由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+故答案为:2n 2+2n .考点2:整式相关概念1.单项式:只含有数字与字母的积的代数式叫做单项式.单独的一个数或一个字母也是单项式.2.多项式:几个单项式的和叫做多项式. 多项式中次数最高的项的次数,叫做这个多项式的次数.3.整式:单项式与多项式统称整式.4.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.【例4】(2021·青海中考真题)已知单项式4272m a b -+与223m n a b +是同类项,则m n +=______. 【答案】3【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出m ,n 的值,再代入代数式计算即可. 【详解】解:∵单项式4272m a b -+与223m n a b +是同类项, ∴2m =4,n +2=-2m +7, 解得:m =2,n =1, 则m +n =2+1=3.故答案是:3.【例5】(2021·云南中考真题)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( ) A .21n n a + B .21n n a -C .1n n n a +D .()21n n a +【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决. 【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,..., ∴第n 个单项式为21n n a +, 故选:A .【例6】已知(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,求m 2﹣2m +2= . 【答案】17【分析】直接利用单项式的次数确定方法分析得出答案. 【详解】解:∵(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式, ∴3+|m |+1=7且m ﹣3≠0, 解得:m =﹣3,∴m 2﹣2m +2=9+6+2=17. 故答案为:17.1.①单项式中的数字因数称为这个单项式的系数;②一个单项式中,所有字母的指数的和叫做这个单项式的 次数2.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数1.(2021·上海中考真题)下列单项式中,23ab 的同类项是( ) A .32a b B .232a bC .2a bD .3ab【答案】B【分析】比较对应字母的指数,分别相等就是同类项 【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致, ∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致, ∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致, ∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致, ∴3ab 不是23a b 的同类项,不符合题意; 故选B2.关于多项式5x 4y ﹣3x 2y +4xy ﹣2,下列说法正确的是( ) A .三次项系数为3B .常数项是﹣2C .多项式的项是5x 4y ,3x 2y ,4xy ,﹣2D .这个多项式是四次四项式【答案】B【分析】根据多项式的项、次数的定义逐个判断即可.【详解】解:A 、多项式5x 4y ﹣3x 2y +4xy ﹣2的三次项的系数为﹣3,错误,故本选项不符合题意;B 、多项式5x 4y ﹣3x 2y +4xy ﹣2的常数项是﹣2,正确,故本选项符合题意;C 、多项式5x 4y ﹣3x 2y +4xy ﹣2的项为5x 4y ,﹣3x 2y ,4xy ,﹣2,错误,故本选项不符合题意;D 、多项式5x 4y ﹣3x 2y +4xy ﹣2是5次四项式,错误,故本选项不符合题意; 故选:B .3.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 . 【答案】0【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可. 【解答】解:根据题意得:m =﹣1,3+n +5=9, 解得:m =﹣1,n =1, 则m +n =﹣1+1=0. 故答案为:0.考点3:整式的运算 1.幂的运算性质:(1)同底数幂相乘底数不变,指数相加. 即:a m ·a n =a m +n (m ,n 都是整数). (2)幂的乘方底数不变,指数相乘. 即:(a m )n =a mn (m ,n 都是整数).(3)积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘. 即:(ab )n =a n b n (n 为整数).(4)同底数幂相除底数不变,指数相减. 即:a m ÷a n =a m -n (a ≠0,m,n 都为整数). (5)a 0=1(a ≠0), a -n =a1(a ≠0). 2.整式的运算:(1)整式的加减:几个整式相加减,如果有括号就先去括号,再合并同类项.(2)整式的乘法:单项式与单项式相乘,把它们的系数、相同字母分别相乘;单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,即m (a +b +c )=ma +mb +mc ;多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即(m +n )(a +b )=ma +mb +na +nb .(3)整式的除法:单项式除以单项式,把系数与同底数幂分别相除,作为商的因式;多项式除以单项式,先把这个多项式的每一项分别除以这个单项式,再把所得的商相加. 3.乘法公式:(1)平方差公式:(a +b )(a -b )=a 2-b 2. (2)完全平方公式:(a ±b )2=a 2±2ab +b 2.(3)常用恒等变换:a 2+b 2=(a +b )2-2ab=(a -b )2+2ab ;(a -b )2=(a +b )2-4ab.【例7】(2021·河南中考真题)下列运算正确的是( )A .22()a a -=-B .2222a a -=C .23a a a ⋅=D .22(1)1a a -=-【答案】C【分析】直接利用幂的运算性质和完全平方公式分别判断得出答案. 【详解】解:A 、22()a a -=,原计算错误,不符合题意; B 、2222a a a -=,原计算错误,不符合题意; C 、23a a a ⋅=,正确,符合题意;D 、22(1)21a a a -=-+,原计算错误,不符合题意; 故选:C .