ucinet中文教程
ucinet软件快速入门上手网络分析软件
u c i n e t软件快速入门上手网络分析软件(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除本指南提供了一种快速介绍UCINET的使用说明。
假定软件已经和数据安装在C:\Program Files\AnalyticTechnologies\Ucinet 6\DataFiles的文件夹中,被留作为默认目录。
这个子菜单按钮涉及到UCINET所有程序,它们被分为文件,数据、转换、工具、网络、视图、选择和帮助。
值得注意的是,这个按钮的下方,都是在子菜单中的这些调用程序的快捷键。
在底部出现的默认目录是用于UCINET收集任何数据和存储任何文件(除非另外说明),目录可以通过点击向右这个按钮被修改。
运行的一种程序为了运行UCINET程序,我们通常需要指定一个UCINET数据集,给出一些参数。
在可能的情况下,UCINET选用一些默认参数,用户可以修改 (如果需要)。
注意UCINET伴随着大量的标准数据集,而这些将会放置在默认值目录。
当一个程序被运行,有一些文本输出,它们会出现在屏幕上,而且通常UCINET的数据文件包含数据结果,这些结果又将会被储存在默认目录中。
我们将运行度的权重的程序来计算在一个称为TARO的标准UCINET数据集的全体参与者的权重。
首先我们强调网络>权重>度,再点击如果你点击了帮助按钮,,一个帮助界面就会在屏幕上打开,看起来像这样。
帮助文件给出了一个程序的详细介绍,会解释参数并描述在记录文件和屏幕上显示出来的输出信息。
关闭帮助文件,或者通过点击pickfile按钮或者输入名称选择TARO分析数据,如下。
现在点击OK运行程序验证。
这是一个文本文件给出的程序结果。
注意你可以向下滚动看到更多的文件。
这个文件可以保存或复制、粘贴到一个word处理包中。
当UCINET被关闭时,这个文件将会被删除。
关闭此文件。
注意,当这个程序运行时,我们也创建了一个名为FreemanDegree的新的UCINET 文档。
ucinet软件解释对照教学文案
FILES文件:change default folder改变默认文件夹create new folder创造新文件夹copy Ucinet dataset复制UCINET数据集rename ucinet dataset重命名ucinetdelete ucinet dateset删除ucinetprint setup打印设置text editor文档编辑程序view previous output查看前一个输出launch mage启动magelaunch pajek启动pajetexit退出DA TA数据:Spreadsheets:matrix 电子表格:矩阵Random:sociometric/bernoulli/multinomial 随机:计量社会学/伯努利分布/多项分布Import:DL/multiple DL files/VNA/pajek/krackplot/negopy/raw/excel matrix 输入export: DL/multiple DL files/VNA/pajek/krackplot/negopy/raw/excel matrix 输出cssBrowse 浏览Display 显示Describe 描述Extract 解压缩Remove 移动Unpack 解包Join 加入Sort 排序Permute 交换Transpose 调换Match net and attrib datasets 匹配网和属性数据集Match multiple datasets 匹配多重数据集Attribute to matrix 属性到矩阵Affiliations(2-mode to 1-mode) 联系2模到1模Subgraphs from partitions 子图分割Partitions to sets 集合分割Create node sets 创造节点设置Reshape 变形TRANSFORM变换:Block 块Collapse 塌缩Dichotomize 对分Symmetrize 对称Normalize 标准化match marginals 匹配页边recode 再编码reverse 相反diagonal 对角线double 双倍rewire 重新布线matrix operations:within dataset-aggregations/cellwise transformations;between datasets-statistical summaries/boolean combinations矩阵操作:内部数据集-集合/ cellwise变换;中间数据集:统计摘要/布尔结合Union 并运算time stack 时间栈intersection 交集bipartite 双向的incidence 影响linegraph 线图multigraph 多重图multiplex 多元的semigroup 子组TOOLS工具:Consensus analysisCluster analysis:hierarchical/optimization/cluster adequacy簇:分层/优化/聚类功能Scaling/decomposition: 规模/分解metric MDS/non-metric MDS/factor analysis/correspondence/eigenvector&eigenvalus/SVD公制的/非公制的/因子分析/相应性/特征向量&特征值/SVDSimilarities 相似性Dissimilarities&distances: 不同&距离Univariate stats 单变数统计Count combinations 计数组合Frequencies 频率Testing hypotheses:node level-regression/anova/t-test; mixed dyidic-categorical attributes/continuous attributes; QAP-QAP correlation/QAP relation crosstabs/QAP regresstion假设检验:节点层次-回归/方差/T检验;混合二进节点-绝对属性/连续属性;QAP-相关性/联系交叉表/回归Matrix algebra 矩阵代数学Scatterplot 散点图Dendrogram 柱状图Tree diagram 树状图Network: 网络Cohesion凝聚力:Density密度/E-I index EI索引/transitivity 传递性/clustering 聚类系数coefficient 相互作用/reciprocity互惠性/homophyly同质性/krackhardt GID/simmelianp-embedded ties 连带/Distance 距离/Reachability 可达性/No. of geodesics 捷径序号/maximum flow 最大流/point connectivity 点连接/geodesic cube 捷径方阵Regions 区域:components成分/BI components BI成分/k-core K核Subgroups 子组:cliques派系/N-cliques N派系/N-plan N 宗派/K-plex K从/lambda set/factions/f-groupsPaths 路径Ego networks 