高中数学解三角形知识点题型总结
解三角形是高中数学重点和难点也是历年高考必考点和命题热点题型
解三角形是高中数学重点和难点也是历年高考必考点和命题热点题型
高一到高三数学必刷基础题型全归纳解已更新完成解三角形专题,而三角形是高中数学教学中的重点和难点,也是历年高考的必考点和命题热点。
其中,正弦定理和余弦定理及解三角形更是重中之重,但面对利用正余弦定理或三角函数关系所产生的各类解,学生往往缺乏必要的甄别意识和区分技能,从而造成“会而不对,对而不全”的现象时有发生。
利用这些题型掌握可以轻松提高
1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题
2.本部分是高考中的重点考查内容,主要考查利用正、余弦定理解三角形、判断三角形的形状,求三角形的面积等
3.命题形式多种多样,解答题以综合题为主,常与三角恒等变换、平面向量相结合
Word文档资料,微信:1989450104,其实,学习一定是有捷径和方法的,不是一味的苦学到半夜,清华北大数名学霸耗精心总结《高分其实很简单》,学霸们晒方法、晒技巧、晒笔记、晒心得、晒智慧!更有高考“必考点”、易考点、分析,让你做题,解题学会举一反三!。
高中数学必修五第一章《解三角形》知识点知识讲解
高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
高中数学必修5知识点总结归纳(人教版最全)
高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
(完整版)高中数学解三角形方法大全
解三角形1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。
已知三角形的几个元素求其他元素的过程叫作解三角形。
以下若无特殊说明,均设ABC ∆的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<<C B A 、、0,π<+<B A 0,ππ<-<-B A ,0sin >A , C B A sin )sin(=+,C B A cos )cos(-=+,2cos 2sinCB A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形板块一:正弦定理及其应用1.正弦定理:R CcB b A a 2sin sin sin ===,其中R 为ABC ∆的外接圆半径2.正弦定理适用于两类解三角形问题:(1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边;(2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解【例1】考查正弦定理的应用(1)ABC ∆中,若60=B ,42tan =A ,2=BC ,则=AC _____; (2)ABC ∆中,若30=A ,2=b ,1=a ,则=C ____;(3)ABC ∆中,若45=A ,24=b ,8=a ,则=C ____;(4)ABC ∆中,若A c a sin =,则cba +的最大值为_____。
总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ∆中,已知a 、b 、A(1)若A 为钝角或直角,则当b a >时,ABC ∆有唯一解;否则无解。
(2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <<sin 时,三角形有两解; 当b a ≥时,三角形有唯一解实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。
高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)
第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。
高中数学-解三角形知识点汇总情况及典型例题1.docx
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中, C=90°,AB= c, AC= b , BC= a。
(1)三边之间的关系:a2+b2=c2。
(勾股定理)(2)锐角之间的关系:A+B= 90 °;(3)边角之间的关系:(锐角三角函数定义)sin A= cos B=a, cos A=sin=b, tan A=a。
c bc2.斜三角形中各元素间的关系:在△ABC 中, A、 B、 C 为其内角, a、b、 c 分别表示 A、 B、C 的对边。
(1)三角形内角和:A+B+C=π。
(2 )正弦定理:在一个三角形中,各边和它所对角的正弦的比相等a b c2R (R为外接圆半径)sin A sin B sin C( 3 )余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2 =b2+2- 2bccosA;b2 = 2 +a2- 2cacosB;c2= 2 +b2-2abcos。
c c a C3.三角形的面积公式:1ah a=11(1)S=bh b=ch c( h a、 h b、 h c分别表示 a、b、 c 上的高);22211bc sin A=1(2)S=ab sin C=ac sin B;222求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1 )两类正弦定理解三角形的问题:第 1、已知两角和任意一边,求其他的两边及一角.第 2、已知两角和其中一边的对角,求其他边角.(2 )两类余弦定理解三角形的问题:第 1、已知三边求三角 .第 2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
( 1)角的变换因为在△ABC 中, A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。
高中数学-解三角形知识点汇总情况及典型例题1
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
高中数学解三角形大题经典题目总结
