可逆矩阵及求逆矩阵的方法
逆矩阵的概念矩阵可逆的条件逆矩阵的求法-毕业论文--

(8)
上页 下页 返回
按克拉默法则,若| A | ≠ 0 ,则由(7)可解出 即x1 , x2 , … . , xn可用y1 ,y2 , … , yn 线性表示 为:
上页 下页 返回
线性变换(9)称为线性变换(7)式的逆变换。
若把( 9 ) 的系数矩阵记为B,则(9 ) 也可写成
X=BY
(10)
定理1表明,可逆阵的行列式一定不等于零。这 个结论反过来也成立。请看下面的定理2。
上页 下页 返回
定理2 若A的行列式不等于0 ,则A可逆,且 证 由例 9 知AA* = A*A = |A|E,
上页 下页 返回
由定理1和定理2可得:矩阵A是可逆方阵的充 分必要条件是 |A| ≠ 0 。
当 |A| = 0 时,A 称为奇异方阵,否则称为非 奇异阵。
推论 若 AB=E(或 BA=E),则B=A-1。 证 因为|A| |B| = | E | =1故,| A | ≠ 0, 因而 A-1存在, 于是 B=E B=(A -1A)B=A-1(AB)= A-1E=A-1。
上页 下页 返回
注:定理2可用来求一些矩阵的逆矩阵。
例如
故A可逆。
需要说明的是:通常利用伴随阵A* 来计算A的逆 矩阵的方法只限于阶数不超过3的矩阵,否则计算量可 能很大。
上页 下页 返回
例10 设
求矩阵X使满足AXB= C。 分析:
若A-1,B -1存在,则由A-1左乘AXB=C,又
用B-1右乘AXB= C,
有
A-1 AXBB-1 = A-1 CB-1 ,
即
X = A-1 CB-1 。
上页 下页 返回
解
上页 下页 返回
矩阵的运算小结
求逆矩阵的四种方法

求逆矩阵的四种方法逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵,也是线性代数中的重要概念之一。
但是,在实际应用中,需要对矩阵求逆的情况并不多,因为矩阵求逆的时间复杂度很高。
下面介绍四种求逆矩阵的方法:1. 初等变换法:采用列主元消去法(高斯-约旦消元法)进行初等变换,即将一个矩阵通过行变换,转化为一个行阶梯矩阵,其中行阶梯矩阵的左下方的元素均为零。
而这样一个变换后得到的矩阵实际上就是原矩阵的逆矩阵。
2. 伴随矩阵法:如果一个矩阵 A 可逆,则求它的逆矩阵等价于求它的伴随矩阵 AT 的结果除以 A 的行列式。
伴随矩阵的计算式为:adj(A)= COF(A)T,其中 COF(A) 为 A 的代数余子式组成的矩阵,它的每个元素满足 COF(A)ij = (-1)^(i+j) det(Aij),其中 det(Aij) 表示将第 i 行和第 j 列去掉后得到的子矩阵的行列式。
3. LU 分解法:LU 分解法是将矩阵分解为一个下三角矩阵 L 和一个上三角矩阵 U 的乘积,即 A = LU,其中 L 的对角线元素均为 1。
当矩阵 A 可逆时,可用 LU 分解求解其逆矩阵。
假设 L 和 U 都是方阵,则A 的逆矩阵为:A^(-1) = (LU)^(-1) = U^(-1)L^(-1)。
4. 奇异值分解(SVD)方法:当矩阵 A 是非方阵时可以采用奇异值分解法,将矩阵 A 分解为A = UΣV^T,其中 U 为一个m×m 的正交矩阵,V 为一个n×n 的正交矩阵,Σ 为一个m×n 的矩形对角矩阵,若r 是 A 的秩,则Σ左上角的 r 个元素不为 0,其余元素为 0,即Σ有 r 个非零奇异值。
当A 可逆时,Σ 中的非零元素都存在逆元,逆矩阵为:A^(-1) = VΣ^(-1)U^T。
综上所述,求逆矩阵的四种方法各有特点,应根据实际情况选择合适的方法进行求解。
初等变换法适合较小规模的矩阵,伴随矩阵法适用于计算代数余子式较容易的矩阵,LU 分解法适合较大规模的矩阵,而SVD 方法则适用于非方阵或奇异矩阵的情况。
求矩阵逆矩阵的常用方法

求矩阵逆矩阵的常用方法求矩阵逆矩阵是线性代数中的一个重要问题。
在实际应用中,常常需要对矩阵进行逆矩阵的计算,以便进行某些后续操作。
以下是几种常见的求矩阵逆矩阵的方法:1. 伴随矩阵法:如果矩阵 A 可逆,则其伴随矩阵 A^(-1) 也是存在的。
实际上,A^(-1) = A^(-T),其中 A^(-T) 表示 A 的逆矩阵的转置矩阵。
伴随矩阵法简单易行,但是要求矩阵 A 必须可逆。
2. 初等行变换法:对于任意矩阵 A,可以通过初等行变换将其化为行简化梯矩阵的形式。
如果左边子块是单位矩阵 E,则矩阵 A 可逆,且其逆矩阵为 A^(-1) = (A^(-T))[E - (A^T)A]。
这里,(A^(-T))[E - (A^T)A] 表示将 A 的逆矩阵插入到单位矩阵 E 和 A 的伴随矩阵A 之间的矩阵。
初等行变换法适用于大多数矩阵,但是需要对矩阵进行多次行变换,因此计算效率较低。
3. 列主元消元法:对于矩阵 A,可以通过列主元消元法将其化为行阶梯形式。
如果矩阵 A 的行主元不为 0,则其逆矩阵为 A^(-1) = (A^(-T))[(A^T)A - EE^T]。
这里,EE^T 表示矩阵 A 的列主元部分,(A^(-T))[(A^T)A - EE^T] 表示将矩阵 A 的逆矩阵插入到行阶梯形式的矩阵 A 的列主元和主元部分之间的矩阵。
列主元消元法适用于矩阵 A 为非方阵的情况,但是要求矩阵 A 的行主元不为 0。
以上是几种常见的求矩阵逆矩阵的方法。
不同的矩阵可以通过不同的方法来求其逆矩阵,选择适合该矩阵的方法可以有效地提高计算效率。
此外,对于一些特殊的矩阵,可能存在更高效的算法。
矩阵运算 求逆

矩阵求逆是线性代数中的一个重要概念,通常指的是对于一个给定的方阵,找到一个同样大小的矩阵,使得两者相乘得到单位矩阵。
以下是几种常见的求逆矩阵的方法:
1. 高斯消元法:这是一种通过行变换将矩阵转换为行阶梯形矩阵,然后通过回代求解未知数的方法。
如果矩阵可逆,最终可以通过回代得到其逆矩阵。
2. LU分解法:这种方法将矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积。
如果这样的分解存在,那么矩阵的逆可以表示为U的逆和L的逆的乘积。
3. SVD分解法:奇异值分解(SVD)是一种将矩阵分解为三个矩阵的乘积的方法。