【例8】(2021·福建中考真题)下列运算正确的是( )A .22a a -=B .()2211a a -=- C .632a a a ÷=D .326(2)4a a =【答案】D【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案. 【详解】解:A :()221a a a a -=-=,故 A 错误; B :()22121a a a -=-+,故 B 错误; C :63633a a a a -÷==,故C 错误; D :()()2232332622·44a a a a ⨯===.故选:D【例9】(2021·江苏连云港市·中考真题)下列运算正确的是( )A .325a b ab +=B .22523a b -=C .277a a a +=D .()22112x x x -+-=【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案. 【详解】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意; B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意; C ,合并同类项后2787a a a a +=≠,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意; 故选:D .1.(2021·浙江丽水市·中考真题)计算:()24a a -⋅的结果是( ) A .8a B .6aC .8a -D .6a -【答案】B【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可. 【详解】解:原式24246a a a a +=⋅==. 故选B .2.(2021·四川宜宾市·中考真题)下列运算正确的是( ) A .23a a a += B .()32622a a =C .623a a a ÷=D .325a a a ⋅=【答案】D【分析】根据同底数幂相乘底数不变指数相加、同底数幂相除底数不变指数相减、乘积的幂等于各部分幂的乘积运算法则求解即可.【详解】解:选项A :a 与2a 不是同类项,不能相加,故选项A 错误; 选项B :()32628aa =,故选项B 错误;选项C :62624a a a a -÷==,故选项C 错误; 选项D :33522a a a a +⋅==,故选项D 正确; 故选:D .3.(2021·黑龙江齐齐哈尔市·中考真题)下列计算正确的是( )A .B .C .D .【答案】A【分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案. 【详解】A 、,正确,故该选项符合题意;B 、,错误,故该选项不合题意;C 、,错误,故该选项不合题意;D 、与不是同类项,不能合并,故该选项不合题意; 故选:A .考点4:整式化简求值【例10】(2021·湖南永州市·中考真题)先化简,再求值:,其中.【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将代入求值即可得. 【详解】解:原式,,将代入得:原式.1.(2021·四川南充市·中考真题)先化简,再求值:,其中.【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解.4=±()2234636m n m n =24833a a a ⋅=33xy x y -=4=±()2234639m n m n =24633a a a ⋅=3xy 3x ()()212(2)x x x +++-1x =1x =22214x x x =+++-25x =+1x =2157=⨯+=2(21)(21)(23)x x x +---1x =-【详解】解:原式= = =,当x =-1时,原式==-22.2.(2020•凉山州)化简求值:(2x +3)(2x ﹣3)﹣(x +2)2+4(x +3),其中x =2. 【分析】先利用平方差公式、完全平方公式、单项式乘多项式法则展开,再去括号、合并同类项即可化简原式,继而将x 的值代入计算可得答案. 【详解】原式=4x 2﹣9﹣(x 2+4x +4)+4x +12 =4x 2﹣9﹣x 2﹣4x ﹣4+4x +12 =3x 2﹣1, 当x =2时, 原式=3×(2)2﹣1 =3×2﹣1 =6﹣1 =5. 考点5:因式分解因式分解的步骤:(概括为“一提,二套,三检查”) (1)先运用提公因式法:ma +mb +mc =m (a +b +c ).(2)再套公式:a 2-b 2=(a +b )(a -b ),a 2±2ab +b 2=(a ±b )2(乘法公式的逆运算).(3)最后检查:分解因式是否彻底,要求必须分解到每一个多项式都不能再分解为止.【例11】(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x - B .()221x x +C .()221x x -D .()221x x +【答案】A 【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可 【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【例12】(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+2241(4129)x x x ---+22414129x x x --+-1210x -()12110⨯--C .()()122y y -+D .()()212y y -+【答案】A 【分析】利用平方差公式因式分解即可. 【详解】解:214y -=()()1212y y -+,故选:A .【例13】(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 . 【答案】49【分析】先根据完全平方公式变形,再代入,即可求出答案. 【详解】∵a =7﹣3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b )2 =72 =49, 故答案为:49.本考点是中考的高频考点,其题型一般为填空题,难度中等。
中考数学总复习——2.代数式和整式
7.【2019·厦门集美区二模·4 分】下列计算正确的是( C )
A.a8+a2=a10
B.a8·a2=a16
C.(a8)2=a16
D.a8÷a2=a4
8.【2019·福建·4 分】分解因式:x2-9=_(_x_-__3_)(_x_+__3_)__.