高中数学解三角形大题经典题目总结一、基础题1. 已知△ABC 中,C ∠为钝角,而且8AB =,3BC =,AB (1)求B 的大小;(2)求cos 3cos AC A B +的值.2. 在ABC ∆中,11a b +=,再从条件①、条件②这两个条件中选择一个作为已知,求:(1)a 的值:(2)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.3. 如图,在圆内接ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,满足cos cos 2cos a C c A b B +=.(1)求B ;(2)若点D 是劣弧AC 上一点,AB =2,BC =3,AD =1,求四边形ABCD 的面积4.ABC ∆中的内角A ,B ,C 的对边分别是a ,b ,c 4c =,2B C =.(1)求cos B ;(2)若5c =,点D 为边BC 上一点,且6BD =,求ADC ∆的面积.5. 请从下面三个条件中任选一个,补充在下面的问题中,并解决该问题①2252b c +=;②ABC 的面积为;③26AB AB BC +⋅=-.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .在已知2b c -=,A 为钝角,sin A (1)求边a 的长; (2)求sin 26C π⎛⎫- ⎪⎝⎭的值.6. 在①222sin 2cos 2cos cos 122C B C B C B -+++=,①2tan tan tan B b A B c =+,①(sin )a C C =三个条件中任选一个,补充在下面问题中,并加以解答.在ABC ∆中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足a =,3b =, ______,求ABC ∆的面积.7. 在①2sin cos C A =②tan a A =,③cos c A =补充在下面问题中,并求ABC ∆的面积.问题:在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且4,3a C π==,________?8. 在①22()3a b c ab +=+,①sin cos a A a C =-,①(2)sin (2)sin 2sin a b A b a B c C -+-=,这三个条件中任选一个,补充在下列问题中,并解答.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,c =_____.(1)求C ∠;(2)求ABC 周长的最大值.9. 在①AD 是BC 边上的高,且AD BC ⋅=,②AD 平分BAC ∠,且7AD =,③AD 是BC 边上的中线,且2AD =这三个条件中任选一个,补充在下面的问题中,并求出边BC 的长.问题:在锐角ABC ∆中,已知4AB =,3AC =,D 是边BC 上一点,_____,求边BC 的长.注:如果选择多个条件分别解答,按第一个解答计分10. 已知ABC ∆的内角A ,B ,C 所对的边分别是,,a b c ,且满足()()()sin sin sin sin sin sin sin A B A B C B C +-=-,ABC 的面积为.(1)求sin 2A ;(2)sin sin B C +=,求ABC 的周长.11. 在ABC ∆中,M 为BC 边上一点,45BAM ∠=︒,cos AMC ∠=. (1)求sin B ; (2)若12MC BM =,4AC =,求MC .12. 在ABC ∆中,角A ,B ,C 的对边分别是a 、b 、c ,且24cos 222Ba abc =-+ (1)求A ;(2)若2b =,ABC 的面积为2,M 是AB 的中点,求2CM .13. ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且(sin cos )(cos sin )b C C c B B -=-.(1)记BC 边上的高为h ,求a h;(2)若b =1c =,求a .14. 在ABC ∆中,BAC ∠的角平分线交BC 于点D ,1AC AD ==,3AB =.(1)求cos BAD ∠; (2)求ABC 的面积.15. 在ABC ∆中,三个内角,,A B C 的对边分别为,,a b c ,若222sin 2cos 2cos cos 122A B A BA B -+++=(1)求角C 的大小(2)若4,38c CA CB =+=16. 如图,在四边形ABCD 中,2D B ∠=∠,AC BC =,2AD =,6CD =.(1)当ACD ∆的面积最大时,求ABC ∆的面积;(2)若cos B =AB .17. 已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos a B b A +=.(1)求角C ;(2)如图,若点D 在边AC 上,AD DB =,DE AB ⊥,E 为垂足,AE =a =, 求AD 长.二、中档题1. 如图,在直角ACB △中,2ACB π∠=,3CAB π∠=,2AC =,点M 在线段AB 上.(1)若sin 3CMA ∠=,求CM 的长;(2)点N 是线段CB 上一点,MN =12BMN ACB S S =△△,求BM BN +的值.2. 已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且2222c a b ab +-=.(1)若sin 3C =,求B ; (2)若D 为AC 中点,且BD BC =,求a b.3. 在①2b =;②c =;③222a cb +-=这三个条件中任选两个,补充在下面问题中,求BCD ∠的大小和ACD △的面积.问题:已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,2a =,设D 为边AB 上一点,BD =, .注:如果选择多个条件分别解答,按第一个解答给分.4. 在ABC ∆中,内角A 、B 、C 对边分别是a 、b 、c ,已知2sin sin sin B A C =.(1)求证:03B π<≤;(2)求222sin sin 1A CB +-+的取值范围.5. 已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①33()b ac c a b -+=+;②2cos 22cos 12A A +=;③a =④b =(1)满足有解三角形的序号组合有哪些?(1)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分)6. 在①sin sin sin sin A C A Bb a c--=+,②2cos cos cos c C a B b A =+这两个条件中任选一个,补充在下面问题中的横线上,并解答.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c , . (1)求角C ;(2)若c =a b +=ABC 的面积.注:如果选择多个条件分别解答,按第一个解答计分.7. 在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cos 2b C a c =-.(1)求角B ;(2)求sin sin A C 的取值范围.8. 在①ANBN=,②AMN S =△,③AC AM =这三个条件中任选一个,补充在下面问题中,并进行求解.问题:在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,3B π=,8c =,点M ,N 是BC 边上的两个三等分点,3BC BM =,____________,求AM 的长和ABC ∆外接圆半径.