盾构管片结构设计算例(英文版)
隧道盾构英语、中文、日语对照
送料 通路 通路ブラケット センターカッター センターライン センターシャフト センタースライドデッキ 集中潤滑システム 遠心ポンプ チェーン チェーンブロック チェーンリンク 室 チャージ(充電) 充電装置 装入ホッパー 図面 チェックバルブ 薬液注入 溝 回路 回路遮断機 グリッパー 粘土 洗浄機 洗浄ポンプ 洗浄注入孔 隙間(すきま) クレビス 閉塞 クラッチ 崩壊検出器 襟(えり) カラーディスプレイ コラム、カラム 部品 圧縮空気 エアコンプレッサー コンピュータ 接続ビーム 接続端子板を固定する 接続シャフト 接続支柱 接続ツール ジョイント コンセント 接触機 コントラファン コントロール/制御 コントロールボックス 制御室
球阀 嵌条 带 皮带 底座 梁 轴承 轴承座 轴承座挡块 轴承润滑装置 轴承垫 皮带 皮带输送机 皮带张紧油缸 弯管、弯头 粘合剂 叶片、刀片 废堵、盲塞 (阀)板、(阀)块 转向架、车轮 螺栓 起重臂 孔径 钻机 轮毂 支架 制动器 故障 断路器、开关(电) 通气孔;通风装置 虚线、点线 刷子、毛刷 刷子密封 铲斗、挖斗 内置式行程传感器 舱壁、隔板 衬套、轴瓦 蝶形阀 对接 按钮 电缆 电缆支架 电缆导管 电缆架 电缆卷盘 电缆桥架 电缆通道 带接头的电缆 凸轮 凸轮从动件 罐头 盖、帽 万向接头
车架 走道、过道、通道 走道支架 中心转刀 中心线 中轴 中间的移动平台 集中润滑系统 离心泵 链条 导链滑车 链节 室 装料、充电 装料设备、装(送)料机 装料料斗 图、图表 单向阀 化学灰浆 斜槽;滑槽 电路、回路 断路开关、回路遮断器 钳、夹紧 粘土 滤清器、清洗器 洗涤泵 清洗水注入孔 (机器零件之间的)间隙 弹簧钩、U形夹 堵塞 离合器 土体塌陷探测器 轴衬 彩显 立柱 部件 压缩空气 空气压缩机 计算机 联结双梁 联结销固定板 联结轴 联结支柱 联结工具 接头 插座 接触器、开关 逆流式通风机 控制 控制箱 控制室
38 盾构管片结构计算方法及应用实例
盾构管片内力计算方法及应用实例陈飞成徐晓鹏卢致强【摘要】埋置于地下土层中的盾构管片结构,由于所受外荷载复杂及接头的存在,其内力计算方法根据不同力学假定,种类繁多。
本文对常用的自由变形圆环法、弹性多铰环法、弹性地基梁法进行了理论推导,并针对某软土地区地铁盾构区间三个断面进行了实例计算,通过对计算结果的对比分析,得出了一些有助于盾构管片结构设计的结论。
【关键词】盾构管片设计荷载结构法1 引言盾构法以其地层适应性强、施工速度快、施工质量有保证、对周边环境干扰少等优点,得到了越来越广泛的应用。
目前盾构管片结构的设计方法有:①经验类比法②荷载结构法③地层结构法④收敛限制法,常用荷载结构法和地层结构法。
荷载结构法将盾构管片视为埋置于土层中的混凝土结构,周围土体对管片的作用力为施加于结构上的荷载;而地层结构法认为盾构管片与埋置地层一起构成受力变形的整体,并可按连续介质力学原理来计算管片和周围土体的内力和位移,其特点是在计算盾构衬砌结构内力的同时也得到周边土层的应力。
地层结构法力学本构模型复杂,土性参数较难确定,计算过程中影响因素多,并且目前工程界还无太多可靠经验来评定其结果的准确性,因此对具体工程的盾构管片结构设计仍主要采用荷载结构法,计算图示如图1。
本文就是应用荷载结构法对盾构管片进行内力计算。
陈飞成(1980—),研究生,毕业于同济大学道路与铁道工程专业,现为设计部结构设计人员。
徐晓鹏(1979—),工程师,硕士,毕业于中国矿业大学结构工程专业,现任公司设计项目部项目经理。
卢致强(1974—),工程师,硕士,毕业于西南交通大学结构工程专业,现任公司设计部经理。
上覆荷载0图1 荷载结构法计算图示Fig.1 Load-Structure method2 荷载结构法设计理论用荷载结构法计算盾构管片内力,关键点有两个,一是对土层抗力的处理,二是对管片接头的处理。
对土层抗力的处理方法有:①不考虑土层抗力②土层抗力按假定分布于管环拱腰两侧③加土弹簧,用弹簧力来模拟土层抗力。
地铁区间隧道盾构管片衬砌结构设计
工程建设与设计Construction&Design For Project地铁区间隧道盾构管片衬砌结构设计Design of Shield Tunnel Segment Lining Structure in Metro Tunnel林坚(广州地铁设计研究院股份有限公可,广州510030)LIN Jian(Guangzhou Metro Design and Research Institute Co.Ltd.,Guangzhou510030,China)【扌商要】针对地铁区间隧道盾构管片衬砌结构设计过程中的计算模型不合理问题,结合工程实例,对管片衬砌结构设计方法进行了探讨,以供参考。
[Abstract]In order to solve the problem of unreasonable calculation model of tunnel lining structure design in metro section,this paper discusses the design method of p ipe lining structure design based on engineering examples for reference.【关键词】地铁;盾构隧道;管片[Keywords]subway;shield tunnel;segment【中图分类号】U452【文献标志码】A[DOI]10.13616/ki.gcjsysj.2019.07.234【文章编号11007-9467(2019)07-0072-021引言随着城市交通事业的快速发展,大量地铁工程得到了建设。
管片接头是地铁盾构隧道装配式衬砌管片结构的重要组成部分,在地铁盾构隧道设计期间,其对结构受力和配筋会产生重要的影响。
因此,在管片衬砌结构设计阶段,还应考虑接头作用等因素,实现结构的合理设计。
2地铁区间盾构隧道管片衬砌结构设计问题在地铁区间盾构隧道设计阶段,管片衬砌结构设计容易出现结构计算模型采用不合理的问题,造成管片配筋设计不科学,给管片预制和工程造价带来不良影响。
盾构常用英语
盾构机英语词汇English German Chinese accumulator 蓄能器adjacent switch 接近开关agitator 搅拌机air bubble 气泡air-buffer 气体缓冲器air cleaner 空气滤清器air-compressor 空气压缩机air-conditioner 空调air filter 空气过滤器air-lock 气闸air outlet 放气,排气air pump 气泵air tank 空气箱air valve 气阀air vent 气孔align cylinder 校正油缸allowed variation 容许偏差alternator 交流发电机angle 角度antenna 天线anti-rotation device 反转装置,防止旋转装置anti-wear plate 耐磨板arm 臂arm retainer 臂固定架articulation cylinder 关节油缸articulation jack 铰接千斤顶articulation jack pin 铰接千斤顶连接销articulation lip seal 关节法兰盘密封articulation rubber sponge seal 关节海绵橡胶密封assembly 装配,组装auto grease lubricator 自动滑脂润滑器auto oil lubricator 自动注油器automatic control 自动控制automatic drain 自动放泄阀valve 自动排水阀automatic feed water pump 自动供水泵automatic oil lubrication 自动润滑auxiliary cutter bit 辅助切削刀auxiliary transformer 辅助变压器back filling injection device 壁后注浆装置back filling injection port 壁后注浆孔backlash 间隙,齿隙back up 后配套装置balancing value 平衡阀ball joint 球窝接头ball tap 球形旋塞ball valve 球阀band 嵌条base plate 底座beam 梁bearing 轴承bearing house 轴承座bearing house stopper 轴承座挡块bearing lubrication unit 轴承润滑装置bearing pad 轴承垫belt 皮带belt tensioning cylinder 皮带张紧油缸bend 弯管,弯头binder 粘合剂blade 叶片,刀片blind plug 废堵,盲塞block (阀)板,(阀)块bogie 转向架,车轮bolt 螺栓boom 起重臂bore diameter 孔径boring machine 钻机boss 轮毂bracket 托架,支柱brake 制动器breakdown 故障breaker 断路器,开关(电)breather 通气孔;通风装置broken line 虚线,点线brush 刷子,毛刷brush seal 刷子密封bucket 铲斗,挖斗built-in stroke sensor 内置式行程传感器bulkhead 舱壁,隔板bush 衬套,轴瓦butterfly valve 碟型阀butt joint 对接button 按钮cable 电缆cable bearer 电缆支架cable rack 电缆架cable reel 电缆卷盘cable tray 电缆桥架cable way 电缆通道cable with connector 带接头的电缆cam follower 凸轮从动件can 罐头cap 盖,帽cardan joint 万向接头carriage 车架cat walk 走道,过道,通道cat walk bracket 走道支架center cutter 中心转刀center line 中心线center shaft 中轴center slide deck 中间的移动平台centralized grease system 集中润滑系统centrifugal pump 离心泵chain 链条chain block 导链滑车chain link 链节chamber 室charge 装料;充电charger 装料设备,装(送)料机charging hopper 装料料斗chart 图,图表check valve 单向阀chemical grouting 化学灰浆chute 斜槽;滑槽circuit breaker 断路开关clamp 钳,夹紧clay 粘土cleaner 滤清器cleaning pump 洗涤泵cleaning water injection port 清洗水注入孔clearance (机器零件之间的)间隙clevis 弹簧钩,U形夹clogging 堵塞clutch 离合器collapse detector 土体塌陷探测器collar 轴衬colour display 彩显column 立柱component 部件compressed air 压缩空气compressor 空气压缩机computer 计算机connecting beam 联结双梁connecting pin fixing plate 联结销固定板connecting shaft 联结轴connecting stay 联结支柱connection tool 联结工具connector 接头consent 插座contactor 接触器,开关contra fan 逆流式通风机control 控制control box 控制箱control panel 控制面板control room 控制室controlled inlet valve 可控进给阀controlled outlet valve 可控压力阀controller 控制装置cooling water pump 冷却水泵copy cutter 仿形刀copy cutter bit 仿形刀刀片copy cutter jack 仿形刀千斤顶coupler 联结器coupling 联结器coupling for cutter detector 刀盘探测器的联结器cover 盖子cover plate 盖板current 电源current failure 断电,停电curve 曲线cushion rubber 缓冲橡胶cutting edge 切消刃cutter bit 刀盘切割刀,硬质合金刀cutter bit hold 切削刀刀架,硬质合金刀刀架cutter chamber 刀盘隔仓cutter driving motor 刀盘驱动马达cutter drive power 刀盘驱动电源cutter driving unit 刀盘驱动装置cutter drum 刀具盘体cutter head 刀盘刀头cutter head gear motor 刀盘减速箱cutter ring 刀圈cutter spoke 