如果矩阵是可逆的,那么它的逆可以通过对分解得到的矩阵进行相应的逆运算得到。
4. QR分解法:这种方法将矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积。
如果矩阵可逆,那么其逆可以表示为R的逆和Q的转置的乘积。
5. 伴随矩阵法:这是通过计算矩阵的伴随矩阵和行列式的倒数来求逆的方法。
适用于小矩阵或者行列式容易计算的情况。
6. 初等变换法:通过对矩阵进行一系列的初等行变换或列变换,将其转换为单位矩阵,同时对单位矩阵进行相同的变换,最终得到的就是原矩阵的逆。
逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容矩阵是线性代数的主要内容,,很多实际问题用矩阵的思想去解既简单又快捷很多实际问题用矩阵的思想去解既简单又快捷..逆矩阵又是矩阵理论的很重要的内容矩阵又是矩阵理论的很重要的内容, , , 逆矩阵的求法自然也就成为线性代数研究的主逆矩阵的求法自然也就成为线性代数研究的主要内容之一要内容之一..本文将给出几种求逆矩阵的方法本文将给出几种求逆矩阵的方法..1.利用定义求逆矩阵定义定义: : : 设设A 、B B 都是都是都是n n n 阶方阵阶方阵阶方阵, , , 如果存在如果存在如果存在n n n 阶方阵阶方阵阶方阵B B B 使得使得使得AB= BA = E, AB= BA = E, AB= BA = E, 则称则称则称A A 为可逆矩阵可逆矩阵, , , 而称而称而称B B 为A A 的逆矩阵的逆矩阵的逆矩阵..下面举例说明这种方法的应用下面举例说明这种方法的应用. .例1 求证求证: : : 如果方阵如果方阵如果方阵A A A 满足满足满足A k= 0, A k= 0, A k= 0, 那么那么那么EA EA EA是可逆矩阵是可逆矩阵是可逆矩阵, , , 且且(E-A E-A))1-= E + A + A 2+…+A 1-K证明 因为因为E E E 与与A A 可以交换可以交换可以交换, , , 所以所以所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,= 0 ,于是得于是得于是得(E-A)(E-A)((E+A+A 2+…+…+A +A 1-K )=E =E,,同理可得(同理可得(E + A + A E + A + A 2+…+A 1-K )(E-A)=E (E-A)=E,,因此因此E-A E-A E-A是可逆矩阵是可逆矩阵是可逆矩阵,,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明同理可以证明(E+ A)(E+ A)(E+ A)也可逆也可逆也可逆,,且(E+ A)1-= E -A + A 2+…+(+…+(-1-1-1))1-K A 1-K .由此可知由此可知, , , 只要满足只要满足只要满足A A K =0=0,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵E E ±A 的逆矩阵的逆矩阵. .例2 设 A =úúúúûùêêêêëé0000300000200010,求 E-A E-A的逆矩阵的逆矩阵的逆矩阵. .分析 由于由于由于A A 中有许多元素为零中有许多元素为零, , , 考虑考虑考虑A A K 是否为零矩阵是否为零矩阵, , , 若为零矩阵若为零矩阵若为零矩阵, , , 则可以则可以采用例采用例2 2 2 的方法求的方法求的方法求E-A E-A E-A的逆矩阵的逆矩阵的逆矩阵. .解 容易验证容易验证容易验证A 2=úúúúûùêêêêëé0000000060000200, A 3=úúúúûùêêêêëé0000000000006000, A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,)=E,所以所以所以(E-A)1-= E+A+ A 2+ A 3=úúúûùêêêëé1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,求元素为具体数字的矩阵的逆矩阵,常用初等变换法常用初等变换法常用初等变换法..如果如果A A 可逆,则A 可通过初等变换,化为单位矩阵等变换,化为单位矩阵I I ,即存在初等矩阵S P P P ,,21 使(1)s pp p 21A=I A=I,用,用,用A A 1-右乘上式两端,得:右乘上式两端,得: ((2)s p p p 21I= A 1- 比较(比较(11()(22)两式,可以看到当)两式,可以看到当A A 通过初等变换化为单位矩阵的同时,对单位矩阵矩阵I I 作同样的初等变换,就化为作同样的初等变换,就化为A A 的逆矩阵的逆矩阵A A 1-.用矩阵表示(用矩阵表示(A I A I A I))¾¾¾®¾初等行变换为(为(I A I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法它是实际应用中比较简单的一种方法..需要注意的是,在作初等变换时只允许作行初等变换等变换..同样,只用列初等变换也可以求逆矩阵同样,只用列初等变换也可以求逆矩阵. .例1 求矩阵求矩阵A A 的逆矩阵的逆矩阵..已知已知A=A=úúúûùêêêëé521310132.解 [A I]®úúúûùêêêëé100521010310001132®úúúûùêêêëé001132010310100521® úúúûùêêêëé--3/16/16/1100010310100521®úúúûùêêêëé-----3/16/16/110012/32/10103/46/136/1001故 A 1-=úúúûùêêêëé-----3/16/16/112/32/13/46/136/1. 在事先不知道在事先不知道n n 阶矩阵是否可逆的情况下,也可以直接用此方法阶矩阵是否可逆的情况下,也可以直接用此方法..如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着则意味着A A 不可逆,因为此时表明A =0=0,,则A 1-不存在不存在. .例2 求A=úúúûùêêêëé987654321.