个体中心网络:ego basicmeasures 个体中心网络密度/structural holes 结构洞/brokerage roles 经手费/egonet homophily /egonet composition-continuous alter attributes 个体中心网络强度和异质性/categorical alter attributes/honest broker indes诚实经纪人索引Contrality 中心度Degree 度/eigenvector 特征向量/alpha centrality 能力/influence 影响/hubs&authorities/colseness 接近性/beach centrality 到达中心度/information 通知/freeman betweenness 自由中间度-node betweenness节点中间度-hierarchical reduction 分节减少-edge betweenness 边缘中间度/proximal betweenness最接近中间度//flow betweenness 流中间度/fragmentation 总体分裂性/contribution centrality 贡献中心度/multiple measures 多重方式Group centrality 组中心度Core/periphery 核/外围catergorical/continuousRoles&positions 角色&位置:Structual结构-profile轮廓/concor/optimization优化;Automorphmic自同构;Exact精确的;Maximal regular最大规则;P1Compare densities 比较密度Compare aggregate proximity matrices 比较合计邻接矩阵Balance counter 平衡计算器2-mode 2模。
最新ucinet使用说明解析ppt课件
☞凝聚子群分析
具体地说,CONCOR程序开始于一个矩阵,首先计算矩阵的各个行(或者 各个列)之间的相关系数,得到一个相关系数矩阵(C1)。CONCOR算法的特 点是,它把系数矩阵C1作为输入矩阵,继续计算此矩阵的各个行或者各个列之 间的相关系数。即计算第一个系数矩阵C1的各个行(或者各个列)之间的相关 系数。得到的各个“相关系数的相关系数”将构成又系数的相关系数的…矩阵”(刘 军,2009)[22]。
注:计算的时候最好将多值关系数据转换成二值关系数据。 将多值关系数据转换成二值关系数据路径:变换对分
☞网络密度分析
转换成二值数据后的结果:
☞网络密度分析
分析路径:网络凝聚力密度密度
☞网络密度分析
☞网络密度分析
网络密度分析结果显示:
☞生成可视化结构图
利用ucinet加载的Net-Draw程序可以生成经济联系网络的可视化结构图。 路径:可视化Net-Draw Open Ucinet Dataset Network
注:Ucinet处理的Excel数据最多只能有255列。 输入路径:数据输入Excel矩阵
☞UCINET的数据输入和输出
输入结果:
☞UCINET的数据输入和输出
☞UCINET的数据输入和输出
Ucinet输出的方式也有多种:数据语言数据、原始数据、Excel数据和图 形方式。
输出路径:数据输出Excel矩阵
进 入 夏 天 ,少 不了一 个热字 当头, 电扇空 调陆续 登场, 每逢此 时,总 会想起 那 一 把 蒲 扇 。蒲扇 ,是记 忆中的 农村, 夏季经 常用的 一件物 品。 记 忆 中 的故 乡 , 每 逢 进 入夏天 ,集市 上最常 见的便 是蒲扇 、凉席 ,不论 男女老 少,个 个手持 一 把 , 忽 闪 忽闪个 不停, 嘴里叨 叨着“ 怎么这 么热” ,于是 三五成 群,聚 在大树 下 , 或 站 着 ,或随 即坐在 石头上 ,手持 那把扇 子,边 唠嗑边 乘凉。 孩子们 却在周 围 跑 跑 跳 跳 ,热得 满头大 汗,不 时听到 “强子 ,别跑 了,快 来我给 你扇扇 ”。孩 子 们 才 不 听 这一套 ,跑个 没完, 直到累 气喘吁 吁,这 才一跑 一踮地 围过了 ,这时 母 亲总是 ,好似 生气的 样子, 边扇边 训,“ 你看热 的,跑 什么? ”此时 这把蒲 扇, 是 那 么 凉 快 ,那么 的温馨 幸福, 有母亲 的味道 ! 蒲 扇 是 中 国传 统工艺 品,在 我 国 已 有 三 千年多 年的历 史。取 材于棕 榈树, 制作简 单,方 便携带 ,且蒲 扇的表 面 光 滑 , 因 而,古 人常会 在上面 作画。 古有棕 扇、葵 扇、蒲 扇、蕉 扇诸名 ,实即 今 日 的 蒲 扇 ,江浙 称之为 芭蕉扇 。六七 十年代 ,人们 最常用 的就是 这种, 似圆非 圆 , 轻 巧 又 便宜的 蒲扇。 蒲 扇 流 传 至今, 我的记 忆中, 它跨越 了半个 世纪, 也 走 过 了 我 们的半 个人生 的轨迹 ,携带 着特有 的念想 ,一年 年,一 天天, 流向长
Ucinet使用
一、导入数据(两种方法)
1.excel导入
“数据”——“输入”——“Excel矩阵”,将bibexcel处理好的矩阵导入
2.txt导入
共词矩阵.txt中输入下列内容:
dl n=70 format=edgelist1
labels embedded
data
说明:n=?指矩阵几行几列,即选择了多少个关键词
“数据”——“输入”——“DL(D)”,选中共词矩阵.txt
点击“确定”,弹出下图所示的文本文档,并在输出路径所在地生成 .##h和 .##d文件。
二、可视化数据分析
点击可视化—netdraw,然后弹出netdraw界面
选择file—open—ucinet dataset—network,然后弹出如下界面
选择生成的 .##h文件,点击ok,然后出现如下界面:
然后进行中心度分析,选择analysis—centrality measures,然后在弹出界面的set node size by 下输入degree,点击 ok
然后就会出现依据中心度大小进行显示的节点情况
三、小团体分析
去箭头
点击可视化—netdraw,然后弹出netdraw界面
选择file—open—ucinet dataset—network,然后弹出如下界面
选择生成的 .##h文件,点击ok,然后出现如下界面:
点击右侧小箭头
调整一下每个节点的位置,让关键词都露出来,图要美观
————AnalysisSubgroupFactions
弹出小窗口
数字挨个试,出现转折时,选择转折前的那个数字
8时,Fitness=218;9时,Fitness=222,出现转折,选择数字“”8共有8个小团体。
ucinet使用说明解析
☞凝聚子群分析 凝聚子群分析路径:网络角色&位置结构CONCOR
凝聚子群分析结果:
☞凝聚子群分析
凝聚子群分析结果:☞凝聚子群分析谢观赏2020/11/26
29
☞凝聚子群分析
具体地说,CONCOR程序开始于一个矩阵,首先计算矩阵的各个行(或者各个列)之间的相关系数,得到一 个相关系数矩阵(C1)。CONCOR算法的特点是,它把系数矩阵C1作为输入矩阵,继续计算此矩阵的各个行或者 各个列之间的相关系数。即计算第一个系数矩阵C1的各个行(或者各个列)之间的相关系数。得到的各个“相关 系数的相关系数”将构成又一个新的系数矩阵C2。然后继续依次计算,最后得到“相关系数的相关系数的相关系 数的…矩阵”(刘军,2009)[22]。
注:Ucinet处理的Excel数据最多只能有255列。 输入路径:数据输入Excel矩阵