刀盘轮辐cutter tooth 刀齿cutter torque 刀盘扭矩cutter motor 刀盘驱动马达cycle 周期,循环cylinder 油缸cylinder guide ring 油缸导向环data 数据deck 平台;面板deck handrail 平台扶手deck stand 平台架子deck stand support 平台支柱dedusting system 除尘系统delay time 延期detail 细节detector 探测器dewatering 排水dewatering pump 排水泵diagram 图表diameter 直径digger 挖掘机disc cutter 盘形滚刀discharge valve 放泄阀,排气阀discharge hopper 卸料斗displacement 位移displacement detector 位移传感器distribution 分配distribution valve 分配阀distributor 配电器drainage water lifting pump 排水提升泵drawing 图纸drill equipment 钻头装置drill machine 钻机drive 驱动drive system 驱动系统driving motor 驱动马达driving motor cooling system 驱动马达冷却系统drum 滚筒double arm 双臂(式)double blade 双刀片double gate 双闸门double nut 双螺母dust wiper 除尘器earth collapse detector 土体勘查装置earth and sand destruction 土砂破坏检测装置detection deviceearth and sand seal 土砂密封earth load gauge 土压测量计earth pressure balance shield 土压平衡盾构earth pressure detector 土压勘查装置elastic ring 弹性圈elbow joint 弯管接头electric motor 电动马达electric valve 电磁阀eletronic component 电气元件elongation capacity 延性end plate 端板emergency dewatering hose 紧急排水软管emergency light 应急灯emergency break 紧急制动器emergency stop 紧急停机encoder 编码器engineering plastic knob 工程塑料捏手equalizer 平衡器equipment 设备erector 拼装机erector grip assembly 拼装机夹紧装置erector torque 拼装机扭矩excavation 开挖excavation diameter 开挖直径excavation face 开挖面excavation speed 开挖速度expansion tank 油枕extend-retract 伸缩extension 伸extension jack 伸缩油缸extension port 延伸出口eye plate 眼板eye bolt 带圈螺栓fan 风扇,风机fault 故障feed 供给;送料feed valve 进给阀feeder hopper 加料器feeder hopper 进料斗filter 过滤器fishtail cutter 鱼尾形切削刀fixing plate 固定板flange 法兰flapper 铰链板flapper 有铰链大门float switch 浮动开关floor drain 地面排水flow 流量flow control valve 流量控制阀flow conveyor 流动输送机(输送水泥用)flow-meter 流量计flow ing carriage 后续车架flow rate 流量flow pipe 输送管flow sheet 流程图fluorescent light 荧光灯foam 泡沫force 力frame 支架front trunk 前壳体full bore ball valve 球阀(四面都带接头)fuse 保险丝grantry 台架gap 空隙gasket 垫片gate 闸门gate plate 闸门板gear 齿轮gear box 齿轮箱,减速器gear box with brake 带制动器的减速箱generator 发电机gland 电缆封头;密封套globe valve 球(形)阀gouging 表面切割governor 调节器,调速器grease 油脂grease gun 润滑脂枪,牛油枪grease lubrication 滑脂润滑grease pump 油脂泵grease seal 润滑脂密封grip 夹具,把手grip bolt 夹紧螺栓grip cylinder 夹紧油缸gripper 夹具装置gripper shoe 夹具撑靴ground 地面guide pipe 导管guide rod 导杆guide roller 导向滚筒gyro 陀螺仪half coupling 半联结器hammer 锤handle 摇柄handrail 栏杆,扶手hanger 吊钩hand-operating device 手动操作hexagon head bolt 六角头螺栓hexagon nut 六角螺母hexagon socket screw 内六角螺栓high density slurry shield 高密度泥水盾构high-pressure VCB panel 高压VCB配电板hinge 铰链hob 齿轮滚刀hoist 葫芦hoist beam 起吊运输梁hoist rail 起吊运输轨道holder 刀架hole 孔hollow shaft 空心轴hook 弯钩;吊钩hood 盖,套;防护罩hopper 料斗horizontal thrust 水平方向hose 软管hose clamp 软管夹hose rack 软管托架H.V cable reel 高压电缆卷筒H.V cell 高压电池hydraulic 液压hydraulic control unit 液压控制系统hydraulic drive 液压驱动hydraulic oil tank 油箱hydraulic motor 液压马达indicator 指示灯injection 加注injection hole 注入孔injection pipe 注浆管injection pump 注浆泵inlet valve 进给阀inner diameter 内径inner tube 内壳体inside diameter 内径inspection 检查inspection cover 观测盖板,检查盖inspection hole 检查孔inspection lamp 检修(用)灯inspection window 观察窗installation 安装installation board 安装板interlock 联锁interlock pin 联锁销intermediate beam 中间梁intermediate bearing 中间轴承intermediate coupling device 中间联结(藕合)装置intermediate shaft 中间轴inverter 变换器,倒相器jack 油缸,千斤顶jet valve 喷射阀jib 旋臂jib crane 旋臂起吊装置jig 夹具joint 接头junction valve 连接阀key 键key plate 止转板kit 工具箱knock pin 定位销lap 搭接;重叠laser 激光laser beam 激光束laser sensor 激光传感器leader pin 导销leak 泄漏left 左level 水平,水位level gauge 液位计lever sensor 水平传感器lifetime 使用寿命lift 升降机;电梯lift cylinder 提升油缸lift jack 提升油缸lifting beam 提升梁lifting piece 吊攀lifting rod 提升杆light 光,灯光lighting 照明lime 石灰limit 限制limiter 限制器limit switch 限位开关line filter 线路滤波器liner 衬套,衬垫lining 衬板,衬垫link chain 扁节链,平环链lip seal 唇形密封load 载荷lubricating unit 润滑装置machine plane 机加工面main bearing 主轴承maker 生产厂家,制造厂商manhole lid 人行孔盖manifold 阀板man lock 人行闸manipulator 操纵装置,机械手material 材料measure 测量;量度measure stroke sensor 测量行程传感器middle beam 中间梁mode 模式molten metal 熔融金属monitored automatic control system 监督自动控制系统monkey trap 活动扶梯motor 马达,电动机motor pump 电动泵motor switch 电动机开关mounting plate 安装板mouting pin 安装销movable bearing 可动轴承movable deck 可动平台moving 移动name plate 名牌needle valve 针筒neoprene 氯丁橡胶(人造橡胶)net 网nipple 管接头,螺纹接套nipple nut 管接头螺母nut 螺母nut collar 螺母垫圈oil 油oil clearner 滤油器oil cooler 油冷却器oil cup 油杯oil drain pump 泄油泵,排油泵oil bearing 注油式轴承oil feeder 注油器oil filter 屡油器oil gear pump 齿轮油泵oil hole 注油孔oil level gauge 油位计oil meter 油量计oil pump 油泵oil seal 油封oil tank 油箱oil tank cover 油箱盖over arm 横杆;悬臂,横臂over charge 超载,超负荷over cut 超挖over cutter 超挖刀overload 过载,超载overload protector 过载保护器overload valve 超负荷调节阀oxygen 氧气oxygen sensor 氧气传感器packing 密封,衬垫packing ring 密封圈,填密环packing seal 填料密封pad 垫板panel 仪表板parts 零件,部件pat(ral car)light 室内信号灯performance 性能,特性pilot check valve 单向控制阀pilot lever 控制手柄pilot pin 导销pilot piston 导向活塞pin 销pin stopper 销止转板pinion 小齿轮pinion cover 小齿轮端盖pipe 管路,管pipe bend 管弯头,弯管接头pipe duct 管道,导管pipe joint 管接头pipe line 管线,管道pipe plug 管塞piston 活塞piston pin 活塞销piston pump 活塞泵piston rod 活塞杆pitch 节距pitch sensor 螺距传感器plate 平板plug 螺塞,闷头pneumatic valve 气压阀poppet valve 提升阀positioning pin 定位销position sensor 位置传感器power 电源power cylinder 动力油缸power panel 配电盘,仪表板power pump 动力泵power unit 动力装置preparation 预备,准备pressure 压力pressure control 压力控制pressure drop 压力下降pressure gauge 压力表pressure plate 压板pressure relief valve 压力溢流表pressure sensor 压力传感器pressure switch 压力开关pressure transmitter 压力传送器printer 打印机probe 探头program 程序program control 程序控制protector 护板,保护装置protection 保护protective device 保护装置pump 泵pump unit 泵站radial roller 径向滚柱radius 半径rail 轨道rated folw 额定流量rated load 额定载荷rated pressure 额定压力reamer 饺刀;扩孔reamer bolt 饺螺栓rear scaffold 后部拼装平台rear scaffold assembly 后部拼装平台安装rear trunk 后壳体receiver 接收器receiver tank 储浆罐;储气罐recovery 恢复reducer 减压器reducing valve 