注:如果选择多个条件分别进行解答,按第一个解答进行计分.三、提升题1. △ABC 中,角A ①B ①C 所对的边分别为a ①b ①c ,已知1a =,sin cos ()cos c B B b C -=. (1)求BC 边上的高AD 的长; (2)求tan A 的最大值.2. 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin sin B C aA C b c+=--.(1)求tan B ;(2)若ABC 是锐角三角形,且ABC 的面积为c 的取值范围.3. 若锐角BC △A 中,角,,A B C 所对的边分别为,,a b c ,若32()cos )33x f x C C x x =-++的图像在点(,())C c f c 处的切线与直线y x=垂直,求ABC ∆面积的最大值.4. 重庆、武汉、南京并称为三大“火炉”城市,而重庆比武汉、南京更厉害,堪称三大“火炉”之首.某人在歌乐山修建了一座避暑山庄O (如图).为吸引游客,准备在门前两条夹角为6π(即AOB ∠)的小路之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知弓形花园的弦长AB =且点A ,B 落在小路上,记弓形花园的顶点为M ,且6MAB MBA π∠=∠=,设OBA θ∠=.(1)将OA ,OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何规划花园(即OA ,OB 长度),才使得喷泉M 与山庄O 距离即值OM 最大?。
高中数学必修五三角函数知识点+练习题含答案解析(很详细)
高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
高中数学专题-三角形取值范围问题-题型总结(解析版)2
三角形取值范围问题--归纳总结关于解三角形问题和取值范围有很多题型,总结起来大致可以分为两类。
第一种处理方法使用基本不等式求最值(往往结合余弦定理),第二种处理方法转化为三角函数求值域(题目强调锐角三角形时用此法)。
需要注意的是基本不等式注意取等条件,三角函数法需要注意角的精确范围(尤其是锐角三角形时角的范围)。
题型1.三角函数和差类型方法:转换成三角函数求值域问题,注意角的范围。
【例1-1】(2022·新高考Ⅰ卷)记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A1+sin A=sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.【解析】(1)由cosA1+sinA=sin2B1+cos2B,得cosA1+sinA=2sinBcosB2cos2B=sinBcosB,即cosAcosB=sinB+sinBsinA,即cos(A+B)=-cosC=sinB,∵C=2π3,所以sinB=12得,B=A=π6.(2)由cos(A+B)=-cosC=sinB,得C=π2+B,A+2B=π2,由正弦定理得a2+b2 c2=sin2A+sin2Bsin2C=(2cos2B-1)2+1-cos2Bcos2B=4cos4B-5cos2B+2cos2B=4cos2B+2cos2B-5≥42-5,当且仅当cosB=(12)14时的符号成立,故最小值为42-5.【例1-2】(2022·广州一模)△ABC的内角A,B,C的对边分别为a,b,c,已知c=3,且满足ab sin Ca sin A+b sin B−c sin C= 3.(1)求角C的大小;(2)求b+2a的最大值.【解析】(1)由题意得abca2+b2-c2=3,余弦定理得:a2+b2-c2=2ab∙cosC,所以cosC=a2+b2-c22ab=12,又C为△ABC内角,所以C=π3;(2)由题得asinA =bsinB=csinC=2,所以a=2sinA,b=2sinB,所以b=2sinB=2sin(A+π3),所以b+2a=2sin(A+π3)+4sinA=sinA+3cosA+4sinA=5sinA+3cosA=27sin(A+φ),且tanφ=35,又因为A∈(0,2π3),所以sin(A+φ)max=1,所以b+2a≤27,即b+2a的最大值为27.【训练1】(2020·浙江卷)在锐角△ABC中,角A,B,C所对的边分别为a,b,c.(1)求角B的大小;(2)求cos A+cos B+cos C的取值范围.【解析】(1)∵2bsinA=3a,2sinBsinA=3sinA,∵sinA≠0,∴sinB=32,∵△ABC为锐角三角形,∴B=π3,(2)∵△ABC为锐角三角形,B=π3,∴C=2π3-A,∴cosA+cosB+cosC= cosA+cos(2π3-A)+cosπ3=12cosA+32sinA+12=sin(A+π6)+12,△ABC为锐角三角形,0<A<π2,0<C<π2,解得π6<A<π2,∴π3<A+π6<2π3,∴32<sin(A+π6)≤1,∴32+12<sin(A+π6)+12≤32,∴cosA+cosB+cosC 的取值范围为(3+12,32].题型2.三角形面积最值方法一:余弦定理+基本不等式(锐角三角形不建议用).方法二:转化为三角函数求值域(任意三角形都可用).策略一:对边对角型【例2-1】(2021·衡水调研)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且a cos C+3a sin C−b−c=0.(1)求A的大小;(2)若a=3,求△ABC面积的取值范围.【解析】(1)由acosC+3a sinC-b-c=0,由正弦定理得:sinAcosC+3sinAsinC=sinB+sinC,即sinAcosC+3sinAsinC=sin(A+C)+sinC,可得:3sinAsinC=cosAsinC+sinC,由于C为三角形内角,sinC≠0,所以化简得3sinA-cosA=1,所以sin(A-π6)=12因为A∈(0,π2),所以A-π6∈(-π6,π3),所以A-π6=π6,即A=π3.(2)由2R=asomA=332=2,则bc=2RsinB∙2RsinC=4sinBsin(B+π3)=2(2B-π6)+1,sin因为△ABC是锐角三角形,所以B∈(π6,π2),所以(2B-π6sin)∈(12,1],可得bc∈(2,3],所以S△ABC=12bcsinA=34bc∈(32 ,334],所以△ABC的面积的取值范围是(32,334].【训练2】在△ABC中,A,B,C的对边分别为a,b,c,且sin Aa=3cos C c.(1)求角C的大小;(2)如果c=2,求△ABC的面积的最大值.【解析】(1)因为sinAa=3cosCc=sinCc,所以sinC=3cosC,即tanC=3,由C为三角形内角得,C=π3;(2)由余弦定理得4=a2+b2-ab≥2ab-ab=ab,当且仅当a=b时取等号,所以ab≤4,△ABC的面积S=12absinC=34ab≤3,即面积的最大值为 3.策略二:对边异角型【例2-2】(2021·瑶海月考)若a,b,c为锐角△ABC的三个内角A,B,C的对边,且sin2B+sin2C−sin2(B+C)=sin B sin C.