解 [A E]=úúûùêêëé100987010654001321®úúûùêêëé------1071260014630001321® úúúûùêêêëé----121000014630001321. 由于左端矩阵中有一行元素全为由于左端矩阵中有一行元素全为00,于是它不可逆,因此,于是它不可逆,因此A A 不可逆不可逆. .3.伴随阵法定理 n n阶矩阵阶矩阵阶矩阵A=[a A=[a ij ]为可逆的充分必要条件是为可逆的充分必要条件是A A 非奇异非奇异..且A 1-=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A ............ (212221212111)其中其中A A ij 是A 中元素中元素a a ij 的代数余子式的代数余子式. .矩阵úúúúûùêêêêëénn nn n n A A A A A A A A A (2122212)12111称为矩阵称为矩阵A A 的伴随矩阵,记作的伴随矩阵,记作A A 3,于是有,于是有A A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I =I,,有1-AA =I ,则A 1-A =I ,所以A ¹0,即A 为非奇异为非奇异. .充分性:充分性: 设A 为非奇异,存在矩阵为非奇异,存在矩阵B=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A (21222)1212111, 其中其中AB=úúúûùêêêëénn n n n n a a a a a aa a a ............... (2)12222111211´A 1úúúûùêêêëénn nnn n A A A A A A A A A ............... (212)221212111=A 1úúúúûùêêêêëéA A A A ...00.........0...00...0=úúúúûùêêêêëé1...00...1......0...100 (01)=I同理可证同理可证BA=I. BA=I.由此可知,若由此可知,若A A 可逆,则可逆,则A A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循规律可循..因为二阶可逆矩阵的伴随矩阵,因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,次对次对角线的元素变号即可角线的元素变号即可. .若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或个或99个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错出现符号及计算的差错..对于求出的逆矩阵是否正确,一般要通过AA 1-=I =I来检验来检验来检验..一旦发现错误,必须对每一计算逐一排查旦发现错误,必须对每一计算逐一排查. .4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设设A 11、A 22都是非奇异矩阵,且都是非奇异矩阵,且A A 11为n 阶方阵,阶方阵,A A 22为m 阶方阵阶方阵úûùêëé22110A A úûùêëé--12211100AA 证明 因为A =22110A A =11A 22A ¹0, 0, 所以所以所以A A 可逆可逆. . 设A 1-=úûùêëéW ZY X,于是有úûùêëéW ZY X úûùêëé22110A A =úûùêëém nI I 00,其中其中 X A X A 11=I n , Y A 22=0=0,,Z A 11=0=0,,W A 22=I m .又因为又因为A A 11、A 22都可逆,用都可逆,用A A 111-、A 122-分别右乘上面左右两组等式得:分别右乘上面左右两组等式得:X= A 111-,Y=0Y=0,,Z=0Z=0,,W= A 122-故 A 21= úûùêëé--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-úúúúûùêêêêëék A A A =úúúúúûùêêêêêëé---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有都是非奇异矩阵,则有1221211-úûùêëéA A A =úûùêëé-----122122121111110A A A A A证明 因为因为úûùêëé2212110A A A úûùêëé--I A A I 012111=úûùêëé22110A A两边求逆得两边求逆得1121110--úûùêëé-I A A I 12212110-úûùêëéA A A =úûùêëé--12211100A A 所以所以 1221211-úûùêëéA A A =úûùêëé--I A A I 012111úûùêëé--12211100A A=úûùêëé-----122122121111110A A A A A同理可证同理可证12221110-úûùêëéA A A =úûùêëé-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. . . 是特殊方阵求逆的是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E =E,把题目中的逆矩阵化简掉。
(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
逆矩阵公式总结

逆矩阵公式总结
逆矩阵公式总结如下:
1. 假设A是一个n阶方阵,若存在一个n阶方阵B,使得AB=BA=I (单位矩阵),则称B是A的逆矩阵,记为A^{-1}。
2. 逆矩阵的存在条件:若A是一个可逆矩阵,则其行列式不为0,即det(A)≠0。
3. 逆矩阵的计算方法:
a. 对于2阶方阵A = [a b; c d],如果ad-bc≠0,则A的逆矩阵为A^{-1} = 1/(ad-bc) * [d -b; -c a]。