减压阀reduction gear 减速箱reduction gear ratio 减速齿轮速比reel 卷盘reference 参考,参照regulation ring 调整环regulator 调整器,调节器regulator valve 调节阀reinforcing plate 加强板,筋板relay 继电器relief valve 溢流阀remark 备注remote control 遥控return pipe 回油管ring 环,圈ring guarder 支承环梁rod 杆,棒roller 导轮roller chain 滚轴链rolling 滚压,回转rolling stopper fixing boss 固定于凸台上的止转挡板rolling stopper 止转装置rolling stopper mounting jig 止转装置安装夹具rolling stopper pin 止转销rotary 旋转,转换rotary encoder 转速编码器rotary feeder of screw 螺旋机旋转进给rotary hopper 旋转料斗rotary joint 旋转接头rotation direction 旋转方向rotational ring cover 旋转环端盖rotary seal 旋转密封rotary torque 转矩,扭转rotation axis 回转轴rotation ring 旋转环saddle 座,滑动座架,支管架safety gate 安全门safety load 安全荷重safe nut 安全螺母safe pad 安全垫safe pin 安全销safety pressre 安全压力safe ring 安全环safe rod 安全杆safety switch 安全开关safety system 安全系统safety valve 安全阀sample 样器,试件sand 砂子scaffold 工作台scaffold main 拼装台主体scale 比例尺scale sensor 刻度传感器schedule 进度,日程scraper 刮板screw 螺杆,螺钉screw conveyor 螺旋机screw coupling 螺旋式联结器screw gate 螺旋机舱门screw gate jack 螺旋机门油缸screw joint 螺纹接头screw pump 螺旋泵screw rotation 螺旋机旋转seal 密封垫seal case 密封盖(盒)seal retainer 密封护圈seal ring 密封圈seam 焊缝,接缝section 截面,剖面sediment seal 土砂密封圈segment 管片segment adjuster 管片调整装置,整园器segment conveyor 管片输送机segment feeder 管片进给装置segment handling hoist 管片操纵葫芦segment ring 分隔环selection switch 选择开关self-lubrication 自动润滑self-oil feeder 自动供油装置sensor 传感器sequence 程序,顺序sequence valve 顺序(动作)阀set 装置;安装;调整settlement 沉降shackle 钩环shackle pin 钩环销shaft 轴shaft bearing 轴承shaft fixing plate 车轮轴安装板sheath hermo-couple 壳体上的热电偶shield 盾构shield excavation 盾构开挖shield jack 盾构千斤顶,推进油缸shield machine 盾构机signal 信号shackle 钩环shackle pin 钩环销shim 垫片shute 斜道shute gasket 斜道衬垫shutoff valve 截流阀,断流阀shuttle belt conveyor 梭式带型运输机side beam 侧梁sight glass 观察窗silent contra fan 静音送风式通风机size 尺寸skin plate (盾构机的)壳板slag 熔渣sleeve 管接头,套筒slewing 旋转slewing joint 旋转接头slewing ring 回转环slide 位移,滑动距离slide gate 滑动闸门slide guide plate 滑动导向板slide jack 滑动油缸slide jack clevis 导向油缸U形夹slide plate 滑板sliver 长条slope 斜面slurry 泥水,泥浆slurry shield 泥水盾构slurry tank 加泥箱smooth 平滑,光滑snap pin 开口销socket 管套solenoid valve 电磁阀solid line 实心线spacer 垫片,衬垫spanner 扳手spatter 喷溅speed sensor 速度传感器spherical joint 球形接头split pin 开尾销spreader 撑板spreader cushion rubber 撑板用缓冲橡胶垫spreader of thrust jack 推进油缸的撑板spreader main body 撑板主体spring pad 弹簧垫spring wire 弹簧钢丝spring washer 弹簧垫圈sprocket 链轮stair 梯子stanchion 支柱stand 台,座,架standard 标准standard tool box 标准工具箱strainer 滤网,过滤器start 启动stator 定子step 台阶,踏板stone 岩石stopper 挡块,制动器stroke 行程stroke meter installation 行程测量计的安装stud bolt 双头螺栓sucking pump 抽气泵sucking valve 抽气阀suction filter 吸滤器stud bolt 柱头螺柱,双头螺栓support guide 支撑导杆support jack 支撑油缸support ring 支撑环support beam 支撑梁suppressing board 压板surrounding stop stopper 止板挡块swing check valve 回转止回阀switch 开关tail brush 盾尾刷tail seal device 盾尾密封装置tail grease 盾尾油脂tail grease pump 盾尾油脂泵tank 箱体tank cover 箱盖tape 卷尺,胶带taper pin 锥形销taper plug 锥形塞taper roller bearing 锥形滚柱轴承taper washer 锥形垫圈tapping screw 车丝螺钉,放液螺钉temperature gauge 温度计temperature sensor 温度传感器terminal 接线端,接头test 测试,实验test run 试运行thermometer 温度计thickness 厚度threshold 临界(状态)throttle valve 节流阀thrust brake 推力制动器thrust bush 推力衬套thrust collar 止推轴环thrust cylinder 推进油缸thrust jack 推进油缸,推进千斤顶thrust jack sensor 推进油缸传感器thrust pad 推进垫板thrust plate 止推板thrust power 推力功率,推马力thrust shaft 止推轴T joint T形接头tool 工具tooth form 齿形tooth pitch gauge 齿距量轨tooth point 齿顶,齿尖tooth surface 齿面tooth thickness 齿厚top face 顶面torque 扭矩torque control 力矩调节towing beam 牵引梁towing beam support 牵引梁支座towing jack 牵引油缸towing rod 牵引杆towing rod bracket 牵引杆安装支架track 轨道transformer 变电器translation cylinder 行走油缸transmitter 发报机,发送器travel 行程,移动量,位移transport 运输tray 托盘,托架treating segment weight 使用(实际)管片重量trim 调整,修整trim holder 调整架throchoid 余摆线(齿轮)泵trough 输送槽trunnion 耳轴tube 管,套tunnel 隧道turn buckle (松紧)螺丝扣turning ring 回转环ultimate load 最大载荷ultrasonic beam 超声波束under carriage 起落架uninterfered space 有效空间uninterrupted feed 连续供给unit 单位,单元unit control 单位控制unload 卸载,卸荷unload chute 卸斜槽unloader lifter 卸载起重机unloading 卸载unloading relief valve 卸荷溢流阀unloading torque 空载力矩unloading valve 卸载阀unlock 不连锁vacuum 真空vacuum manometer 真空压力计vacuum pad 真空垫板vacuum pump 真空泵vacuum switch 真空开关valve 阀valve bolck 给油(水)阀组valve cap 阀盖,气门盖valve control panel 阀的控制面板valve code 阀心,气门芯valve gate 阀门valve pin 阀销valve seat 阀座,气门座valve stem 阀杆,气门杆vent 通气孔ventilation 通风,风管verticality 垂直,垂直度volumetric sensor 容积传感器walking deck 滑动平台,行走平台washer 垫圈water level indicator 水位计water pump 水泵water tank 水箱water treatment device 水处理设备weight 重量welding 焊接weldment 焊件wheel 车轮wheel bracket 车轮支架wheel shaft 轮轴wire 钢丝,铁丝,金属丝wire brush 钢丝刷wire net 金属网wrench 扳手。
盾构机实用英语
盾构机实用英语1、shield body:盾构2、front body inner shield assembly following parts were pre-assembled in front body inner shield:以下部件安装在前盾壳体内3、front body inner shield assembly:前盾壳体总成4、packing case on bulk head:散装箱,隔板包装箱BULK HEAD:土舱壁,隔板5、inspection rod on bulk head:舱壁检查杆6、M20 SET SCREW ON FRONT BODY INNER:M20 前盾固定螺钉7、PACKING CASE FOR INSPCTION ROD ON BULK HEAD:舱壁检查杆包装箱8、name plate-1 for grease injection:注油(脂)板-1,注脂铭牌-1()name plate:铭牌,标牌;grease injection:注脂9、fitting wire for name plate:铭牌安装线10、squeezing rod for front body:前盾挤压杆11、guide for bearing:轴承导向装置12、seal retainer :密封护圈13、accessorings on bulk head:舱壁配件14、ball joint:球窝接头15、cutter drum:刀盘16、cutter pinion gear:切齿小齿轮17、slewing bearing:回转支承18、fixing bolt for slewing bearing:回转轴承固定螺栓19、seal for cutter drive:主驱动密封20、cutter driving gear reducer & inverter motor:主驱动齿轮减速器&变频电机21、fixing bolt for cutter reducer:主驱动减速机固定螺栓1-0021、articulation seal:铰接密封件2、hydraulic motor with reduction gear for segment erector:带减速器的液压马达,用于管片拼装机3、flange for main port :主端口法兰4、female-male socket with bonded seal:带粘合密封件的阴-阳插座5、shield jack manifold in TBM:盾体千斤顶歧管6、sol. directional valve unit in TBM:索尔,掘进机换向阀装置7、proportional reducing valve unit IN TBM:比例减压阀IN TBM8、check valve(with nipple):止回阀、单向阀(带螺纹接头)9、stop valve(with nipple)in TBM:截止阀(带螺纹接头)10、relief valve(with nipple)in TBM:安全阀(带螺纹接头)11、multi-type SOL. directional valve IN TBM:多类型溶胶.TBM中的定向阀;TBM中的SOL.