☞UCINET的数据输入和输出
输入结果:
☞UCINET的数据输入和输出
☞UCINET的数据输入和输出
Ucinet输出的方式也有多种:数据语言数据、原始数据、Excel数据和图形方式。 输出路径:数据输出Excel矩阵
· 在UCINET6中全部数据都用矩阵的形式来存储、展示和描述。 ·下载: 1、 可以免费使用两个月。
2、人大经济论坛中文版 ·UCINET6.186(即修改了186次得UCINET6版本)版本无须安装,打开即可使用。
UCINET6 主界面
☞UCINET的数据输入和输出
Ucinet 的数据输入方式有多种:初始数据(Raw)、Excel数据和数据语言数据(Data Language,DL)。
利用ucinet软件中的CONCOR法进行凝聚子群分析。CONCOR是一种迭代相关收敛法(convergent correlation或者convergence of iterated correlation)。它基于如下事实:如果对一个矩阵中的各个行(或 者列)之间的相关系数进行重复计算(当该矩阵包含此前计算的相关系数的时候),最终产生的将是一个仅由1和 -1组成的相关系数矩阵。进一步说我们可以据此把将要计算的一些项目分为两类:相关系数分别为1和-1的两类 (刘军,2009)[22]。
ucinet软件使用简介
☞凝聚子群分析
具体地说,CONCOR程序开始于一个矩阵,首先计算矩阵的各个行(或者 各个列)之间的相关系数,得到一个相关系数矩阵(C1)。CONCOR算法的特 点是,它把系数矩阵C1作为输入矩阵,继续计算此矩阵的各个行或者各个列之 间的相关系数。即计算第一个系数矩阵C1的各个行(或者各个列)之间的相关 系数。得到的各个“相关系数的相关系数”将构成又一个新的系数矩阵C2。然 后继续依次计算,最后得到“相关系数的相关系数的相关系数的…矩阵”(刘 军,2009)[22]。 经过多次迭代计算之后,CONCOR利用树形图(tree-diagram或者 dendrogram)表达各个位置之间的结构对等性程度,并且标记出各个位置拥 有的网络成员。CONCOR的分析对象是相关系数矩阵,它包含的是皮尔逊积距 系数,这种系数用来测量各对行动者之间的相似性。利用CONCOR进行分析时, 在最后的结果中每个区中的行动者最好大于3个。CONCOR法也可以直接分析 多元关系数据以及多值关系矩阵。
☞生成可视化结构图
还可以在此基础上进行中心性的可视化分析,路径:Analysis Centrality 还还 Measures
☞生成可视化结构图
针对中间中心度分析的结果如下:
☞网络中心性分析
中心性(centrality)是度量整个网络中心化程度的重要指标,在城市群网络中, 处于中心位置的城市更易获得资源和信息,拥有更大的权力和对其他城市更强的影 响力。网络中心性又可以分为点度中心度、接近中心度和中间中心度三个指标。 节点中心度分析路径:网络中心度度
秋记与你分享
静思笃行 持中秉正
目录
UCINET的运行环境 UCINET的数据输入和输出 网络密度分析 网络中心性分析
凝聚子群分析
ucinet使用说明
秋记与你分享
静思笃行 持中秉正
目录
UCINET的运行环境 UCINET的数据输入和输出 网络密度分析 网络中心性分析
凝聚子群分析
☞1、UCINET的运行环境
·UCINET(University of California at Irvine NETwork) 是一种功能强大的社会网络分析软件,他最初由加州大学尔湾 分校社会网研究的权威学者Linton Freeman 编写。 · 在UCINET6中全部数据都用矩阵的形式来存储、展示和 描述。 ·下载: 1、 /downloaduc6.htm 可以免费使用两个月。 2、人大经济论坛中文版 ·UCINET6.186(即修改了186次得UCINET6版本)版本无 须安装,打开即可使用。
☞网络密度分析
转换成二值数据后的结果:
☞网络密度分析
分析路径:网络凝聚力密度密度
☞网络密度分析
☞网络密度分析
网络密度分析结果显示:
☞生成可视化结构图
利用ucinet加载的Net-Draw程序可以生成经济联系网络的可视化结构图。 路径:可视化Net-Draw Open Ucinet Dataset Network
☞凝聚子群分析
凝聚子群分析路径:网络角色&位置结构CONCOR
☞凝聚子群分析
凝聚子群分析结果:
☞凝聚子群分析
凝聚子群分析结果:
☞生成可视化结构图
还可以在此基础上进行中心性的可视化分析,路径:Analysis Centrality 还还 Measures
☞生成可视化结构图
针对中间中心度分析的结果如下:
☞网络中心性分析
中心性(centrality)是度量整个网络中心化程度的重要指标,在城市群网络中, 处于中心位置的城市更易获得资源和信息,拥有更大的权力和对其他城市更强的影 响力。网络中心性又可以分为点度中心度、接近中心度和中间中心度三个指标。 节点中心度分析路径:网络中心度度
ucinet软件快速入门上手网络分析软件
本指南提供了一种快速介绍UCINET勺使用说明假定软件已经和数据安装在C:\Program Files\Analytic Technologies\Ucinet 6\DataFiles 勺文件夹中,被留作为默认目录。
这个子菜单按钮涉及到UCINET所有程序,它们被分为文件,数据、转换、工具、网络、视图、选择和帮助。
值得注意勺是, 这个按钮勺下方,都是在子菜单中勺这些调用程序勺快捷键。
在底部出现的默认目录是用于UCINET攵集任何数据和存储任何文件(除非另外说明),目录可以通过点击向右这个按钮被修改。
运行的一种程序为了运行UCINET程序,我们通常需要指定一个UCINET数据集,给出一些参数。
在可能的情况下,UCINET选用一些默认参数,用户可以修改(如果需要)。
注意UCINET伴随着大量的标准数据集,而这些将会放置在默认值目录。
当一个程序被运行,有一些文本输出, 它们会出现在屏幕上,而且通常UCINET的数据文件包含数据结果,这些结果又将会被储存在默认目录中。
我们将运行度的权重的程序来计算在一个称为TARO的标准UCINET数据集的全体参与者的权重。
首先我们强调网络>权重>度, 再点击如果你点击了帮助按钮,,一个帮助界面就会在屏幕上打开,看起来像这样。
帮助文件给出了一个程序的详细介绍, 会解释参数并描述在记录文件和屏幕上显示出来的输出信息。
关闭帮助文件,或者通过点击pickfile 按钮或者输入名称选择TARO分析数据,如下。
现在点击OK运行程序验证。
这是一个文本文件给出的程序结果。
注意你可以向下滚动看到更多的文件这个文件可以保存或复制、粘贴到一个word处理包中。
当UCINET被关闭时,这个文件将会被删除。
关闭此文件。
注意,当这个程序运行时,我们也创建了一个名为FreemanDegree的新的UCINET文档。
我们可以使用Display /dataset按钮查看新的UCINET文件。
这是D按钮,只出现在下面的工具子菜单里(见第一个图)。
Ucinet软件快速入门上手-网络分析软件
本指南提供了一种快速介绍UCINET的使用说明。
假定软件已经和数据安装在C:\Program Files\Analytic Technologies\Ucinet 6\DataFiles的文件夹中,被留作为默认目录。
这个子菜单按钮涉及到UCINET所有程序,它们被分为文件,数据、转换、工具、网络、视图、选择和帮助。
值得注意的是,这个按钮的下方,都是在子菜单中的这些调用程序的快捷键。