9.【2020·福州质检·4 分】若 m(m-2)=3,则(m-1)2 的值是 ____4______.
考点1 求代数式的值
例1【2020·漳州质检·4分】若a是方程x2+x-1=0的根, 则代数式2 020-a2-a的值是__2__0_1_9____.
考点2 整式的化简求值
例 2【2019·宁德质检·8 分】先化简,再求值:(x-3)2+x(2-x) -9,其中 x=- 3. 解:原式=x2-6x+9+2x-x2-9=-4x. ∵x=- 3, ∴原式=-4×(- 3)=4 3.
考点3整式的概念
例3【2020·厦门质检·4分】将单项式3m与m合并同类项, 结果是( B ) A.4 B.4m C.3m2 D.4m2
例 4【2020·厦门质检·4 分】若多项式 x2+2x+n 是完全平方式,
则常数 n 是( D )
A.-1
B.14
1 C.2
D.1
【点拨】本题考查完全平方式的概念,完全平方式必须满 足“a2+2ab+b2”或“a2-2ab+b2”的结构特征,解答 时容易出错.
考点4 整式的运算
例5【2020·三明质检·4分】下列运算正确的是( C )
A.(a2)3=a5
B.3a2+a=3a3
C.a5÷ a2=a3(a≠0) D.a(a+1)=a2+1
考点5 因式分解
例6【2020·宁德质检·4分】下列多项式能用完全平方公式
中考数学常考知识点总结归纳
中考数学常考知识点总结归纳一、整数与有理数1. 整数的概念与性质整数是由正整数、负整数和零组成的数系统。
它具有封闭性、交换律、结合律等性质。
2. 整数的四则运算整数的加法、减法、乘法和除法的规则与计算方法。
3. 整数的大小比较与绝对值比较整数大小时需要考虑正负,绝对值是一个数与零的距离。
4. 有理数的概念与性质有理数包括整数和分数,它们可以用分数表示,有理数也具有封闭性、交换律、结合律等性质。
二、代数式与方程式1. 代数式的概念与运算代数式是由数和字母以及运算符号组成的式子,可以进行加法、减法、乘法和除法。
2. 方程与方程的解方程是一个含有未知数的等式,方程的解是能使方程成立的未知数的值。
3. 一次方程与一次方程组一次方程是未知数的最高次数为一的方程,一次方程组是含有多个一次方程的方程组。
4. 二次方程与二次根式二次方程是未知数的最高次数为二的方程,二次根式是与二次方程相对应的根式表达式。
三、几何图形与空间图形1. 直线、线段、射线与角直线是由无数个点组成的,线段是直线的两个端点及其之间的部分,射线是直线上一个固定点及其一侧的部分,角是由两条射线共享一个端点所形成的图形。
2. 三角形与其性质三角形是由三条边和三个内角构成的图形,根据角度关系可以分为锐角三角形、直角三角形和钝角三角形。
3. 四边形与其性质四边形是由四条边和四个内角构成的图形,根据边和角的特点可以分为平行四边形、矩形、正方形、菱形等。
4. 三视图与投影三视图是一个物体在不同相对位置下的投影所形成的视图,在技术绘图和工程设计中具有重要作用。
四、函数与方程1. 函数的概念与性质函数是一个映射关系,将一个自变量映射到一个因变量上,并具有定义域、值域、单调性等性质。
2. 一次函数与一次函数图像一次函数是最高次数为一的函数,它的图像是一条直线,具有斜率和截距。
3. 二次函数与二次函数图像二次函数是最高次数为二的函数,它的图像是一个抛物线,具有顶点、轴对称性和开口方向等特点。
初中数学知识点总结:代数式的相关概念
初中数学知识点总结:代数式的相关概念 知识点总结 【一】代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号; (3)代数式可按运算关系和运算结果两种情况理解。
【三】整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。
特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
【四】升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
【五】代数式书写要求: 1.代数式中出现的乘号通常用〝·〞表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用〝×〞号; 2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b) ·2·a 应写成2a(a+b); 3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘; 4.在代数式中出现除法运算时,按分数的写法来写; 5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,那么单位直接写在式子后面;如果代数式是和或差的形式,那么必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
六、系数与次数 单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
中考数学 第2讲 代数式及整式的运算(解析版)