多路换向阀12、erector rotating manifold in TBM :TBM中的拼装机旋转体管汇13、erector sliding & expansion Jack manifold in TBM:拼装机伸缩千斤顶管汇14、erector yawing Jack manifold in TBM:TBM中的拼装机偏转千斤顶管汇15、erector grip Jack manifold in TBM:TBM中的拼装机抓取千斤顶管汇16、counter valance valve unit in TBM:TBM中的计数平衡阀装置17、manually directional valve unit in TBM:TBM中的手动换向阀18、copy cutter manifold in TBM:TBM中的仿形割刀管汇19、P.C.flow control valve unit in TBM:TBM中的P.C.流量控制阀单元20、relief valve manifold on trailer truck:拖车上的溢流阀总管21、relief valve unit on trailer truck:拖车上的溢流阀单元22、reducing valve SP unit on trailer truck:拖车上的减压阀SP (set point 设定值)单元23、screw bypass manifold unit on trailer truck:拖车上的螺旋旁路管汇装置24、screw SOL. pilot directional valve unit on trailer truck:拖车SOL.螺丝(机械式)先导换向阀导向阀装置25、stop valve on trailer truck:拖车上的截止阀26、throttle check valve on trailer truck:拖车上的节流止回阀27、stop valve for accumulator on trailer truck :拖车上蓄能器的截止阀28、solenoid valve unit on trailer truck:拖车上的电磁阀装置29、proportional flow control unit on trailer truck:拖车比例流量控制装置30、manually directional valve SP unit on trailer truck:拖车上的手动方向阀SP装置31、amplifier (for K3VG pump):放大器(用于K3VG 系列斜盘形轴向柱塞泵)32、amplifier (for PRBP valve):放大器(用于PRBP 川崎液压阀)33、amplifier (for 2FRE valve):放大器(用于2FRE 系列比例流量阀)1-0031、hose reel for segment erector:管片拼装机软管卷盘()2、line filter in TBM:TBM中的线路滤波器3、filter blement as spare:备用滤芯4、cable reel for sement erector :管片拼装机电缆卷盘5、pull cord switch for belt conveyor:皮带输送机拉线开关6、vinyl coated wire rope:乙烯基包覆电缆7、long eye bolt for pull code switch:拉码开关长眼螺栓8、wire clip:线夹9、flexible joint for rotary joint:旋转接头的柔性接头10、flasher for segment erector:管片拼装机闪烁开关(报警灯)11、siren for segment erector :管片拼装机警报器12、urethane foam for rotary joint:包装旋转接头用的聚氨酯泡沫13、adhesive for rotary joint:旋转接头用的粘合剂14、adhesive for o ring:o形圈粘合剂15、worm gear type limit switch for segment erector:蜗轮式限位开关16、slip ring on copy cutter:仿形刀集电环(滑环)17、coupling for slip ring:滑环联轴器18、proximity swicth for copy cutter:仿形刀接近开关19、magnet for proximity swicth:接近开关磁铁20、distribution valve for grease pump:油脂泵分配阀21、Y strainer Rc3/8:Y型过滤器Rc3 / 822、centraized grease lubrication pump:集中式油脂润滑泵23、accumulator unit:蓄能器24、N2 gas charge tool set:氮气充气工具箱25、oil cooler for hydraulic equipment:液压设备油冷却器26、rotary joint ASS'Y(with following individual parts):ASS'Y旋转接头(包括以下单个零件)27、M20 HEX,socket head bolt:M20内六角螺栓28、M20 spring washer :M20弹簧垫圈(C形)29、o ring :o型圈30、flange:法兰31、snap ring :卡环;弹性挡圈32、seal retainer:密封护圈33、rubber seal :橡胶密封件34、2B nipple:2B螺纹接头35、2B female male elbow:2B阴阳弯头36、2B ball valve:2B球阀37、back up ring:密封支撑环38、M22 hexagon bolt:M22六角螺栓39、M22 spring washer:M22弹簧垫圈40、cover:罩子41、M4 set screw:M4固定螺钉42、M8 push bolt:M8推力螺栓43、hydraulic motor for screw conveyor:螺旋输送机液压马达44、accessories for hydraulic motor :液压马达配件2-0061、CC-LINK I/F unit for cutter inverter:刀盘变频器CC-LINK I / F单元2、control power backup unit:3、casing for additive injection port:4、retainer for casing:5、rubber packing for casing:6、M10 low head bolt for casing:7、slow return check valve:低速回程单向阀8、bolt for erector rolling sliding&expansion Jack MF:管片安装机旋转体伸缩千斤顶MF用的螺栓9、P.C. flow control valve unit:P. C.流量控制阀装置10、throttle valve:节流阀11、oil hydraulic pump for grout injection equipment:12、bell housing for grout injection pump:13、with coupling and element :14、chain:15、attachment for chain:16、bolt for shield pump:17、set screw:18、articulate jacks pump:19、spring washer:20、holt for erection rotation pump:21、oil hydraulic pump for screw drive:22、screw conveyor pump:23、oil hydraulic pump for screw gate:24、oil circulating pump:25、common base for circulating pump:26、coupling guard :30、long eye bolt31、wire clip:32、siren33、adhesive for O ring:34、worm gear type limit switch :35、slip ling :36、controller37、dust seal38、VD seal39、rotary encorder40、detector for inclination meter41、pitching:42、rolling:43、amplfilter inclination meter44、earth pressure detector45、amplifier46、hydraulic pressure transmitter47、flow control detector:48、suction filter to be installed on trailer truck:安装在拖车上的吸滤器49、line filter:线路滤波器50:filter element for VLF08R as spare:VLF08R备用滤芯51、spare element:备用元件52、inverter unit:逆变器单元53、accessories for inverter unit:逆变器配件54、AC reactor:交流电抗器盾构机英语词汇English Chineseaccumulator 美[?'kjumj?let?] 蓄能器adjacent switch 美[?'d?esnt] 接近开关agitator 美['?d??tet?] 搅拌机air bubble 美['b?bl] 气泡air-buffer 气体缓冲器air cleaner 空气滤清器air-compressor 空气压缩机air-conditioner 空调air filter 空气过滤器air-lock 气闸air outlet 放气,排气air pump 气泵air tank 空气箱air valve 气阀air vent 气孔align cylinder 校正油缸allowed variation 容许偏差alternator 交流发电机angle 角度antenna 天线anti-rotation device 反转装置,防止旋转装置anti-wear plate 耐磨板arm 臂arm retainer 臂固定架articulation cylinder 关节油缸articulation jack 铰接千斤顶articulation jack pin 铰接千斤顶连接销articulation jack pin mounting jig 铰接油缸连接销安装夹具articulation lip seal 关节法兰盘密封articulation rubber sponge seal 关节海绵橡胶密封assembly 装配,组装auto grease lubricator 自动滑脂润滑器auto oil lubricator 自动注油器automatic control 自动控制automatic drain 自动放泄阀valve 自动排水阀automatic feed water pump 自动供水泵automatic oil lubrication 自动润滑auxiliary cutter bit 辅助切削刀auxiliary transformer 辅助变压器back filling injection device 壁后注浆装置back filling injection port 壁后注浆孔backlash 间隙,齿隙back up 后配套装置balancing value 平衡阀ball joint 球窝接头ball tap 球形旋塞ball valve 球阀band 嵌条base plate 底座beam 梁bearing 轴承bearing house 轴承座bearing house stopper 轴承座挡块bearing lubrication unit 轴承润滑装置bearing pad 轴承垫belt 皮带belt conveyor 皮带输送机belt tensioning cylinder 皮带张紧油缸bend 弯管,弯头binder 粘合剂blade 叶片,刀片blind plug 废堵,盲塞block (阀)板,(阀)块bogie 转向架,车轮bolt 螺栓boom 起重臂bore diameter 孔径boring