在底部出现的默认目录是用于UCINET收集任何数据和存储任何文件(除非另外说明),目录可以通过点击向右这个按钮被修改。
运行的一种程序为了运行UCINET程序,我们通常需要指定一个UCINET数据集,给出一些参数。
在可能的情况下,UCINET选用一些默认参数,用户可以修改(如果需要)。
注意UCINET伴随着大量的标准数据集,而这些将会放置在默认值目录。
当一个程序被运行,有一些文本输出,它们会出现在屏幕上,而且通常UCINET的数据文件包含数据结果,这些结果又将会被储存在默认目录中。
我们将运行度的权重的程序来计算在一个称为TARO的标准UCINET数据集的全体参与者的权重。
首先我们强调网络>权重>度,再点击如果你点击了帮助按钮,,一个帮助界面就会在屏幕上打开,看起来像这样。
帮助文件给出了一个程序的详细介绍,会解释参数并描述在记录文件和屏幕上显示出来的输出信息。
关闭帮助文件,或者通过点击pickfile按钮或者输入名称选择TARO分析数据,如下。
现在点击OK运行程序验证。
这是一个文本文件给出的程序结果。
注意你可以向下滚动看到更多的文件。
这个文件可以保存或复制、粘贴到一个word处理包中。
当UCINET被关闭时,这个文件将会被删除。
关闭此文件。
注意,当这个程序运行时,我们也创建了一个名为FreemanDegree的新的UCINET文档。
我们可以使用Display /dataset按钮查看新的UCINET文件。
这是D按钮,只出现在下面的工具子菜单里(见第一个图)。
Ucinet_6_安装使用指南(睿驰原创)
北京环中睿驰科技有限公司Ucinet软件操作指南安装、激活、使用方法QQ:971307775 Email: ss@欢迎交流联系沈帅5/2/2012主要介绍UCINET软件的安装方法、激活方法、用途特点介绍以及一个完整的建模实例。
1Ucinet软件操作指南1.1安装步骤1.1.1步骤一安装软件●Ucinet 6 Windows版本安装软件包名称为:UcinetSetup.exe,点击该软件安装包,然后弹出下边界面之后点击允许运行:图一●然后弹出如下界面,选择安装目录:图二●然后点击Next,选择安装文件夹名称:图三●点击Next,开始进行软件配置,完成安装。
图四点击next,完成Ucinet的安装,然后点击finish即可启动软件:图五1.1.2软件激活方法:●点击Install之后,在Help页面中选择Register注册按钮,然后输入购买时使用的UserID和RegistrationCode,具体如下:图六●激活成功之后,会提示激活成功。
1.2软件介绍1.2.1用途UCINET软件是由加州大学欧文(Irvine)分校的一群网络分析者编写的。
现在对该软件进行扩展的团队是由斯蒂芬·博加提(Stephen Borgatti)、马丁·埃弗里特(Martin·Everett)和林顿·弗里曼(Linton Freeman)组成的。
UCINET网络分析集成软件包括一维与二维数据分析的NetDraw,还有正在发展应用的三维展示分析软件Mage等,同时集成了Pajek用于大型网络分析的Free应用软件程序。
利用UCINET软件可以读取文本文件、KrackPlot、Pajek、Negopy、VNA等格式的文件。
它能处理32 767个网络节点。
当然, 从实际操作来看,当节点数在5000~10000之间时,一些程序的运行就会很慢。
社会网络分析法包括中心性分析、子群分析、角色分析和基于置换的统计分析等。
UCINET 6快速指南说明书
UCINET Quick Start GuideThis guide provides a quick introduction to UCINET. It assumes that the software has been installed with the data in the folder C:\Program Files\Analytic Technologies\Ucinet 6\DataFiles and this has been left as the default directory.When UCINET is started the following window appears.Change default directory button Current default directoryThe submenu buttons give access to all of the routines in UCINET and these are grouped into File, Data, Transform, Tools, Network, Visualize, Options and Help. Note that the buttons located below these are simply fast ways of calling routines in the submenus. The default directory given at the bottom is where UCINET picks up any data and stores any files (unless otherwise specified) this directory can be changed by clicking on the button to the right.Running a routineTo run a UCINET routine we usually need to specify a UCINET dataset and give some parameters. Where possible UCINET selects some default parameters which the user can change if required. Note that UCINET comes with a number of standard datasets and these will be located in the default directory. When a routine has been run there is some textual output which appears on the screen and usually a UCINET datafile contain the results that again will be stored in the default directory.We shall run the degree centrality routine to calculate the centralities of all the actors in a standard UCINET dataset called TARO. First we highlight Network>Centrality>Degree and then clickThis will bring up a box as followsIf you click on the help button then a help screen will open which looks like this. The help file gives a detailed description of the routine, explains the parameters and describes