第2讲 代数式及整式的运算一、考点知识梳理【考点1 代数式定义及列代数式】1.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式. 2.代数式的值:用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.【考点2 幂的运算】同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加. a m •a n =a m +n (m ,n 是正整数) 幂的乘方法则:底数不变,指数相乘. (a m )n =a mn (m ,n 是正整数)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. (ab )n =a n b n (n 是正整数)同底数幂的除法法则:底数不变,指数相减. a m ÷a n =a m ﹣n (a ≠0,m ,n 是正整数,m >n ) 【考点3 合并同类项】所含字母相同并且相同字母的指数也分别相同的项叫做同类项.所有的常数项都是同类项. 把多项式中同类项合成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 【考点4 整式的乘法】单项式乘以多项式m(a +b)=am +bm多项式乘以多项式(a +b)(m +n)=am +an +bm +bn 二、考点分析【考点1 代数式定义及列代数式】【解题技巧】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式;(2)列代数式的关键是正确分析数量关系,掌握文字语言(和、差、积、商、乘以、除以等)在数学语言中的含义;(3)注意书写规则:a×b 通常写作a·b 或ab ;1÷a 通常写作1a;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a.【例1】(2019.海南中考)当m =﹣1时,代数式2m +3的值是( ) A .﹣1 B .0 C .1 D .2【答案】C .【分析】将m =﹣1代入代数式即可求值;【解答】解:将m =﹣1代入2m +3=2×(﹣1)+3=1; 故选:C .【一领三通1-1】(2019.云南中考)按一定规律排列的单项式:x 3,﹣x 5,x 7,﹣x 9,x 11,……,第n 个单项式是( ) A .(﹣1)n ﹣1x 2n ﹣1 B .(﹣1)n x 2n ﹣1 C .(﹣1)n ﹣1x 2n +1 D .(﹣1)n x 2n +1【答案】C .【分析】观察指数规律与符号规律,进行解答便可. 【解答】解:∵x 3=(﹣1)1﹣1x 2×1+1, ﹣x 5=(﹣1)2﹣1x 2×2+1, x 7=(﹣1)3﹣1x 2×3+1, ﹣x 9=(﹣1)4﹣1x 2×4+1, x 11=(﹣1)5﹣1x 2×5+1, ……由上可知,第n 个单项式是:(﹣1)n ﹣1x 2n +1, 故选:C .【一领三通1-2】(2019•台湾)图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a ,矩形面积为b .若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?( )A .4a +2bB .4a +4bC .8a +6bD .8a +12b【答案】C .【分析】根据已知条件即可得到结论.【解答】解:∵正三角形面积为a,矩形面积为b,∴图2中直角柱的表面积=2×4a+6b=8a+6b,故选:C.【一领三通1-3】(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.10﹣x B.10﹣y C.10﹣x+y D.10﹣x﹣y【答案】A.【分析】根据点的饮料能确定在B和C餐中点了x份意大利面,由题意可得点A餐10﹣x;【解答】解:x杯饮料则在B和C餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10﹣x;故选:A.【考点2 幂的运算】【解题技巧】1.在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.2.概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.3.注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.【例2】(2019•广东中考)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C.【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【解答】解:A、b6+b3,无法计算,故此选项错误;B、b3•b3=b6,故此选项错误;C、a2+a2=2a2,正确;D、(a3)3=a9,故此选项错误.故选:B.【一领三通2-1】(2019•甘肃中考)计算(﹣2a)2•a4的结果是()A.﹣4a6B.4a6C.﹣2a6D.﹣4a8【答案】C.【分析】直接利用积的乘方运算法则化简,再利用同底数幂的乘法运算法则计算得出答案.【解答】解:(﹣2a)2•a4=4a2•a4=4a6.故选:B.【一领三通2-2】(2019•海南中考)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2 D.(3a2)2=6a4【答案】A.【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【解答】解:a•a2=a1+2=a3,A准确;a6÷a2=a6﹣2=a4,B错误;2a2﹣a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.【一领三通2-3】(2019•江苏南京中考)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【答案】D.