(1)求角A;(2)若b=2,求△ABC的面积的取值范围.【解析】(1)因为sin2B+sin2C-sin2(B+C)=sinBsinC,所以sin2B+sin2C-sin2A=sinBsinC.由正弦定理得b2+c2-a2=bc,由余弦定理得cosA=b2+c2-a22bc=12,因为A为三角形内角,所以A=π3;(2)由题得bsinB=csinC,所以2sinB=csin(2π3-B),c=2sin(2π3-B)sinB=3cosB+sinBsinB=1+3tanB,因为锐角△ABC中,0<B<π20<2π3-B<π2,所以π6<B<π2,故tanB>33,0<1tanB<3,S△ABC=12bcsinA=34×2×(1+3 tanB)=32+32tanB∈(32,23).【训练3】(2019·全国Ⅲ卷)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A+C2=b sin A.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)asin A+C2=bsinA,即为asinπ-B2=acosB2=bsinA,可得sinAcos B2=sinBsinA=2sin B2cos B2sinA,∵sinA>0,∴cos B2=2sin B2cos B2 ,若cos B2=0,可得B=(2k+1)π,k∈Z不成立,∴sin B2=12,由0<B<π,可得B=π3;(2)若△ABC为锐角三角形,且c=1,由余弦定理可得b=a2+1-2a∙1∙cosπ3 =a2-a+1,由三角形ABC为锐角三角形,可得a2+a2-a+1>1且1+a2-a +1>a2,且1+a2>a2-a+1,解得12<a<2,可得△ABC面积S=12a∙sinπ3 =34a∈(38,32)策略三:夹边夹角型方法一:向量平方凑关系,结合基本不等式求最值.方法二:延长中线找对边,结合对边对角模型求值.【例2-3】在△ABC中,角A,B,C的对边分别为a,b,c,且b cos A+12a=c.(1)求角B的大小;(2)若AC边上的中线BM的长为3,求△ABC面积的最大值.【解析】(1)因为bcosA+12a=c,由正弦定理可得sinBcosA+12sinA=sinC,又sinC=sin(A+B)=sinAcosB+sinBcosA,所以12sinA=sinAcosB,又A为三角形内角,sinA>0,所以cosB=12,因为B∈(0,π),所以B=π3.(2)如图,延长线段BM至D,满足BM=MD,连接AD,在△ABC中,BD=2AM =23,AD=a,AB=c,∠BAD=π-B=2π3,由余弦定理,有232=a2+c2+ac≥2ac+ac=3ac,解得ac≤4,当且仅当a=c=2时取等号,所以S△ABC=12acsinB≤12×4×32=3,当且仅当a=c=2时等号成立,即面积的最大值为 3.AB C DE M【训练4】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知m=cos A 2,3sin A 2 ,n =−2sin A 2,2sin A2 ,且m ·n =0.(1)求角A 的大小;(2)点M 是BC 的中点,且AM =1,求△ABC 面积的最大值.【解析】(1)m ∙n =0,∴-2sin A 2cos A 2+23sin 2A 2=0,即-sinA +23×1-cosA2=-sinA -3cosA +3=0,即sinA +3cosA =3,即2sin (A +π3)=3,得sin (A +π3)=32,即A +π3=2π3,得A =π3.(2)∵点M 是BC 的中点,且AM=1,∴AM =12(AB +AC ),平方得AM 2=14(AB 2+AC 2+2AB ∙ AC ),即4=c 2+b 2+2bc ×12=c 2+b 2+bc ≥2bc +bc =3bc ,即bc ≤43,当且仅当b =c 时取等号,则△ABC 面积S =12bcsin π3=12×32bc ≤34×43=33,即三角形面积的最大值为33.题型3.三角形周长取值范围方法一:余弦定理+基本不等式(锐角三角形不建议用).方法二:转化为三角函数求值域(任意三角形都可用)策略一:对边对角型【例3-1】(2020·全国Ⅱ卷)在△ABC中,sin2A−sin2B−sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.=-12,【解析】(1)因为BC2-AC2-AB2=AC∙AB,所以cosA=AC2+AB2-BC22AC∙AB因为A∈(0,π),所以A=2π3.(2)由余弦定理BC2=AC2+AB2-2AC∙ABcosA=AC2+AB2+AC∙AB=9,)2(当且仅当AC=AB时取等即(AC+AB)2-AC∙AB=9,AC∙AB≤(AC+AB2)2=34(AC+AB)2,解号),9=(AC+AB)2-AC∙AB≥(AC+AB)2-(AC+AB2得AC+AB≤23(当且仅当AC=AB时取等号),所以△ABC周长L=AC+ AB+BC≤3+23,周长的最大值为3+2 3.【训练5】(2021·江西模拟)△ABC的内角A,B,C的对边分别为a,b,c.已知a cos B=(2c−b)cos A.(1)求A;(2)若△ABC为锐角三角形,且a=1,求△ABC周长的取值范围.【解析】(1)法一:由题意得a cosB+b cosA=2c cosA;由正弦定理得sinAcosB +sinBcosA=2sinCcosA,即sin(A+B)=2sinCcosA;又sin(A+B)=sinC,所以sinC=2sinC cosA.又sinC≠0,所以cosA=12;又0<A<π,所以A=π3.解法二:结合余弦定理a×a2+c2-b22ac =(2c-b)×b2+c2-a22bc,化简得b2+c2-a2=bc,所以cosA=b2+c2-a22bc=12;又0<A<π,所以A=π3.(2)由正弦定理得asinA =bsinB=csinC,且a=1,A=π3,所以b=233sinB,c=233sinC;所以a+b+c=1+233(sinB+sinC)=1+233[sinB+sin(2π3-B)]=1+2sin(B+π6).因为△ABC为锐角三角形,所以得0<B<π20<2π3-B<π2 ,解得π6<B<π2.所以1+2sin(B+π6)∈(1+3,3];即△ABC周长的取值范围是(1+3,3].策略二:对边异角型【例3-2】(2021·衡水模拟)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知b=3,sin A+a sin B=2 3.(1)求角A的大小;(2)求△ABC周长的取值范围【解析】(1)因为asinA =bsinB=csinC,所以asinB=bsinA,所以sinA+asinB=sinA+bsinA=4sinA=23,所以sinA=32,△ABC为锐角三角形,所以A=π3.