machine 钻机boss 轮毂bracket 托架,支柱brake 制动器breakdown 故障breaker 断路器,开关(电)breather 通气孔;通风装置broken line 虚线,点线brush 刷子,毛刷brush seal 刷子密封bucket 铲斗,挖斗built-in stroke sensor 内置式行程传感器bulkhead 舱壁,隔板bush 衬套,轴瓦butterfly valve 碟型阀butt joint 对接button 按钮bogie 台车cable 电缆cable bearer 电缆支架cable duct 电缆导管cable rack 电缆架cable reel 电缆卷盘cable tray 电缆桥架cable way 电缆通道cable with connector 带接头的电缆cam follower 凸轮从动件can 罐头cap 盖,帽cardan joint 万向接头Cartridgecarriage 车架cat walk 走道,过道,通道cat walk bracket 走道支架center cutter 中心转刀center line 中心线center shaft 中轴center slide deck 中间的移动平台centralized grease system 集中润滑系统centrifugal pump 离心泵chain 链条chain block 导链滑车chain link 链节chamber 室charge 装料;充电charger 装料设备,装(送)料机charging hopper 装料料斗chart 图,图表check valve 单向阀chemical grouting 化学灰浆chute 斜槽;滑槽circuit 电路circuit breaker 断路开关clamp 钳,夹紧clay 粘土cleaner 滤清器cleaning pump 洗涤泵cleaning water injection port 清洗水注入孔clearance (机器零件之间的)间隙clevis 弹簧钩,U形夹clogging 堵塞clutch 离合器collapse detector 土体塌陷探测器collar 轴衬colour display 彩显column 立柱component 部件compressed air 压缩空气compressor 空气压缩机computer 计算机connecting beam 联结双梁connecting pin fixing plate 联结销固定板connecting shaft 联结轴connecting stay 联结支柱connection tool 联结工具connector 接头consent 插座contactor 接触器,开关contra fan 逆流式通风机control 控制control box 控制箱control cabin 控制室control panel 控制面板control room 控制室controlled inlet valve 可控进给阀controlled outlet valve 可控压力阀controller 控制装置cooling water pump 冷却水泵copy cutter 仿形刀copy cutter bit 仿形刀刀片copy cutter jack 仿形刀千斤顶coupler 联结器coupling 联结器coupling for cutter detector 刀盘探测器的联结器cover 盖子cover plate 盖板current 电源current failure 断电,停电curve 曲线cushion rubber 缓冲橡胶cushion valve 缓冲阀cutting edge 切消刃cutter bit 刀盘切割刀,硬质合金刀cutter bit hold 切削刀刀架,硬质合金刀刀架cutter chamber 刀盘隔仓cutter driving motor 刀盘驱动马达cutter drive power 刀盘驱动电源cutter driving unit 刀盘驱动装置cutter drum 刀具盘体cutter head 刀盘刀头cutter head gear motor 刀盘减速箱cutter ring 刀圈cutter seal 刀盘密封cutter spoke 刀盘轮辐cutter tooth 刀齿cutter torque 刀盘扭矩cutter motor 刀盘驱动马达cycle 周期,循环cylinder 油缸cylinder guide ring 油缸导向环data 数据deck 平台;面板deck handrail 平台扶手deck stand 平台架子deck stand support 平台支柱dedusting system 除尘系统delay time 延期detail 细节detector 探测器dewatering 排水dewatering pump 排水泵diagram 图表diameter 直径digger 挖掘机disc cutter 盘形滚刀discharge valve 放泄阀,排气阀discharge hopper 卸料斗displacement 位移displacement detector 位移传感器distribution 分配distribution valve 分配阀distributor 配电器drain 排出口drainage water lifting pump 排水提升泵drawing 图纸drill equipment 钻头装置drill machine 钻机drive 驱动drive system 驱动系统driving motor 驱动马达driving motor cooling system 驱动马达冷却系统drum 滚筒double arm 双臂(式)double blade 双刀片double gate 双闸门double nut 双螺母dust wiper 除尘器earth collapse detector 土体勘查装置earth and sand destruction 土砂破坏检测装置detection deviceearth and sand seal 土砂密封earth load gauge 土压测量计earth pressure balance shield 土压平衡盾构earth pressure detector 土压勘查装置elastic ring 弹性圈elbow joint 弯管接头electric motor 电动马达electric valve 电磁阀eletronic component 电气元件elongation capacity 延性end plate 端板emergency dewatering hose 紧急排水软管emergency dewatering pump 紧急排水泵emergency light 应急灯emergency break 紧急制动器emergency stop 紧急停机encoder 编码器engineering plastic knob 工程塑料捏手equalizer 平衡器equipment 设备erector 拼装机Erector extension cylinder 拼装机延伸油缸Erector slide cylinder 拼装机滑动油缸erector grip assembly 拼装机夹紧装置erector torque 拼装机扭矩excavation 开挖excavation diameter 开挖直径excavation face 开挖面excavation speed 开挖速度expansion tank 油枕extend-retract 伸缩extension 伸extension jack 伸缩油缸extension port 延伸出口eye plate 眼板eye bolt 带圈螺栓fan 风扇,风机fault 故障feed 供给;送料feed valve 进给阀feeder hopper 加料器feeder hopper 进料斗filter 过滤器fishtail cutter 鱼尾形切削刀fixing bolt 紧固螺栓fixing plate 固定板flange 法兰flapper 铰链板flapper 有铰链大门float switch 浮动开关floor drain 地面排水flow 流量flow control valve 流量控制阀flow conveyor 流动输送机(输送水泥用)flow-meter 流量计flowing carriage 后续车架flow rate 流量flow pipe 输送管flow sheet 流程图fluorescent light 荧光灯foam 泡沫force 力frame 支架front trunk 前壳体full bore ball valve 球阀(四面都带接头)fuse 保险丝grantry 台架gap 空隙gasket 垫片gate 闸门gate plate 闸门板gear 齿轮gear box 齿轮箱,减速器gear box with brake 带制动器的减速箱gear pump 齿轮泵generator 发电机gland 电缆封头;密封套globe valve 球(形)阀gouging 表面切割governor 调节器,调速器grease 油脂grease gun 润滑脂枪,牛油枪grease lubrication 滑脂润滑grease pump 油脂泵grease seal 润滑脂密封grip 夹具,把手grip bolt 夹紧螺栓grip cylinder 夹紧油缸gripper 夹具装置gripper shoe 夹具撑靴ground 地面guide pipe 导管guide rail 导轨guide rod 导杆guide roller 导向滚筒gyro 陀螺仪half coupling 半联结器hammer 锤handle 摇柄handrail 栏杆,扶手hanger 吊钩hand-operating device 手动操作hexagon head bolt 六角头螺栓hexagon nut 六角螺母hexagon socket screw 内六角螺栓high density slurry 高密度泥浆high density slurry shield 高密度泥水盾构high-pressure VCB panel 高压VCB配电板hinge 铰链hob 齿轮滚刀hoist 葫芦hoist beam 起吊运输梁hoist rail 起吊运输轨道holder 刀架hole 孔hollow shaft 空心轴hook 弯钩;吊钩hood 盖,套;防护罩hopper 料斗horizontal thrust 水平方向hose 软管hose clamp 软管夹hose rack 软管托架H.V cable reel 高压电缆卷筒H.V cell 高压电池hydraulic 液压hydraulic control unit 液压控制系统hydraulic drive 液压驱动hydraulic oil tank 油箱hydraulic motor 液压马达indicator 指示灯injection加注injection hole 注入孔injection pipe 注浆管injection pump 注浆泵injection valve 喷射阀;注浆阀inlet valve 进给阀inner diameter 内径inner tube 内壳体inside diameter 内径inspection 检查inspection cover 观测盖板,检查盖inspection hole 检查孔inspection lamp 检修(用)灯inspection window 观察窗installation 安装installation board 安装板interlock 联锁interlock pin 联锁销intermediate beam 中间梁intermediate bearing 中间轴承intermediate coupling device 中间联结(藕合)装置intermediate shaft 中间轴inverter 变换器,倒相器jack 油缸,千斤顶jet valve 喷射阀jib 旋臂jib crane 旋臂起吊装置jig 夹具joint 接头junction valve 连接阀key 键key plate 止转板kit 工具箱knock pin 定位销ladder 梯子lap 搭接;重叠laser 激光laser beam 激光束laser sensor 激光传感器leader pin 导销leak 泄漏left 左level 水平,水位level gauge 液位计lever sensor 水平传感器lifetime 使用寿命lift 升降机;电梯lift cylinder 提升油缸lift jack 提升油缸lifting beam 提升梁lifting piece 吊攀lifting rod 提升杆light 光,灯光lighting 照明lime 石灰limit 限制limiter 限制器limit switch 限位开关line filter 