【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【一领三通2-4】(2019•山东济南中考模拟)在平面直角坐标系中,任意两点A(a,b),B(c,d),定义一种运算:A*B=[(3﹣c),],若A(9,﹣1),且A*B=(12,﹣2),则点B的坐标是______.【答案】(﹣1,8).【分析】根据新运算公式列出关于c、d的方程组,解方程组即可得c、d的值;进一步得到点B的坐标.【解答】解:根据题意,得,解得:.则点B的坐标为(﹣1,8).故答案为:(﹣1,8).【考点3 合并同类项】【解题技巧】合并同类项时要注意以下三点:(1)要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;(2)明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;(3)“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.(4)只要不再有同类项,就是结果(可能是单项式,也可能是多项式).【例3】(2019•吉林长春中考)先化简,再求值:(2a+1)2﹣4a(a﹣1),其中a=.【答案】2.【分析】直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【解答】解:原式=4a2+4a+1﹣4a2+4a=8a+1,当a=时,原式=8a+1=2.【一领三通3-1】(2019•山东威海中考)下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1【答案】C.【分析】根据合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3=a6,故本选项错误;B、3a2+a,不是同类项,不能合并,故本选项错误;C、a5÷a2=a3(a≠0),正确;D、a(a+1)=a2+a,故本选项错误.故选:C.【一领三通3-2】(2019•辽宁沈阳中考)下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2【答案】B.【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【解答】解:A.2m3+3m2=5m5,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选:B.【一领三通3-3】(2019•河北石家庄中考模拟)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.【分析】首先去括号,合并同类项,将两代数式化简,然后代入数值求解即可.【解答】解:∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0;【一领三通3-4】(2019•山东青岛中考模拟)化简求值:已知整式2x2+ax﹣y+6与整式2bx2﹣3x+5y﹣1的差不含x和x2项,试求4(a2+2b3﹣a2b)+3a2﹣2(4b3+2a2b)的值.【分析】根据两整式的差不含x和x2项,可得差式中x与x2的系数为0,列式求出a、b的值,然后将代数式化简再代值计算.【解答】解:2x2+ax﹣y+6﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵两个整式的差不含x和x2项,∴2﹣2b=0,a+3=0,解得a=﹣3,b=1,4(a2+2b3﹣a2b)+3a2﹣2(4b3+2a2b)=4a2+8b3﹣4a2b+3a2﹣8b3﹣4a2b=7a2﹣8a2b,当a=﹣3,b=1时,原式=7a2﹣8a2b=7×(﹣3)2﹣8×(﹣3)2×1=7×9﹣8×9×1=63﹣72=﹣9.【考点4 整式的乘法】【解题技巧】多项式的乘法要注意多项式中每一项不要漏乘,还要注意运算符号,遵循去括号的法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学代数式知识点汇总
一、代数式
1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。
单独一个数或者一个字母也是代数式。
2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。
3、代数式的分类:
有理式代数式整式
单项式
多项式分式
无理式
二、整式的有关概念及运算
1、概念
2 (1)单项式:像x、7、xy
2 ,这种数与字母的积叫做单项式。
单独一个数或字母也是单
项式。
单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。
单项式的系数:单项式中的数字因数叫单项式的系数。
(2)多项式:几个单项式的和叫做多项式。
多项式的项:多项式中每一个单项式都叫多项式的项。
一个多项式含有几项,就叫几项式。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。
不含字母的项叫常数项。
升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
2、运算
(1)整式的加减:
合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。
去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。
添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。