(2)由题可得:asinA =bsinB=csinC,a=332sinB,c=3sinCsinB,a+c+3=332+3sinCsinB+3=332+3sin(2π3-B)sinB+3,所以周长=332+3(32cosB+12sinB)sinB+3=332∙1+cosBsinB+9 2=332∙1+2cos2B2-12sin B2cos B2+92=332∙1tan B2+92.又因为△ABC为锐角三角形,所以B 2∈(π12,π4)所以tan B2∈(2-3,1),所以1tan B2∈(1,2+3),所以(9+332,9+33).【训练6】(2021·江苏模拟)在△ABC中,a,b,c分别是内角A,B,C的对边,2b sin A sin(A+C)=3a sin B.(1)求角B;(2)若△ABC为锐角三角形,且c=2,求△ABC面积的取值范围.【解析】(1)∵2bsinAsin(A+C)=3asin2B,∴由正弦定理得:2sinBsinAsin(A +C)=23sinAsinBcosB,∵A+C=π-B,且sinA≠0,sinB≠0,∴sinB= 3cosB,∴tanB=3,∵B∈(0,π),∴B=π3.(2)由题意B=π3,c=2,可得S△ABC =12acsinB=3a2,由正弦定理得:a=csinAsinC=2sin(120°-C)sinC =3tanC+1,又△ABC为锐角三角形,可得0<A<90°,0<C<90°,故30°<C<90°,所以1<a<4,从而32<S△ABC<23,即△ABC面积的取值范围是(32,23).策略三:夹边夹角型方法一:向量平方凑关系,结合基本不等式求最值.方法二:延长中线找对边,结合对边对角模型求值.【例3-3】在△ABC中,a、b、c分别是角A、B、C的对边,若c cos B+b cos C= 2a cos A,M为BC的中点,且AM=1,则b+c的最大值是.【解析】在△ABC中,a、b、c分别是角A、B、C的对边,若c cosB+b cosC= 2acosA,利用正弦定理:sinCcosB+sinBcosC=2sinAcosA,所以:sin(B+C) =sinA=2sinAcosA,由于:sinA≠0,所以cosA=12,0<A<π,故A=π3,因为M为BC的中点,且AM=1,所以可设BC=2x,则(2x)2=b2+c2-2bccosA,故2x2=b2+c2-bc2,利用余弦定理得c2=12+x2-2xcos∠BMA①,同理:b2=12+x2-2x∠CMAcos②由①②得:b2+c2=2+2x2,所以:b2+c2=c2+b2-bc2+2,故:(b+c)2=4+bc,整理得:(b+c)2≤4+(b+c2)2,解得0<b+c≤433,故答案为433.【训练7】(2022·石家庄模拟)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,若c cos B +b cos C =2a cos A ,AM =23AB +13AC,且AM =1,则b +2c 的最大值是.【解析】由ccosB +bcosC =2acosA ,得sinCcosB +sinBcosC =sin (B +C )=sinA =2sinAcosA ,可得cosA =12,A =π3,因为AM 2=(23AB +13AC )2=49c 2+19b 2+49bccosA =3,所以b 2+4c 2+2bc =27⇒(b +2c )2-2bc =27⇒(b +2c )2=27+2bc ≤27+(b +2c 2)2,当且仅当b =2c 取等号,得34(b +2c )2≤27⇒b +2c ≤6.b +2c 的最大值为6. 故答案为:6.【训练8】(2022·江苏模拟)△ABC 中,角A 、B 、C 的对边分别为a ,b ,c 且满足2a =3b =4c ,若sin2A ≤λ(sin B +sin C )恒成立,则λ的最小值为()A .−1114B .127C .−1124D .−712【解析】设2a =3b =4c =12t (t >0),则a =6t ,b =4t ,c =3t ,sin 2A ≤λ(sinB +sinC )恒成立,即λ≥sin 2A sinB +sinC 恒成立,sin 2A sinB +sinC =2sinAcosA sinB +sinC =2a b +c ∙b 2+c 2-a 22bc =6t7t ∙16t 2+9t 2-36t 212t 2=-1114,以λ≥-1114,所以λ的最小值为-1114.故选:A.【训练9】(2022·甲卷)已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当ACAB取得最小值时,BD=.【解析】设BD=x,CD=2x,在三角形ACD中,b2=4x2+4-2∙2x∙2∙cos60°,可得:b2=4x2-4x+4,在三角形ABD中,c2=x2+4-2∙x∙2∙cos120°,可得:c2=x2+2x+4,要使得AC AB 最小,即b2c2最小,b2c2=4x2-4x+4x2+2x+4=4(x2+2x+4)-4x-12x2+2x+4=4-12(x+1)(x+1)2+3=4-12(x+1)(x+1)2+3=4-12x+1+3x+1≥4-1223,当且仅当x+1=3x+1,即x=3-1时,取等号,故答案为:3-1.【训练10】(2022·深圳模拟)在△ABC中,已知角A,B,C所对的边分别为a,b,c,若9b2+6bc cos A=11c2,则角B的最大值为()A.π6B.π4C.π3D.3π4【解析】由余弦定理cosA=b2+c2-a22bc,代入9b2+6bc cosA=11c2,得9b2+3(b2+ c2-a2)=11c2,整理得b2=112(3a2+8c2),cosB=a2+c2-b22bc =a2+c2-112(3a2+8c2)2ac=34a2+13c22ac≥234×13ac2ac=12,当且仅当9a2=4c2时取“=”,又因为B∈(0,π),所以B≤π3,故选:C.【训练11】(2015·全国Ⅰ卷)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC =2,则AB的取值范围是.【解析】方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=12x,AE=22x,DE=6+24x,CD=m,∵BC=2,∴(6+24x+m)sin15°=1,∴6+24x+m=6+2,∴0<x<4,而AB=6+24x+m-22x=6+2-22x,∴AB的取值范围是(6-2,6 +2).故答案为:(6-2,6+2).方法二:如下图,做出底边BC=2的等腰三角形EBC ,B =C =75°,倾斜角为150°的直线在平面内移动,分别交EB 、EC 与A 、D ,则四边形ABCD 即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C 时,AB 趋近最小,为6-2;②直线接近点E 时,AB 趋近最大值,为6+2;故答案为:(6-2,6+2).m12x 6+24x 22x。
高中数学解三角形的知识总结和题型归纳总结