b. 对于3阶方阵A = [a b c; d e f; g h i],如果A可逆,则A的逆矩阵为A^{-1} = 1/det(A) * [ei-fh -bi+ch dh-ge; -di+fg ai-cg -ah+bg; -de+fg ae-cf -af+be]。
c. 对于高阶方阵A,可以使用高斯-约当消元法或伴随矩阵法来求解逆矩阵。
4. 逆矩阵的性质:
a. 若A是一个可逆矩阵,则(A^{-1})^{-1} = A。
b. 若A和B是可逆矩阵,则(AB)^{-1} = B^{-1}A^{-1}。
c. 若A是可逆矩阵,则(A^T)^{-1} = (A^{-1})^T。
d. 若A是可逆矩阵,则|A^{-1}| = 1/|A|,其中|A|表示A的行列式。
以上是逆矩阵的公式总结。
根据矩阵的阶数不同,逆矩阵的计算方法也有所不同。
矩阵求逆矩阵的方法

矩阵求逆矩阵的方法矩阵求逆矩阵是线性代数中的一个重要问题,对于矩阵的逆的求解方法有多种,下面我们将介绍几种常见的方法。
1. 初等变换法。
对于一个可逆矩阵A,我们可以通过初等变换将其变为单位矩阵I,这时候A经过一系列的初等变换得到I,而I经过同样的一系列初等变换得到A的逆矩阵。
这种方法的优点是简单直观,容易理解,但对于大型矩阵来说计算量较大。
2. 克拉默法则。
对于n阶方阵A,如果A是可逆的,那么它的逆矩阵可以通过克拉默法则来求解。
克拉默法则利用矩阵的行列式和代数余子式的概念,将矩阵A的逆矩阵表示为A的伴随矩阵的转置除以A的行列式。
这种方法的优点是不需要对矩阵进行初等变换,但计算量也比较大。
3. 初等行变换法。
初等行变换法是通过对矩阵进行一系列的初等行变换,将矩阵A变为单位矩阵I,然后将I变为A的逆矩阵。
这种方法与初等变换法类似,但是更加注重矩阵的行变换,适合于对行变换较为熟悉的人来说。
4. 矩阵的分块法。
对于特定结构的矩阵,我们可以通过矩阵的分块来求解逆矩阵。
例如对角矩阵、上三角矩阵、下三角矩阵等,通过分块的方法可以简化逆矩阵的求解过程。
5. LU分解法。
LU分解是将一个矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过LU分解可以求解矩阵的逆。
这种方法适用于对矩阵分解比较熟悉的人来说,可以简化逆矩阵的求解过程。
总结:矩阵求逆矩阵的方法有多种,每种方法都有其适用的场景和计算复杂度。
在实际应用中,我们可以根据矩阵的特点和问题的需求来选择合适的方法。
希望本文介绍的方法可以帮助读者更好地理解矩阵求逆矩阵的过程,提高解决实际问题的能力。
可逆矩阵的判定及其逆矩阵的求法

(A。 )~=( 。](三 )~=(
此外
I 0 ;)I 一:= A0- 1— B -1Jl , (詈/-1 ̄ -(一 一 ]
] 参考文 献
…1 同济 大学数 学数 学 系 .工程数 学线性 代数 【M】.高等教 育出版
社 .2007
[2】陈逢明 .逆矩阵的求法及 其在证券投 资组合 中的应 用 福建 商业 高等专科学校 学报 ,2006(5):111—114.
+2E可逆并求出f +2E)~。
证明:
一 A 一 2E = 0变形 为 A2 一 A 一6 :-4E,
—
1 -
即( +2E)1 L4 (3E—A)Jl :E,
1
所 以 存 在 一 个 矩 阵 B=÷(3E一 ), 使 ( +2E)B=E, 由 定 义 得 E 可 逆, 且
关键词 :逆矩阵的判定;伴随矩阵;初等变换;分块矩阵
矩 阵理论是 线性 代数 的核心 内容 ,也是处 理实 际 问题 的 重要 工具 。可逆 矩 阵在矩 阵理论 中 占有非 常重 要 的地位 。有 关 可逆矩 阵 的 内容 对于初 学者来 说 是一个 难 点 ,下 面我们 将 教 学 中有 关 可逆矩 阵 的判 定方 法作 一些 总结 ,并 给出几 种常 用 的求逆 矩阵 的方 法 。
3.初等 行 (列 )变换 求逆矩 阵 。矩 阵 可 逆 的充 分必要
条件是 可表示为同阶初等矩阵乘积。所以,求 n阶矩阵
的逆矩 阵时 ,首先 在 的右边拼上 E 构成 一个 n×2n 矩 阵 ,
即( , ),其次对这个矩阵进行初等行变换,将它的左半
部 的矩阵 化为单 位矩 阵 ,那么 原来 右半 部的单 位矩 阵就 同时
营 n元齐次线 性方 程组 Ax=0只有零 解 § n元非齐 次线性 方程组 Ax=b有 唯一解
求矩阵逆的方法

求矩阵逆的方法
方法一,伴随矩阵法。
对于一个n阶矩阵A,如果其行列式不为0,那么A就是可逆的。
我们可以通过求解伴随矩阵来得到A的逆矩阵。
首先,我们计算A的伴随矩阵Adj(A),然后用行列式的倒数乘以伴随矩阵即可得到A的逆矩阵。
方法二,初等变换法。
初等变换法是通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为A的逆矩阵。
这种方法在计算机求解中比较常见,可以通过高斯消元法来实现。
方法三,分块矩阵法。
对于某些特殊的矩阵,我们可以通过将其分解成若干个子矩阵,从而简化逆矩阵的求解过程。
例如,对角矩阵、上三角矩阵、下三角矩阵等都有相对简单的逆矩阵求解方法。
方法四,特征值分解法。
对于对称正定矩阵,我们可以通过其特征值和特征向量来求解其逆矩阵。
通过特征值分解和特征向量矩阵的转置,我们可以得到原矩阵的逆矩阵。
方法五,数值逼近法。
对于大型矩阵或者特殊结构的矩阵,有时候我们无法通过解析的方法求解其逆矩阵,这时可以通过数值逼近的方法来计算其逆矩阵。
例如,利用迭代法或者矩阵分解等方法来近似求解逆矩阵。
总结:
以上是几种常见的求解矩阵逆的方法,不同的方法适用于不同类型的矩阵。
在实际问题中,我们需要根据具体情况选择合适的方法来求解矩阵的逆,以便更好地解决实际问题。
希望本文能够对您有所帮助,谢谢阅读!。
求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法逆矩阵是一个矩阵的逆操作,即找到一个矩阵,与原矩阵相乘后得到单位矩阵。
逆矩阵在线性代数中具有重要的应用,比如求解线性方程组、计算矩阵的行列式等。
在实际应用中,常用的求解逆矩阵的方法包括:伴随矩阵法、初等变换法和分块矩阵法。
第一种方法是伴随矩阵法。