线路滤波器liner 衬套,衬垫lining 衬板,衬垫link chain 扁节链,平环链lip seal 唇形密封load 载荷lubrication 润滑lubricating unit 润滑装置leisure / lie fallow 休闲machine plane 机加工面main bearing 主轴承maker 生产厂家,制造厂商manhole lid 人行孔盖manifold 阀板man lock 人行闸manipulator 操纵装置,机械手material 材料measure 测量;量度measure stroke sensor 测量行程传感器middle beam 中间梁mode 模式molten metal 熔融金属monitored automatic control system 监督自动控制系统monkey trap 活动扶梯motor 马达,电动机motor pump 电动泵motor switch 电动机开关mounting plate 安装板mouting pin 安装销movable bearing 可动轴承movable deck 可动平台moving 移动millimeter 毫米(mm)name plate 名牌needle valve 针阀neoprene 氯丁橡胶(人造橡胶) net 网nipple 管接头,螺纹接套nipple joint 螺纹接头,管接头nipple nut 管接头螺母nut 螺母nut collar 螺母垫圈oil 油oil clearner 滤油器oil cooler 油冷却器oil cup 油杯oil drain pump 泄油泵,排油泵oil bearing 注油式轴承oil feeder 注油器oil filter 屡油器oil gear pump 齿轮油泵oil hole 注油孔oil level gauge 油位计oil meter 油量计oil pump 油泵oil seal 油封oil tank 油箱oil tank cover 油箱盖over arm 横杆;悬臂,横臂over charge 超载,超负荷。
盾构机部件英语翻译
Designation 名称HYDRAULIC MOTOR 液压马达,液压发动机HYDRAULIC CYLINDER 液压油缸DOUBLE ACTION BREAK V ALVE 双档制动阀LOWERING BRAKE V ALVE 下引制动阀SWITCH ELEMENT 开关元件V ALVE BLOCK 阀块PISTON PUMP 活塞泵PRESSURE GAUGE 压力计BRACKET 支架PRESSURE SWITCH 压力开关PROTECTIVE CAP 保护帽V ALVE 阀CASING PRESSURE SCALE 称重传感器BASE FRAME PRESSURE SCALES 称重传感器底座V ALVE PLATE 阀板NON-RETURN V ALVE 单向阀BLOCK BALL VALVE 球阀ENTRY PLATE 入口板PLATE 板INNER PLATE 内板ASSEMBL Y KIT 装配组件SCREW 螺杆SEALING NUT 密封螺母MOUNTING FRAME 安装架STEEL PLATE HOT-ROLLED 热轧钢板STEEL TUBE SEAMLESS 无缝钢管MAINTENANCE UNIT 保持装置TANK 水箱DRILLING HAMMER 钻头SEALING KIT 密封件SHANK ADAPTER 柄适配器CONVERSION KIT转换套件TOOLS 工具CYLINDER 气缸SEAL 密封SCRAPER 刮刀PIPE 管ROUND BAR BRASS 圆条黄铜PISTON 活塞PISTON ROD 活塞杆PRESSURE SPRING 压力弹簧SCREW CONNECTION 螺纹接口SOUND ABSORBER 消声器DIRT TRAP 排尘器PUMP WITH HYDRO MOTOR 泵水力马达SEALING SET 密封装置GAMMA PUMP 伽马泵PRESSURE CONTROLER 压力控制器PRESSURE GAUGE 压力表DIRECTIONAL CONTROL V ALVE 定向控制阀PIPING HOUSING 管路CHECK V ALVE 止回阀FRAME 框架CONSOLE 操纵台ANGLE STEEL BAR UNEQUAL LEG 角钢筋不平等腿PRECISION STEEL TUBE WELDED 精密钢管焊接CLAMP 钢丝钳HEX.HEAD SCREW 头螺钉WASHER 垫圈MOUNTING RAIL NUT GALV ANIZED 安装轨电镀螺母CONNECTION PLATE FOR V ALVE 连接板阀PRESSURE TRANSDUCER STANDARD 压力传感器平台SENSOR 传感器ROTARY SENSOR 旋转传感器MAX PRESSURE PROTECTION 最大压力保护COVER 封皮SPACER BLOCK 垫块DISTANCE PLATE 隔板O-RING 橡胶圈HIGH PRESSURE FILTER 高压滤油器DIFFERENTIAL PRESSURE SWITCH 压差开关ELECTRIC MOTOR 电动机V ARIABLE DISPLACEMENT 可调泵COIL FOR DIRECTIONAL V ALVE 定向阀线圈FLANGE BALL VALVE 法兰球阀DIRECTIONAL SEAT VALVE 定向座阀SOLENOID COIL 螺丝管COUPLING ROTEX 耦合测速发电机PUMP SUPPORT 泵支架DAMPING RAIL 缓冲槽COUPLING 耦合GEAR RING 齿圈HYDRAULIC ENGINE 液压发动机BASIC MODULE 基础模块CURRENT REGULATION V ALVE 电流调节阀门CARTRIDGE 管壳PRESSURE V ALVE WITHOUT ADJUSTMPROPORTIONAL PRESSURE RELIEF 比例减压阀MAGNETIC DIRECT CURRENT 电磁直流电SEAL SET PRESSURE LIMITING V AL 密封限制压力瓦尔DIRECTIONAL SEAT VALVE 方向控制阀DIRECTIONAL CONTROL SLIDE V ALV 换向阀滑动PROPORTIONAL V ALVE MODULE 比例阀模块STEERING V ALVE 导向阀DOUBLE COUNTER BALANCE V ALVE 双反平衡阀LOWERING BRAKE HOLD V ALVE CARTRBRAKE HYDRAULIC BLOCK 液压刹车模块CHOKE V ALVE CARTRIDGE 插装式节流阀SHUTTLE V ALVE CARTRIDGE 插装式换向阀V ALVE INSERT 阀密封垫PLANETARY GEAR 行星齿轮LINE BREAKING SAFETY FUSE 保险丝SOLENOID COIL 电磁阀芯PROPORTIONAL V ALVE 比例阀REDUCTION 减少ROUND STEEL BAR HOT-ROLLED 圆钢筋热轧TELESCOPIC UNIT ERECTOR 拼装机收缩单元PROPORTIONAL V ALVE MODULE 比例阀模块STEERING V ALVE 导向阀INTERMEDIATE PLATE 中间板ONE-WAY RESTRICTOR ZP zp型单向节流阀DIRECTIONAL CONTROL V ALVE 方向控制阀PRESSURE REDUCING V ALVE ZP zp型减压阀SHIELD ARTICULATION CYLINDER 盾构机铰接油缸CONTROL BLOCK SCHIELD ARTICULAADAPTER PLATE 垫板MAGNET 磁铁HYDRAULIC BLOCK 液压锁PLANETARY GEARBOX 行星齿轮箱AIR VESSEL 空气罐PASSINGPOWER UNIT 供电装置CHECK V ALVE ZP zp型单向阀CURRENT REGULATING V ALVE BLOCK 当前调节阀块TRACTION CYLINDER 动力缸ONE-WAY RESTRICTOR ZP zp型单向节流阀BLOCK BALL VALVE 球阀组BLADDER ACCUMULATOR 蓄能器SLIDE BLOCK 滑块ROTARY SHAFT LIP TYPE SEAL 转轴唇形密封PLANET CARRIER 行星齿轮架RETAINING RING 弹簧卡环PIN 栓CYLINDER HEAD SCREW 汽缸盖螺丝ROLLER BEARING 滚珠轴承WHEEL 轮子JUNCTION PLATE 连接板GROOVED BALL BEARING 带槽球轴承AXIAL PISTON PUMP 轴向活塞泵FILTER 过滤CLOGGING INDICATOR 油滤阻塞指示器GAUGE SLIDE 游标卡尺NOZZLE 喷嘴GAS ACCUMULATOR 气体积蓄器HIGH PRESSURE FILTER 高压滤芯DIFFERENTIAL PRESSURE SWITCH 压差开关CAP OF CLAMPING BOX 帽夹盒BOTTOM PART OF CLAMPING BOX 夹盒底部JUNCTION PLATE FOR ELECTRIC 电动连接板GROUT PUMP 砂浆泵V ALVE DISC 蝶阀THRUST RING 止推环PISTON GUIDE 活塞导承SLURRY PISTON 泥浆泵用活塞GUIDE BUSH FOR PUMP KSP ksp泵的直导套STROKE COUNTER 冲程计数器BRIDGE 连接桥PROXIMITY SWITCH 接近开关SPARE PART备件HAND LEVER 手制动柄DAMPING RAIL 缓冲槽GUIDE BUSHING 导套MOBIL DIRECTIONAL V ALVE 美孚换向阀DOUBLE CHECK V ALVE 双止回阀FLOW DIVIDER V ALVE 分流阀REPLENISH-VENTILATION FILTER 通风过滤器VENTILATION FILTER 过滤器SCREW PUMP AGGREGA T 螺杆泵动力单元AXIAL FACE SEAL 轴向面密封SCREW SPINDEL PUMP 螺杆泵ADJUSTMENT BUSH 调整套DEEP GROOVE BALL BEARING 深槽滚珠轴承LEVEL WATCHDOG液位电子狗RESISTANCE THERMOMETER 电阻温度计THERMOMETER 温度计PROTECTION PIPE 管路AQUA SENSOR 湿度传感器LEVEL SENSOR 液位传感器REDUCING CONNECTION PIECE 减少连接块PRESSURE GAUGE 压力表COMPRESSED AIR TANK 压缩空气罐STEEL TANK 金属结构块SHUTTING GATE 关闭门SAFETY V ALVE 安全阀SWITCHING HANDLE 手柄开关FORGING BALL V ALVE 锻造球阀PRESSURE LIMITING V ALVE 限压阀MAINTENANCE DISPLAY OPTICAL 维修光电显示器SOLENOID V ALVE 电磁阀V ALVE CONE 锥形阀GASKET 垫圈PLATE HEAT EXCHANGER 板式换热器ADAPTER 秆尾DISTRIBUTOR 分配阀FLOW LIMITER 下限位GREASE PUMP 油脂泵DRIVE MOTOR PNEUMATIC 气动马达DAM RING 止水环CA TCHER 捕捉器AXIS 轴REPAIR KIT 维修工具BEARING 轴承RETAINING SCREW 固定螺丝PRESSURE CYLINDER 压力缸PACKING 填充物TENSION PIN 绷紧空心销SPRING-TYPE STRAIGHT PIN 弹簧直销FIXING DEVICE 固定装置TOGGLE 开关SEQUENCE PLATE 序列板TWO POST RAM 双联内存GROOVED RING 槽环GLASS 玻璃REGULATOR 调节器BUTTON 按钮PROXIMITY SWITCH INDUCTIVE 接近感应开关MANOMETER 压力表CENTERING BOLT 定心螺栓NEEDLE VALVE 针阀MEMBRANE 薄膜SNAP RING 卡环BALL VALVE WITH PNEUM. 