解三角形的知识总结和题型归纳一、知识讲解1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理)(2)锐角之间的关系:A +B =90°;(互余)(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba 。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.主要类型有:(1)正弦定理解三角形的问题:已知两角和任意一边,求其他的两边及一角.已知两角和其中一边的对角,求其他边角.(2)余弦定理解三角形的问题:已知三边求三角.已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。
三角函数和解三角形知识点汇总
三角函数和解三角形知识点汇总三角函数和解三角形是高中数学中的重要内容,这两个知识点在解决几何问题和求解三角方程等方面具有广泛的应用。
本文将对三角函数和解三角形的相关概念和性质进行汇总和总结。
一、三角函数的基本概念和性质1. 正弦函数(sin):在直角三角形中,正弦函数定义为对边与斜边之比。
在单位圆中,正弦函数定义为点在单位圆上的纵坐标。
2. 余弦函数(cos):在直角三角形中,余弦函数定义为邻边与斜边之比。
在单位圆中,余弦函数定义为点在单位圆上的横坐标。
3. 正切函数(tan):在直角三角形中,正切函数定义为对边与邻边之比。
在单位圆中,正切函数定义为点在单位圆上的纵坐标与横坐标之比。
4. 三角函数的周期性:正弦函数、余弦函数和正切函数都具有周期性,周期为360度或2π弧度。
5. 三角函数的基本关系:正弦函数、余弦函数和正切函数之间存在一定的关系,如正弦函数与余弦函数的平方和等于1,正切函数与正弦函数的比值等于余弦函数。
二、解三角形的基本方法1. 解直角三角形:直角三角形是最简单的三角形,可以通过已知两个角或两个边长度,求解出三个角和三个边的长度。
解直角三角形常用的方法包括正弦定理、余弦定理和勾股定理。
2. 解一般三角形:一般三角形包括三个不等边和三个不等角。
解一般三角形的关键是要找到足够的已知条件,一般包括已知两个角和一个边的长度,或已知两个边和一个角的大小。
解一般三角形常用的方法有正弦定理和余弦定理。
三、三角函数和解三角形的应用1. 几何问题的求解:三角函数和解三角形广泛应用于几何问题的求解,如求解三角形的面积、角度、边长等。
2. 物理问题的求解:三角函数和解三角形也在物理问题的求解中发挥着重要作用,如求解力的合成与分解、两个物体之间的角度等。
3. 工程问题的求解:在工程问题中,三角函数和解三角形用于求解斜面的倾斜角度、测量高楼大厦的高度等。
四、总结本文对三角函数和解三角形的相关知识进行了汇总和总结。
解三角形方法与技巧例题和知识点总结
解三角形方法与技巧例题和知识点总结一、解三角形的基本概念在平面几何中,三角形是一个非常重要的图形。
解三角形就是通过已知的三角形的一些元素(如边、角),求出其他未知元素的过程。
三角形中的基本元素包括三个角(通常用 A、B、C 表示)和三条边(通常用 a、b、c 表示)。
解三角形的主要依据是三角形的内角和定理(A + B + C = 180°)以及正弦定理和余弦定理。
二、正弦定理正弦定理的表达式为:\(\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C}\)。
正弦定理可以用于以下两种情况:1、已知两角和一边,求其他两边和一角。
例如:在三角形 ABC 中,已知角 A = 30°,角 B = 45°,边 c =10,求边 a 和边 b。
首先,根据三角形内角和定理,角 C = 180° 30° 45°= 105°。
然后,利用正弦定理\(\frac{a}{\sin A} =\frac{c}{\sin C}\),可得\(a =\frac{c\sin A}{\sin C} =\frac{10\times\sin 30°}{\sin 105°}\)。
同样,\(\frac{b}{\sin B} =\frac{c}{\sin C}\),\(b =\frac{c\sin B}{\sin C} =\frac{10\times\sin 45°}{\sin 105°}\)。
2、已知两边和其中一边的对角,求另一边的对角和其他边。
例如:在三角形 ABC 中,已知边 a = 6,边 b = 8,角 A = 30°,求角 B。
由正弦定理\(\frac{a}{\sin A} =\frac{b}{\sin B}\),可得\(\sin B =\frac{b\sin A}{a} =\frac{8\times\sin 30°}{6} =\frac{2}{3}\)。
高中数学解三角形总结
高中数学解三角形总结三角形是数学中的一个重要概念,具有广泛的应用,同时也是高中数学中的重点内容。
对于高中数学解三角形,我们需要掌握的知识和技巧有很多。
下面是我对高中数学解三角形的总结。
首先,我们需要了解三角形的基本性质。
三角形是由三条边和三个角组成的,其中边和角之间有着一些特定的关系。
例如,三角形的内角和为180度,任意两边之和大于第三边等等。
这些基本性质是解三角形的基础,我们需要熟练掌握它们。
其次,我们需要学会根据已知条件解三角形。
解三角形的方法有很多种,如正弦定理、余弦定理、正切定理等。
根据已知条件,我们可以选用合适的方法来解题。
例如,如果已知两边和夹角,我们可以使用余弦定理;如果已知两边和夹角的正弦或余弦值,我们可以使用正弦定理等。
解题时,需要注意用到的角度单位应保持一致,通常为度或弧度。
另外,我们还需要了解三角函数的基本关系。
三角函数是解三角形的重要工具,包括正弦、余弦、正切等。
它们之间有一些基本的关系,比如正弦和余弦的平方和为1,正切等于正弦除以余弦等。
掌握这些关系,可以帮助我们更好地理解和应用三角函数。
解三角形过程中常常伴随着角度的换算和三角函数值的计算。
角度的换算通常有度到弧度和弧度到度的转换,需要我们熟练掌握换算公式。
三角函数的计算可以通过查表或计算器来完成,但为了更好地理解和应用三角函数,我们需要了解三角函数的定义和性质,以及如何计算任意角的三角函数值。
此外,解三角形还常常涉及到证明。
通过证明,可以帮助我们深入理解和应用已学知识,加深对三角形性质和三角函数的理解。
在证明过程中,我们可以运用一些基本的几何知识和性质,如等腰三角形的性质、平行线的性质等。
最后,解三角形还常常与实际问题相关。
实际问题可以是与日常生活、工程建设、自然科学等领域有关的,它们常常需要我们运用已学的知识和技巧解决。
在解决实际问题时,我们需要将问题抽象为三角形问题,在已知条件的基础上进行分析和计算,最终得到问题的解答。
高中数学解三角形知识点总结
⾼中数学解三⾓形知识点总结 三⾓形⼀直是数学中较难的知识点之⼀,⾝为⾼三的同学该如何学号三⾓形知识呢。
以下是由店铺编辑为⼤家整理的“⾼中数学解三⾓形知识点总结”,仅供参考,欢迎⼤家阅读。
⾼中数学解三⾓形知识点总结 解斜三⾓形 1、解斜三⾓形的主要定理:正弦定理和余弦定理和余弦的射影公式和各种形式的⾯积的公式。