对于一个n阶矩阵A,如果它的行列式不为0,那么它存在逆矩阵。
首先计算矩阵A的伴随矩阵,记作Adj(A),然后用伴随矩阵除以原矩阵A的行列式,即可得到逆矩阵。
具体步骤如下:1. 计算矩阵A的行列式det(A);2. 计算矩阵A的伴随矩阵Adj(A),其中第i行第j列的元素等于原矩阵A的代数余子式Aij的行列式乘以(-1)^(i+j);3. 将伴随矩阵Adj(A)的每个元素除以原矩阵A的行列式det(A),得到逆矩阵A^(-1) = Adj(A)/det(A)。
第二种方法是初等变换法。
利用矩阵的初等行变换和初等列变换来求解逆矩阵。
具体步骤如下:1.将原矩阵A和单位矩阵I进行横向拼接,得到一个增广矩阵[A,I];2.对增广矩阵进行行变换,将矩阵A变为单位矩阵I,同时单位矩阵I经过相同的行变换得到逆矩阵A^(-1);3.若矩阵A无法通过行变换变为单位矩阵I,则矩阵A不可逆。
第三种方法是分块矩阵法。
将原矩阵A按照其中一种方式进行分块,然后通过对分块矩阵进行运算来求解逆矩阵。
常见的分块矩阵法有Schur补法和Sherman–Morrison公式法,这里以Schur补法为例进行说明。
1.将原矩阵A分解为分块矩阵,例如A=[B,D;E,F];2.利用矩阵分块的性质求解逆矩阵,A^(-1)=[B^(-1)+B^(-1)D(X-F^(-1)E)B^(-1),-B^(-1)DF^(-1);-F^(-1)EB^(-1),F^(-1)+F^(-1)EHF^(-1)],其中X=(F-EF^(-1)D)^(-1);3.若分块矩阵的逆存在,即B可逆、F可逆且B-DF^(-1)E可逆,那么原矩阵A也存在逆矩阵。
数学专业本科毕业论文--矩阵求逆的若干方法

数学专业本科毕业论文--矩阵求逆的若干方法矩阵求逆摘要本文在借鉴参考文献的基础上,对高等代数学这门课程中的一些有关矩阵求逆的内容简要地进行了分析、研究和总结。
笔者在参考的各种不同版本的教材中发现,大多教材给出矩阵的求逆的方法无非三种,即:定义法,初等变换法,伴随矩阵法。
其中初等变换包括初等行变换和初等列变换。
这三种方法虽然在大多情况下都能很好解决问题,但有时候使用这些方法就会显得很繁琐。
比如,对于阶数大于4的矩阵我们用初等变换和伴随矩阵就会显得很麻烦,而且容易出错。
本文在这里详细讨论了6种逆矩阵的求解方法,首先介绍了常用的那三种矩阵求逆方法,而且对于初等变换法,本文做了进一步的探讨,给出了同时初等行变换与列变换法。
然后又介绍了分块矩阵法、分解矩阵法、Hamilton-Caylay定理法等方法,其中分块矩阵法中又包括三角矩阵的分块求逆法和非三角矩阵的分块求逆法。
本文对于每一种方法不仅给出了这些方法的理论依据并给出了具体应用,有的还给出了具体方法步骤,就是为了使读者明白各种方法的特点,在使用的时候能够选择合适的方法进行快速解题。
关键字逆矩阵;初等变换;伴随矩阵;分块矩阵;Hamilton-Caylay定理Six methods to find inverse matrixAbstract In this paper, on the basis of reference, some relevant content of the inverse matrix in the course of higher algebra is analyzed, researched and summarized briefly. There are only three methods of inverse matrix in most different teaching materials referred. The methods are definition method, adjoint matrix methodand elementary transformation method. The elementary transformation method Includes elementary row transformation and elementary column transformation. Though the three methods can well solve problem in most cases, sometimes these methods will appear very complicated. As for the matrix whose rank is more than four, if we use adjoint matrices or elementary transformation, it will be very troublesome, and error-prone. Six kinds of inverse matrix solution was discussed in this paper in detail. Firstly we introduces the three frequently-used methods, and also makes a further discussion for elementary transformation method, giving elementary row transform and column transform method. Then this paper introduces the partitioned matrix method, the decomposition of matrix method, Hamilton - Caylay theorem method. The partitioned matrix method includes the partitioned matrix method of triangle matrix and the partitioned matrix method of common matrix. In this paper every method not only includes the theoretical basis and the specific application, but also includes the concrete steps, the purpose is to make the reader understand the characteristics of every methods, and can choose appropriate methods to solve problems quickly. Keywords Inverse matrix; elementary transformation;adjoint matrix; partitioned matrix; Hamilton-Caylay theorem矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。