带气球阀MAINTENANCE INDICATION 维修说明THREE-PHASE MOTOR 三相电机WOODRUFF KEY 半圆键SCREW WHEEL 螺旋齿轮PNEUM. SWIVEL DRIVE 气动万向扳手NIPPLE 铜头SEGMENT DISTRIBUTOR SIXFOLD 六叶的配电器电扇PISTON DETECTOR 活塞式探测器2WAY V ALVE 2通阀WATER FILTER 水滤芯FILTER BAG 滤芯带PRESSURE RING 耐压环COMPRESSOR 压缩机SHAFT 轴SHAFT SLEEVE 轴套CLAW PIECE 爪型器CENTRIFUGAL PUMP UNIT 离心泵装置PARALLEL KEY 平面键V-RING 密封圈CASING WEAR RING 泵壳密封圈HOSE 胶皮管COMPENSATOR 自耦变压器TEMPERATURE SENSOR 温度传感器FLOWMETER 流量计WATER TANK PRESSURELESS 无压水箱SEAL INSPECTION OPENING 密封检测口RETURN FLOW INHIBITOR 回流抑制剂LEVER 拉杆BOA COMPACT V ALVE 蟒蛇紧凑型阀SHUT-OFF DAMPER 关闭闸板HEX.HEAD SCREW ZP zp型头螺钉HEAT EXCHANGER 热交换器DRUM 鼓NOZZEL 喷嘴EXHAUSTER WITH LOCK 有锁的排风机QUICK ASPIRATOR 快速抽吸机AIR INFLOW INTERLOCK 空气流入连锁AXIAL CONE NOZZLE 轴向锥喷嘴CLEANER 清洁器SLEEVE COUPLING 套筒联轴节LIP SEAL 唇形密封T-PIECE T型块FEATHER KEY 导向键ANGULAR CONTACT BALL BEARING 向心推力球轴承LINK CLAMP 连接夹JOINT SHAFT 接轴LINK SLEEVE 袖口钮ROTOR 转子STA TOR 定子NUT 螺母JOINT BOLT 连接螺栓SEPARATEL Y DRIVEN FAN 分别驱动风扇ECCENTRIC SCREW PUMP 偏心泵GEAR MOTOR 齿轮马达MECHANICAL SEAL 机械密封PLUG SCREW 堵头螺钉LIQUID LEVEL INDICATOR 液位计AMPLIFIER 放大器FREQUENCY CARD 频谱COIL 线圈BELL 铃QUENCH FLUID VESSEL 淬火液容器STEEL JACKET PUMP UNIT 钢管泵机组GASKET SUCTION SIDE 垫片吸力面CASING PUMP 套管泵CENTRIFUGAL WHEEL 离心叶轮SPECTACLES 眼镜LABYRINTH 迷宫LUBRICATOR NIPPLE 注油器接头GREASE RETAINER 护脂圈ROLLER BEARING 滚珠轴承ADAPTER 适配器THREADED PIN 螺纹销BEARING BLOCK 轴承座CONICAL SPRING W ASHER 锥形弹性垫圈COMPRESSED AIR PUMP 空压机泵HEX.NUTV ALVE BALL NEOPRENE 橡胶球阀BUMPER缓冲器CONVEYANCE COMPARTMENTMEMBRANE NEOPRENE 橡胶模DIAPHRAGM SHAFT 薄膜连接器SILENCER 消声器GASKET 垫圈AIR V ALVE 气动球阀SUBMERSIBLE MOTOR DRIVEN PUMP 水下电机驱动泵FLOAT SWITCH 浮动开关SPINDLE 轴PNEUMA TIC DRIVE 气动传动装置ANNUNCIATOR 报警器SIGHT GLASS 视镜EXHAUST VENTILATION PLUG 排风机插头REGULATOR 校准器CABLE SOCKET FOR CONNECTOR 电缆线插座的连接器HOSE 软管SLIDER 滑动器REGULATOR SUPPL Y AIR 空气补给调节DIRT TRAP 排尘器SUCTION FILTER 吸滤器FEED WHEELS 进料轮STRIP CHART RECORDER DOUBLE 条形图标记录器CASSETTE 风筒SILENCER 消声器ATTENUATOR 衰减器DIFFUSER 扩散器ROLLER 滚轴ROPE CLAMP SYSTEM 缆绳紧锁单元V ACUUM FILTER 真空过滤器FILTER CARTRIDGE 滤芯V ACUUM PUMP 真空泵RAM 随机存储器TAPPET KEY 控制杆ELECTROV ALVE 电磁阀。
地铁盾构隧道设计英文
A Design of Shield Tunnel Lining1. Function of TunnelThe planned tunnel is to be used as a subway tunnel. 2. Design Condition2.1 Dimensions of Segment Type of segment: RC, Flat typeDiameter of segmental lining:D 0=11mRadius of centroid of segmental lining: Rc=5275mm Width of segment: b=1500mm Thickness of segment: t=450mm 2.2 Ground Condition Overburden: H=13.5mGroundwater table: G .L.+0.8m=13.5+0.8=14.3m N Value: N=50 Unit weight of soil: γ=18kN/m3Submerged unit weight of soil: 'γ=8kN/m3 Angle of internal friction of soil:φ=31oCohesion of soil: C=0 kN/m2Coefficient of reaction: k=60MN/m3Coefficient of lateral earth pressure: k=0.4 Surcharge: P 0=35kN/m2 Soil condition: Sandy 3.Design MethodHow to check member forces: (1)Elastic equation method or(2)Bedded frame model(Beam element with elastic support)constant of rotation spring for positive moment at joint=18070 0P K =/kN m rad ⋅ constant of rotation spring for negative moment at joint=32100 0N K =/kN m rad ⋅How to calculate reinforcement for segmental lining: Limit state method(1) Based on the national code GB50010-2002 for reinforcement concrete design. (2) Please choose the grade of concrete and the type of steel rebars.Bolt: yield strength 2240/By f MN m = shear strength 2150/B MN m τ=4. Load conditionDead load:1.526.50.4517.89/c g b t kN m γ==××=where ,c γ=unit weight of RC segment356.5/kN m =Reaction of dead load at bottom:56.20/g p g kN mπ==Vertical pressure at tunnel crown:Earth pressure:10() 1.5(35813.5)214.5/e p b p H kN m γ′=+=×+×=212(1)40.2159.073/2c e c cR p R kN R m πγγ′−′′===Water pressure: 1 1.51014.3214.5/w w w p b H kN m γ==××=1111438.07/e e w p p p p kN m ′=++=Vertical pressure at tunnel bottom:21494.27/g p p p kN m=+=Lateral pressure at tunnel crown:Earth pressure: 10[(/2)]86.88/e q b p H t kN m λγ′=++= Water pressure: 1(/2)217.88/w w w q b H t kN m γ=+=111304.76/e w q q q kN m =+=Lateral pressure at tunnel bottom:Earth pressure: 200[(/2)]137.52/e q b p H D t kN m λγ′=++−= Water pressure: 20(/2)376.12/e w w q b H D t kN m γ=+−=222513.64/e w q q q kN m =+=5. Computation of Member ForceThe member force are computed by software:“同济曙光盾构隧道设计与分析”. 5.1 Model for Computation of Member Force: (see Fig 1 and Fig 2)节点编号 轴力 剪力 弯矩284341.046208.26379.856 304345.904252.43356.807 443723.467-11.597-462.926 424109.798109.61-566.565.2 Result of ComputationAt first we should choose the grade of concrete and the type of steel rebars.C50 concrete(223.1/c f N mm =21.89/t f N mm =25.0/v f N mm =23.454/c E e N m =m ) andHRB335 (2300/y y f f N mm 225/s E e N mm =′==)were used.Table 1 shows the result of computation of member forces of segmentallining.Table 1 Member Forces of Segmental LiningCritical Condition NodeM(kNm)N(kN)2max ()As mm +Max 28 379.856 4341.046 2469.847 Segment-Max 42 -566.56 4109.798 3240.67330 356.807 4345.904+Max28(*0.6) 227.9136 4341.046 2469.847 44 -462.9263723.4674528.443Joint-Max 42(*0.6) -339.936 4109.798max S max 573.221S kN38=Computer the As with Excel:NUM M Nc e0 ei kesi1kesi2aita1 379.856 4341.046 87.50333107.5033 1.32 566.56 4109.798 137.8559157.8559 1.3 3 356.807 4345.904 82.10191102.1019 1.3 4 227.9136 4341.046 52.50272.502 1.35 462.926 3723.467 124.3266144.3266 1.3 6 339.936 4109.798 82.71355102.7136 1.3Large Eccentric Compression ho=400mm aita*ei-0.3ho e kesi B x=kesiB*ho As' As 1.277543348 314.7543 0.550.22-8041.022469.847 1.93212701 380.2127 0.550.22-6172.123240.673 1.207324773 307.7325 0.550.22-8317.092453.653 0.822526009 269.2526 0.550.22-9922.212469.8471.756245827362.62460.550.22-8194.764528.4431.215276206308.52760.550.22-8977.943240.673In case the safety of the joint is checked, the bigger moment of the maximum moment of the joint, and 60% of the maximum moment of the segment is adopted.Fig 3 shows the arrangement of bars in the segment and bolted joint.6. Check the Safety of Segmental Lining6.1 Check