2、能解决的四类型的问题:(1)已知两⾓和⼀条边(2)已知两边和夹⾓(3)已知三边(4) 已知两边和其中⼀边的对⾓。
解直⾓三⾓形 1、解直⾓三⾓形的主要定理:在直⾓三⾓形ABC中,直⾓为⾓C,⾓A和⾓B是它的两锐⾓,所对的边A、B、C,(1) ⾓A和⾓B的和是90度;(2) 勾股定理:A的平⽅加上+B的平⽅=C的平⽅;(3) ⾓A的正弦等于A⽐上C,⾓A的余弦等于B⽐上C,⾓B的正弦等于B⽐上C,⾓B的余弦等于A⽐上C;(4)⾯积的公式S=AB/2;此外还有射影定理,内外切接圆的半径。
2、解直⾓三⾓形的四种类型:(1)已知两直⾓边:根据勾股定理先求出斜边,⽤三⾓函数求出两锐⾓中的⼀⾓,再⽤互余关系求出另⼀⾓或⽤三⾓函数求出两锐⾓中的两⾓;(2)已知⼀直⾓边和斜边,根据勾股定理先求出另⼀直⾓边,问题转化为(1);(3)已知⼀直⾓边和⼀锐⾓,可求出另⼀锐⾓,运⽤正弦或余弦,算出斜边,⽤勾股定理算出另⼀直⾓边;(4)已知斜边和⼀锐⾓,先算出已知⾓的对边,根据勾股定理先求出另⼀直⾓边,问题转化为(1)。
拓展阅读:⾼中数学快速提分的学习⽅法 ⼀、回归基础查缺漏 ⾼中数学快速提分考⽣应当结合数学课本,把⾼中数学知识点从整体上再理⼀遍,要特别重视新课程新增的内容,看看有⽆知识缺漏,若有就应围绕该知识点再做⼩范围的⾼考复习,消灭知识死⾓。
⼆、重点知识再强化 ⾼中数学以三⾓、概率、⽴体⼏何、数列、函数与导数、解析⼏何、解三⾓形、选做题为主,也是数学⼤题必考内容,这些板块应在⽼师指导下做⼀次⼩专题的强化训练,熟悉不同题型的解法。
【高中数学】高中数学知识点:解三角形
【高中数学】高中数学知识点:解三角形解三角形定义:一般来说,三角形的三个角a、B和C以及它们的对边a、B和C被称为三角形的元素。
给定三角形中的几个元素,寻找其他元素的过程称为求解三角形。
主要方法:正弦定理,余弦定理。
解三角形常用方法:1.知道一边和两个角来解三角形:知道一边和两个角(设置为B、a和B),以及解三角形的步骤:2.已知两边及其中一边的对角解三角形:已知三角形两边及其中一边的对角,求该三角形的其他边角时,首先必须判断是否有解,例如在已知的,问题就无解。
如果有解,是一解,还是两解。
解得个数讨论见下表:3.了解求解三角形的两边及其夹角:了解两边及其夹角(设置为a、B、c),以及求解三角形的步骤:4.已知三边解三角形:已知三边a,b,c,解三角形的步骤:① 使用余弦定理来寻找一个角度;②由正弦定理及a+b+c=π,求其他两角.5.三角形形状的确定:判断三角形的形状,应围绕三角形的边角关系进行思考,主要看其是否是正三角形、等腰三角形、直角三角形、钝角三角形、锐角三角形,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别,依据已知条件中的边角关系判断时,主要有如下两条途径:① 利用正弦和余弦定理,将已知条件转化为边关系,通过因子分解和公式得到边的对应关系,从而判断三角形的形状;②利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数的恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用a+b+c=π这个结论,在以上两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.6.解决斜三角形应用问题的一般思路:(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如坡度、仰角、俯角、视角、象限角、方位角、方向角等;(2)根据标题的意思画数字;(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要算法简练,计算准确,最后作答,流程图可以表示为:利用正弦定理、余弦定理在解决三角形的综合问题时,要注意三角形三内角的一些三角函数关系:。
高中数学 三角函数与解三角形知识点总结
三角函数与解三角形一、三角函数的图象与性质 1.三角函数图象变换由函数sin y x =的图象通过变换得到sin()y A x ωϕ=+(A >0,ω>0)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.如下图.2.三角函数的性质(1)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的定义域均为R ; 函数tan()y A x ωϕ=+的定义域均为ππ{|,}2k x x k ϕωωω≠-+∈Z . (2)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的最大值为||A ,最小值为||A -; 函数tan()y A x ωϕ=+的值域为R .(3)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的最小正周期为2πω; 函数tan()y A x ωϕ=+的最小正周期为πω.(4)对于()sin y A x ωϕ=+,当且仅当()πk k ϕ=∈Z 时为奇函数,当且仅当()ππ2k k ϕ=+∈Z 时为偶函数; 对于()c o s y A xωϕ=+,当且仅当()ππ2k k ϕ=+∈Z 时为奇函数,当且仅当()πk k ϕ=∈Z 时为偶函数;对于()tan y A x ωϕ=+,当且仅当()π2k k ϕ=⋅∈Z 时为奇函数. (5)函数()()s i n 0,0y A x A ωϕω=+>>的单调递增区间由不等式ππ2π2π(22k x k k ωϕ-≤+≤+ )∈Z 来确定,单调递减区间由不等式()π3π2π2π22k x k k ωϕ+≤+≤+∈Z 来确定; 函数()()c o s 0,0y A x A ωϕω=+>>的单调递增区间由不等式()2ππ2πk x k k ωϕ-≤+≤∈Z 来确定,单调递减区间由不等式()2π2ππk x k k ωϕ≤+≤+∈Z 来确定;函数()()t a n 0,0y A x A ωϕω=+>>的单调递增区间由不等式()ππππ22k x k k ωϕ-<+<+∈Z 来确定. 【注】函数sin()y A x ωϕ=+,cos()y A x ωϕ=+,tan()y A x ωϕ=+(ω有可能为负数)的单调区间:先利用诱导公式把ω化为正数后求解. (6)函数sin()y A x ωϕ=+图象的对称轴为ππ()2k x k ϕωωω=-+∈Z ,对称中心为π(,0)()k k ϕωω-∈Z ; 函数c o s (y Ax ωϕ=+图象的对称轴为π()k x k ϕωω=-∈Z ,对称中心为ππ(,0)()2k k ϕωωω-+∈Z ; 函数tan()y A x ωϕ=+图象的对称中心为π(,0)()2k k ϕωω-∈Z . 【注】函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的图象与x 轴的交点都为对称中心,过最高点或最低点且垂直于x 轴的直线都为对称轴. 函数tan()y A x ωϕ=+的图象与x 轴的交点和渐近线与x 轴的交点都为对称中心,无对称轴.1.