the output that will appear in the log file and on the screen.Close the help file and either by clicking on the pickfile button or by typing the name select the TARO data for analysis as follows.Now click OK to run the routine to obtain the following.This is a text file giving the results of the routine. Note you can scroll down to see more of the file. This file can be saved or copied and pasted into a word processing package. When UCINET is closed this file will be deleted. Close this file.Note when the program was run we also created a new UCINET file called FreemanDegree. We can look at the new UCINET file using the Display dataset button. This is the D button that appears just below the Tools submenu (see the first diagram). Clicking on the D goes straight to the open file menu and bypasses some of the display options that are available if you used Data>Display. Click on display and select FreemanDegree. You should get the followingNote that this file has all the measures of centrality (but not sorted as in the text output) but does not have the descriptive statistics produced in the log file.Using the spreadsheet editorThe spreadsheet editor can be used to amend any data or enter new data. It is also very useful for transferring UCINET data (such as centrality scores) to Microsoft Excel or SPSS. Note that the dl format provides a more sophisticated and flexible way of entering data and this is not covered in this introductory guide. If you click the spreadsheet button or under data run the data editors and click on matrix editor you will open up the spreadsheet editor and obtain the following. Note we have annotated the important buttons and areas of the editor below.To see what a dataset looks like in the editor click file then open and select PADGETT. This is a non-symmetric binary data set with two relations and labels. Once open it will look like this. Symmetric mode copies cell values into other half Set the network or matrix size hereWe see the two relations PADGM and PADGB in the bottom left, clicking on the tabs changes sheet and we are viewing different relations. The labels are repeated along the rows and columns and are in the shaded area. We see the data has 16 actors as shown by the dimensions box on the right. This data can be edited and saved from the spreadsheet.Running NetdrawClick on the Netdraw button to launch Netdraw. This results in a new window which looks likeTo use Netdraw it is important to load in a network first. We shall load in a standard UCINET dataset collected by Dave Krackhardt. Click on the load a file button and type or select the file Krack-High-TecThen click OK and you should see something like this. Click on the Rels tab indicated here.You will now see this data has three relations Advice, Friendship and Reports to. If a relation is ticked then the edges relating to it are displayed. We shall now bring in an attribute file associated with this data called High-Tec-Attributes. Click on the load a file button again load the file but also click the radio button for node attributes under Type of Data so you haveNote you can also click the button just to the right of the load button (with an A) and this will open up the same box