求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法
矩阵的逆矩阵是一种特殊的矩阵,与原矩阵相乘得到单位矩阵。
如果一个矩阵没有逆矩阵,则称该矩阵为“奇异矩阵”。
为了求一个矩阵的逆矩阵,需要满足两个条件:
1.该矩阵是可逆矩阵(即没有行或列的线性相关)。
2.该矩阵是方阵(行数和列数相同)。
以下是求解矩阵的逆矩阵的方法:
1. 高斯-约旦消元法
使用高斯-约旦消元法可将一个矩阵转化为行阶梯矩阵(或最简模型矩阵)。
将该矩阵与一个单位矩阵进行行变换,直到原始矩阵变为单位矩阵。
此时右侧的矩阵即为原始矩阵的逆矩阵。
2. 列主元消元法
使用列主元消元法可将一个矩阵转化为一个特殊的矩阵,即一个下三角矩阵与一个上三角矩阵的乘积。
利用这个分解,可以很容易地计算出逆矩阵。
3. 矩阵伴随法
使用伴随矩阵法可以计算出一个矩阵的逆矩阵。
该方法将原始矩阵转置为其伴随矩阵,再将其除以原始矩阵的行列式即得到逆矩阵。
总之,求解一个矩阵的逆矩阵需要使用一些数学方法和技巧。
这
些方法的选择取决于矩阵的特性,以及求解逆矩阵的具体要求和目的。
矩阵的逆的求法

矩阵的逆的求法
矩阵的逆的求法主要有以下几种方法:
1.利用定义求逆矩阵:如果矩阵A是可逆的,那么存在一个矩阵B,使得
AB=BA=E,其中E为单位矩阵。
利用这个定义,可以通过特定的算法计算出矩阵A的逆矩阵B。
2.初等变换法:对于元素为具体数字的矩阵,可以利用初等行变换化为单位
矩阵的方法来求逆矩阵。
如果A可逆,则A可通过初等行变换化为单位矩阵I,即存在初等矩阵使(1)式成立。
同时,用右乘上式两端,得到(2)式。
比较(1)、(2)两式,可以看到当A通过初等行变换化为单位处阵的同时,对单位矩阵I作同样的初等行变换,就化为A的逆矩阵。
这种方法在实际应用中比较简单。
3.伴随阵法:如果A是n阶可逆矩阵,那么A的伴随矩阵A也是可逆的,且
(A)-1=A*/|A|。
利用这个公式可以方便地计算出A的逆矩阵。
4.恒等变形法:利用恒等式的变形规律来求逆矩阵。
例如,利用行列式的性
质和展开定理,可以计算出矩阵的行列式值,从而得到逆矩阵。
需要注意的是,不同的方法适用于不同类型的矩阵和问题,因此在选择方法时应根据具体情况进行选择。
同时,在实际应用中还需注意计算的精度和稳定性等问题。
证明可逆矩阵的方法

证明可逆矩阵的方法
证明一个矩阵可逆的一个常用方法是使用行列式的概念。
一个方阵A是可逆的,当且仅当它的行列式不等于0,即det(A) ≠ 0。
证明可逆矩阵的方法可以有多种,以下是一些常见的方法:
1. 行列式方法:如果一个矩阵A是n阶方阵,我们可以计算它的行列式det(A)。
如果det(A) ≠ 0,则矩阵A是可逆的;如果det(A) = 0,则矩阵A是奇异的,即不可逆的。
2. 逆矩阵方法:如果一个矩阵A是可逆的,那么存在一个矩阵B,使得AB = BA = I,其中I是单位矩阵。
这个矩阵B称为A的逆矩阵,记作A^(-1)。
通过计算A的逆矩阵,我们可以证明A是可逆的。
3. 列向量线性无关方法:如果一个矩阵A是可逆的,那么它的所有列向量都是线性无关的。
我们可以通过计算列向量的线性组合并令其等于零,然后证明只有零向量是解,从而证明矩阵A的列向量是线性无关的,进而证明A是可逆的。
4. 初等变换方法:通过一系列的初等变换操作,我们可以将矩阵A 变换为一个上三角矩阵或者一个对角矩阵。
如果我们成功地进行了这样的变换,那么矩阵A是可逆的。
因为上三角矩阵或者对角矩阵的行
列式等于它的对角线上的元素的乘积,且这些元素都不为0。
总结起来,证明一个矩阵可逆的方法有很多种,包括行列式方法、逆矩阵方法、列向量线性无关方法和初等变换方法等。
这些方法有时可以相互结合使用,根据具体问题的要求选择合适的方法进行证明。
逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )= E + A + A +…+A 1-21-K 证明 因为E 与A 可以交换, 所以(E- A )(E+A + A +…+ A )= E-A ,21-K K 因A = 0 ,于是得 K (E-A)(E+A+A +…+A )=E ,21-K 同理可得(E + A + A +…+A )(E-A)=E ,21-K 因此E-A 是可逆矩阵,且(E-A)= E + A + A +…+A .1-21-K 同理可以证明(E+ A)也可逆,且(E+ A)= E -A + A +…+(-1)A .1-21-K 1-K 由此可知, 只要满足A =0,就可以利用此题求出一类矩阵E A 的逆矩阵.K ±例2 设 A =,求 E-A 的逆矩阵.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00300000200010分析 由于A 中有许多元素为零, 考虑A 是否为零矩阵, 若为零矩阵, 则可以K 采用例2 的方法求E-A 的逆矩阵.解 容易验证A =, A =, A =02⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000000600002003⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006004而 (E-A)(E+A+ A + A )=E,所以23(E-A)= E+A+ A + A =.1-23⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10003100621062112.