同角三角函数的基本关系式 (1)平方关系:22sin cos 1αα+=. (2)商的关系:sin cos tan ααα=. (3)常见变形:2222sin 1cos ,cos 1sin αααα=-=-,sin sin tan cos ,cos tan αααααα=⋅=. 2.诱导公式3.两角和与差的正弦、余弦、正切公式 (1)()C αβ-:cos()αβ-=cos cos sin sin αβαβ+ (2)()C αβ+:cos()cos cos sin sin αβαβαβ+=- (3)()S αβ+:sin()αβ+=sin cos cos sin αβαβ+ (4)()S αβ-:sin()αβ-=sin cos cos sin αβαβ- (5)()T αβ+:tan()αβ+=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ++≠+∈-Z(6)()T αβ-:tan()αβ-=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ--≠+∈+Z(1)2S α:sin 2α=2sin cos αα(2)2C α:cos 2α=2222cos sin 12sin 2cos 1αααα-=-=- (3)2T α:tan 2α=22tan πππ(π,)1tan 224k k k αααα≠+≠+∈-Z 且5.公式的常用变形(1)tan tan tan()(1tan tan )αβαβαβ±=±;tan tan tan tan tan tan 11tan()tan()αβαβαβαβαβ+-=-=-+-(2)降幂公式:21cos 2sin 2αα-=;21cos 2cos 2αα+=;1sin cos sin 22ααα= (3)升幂公式:21cos 22cos αα+=;21cos 22sin αα-=;21sin 2(sin cos )ααα+=+;21sin 2(sin cos )ααα-=-(4)辅助角公式:sin cos a x b x +)x ϕ=+,其中cos ϕϕ==,tan baϕ=三、解三角形 1.正弦定理 (1)内容在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即sin sin sin a b c ==A B C.正弦定理对任意三角形都成立. (2)常见变形①sin sin sin ,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c ====== ②;sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++ ③::sin :sin :sin ;a b c A B C =④正弦定理的推广:===2sin sin sin a b c R A B C,其中R 为ABC △的外接圆的半径. (3)应用①已知两角和任意一边,求其他的边和角; ②已知两边和其中一边的对角,求其他的边和角. 2.余弦定理 (1)内容三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,(2)余弦定理的推论从余弦定理,可以得到它的推论:222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===.(3)应用①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两角. 3.解三角形的实际应用 (1)三角形的面积公式设ABC △的三边为a ,b ,c ,对应的三个角分别为A ,B ,C ,其面积为S .①12S ah = (h 为BC 边上的高);②111sin sin sin 222S bc A ac B ab C ===;③1()2S r a b c =++(r 为三角形的内切圆半径).(2)解三角形实际应用题的步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形知识点题型总结
一.解三角形题型总述
1.常规求值问题,判断三角形形状类。
2.最值范围问题
3.证明恒等式
4.实际运用题
二.基础知识点总结
1.正弦定理
适用范围:任意三角形
(为三角形外接圆半径)。
作用:
求角,求边(出现角及其对边)
正弦定理主要运用于等式和分式中的边角互化。
互化原则:等式中或分式中出现关于边的齐次式或出现角的正弦值的齐次式,可直接将角的正弦值换为其对应的边或边换为对应角正弦值。
边角互化在题目中等式的处理运用得比较频繁,一定要熟练掌握。
2.余弦定理
运用:
运用:这是一个二次分式齐次式,所以已知均可求出
此公式可以根据边的大小关系(角两边及其对边)判断角是钝角还是锐角
3.边角关系
三边关系:任意两边之和大于第三边,任意两边之差小于第三边。
4.面积公式
5.三角形外接圆半径与内切圆半径
外接圆半径
内切圆半径
等边三角形:
三:解题常见情景
1.中线
三角形中线定理:
处理方式(1):中位线,倍长中线,中线向量
处理方式(2):补角
设
得
得
两式相加即得中线定理。
2.角平分线
角平分线性质:
斯库顿定理:
证明:过点作平行线用相似。
或等面积法
注:等面积法的常见处理方法
设,且有即
3.张角定理
四.三角形中范围问题
类型一:已知一边及其对角
在中,
求等的范围
注意:从边的角度入手,需要特别小心隐藏的限制条件(任意两边之和大于第三边,任意两边之差小于第三边,锐角三角形等)。
从角的角度入手需要做好两件事,一是利用三角形内角和关系统一变量,二是解出变量角的范围。
例1:在中,,求该三角形周长的范围。
方法一:余弦定理+均值不等式
所以
又因为,所以
方法二:正弦定理+三角函数
,则有
在根据可求出范围。
变式:在锐角中,,求该三角形周长的范围。
此类题一种技巧:由可知三角形外接圆可以确定,则可以画辅助圆观察求其范围。
在圆上移动点坐标得一系列线段的范围(所用知识:同
弦所对圆周角相等)
对应练习:
,
类型二:四边形中对角线相关问题
托勒密定理的运用:在凸四边形中,有
(当四边形为圆内接
四边形时取等)
定理运用:但题目中出现四边形且涉及对角线,可不妨一
试。
例2.已知在三角形,
,。
方法一:解:
解得.
方法二:,在三角形中,由正弦定理
,由余弦定理得
可得,在由余弦定理
在三角形
化简得
将上式代入得:
习题:
1.,,
2.,
类型三.阿波罗尼斯圆的运用
阿波罗尼斯圆:在平面上给定相异的两点,设点在同一平面上且满足时的轨迹为圆,这个圆称为阿波罗尼斯圆。
例3.满足条件
解:以。
,设,
整理得:,
类型四.旋转法在求最值中的运用
例4.
解析:易
得。
类型五.正余弦定理综合结合三角函数求最值
例5.
解:不妨设
,在
,
可得
习题:
,
类型六.三角形中角的正切值,可切化弦,也可作高转化为边。
例6.
方法一:
所以。
方法二
类型七.建立平面直角坐标系
例7.在等腰三角形
补充例题:;利用三角函数有界性确定角的值
例
后略。