整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。
(2)整式的乘除:
幂的运算法则:其中m、n都是正整数
同底数幂相乘:a;同底数幂相除:m a n a m n
m a n a m n
ma n a mn
a;幂的乘方:
( mna a) mn na n b
n
(ab)
积的乘方:。
单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。
多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。
乘法公式:
平方差公式:
22 (ab)(ab)ab ;
完全平方公式:
22
2
(a b)aabb
2
,
222
(ab)aabb
2
三、因式分解
1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。
2、常用的因式分解方法:
(1)提取公因式法:mambmcm(abc)
(2)运用公式法:
平方差公式:a2babab
2
()()
;完全平方公式:
a22abb2(ab)2 2abxabxaxb
x
(3)十字相乘法:()()()
(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。
2bxca (5)运用求根公式法:若0(0)
ax 的两个根是x1、x
2 ,则有:
ax 2bxcaxxxx
(1)(2
)
3、因式分解的一般步骤:
(1)如果多项式的各项有公因式,那么先提公因式;
(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;
(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法。
四、分式
A
1、分式定义:形如B
的式子叫分式,其中A、B是整式,且B中含有字母。
(1)分式无意义:B=0时,分式无意义;B≠0时,分式有意义。
(2)分式的值为0:A=0,B≠0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)有理式:整式和分式统称有理式。
2、分式的基本性质:
(1)A
B
A
B
M
M
(M是0的整式)
;(2)
A
B
A
B
M
M
(M是0的整式)
(3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:
(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
五、二次根式
1、二次根式的概念:式子a(a0)叫做二次根式。
(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。
(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。
(3)分母有理化:把分母中的根号化去叫做分母有理化。
(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:a与a;abcd
与abcd)
2、二次根式的性质:
2aa (1)()(0)
a
a(a0)
2
aa
;(2)(0)
aa
;(3)abab(a
≥0,b≥0);(4)a
b
a
b
(a0,b0)
3、运算:
(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。
(2)二次根式的乘法:abab(a≥0,b≥0)。
(3)二次根式的除法:a
b
a
b
(a0,b0)
二次根式运算的最终结果如果是根式,要化成最简二次根式。
例题:
一、因式分解:
1、提公因式法:
2xybyx
2
例1、24a()6()
分析:先提公因式,后用平方差公式
解:略
[规律总结]因式分解本着先提取,后公式等,但应把第一个因式都分解到不能再分解为止,往往需要对分解后的每一个因式进行最后的审查,如果还能分解,应继续分解。
2、十字相乘法:
2xy
x2;(2)()4()12
例2、(1)536
4xxy
分析:可看成是
2
x和(x+y)的二次三项式,先用十字相乘法,初步分解。
解:略
[规律总结]应用十字相乘法时,注意某一项可是单项的一字母,也可是某个多项式或整式,有时还需要连续用十字相乘法。
3、分组分解法:
3x2x
例3、22
x
分析:先分组,第一项和第二项一组,第三、第四项一组,后提取,再公式。
解:略
[规律总结]对多项式适当分组转化成基本方法因式分组,分组的目的是为了用提公因式,十字相乘法或公式法解题。
4、求根公式法:
2x
例4、x55
解:略
二、式的运算
巧用公式
例5、计算:(1
a
1
)
b
2(11)
2
ab
分析:运用平方差公式因式分解,使分式运算简单化。
解:略
[规律总结]抓住三个乘法公式的特征,灵活运用,特别要掌握公式的几种变形,公式的逆用,掌握运用公式的技巧,使运算简便准确。
2、化简求值:
2x2x2y2xy
例6、先化简,再求值:5(35)(47)
x
,其中x=–1y=12
解:略
[规律总结]一定要先化到最简再代入求值,注意去括号的法则。
3、分式的计算:
例7、化简 a
2a
5
6
(
16
a3
a 3)
2
a 9
分析:–a3可看成3
a
解:略
[规律总结]分式计算过程中:(1)除法转化为乘法时,要倒转分子、分母;(2)注意负号4、根式计算
例8、已知最简二次根式2b1和7b是同类二次根式,求b的值。
分析:根据同类二次根式定义可得:2b+1=7–b。
解:略
[规律总结]二次根式的性质和运算是中考必考内容,特别是二次根式的化简、求值及性质的运用是中考的主要考查内容。