but with the attribute button selected. Click on Transform> Node attribute editor and you will see the node attribute editor open up as follows.You can use this editor to change or add in new attributes.We are going to size the nodes by age, colour them by department and shape them according to level. Close the attribute editor and click on the colour node button. This will open the color box click the select attribute button and select department as followsThis will give 5 colours for the five departments. Now click on the change shape of nodes button and go through the same process but selecting level and clicking on the tick at the bottom of the box. This will produce three shapes. To size the nodes according to age you need to selectProperties>Nodes>Symbols>Size>Attribute-Based and then select Age leaving the other values as defaults. This should result in the following.To export the diagram for use in a publication or to read into a word processing package useFile>Save Diagram As>Metafile. To save the diagram as a file you can see again in Netdraw you need to use File>Save Data As>Vna.Using the dl editor in UCINETThe UCINET spreadsheet editor is useful for making changes or for constructing small networks but is not well suited for importing larger datasets in which the data is not typically arranged in an adjacency matrix format. UCINET supports a variety of data formats that are accessed through an editor called the dl editor which is launched by pressing the button to the right of the spreadsheet editor in UCINET which looks like thisLaunch dl editorby clicking thisbutton10When the editor is launched it will contain a small help screen this relates to the info tab. You should click the data tab to obtain the following.Click the data tab to revealthe spreadsheetData format selectionThere are a number of data formats supported but we will just look at two. The data formats can be selected from a pull down list by clicking the arrow to the right of the data format selection box. The full matrix is the same as using the normal spreadsheet editor. Our first format is called nodelist (1mode), this format lists each node followed by the nodes it is adjacent to. The following is an example note we have clicked the force symmetry box in the output options.The first number in each row gives the starting node of an edge the numbers that follow in the same row are a list of end nodes. Hence the first row 1 3 4 5 states that actor 1 is connected to actors 3, 4 and 5. The second row states that actor 5 is connected to actor 6 and so on. Note that there is no order amongst the rows nor within the rows. Actor 2 has no end nodes listed and hence is an isolate. The network corresponding to this linked list is given below.Note that the entries in the spreadsheet are labels and so we can use names rather than numbers. If the data is directed then the arc goes from the start node to the end node. The following is an example showing a directed network with labels.If the data is valued then we cannot use the nodelist (1 mode) format; an alternative is the edgelist (1-mode) format. This format has three entries per line and is of the form start node, end node , value. The following is