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵使S P P P ,,21 (1)A=I ,用A 右乘上式两端,得:s p p p 211- (2) I= A s p p p 211-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A .1-用矩阵表示(A I )为(I A ),就是求逆矩阵的初等行变换法,−−−→−初等行变换1-它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A =.1-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明=0,则A 不存在.A 1-例2 求A=.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321 .→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ]为可逆的充分必要条件是A 非奇异.且ij A =1-A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111其中A 是中元素a 的代数余子式.ij A ij 矩阵称为矩阵A 的伴随矩阵,记作A ,于是有A = A .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A AA A A (2122212)1211131-A 13证明 必要性:设A 可逆,由A A =I ,有=,则=,所以1-1-AA I A 1-A I A0,即A 为非奇异.≠充分性: 设A 为非奇异,存在矩阵B=,A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A ............... (2122212)12111===I A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A AA A ...00.........0...00...0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1...00...1......0...100...01同理可证BA=I.由此可知,若A 可逆,则A =A .1-A13用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA =I 来检验.一1-旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 、A 都是非奇异矩阵,且A 为n 阶方阵,A 为m 阶方阵11221122 ⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为==0, 所以A 可逆.A 22110A A 11A 22A ≠设A =,于是有=,1-⎥⎦⎤⎢⎣⎡WZYX⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡m nI I 00其中 X A =I , Y A =0,Z A =0,W A =I .又因为A 、A 都可逆,用11n 221122m 1122A 、A 分别右乘上面左右两组等式得:111-122-X= A ,Y=0,Z=0,W= A 111-122-故 A = 21⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:=121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 、A 都是非奇异矩阵,则有1122=12212110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A 证明 因为=⎥⎦⎤⎢⎣⎡2212110A A A⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡22110A A 两边求逆得=1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡--12211100A A 所以 =1221211-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A 同理可证=12221110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA =E ,把题目中的逆矩阵化简掉。
逆矩阵的几种求法与解析

(E-A) = E + A + A +…+A .
同理可以证明(E+ A)也可逆,且
(E+ A) = E -A + A +…+(-1) A .
由此可知,只要满足A =0,就可以利用此题求出一类矩阵E A的逆矩阵.
例2设A = ,求E-A的逆矩阵.
分析由于A中有许多元素为零,考虑A 是否为零矩阵,若为零矩阵,则可以采用例2的方法求E-A的逆矩阵.
3.伴随阵法
定理n阶矩阵A=[a ]为可逆的充分必要条件是A非奇异.且
A =
其中A 是 中元素a 的代数余子式.
矩阵 称为矩阵A的伴随矩阵,记作A*,于是有A = A*.
证明必要性:设A可逆,由AA =I,有 = ,则 = ,所以 0,即A为非奇异.
充分性: 设A为非奇异,存在矩阵
B= ,
其中
AB=
X= A ,Y=0,Z=0,W= A
故 A =
把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:
=
4.2.准三角形矩阵求逆
命题设A 、A 都是非奇异矩阵,则有
=
证明因为 =
两边求逆得
=
所以 =
=
同理可证
=
此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.