an example.In this example we see that Martin has a connection to Steve with a value of 5. It should be noted that the data in the spreadsheet cannot be saved except as a UCINET file and hence it is a good ideato construct these in an excel spreadsheet and copy and paste or import them. Once the entry is complete the file can be saved in UCINET by clicking the File button and selecting Save UCINETdataset. To clear the spreadsheet click the on the top left hand side.There are many features of UCINET and Netdraw that we have not mentioned but hopefully this guide will get you started.。
ucinet软件解释对照教学文案
ucinet软件解释对照教学文案FILES文件:change default folder改变默认文件夹create new folder创造新文件夹copy Ucinet dataset复制UCINET数据集rename ucinet dataset重命名ucinetdelete ucinet dateset删除ucinetprint setup打印设置text editor文档编辑程序view previous output查看前一个输出launch mage启动magelaunch pajek启动pajetexit退出DA TA数据:Spreadsheets:matrix 电子表格:矩阵Random:sociometric/bernoulli/multinomial 随机:计量社会学/伯努利分布/多项分布Import:DL/multiple DL files/VNA/pajek/krackplot/negopy/raw/excel matrix 输入export: DL/multiple DL files/VNA/pajek/krackplot/negopy/raw/excel matrix 输出cssBrowse 浏览Display 显示Describe 描述Extract 解压缩Remove 移动Unpack 解包Join 加入Sort 排序Permute 交换Transpose 调换Match net and attrib datasets 匹配网和属性数据集Match multiple datasets 匹配多重数据集Attribute to matrix 属性到矩阵Affiliations(2-mode to 1-mode) 联系2模到1模Subgraphs from partitions 子图分割Partitions to sets 集合分割Create node sets 创造节点设置Reshape 变形TRANSFORM变换:Block 块Collapse 塌缩Dichotomize 对分Symmetrize 对称Normalize 标准化match marginals 匹配页边recode 再编码reverse 相反diagonal 对角线double 双倍rewire 重新布线matrix operations:within dataset-aggregations/cellwise transformations;between datasets-statistical summaries/boolean combinations矩阵操作:内部数据集-集合/ cellwise变换;中间数据集:统计摘要/布尔结合Union 并运算time stack 时间栈intersection 交集bipartite 双向的incidence 影响linegraph 线图multigraph 多重图multiplex 多元的semigroup 子组TOOLS工具:Consensus analysisCluster analysis:hierarchical/optimization/cluster adequacy 簇:分层/优化/聚类功能Scaling/decomposition: 规模/分解metric MDS/non-metric MDS/factor analysis/correspondence/eigenvector&eigenvalus/SVD 公制的/非公制的/因子分析/相应性/特征向量&特征值/SVDSimilarities 相似性Dissimilarities&distances: 不同&距离Univariate stats 单变数统计Count combinations 计数组合Frequencies 频率Testing hypotheses:node level-regression/anova/t-test; mixed dyidic-categorical attributes/continuous attributes; QAP-QAP correlation/QAP relation crosstabs/QAP regresstion 假设检验:节点层次-回归/方差/T检验;混合二进节点-绝对属性/连续属性;QAP-相关性/联系交叉表/回归Matrix algebra 矩阵代数学Scatterplot 散点图Dendrogram 柱状图Tree diagram 树状图Network: 网络。
Ucinet软件快速入门上手-网络分析软件
本指南提供了一种快速介绍UCINET得使用说明。
假定软件已经与数据安装在C:\Program Files\Analytic Technologies\Ucinet 6\DataFiles得文件夹中,被留作为默认目录。
这个子菜单按钮涉及到UCINET所有程序,它们被分为文件,数据、转换、工具、网络、视图、选择与帮助。
值得注意得就是,这个按钮得下方,都就是在子菜单中得这些调用程序得快捷键。
在底部出现得默认目录就是用于UCINET收集任何数据与存储任何文件(除非另外说明),目录可以通过点击向右这个按钮被修改。
运行得一种程序为了运行UCINET程序,我们通常需要指定一个UCINET数据集,给出一些参数。
在可能得情况下,UCINET选用一些默认参数,用户可以修改(如果需要)。
注意UCINET伴随着大量得标准数据集,而这些将会放置在默认值目录。
当一个程序被运行,有一些文本输出,它们会出现在屏幕上,而且通常UCINET得数据文件包含数据结果,这些结果又将会被储存在默认目录中。
我们将运行度得权重得程序来计算在一个称为TARO得标准UCINET数据集得全体参与者得权重。
首先我们强调网络>权重>度,再点击如果您点击了帮助按钮,,一个帮助界面就会在屏幕上打开,瞧起来像这样。
帮助文件给出了一个程序得详细介绍,会解释参数并描述在记录文件与屏幕上显示出来得输出信息。
关闭帮助文件,或者通过点击pickfile按钮或者输入名称选择TARO分析数据,如下。
现在点击OK运行程序验证。
这就是一个文本文件给出得程序结果。
注意您可以向下滚动瞧到更多得文件。
这个文件可以保存或复制、粘贴到一个word处理包中。
当UCINET被关闭时,这个文件将会被删除。
关闭此文件。
注意,当这个程序运行时,我们也创建了一个名为FreemanDegree得新得UCINET文档。
我们可以使用Display /dataset按钮查瞧新得UCINET文件。
Ucinet使用
一、导入数据(两种方法)
1.excel导入
“数据”——“输入”——“Excel矩阵”,将bibexcel处理好的矩阵导入
2.txt导入
共词矩阵.txt中输入下列内容:
dl n=70 format=edgelist1
labels embedded
data
说明:n=?指矩阵几行几列,即选择了多少个关键词
“数据”——“输入”——“DL(D)”,选中共词矩阵.txt
点击“确定”,弹出下图所示的文本文档,并在输出路径所在地生成 .##h和 .##d 文件。
二、可视化数据分析
点击可视化—netdraw,然后弹出netdraw界面
选择file—open—ucinet dataset—network,然后弹出如下界面
选择生成的 .##h文件,点击ok,然后出现如下界面:
然后进行中心度分析,选择analysis—centrality measures,然后在弹出界面的set node size by 下输入degree,点击 ok
然后就会出现依据中心度大小进行显示的节点情况
三、小团体分析
去箭头
点击可视化—netdraw,然后弹出netdraw界面
选择file—open—ucinet dataset—network,然后弹出如下界面选择生成的 .##h文件,点击ok,然后出现如下界面:
点击右侧小箭头
调整一下每个节点的位置,让关键词都露出来,图要美观Analysis——Subgroup——Factions
弹出小窗口
数字挨个试,出现转折时,选择转折前的那个数字
8时,Fitness=218;9时,Fitness=222,出现转折,选择数字“8”共有8个小团体。
UCINET 6 for Windows中文手册
UCINET6for WindowsSoftware for Social NetworkAnalysis中文翻译版By MR由于毕业论文需要,翻译了一下这个文档,水平有限,很多专业词汇只能是字面翻译了,不过至少应该可以对软件有个大概的了解了,另外,省略了第一章和第5章没必要的东西。
查了一下对应的这个课程貌似是博士生课程,于是,我释然了,翻译的不好也就那样了。
对于一些令人费解的地方还是请各位参照一下英文原版。
MR2012年1月6日0.1Notational ConventionsUcinet是菜单驱动(menu-driver)的windows驱动程序,也即你可以通过选择菜单来选择需要做什么。
菜单可能被隐藏(nested),因此点选一个菜单项可能会呼出有额外选项的子菜单。
子菜单还可能有下一级子菜单。
为了设定好选项,你可能必须要点选许多菜单项。
为了表示选一个选项你需要的操作,我们使用了角括号。
比如说,要运行hierarchical clustering程序,你必须先启动ucinet,然后单击tools,在下拉菜单中选cluster,再从子菜单中点选Hierarchical.,我们将会这么表示这个操作:Tools>Cluster>Hierarchical0.3Programming Considerations编写Ucinet6的宗旨是速度而不是舒适,在编写ucinet的过程中,我们必须在消耗许多内存的快速的算法和消耗较少资源的较慢的算法之间做出选择。
在之前的版本中我们试图在这两者之前寻求平衡。
在这个版本中,我们总是选择前者--速度为重,一个原因是因为处理大量数据时,数据是很重要的:一个能处理很多数据但是却需要好多天才能执行完毕的程序有什么好处呢?另一个原因是软硬件的持续进步拓展了程序可以使用的内存,所以为了编写节省内存资源的程序似乎是一种浪费。
菜单系统的一个需要是把程序功能和子功能有条理合理地组织起来,当然,这被验证为是不可能的。
Ucinet软件使用
一、绘制社会网络图1.表“农资数据1”中的数据转换成关系矩阵。
(1)从表“农资数据1”中找出要处理的地区的数据,把所需信息(如姓名,文化程度,耕种经验,JB30-1......)单独找出来放在一个表格中。
(2)构建关系矩阵注意交流次数,1代表1~4 ,2代表5~8,3代表9~12,...... (具体内容可参考调研问卷)操作时,1替换成4,2替换成8,3替换成12......2.把关系矩阵导入到Ucinet软件中(1)打开Ucinet软件,点击Spreadsheet(图1中标记的按钮)图1(2)出现下图,把在Excel中处理好的关系矩阵复制到Spreadsheet中,把关系矩阵转换成Ucinet软件能够识别的格式。
如图2所示。
点击保存按钮。
图23.点击NetDraw按钮(图3中标记的按钮),出现图4所示的界面。
图3图44.按如图5 所示点击,即File——>Open——>Ucinet dataset——>Network,出现如图6所示的界面,点击图6中标记的按钮,选择上述2(2)中处理好的Ucinet能够识别的关系矩阵。
点击OK按钮。
图5图65.出现如图7所示的社会网络图。
(可以按图中标记的按钮,调整图形的形状)图76.对于一些散点(如图7中的李翠花,钱德轩......),小网络中的节点(赵国荣,吕国逢......)和未调研节点(可与表格农资数据1中的调研数据进行对比),本研究不进行分析,因此需把他们删掉。
删除有两种方式。
(建议使用第2种方式)(1)直接在Ucinet软件中删除。
把鼠标放在节点上,点击右键,会出现delete按钮,点击delete便可删除。
删掉后可进行保存。
保存方法如图8所示,即依次点击File——>Save Data As——>Vna,出现如图9所示的界面,点击图9中标记的按钮,选择保存位置,以及对文件进行命名。
图8图9(2)在关系矩阵表中删除。
打开步骤1中做好的Excel表格,对照着Ucinet中画出的社会网络图,把散点,未调研节点和小网络中的节点数据删除。
ucinet使用说明解析
注:计算的时候最好将多值关系数据转换成二值关系数据。 将多值关系数据转换成二值关系数据路径:变换对分
☞生成可视化结构图
还还 M还e可a以su在re此s 基础上进行中心性的可视化分析,路径:Analysis Centrality
☞生成可视化结构图
针对中间中心度分析的结果如下:
☞网络中心性分析
中心性(centrality)是度量整个网络中心化程度的重要指标,在城市群网络中, 处于中心位置的城市更易获得资源和信息,拥有更大的权力和对其他城市更强的影 响力。网络中心性又可以分为点度中心度、接近中心度和中间中心度三个指标。
秋记与你分享
郭彩云 原创
静思笃行 持中秉正
目录
UCINET的运行环境 UCINET的数据输入和输出 网络密度分析 网络中心性分析 凝聚子群分析
☞1、UCINET的运行环境
·UCINET(University of California at Irvine NETwork) 是一种功能强大的社会网络分析软件,他最初由加州大学尔湾 分校社会网研究的权威学者Linton Freeman 编写。
UCINET6 主界面
☞UCINET的数据输入和输出
Ucinet 的数据输入方式有多种:初始数据(Raw)、Excel数据和数据语言 数据(Data Language,DL)。
注:Ucinet处理的Excel数据最多只能有255列。 输入路径:数据输入Excel矩阵
☞UCINET的数据输入和输出