5.恒等变形法
恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA =E,把题目中的逆矩阵化简掉。
例1计算(A+4E) (4E-A) (16E-A )的行列式,其中 A=
可逆矩阵运算法则

可逆矩阵运算法则一、可逆矩阵的定义在线性代数中,一个n×n的矩阵A,如果存在一个n×n的矩阵B,使得AB=BA=I(其中I为单位矩阵),则称矩阵A为可逆矩阵,矩阵B为矩阵A的逆矩阵。
二、逆矩阵的求解1. 矩阵可逆的充要条件一个矩阵A可逆的充要条件是其行列式不为零,即det(A)≠0。
2. 逆矩阵的求解方法(1)伴随矩阵法设A为一个n×n矩阵,如果A可逆,则它的逆矩阵为A的伴随矩阵除以A的行列式,即A⁻¹=adj(A)/det(A)。
(2)初等变换法通过初等行变换或初等列变换将A化为单位矩阵I,同时对单位矩阵进行相同的初等变换,得到A的逆矩阵。
三、可逆矩阵的运算法则1. 逆矩阵的运算律(1)矩阵的逆与转置若A可逆,则(A⁻¹)ᵀ=(Aᵀ)⁻¹。
(2)逆矩阵的乘法若A和B都是可逆矩阵,则AB也可逆,并且(AB)⁻¹=B⁻¹A⁻¹。
2. 逆矩阵的加法和减法(1)可逆矩阵的加法若A和B都是可逆矩阵,则A+B也可逆,且(A+B)⁻¹=A⁻¹+B⁻¹。
(2)可逆矩阵的减法若A和B都是可逆矩阵,则A-B也可逆,且(A-B)⁻¹=A⁻¹-B⁻¹。
3. 逆矩阵的数乘若A是可逆矩阵,k为非零实数,则kA也可逆,并且(kA)⁻¹=1/k * A⁻¹。
四、应用举例1. 线性方程组的解法对于线性方程组Ax=b,如果矩阵A可逆,则方程组的解为x=A⁻¹b。
2. 矩阵的相似性若矩阵A与B相似,即存在可逆矩阵P,使得P⁻¹AP=B,则矩阵B 与A相似,且P为相似变换矩阵。
3. 矩阵的幂若A为可逆矩阵,n为正整数,则A的n次幂Aⁿ也可逆,且(Aⁿ)⁻¹=(A⁻¹)ⁿ。
五、总结可逆矩阵是线性代数中重要的概念,它在解线性方程组、矩阵相似性、矩阵的幂等运算等方面具有重要的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,那么
。论文检测。论文检测。
这种方法只适用于求二阶矩阵的逆矩阵,我们称为二阶矩阵的公式求逆法。
方法三 初等变换法 这是一种最常用的一种方法,为了看出如何用初等变换法求逆矩阵,先证一
个引理; 引理 1 可逆矩阵的简化行阶梯形一定是单位矩阵。换句话说,可逆矩阵可
以经过一系列初等变换化成单位矩阵。
即
, 同理有
的逆矩阵。
解:因为 的特征多项式为:
,所以 的最小多项式
为
的因式,显然
,而
,因此 的最小多项式为
=
,即
,所以由
=
得
=
【参考文献】
[1] 张 新 发 . 初 等 变 换 的 关 系 与 可 逆 矩 阵 的 分 解 [J]. 大 学 数 学,2003,19(2):82-85. [2]钱吉林.高等代数题解精粹(第二版)[M].大连:大连理工大学出版社, 2000, 137 [3] 骈 俊 生 . 分 块 矩 阵 的 初 等 变 换 及 应 用 [J]. 阜 阳 师 范 学 院 学 报 ( 自 然 科 学 版),2004,(3):44-49. [4]田代军.线性代数题解指南[M].天津:天津大学出版社, 2004, 79. [5]张海涛.逆矩阵的求法[J].大同职业技术学院学报,2004,(2):36-4.
较大,如果把该矩阵分块,再对分块矩阵求逆矩阵,则可减少计算量。 用分块求逆法解题的具体步骤为:
(1)根据所给矩阵 的特点分块为 = (2)选择适当的分块求逆公式 常用的分块求逆公式有:
设
均可逆,则
1: 3: 5:
7: 8:
2: 4:
6:
例:设四阶方阵 解:设
试求 则是分块矩阵,易得
故 方法六 利用哈密尔顿—凯莱定理求逆矩阵
哈密尔顿—凯莱定理:设 是数域 P 上一个 级矩阵,f =
是
的特 征多项式,则 f( )=
设 f ( )= 当 可逆时, 0,即 n 0 由
其中 n= =0 可得
例设 = 解:f =
试用哈密尔顿—凯莱定理求 = =
=
=
方法七 利用最小多项式求逆矩阵
定义:以 n 阶矩阵 为根的多项式中,其中次数最低的首项为 1 的以 为
可逆矩阵及求逆矩阵的方法
时间:2015-11-02 作者:shelly 论文导读:引理 1 可逆矩阵的简化行阶梯形一定是单位矩阵。换句话说,可逆 矩阵可以经过一系列初等变换化成单位矩阵。 关键词:伴随矩阵,初等变换,逆矩阵
方法一 伴随矩阵法 定义 1 设 = 是 级方阵,用 表示 的 元的代数余子式
根的多项式,称为 的最小多项式。
引理 2 设 是矩阵 的最小多项式,那么 以 为根的充分必要条 件是 整除 。
由上述引理和定义及哈密尔顿—凯莱定理知:非退化矩阵 的最小多项式的
常数项非零,即设 的最小多项式为
,则有常
数项
。又由于
,则得
故= 下面举例说明此法的应用,但此法并不常用。论文检测。
例. 求 =
例:
用初等变换法求
所以 = 方法四 利用解线性方程组来求逆矩阵
若 级矩阵 可逆,则 的解,
,于是 的第 列是线性方程组的
因此我们可以去解线性方程组
,其中
然
后把所得的解的公共式中
分别用 1,0,…,0;0,1,…,0;…;0,…,0,
变换法求逆矩阵稍微简单些。 方法五 分块求逆法 当一个可逆矩阵的级数较大时,即使用初等变换法求它的逆矩阵仍然计算量
,
矩阵
称为 的伴随矩阵,记作
若 0,并且当 可逆时有 这种方法在理论上很有用,在实际计算中常用于 2 级或 3 级矩阵。
例:
用伴随矩阵法求
解:因为 ,
,所以 可逆,而 ,
=
方法二 二阶矩阵的公式求逆法
设 = (其中
,即
0),则 ==
这个公式的推导思想是从
这个重要结论出发,构造一个矩阵 ,去
左乘 使其等于单位矩阵 ,即若