against shear forcemax 0/(0.7)573.2211000/(0.7 1.50.4)1.365 5.0v S bh Mpa f Mpaτ==××=<=×mwhere max 0573.221, 1.5,0.4S kN b m h ===5.0v f Mpa = is the shear strength of concrete.6.2 Check of bolt6.2.1 Check of bolt between A-type segments and between A-type segment and B-type segmentmax 1/()115.8150BP S n A Mpa Mpa τ==<wheremax S =Maximum shear force among joints=shear force at Node 38=573.221 kN 1n = Number of bolts = 7,BP A = Area of one bolt (M30) = 706.9 2mm6.2.2 Check of fall of K-type segment (Fig.4)2111(,/)/292.05/b W Max p p b p b kN mm === whereb p =Pressure of backfill grouting /1.5=20/kN mm12(/360)726.00B c S R W b kN πθ=×××=23/()57.3150B BP BR S n A n A Mpa Mpa τ=+=<OKWhere =Number of bolts=14, = Number of bolts=2, 2n 3n BR A = Area of one bolt (M42) = 1385.4 2mm 6.2.3 Check of fall of segmental ring (Fig.5)10225150.26c W W R b R g kN π=×××+×××= where102W R ×××b =Force acting one segmental ringby pressure of backfill grouting2c R g π×××=Weight of one segmental ring4/(2)132.8150BR W n A Mpa Mpa τ==<OK.。
Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground
Three-dimensional numerical simulation of a mechanized twin tunnels in softgroundNgoc-Anh Do a ,d ,Daniel Dias b ,⇑,Pierpaolo Oreste c ,Irini Djeran-Maigre aaUniversity of Lyon,INSA of Lyon,Laboratory LGCIE,Villeurbanne,France bGrenoble Alpes University,Laboratory LTHE,Grenoble,France cPolitecnico of Torino,Department of Environmental,Land and Infrastructural Engineering,Italy dHanoi University of Mining and Geology,Department of Underground and Mining Construction,Faculty of Civil Engineering,Hanoi,Viet Nama r t i c l e i n f o Article history:Received 8April 2013Received in revised form 15January 2014Accepted 2February 2014Available online 25February 2014Keywords:Numerical modelling Twin tunnelSegmental lining Lining response Settlementa b s t r a c tThe increase in transportation in large cities makes it necessary to construct of twin tunnels at shallow depths.Thus,the prediction of the influence of a new tunnel construction on an already existing one plays a key role in the optimal design and construction of close parallel shield tunnels in order to avoid any damage to the existing tunnel during and after excavation of the new tunnel.Most of the reported cases in the literature on parallel mechanized excavation of twin tunnels have focused on the effects of the ground condition,tunnel size,tunnel depth,surface loads,and relative posi-tion between the two tunnels on tunnel behaviour.The numerical investigation performed in this study,using the FLAC 3D finite difference element programme,has made it possible to include the influence of the construction process between the two tunnels.The structural forces induced in both tunnels and the development of the displacement field in the surrounding ground have been highlighted.The results of the numerical analysis have indicated a great impact of a new tunnel construction on an existing tunnel.The influence of the lagged distance between the two tunnels faces has also been high-lighted.Generally,the simultaneous excavation of twin tunnels causes smaller structural forces and lin-ing displacements than those induced in the case of twin tunnels excavated at a large lagged distance.However,the simultaneous excavation of twin tunnels could result in a higher settlement above the two tunnels.Ó2014Elsevier Ltd.All rights reserved.1.IntroductionIn recent years,many tunnels have been built in urban environ-ments;this often involves the construction of twin tunnels in close proximity to each other.In addition,in many cases,the new tunnel is often excavated adjacent to an already existing one.Thus,the prediction of the influence of new shield tunnel construction on the existing tunnel plays a key role in the optimal design and construction of close parallel shield tunnels in order to avoid any damage to the existing tunnel during and after excavation of the new tunnel.Interactions between closely-spaced tunnels were studied in the past using a variety of approaches:physical model testing,field observations,empirical/analytical methods and finite element modelling.Kim et al.(1996,1998)performed physical tests to investigate the response of the first tunnel lining on the approaching of the second shield.The results of their model tests showed that the interaction effects are greater in the spring line and crown of the existing tunnel.Chapman et al.(2007)described results from a series of small-scale (1/50)laboratory model tests carried out in a kaolin clay which focused on studying the short-term ground movements associated with closely spaced multiple tunnels.The influence of tunnel distance,tunnel depth and tunnel number were highlighted.The results showed asymmetrical settlement troughs,greater settlement above the second of the twin tunnels con-structed.Their study also demonstrated that the commonly used semi-empirical method to predict the short-term settlement above twin tunnels,using the summation of Gaussian curves,can give inaccurate results.In the study by Choi and Lee (2010),the influ-ence of the size of an existing tunnel,the distance between tunnel centres and the lateral earth pressure factor on mechanical behav-iour of the existing and new tunnels was investigated by quantify-ing the displacement and crack propagation during the excavation/10.1016/j.tust.2014.02.0010886-7798/Ó2014Elsevier Ltd.All rights reserved.⇑Corresponding author.Tel.:+33476635135;fax:+33476825286.E-mail address:daniel.dias@ujf-grenoble.fr (D.Dias).of a new tunnel constructed near an existing tunnel.A series of experimental model tests was performed and analysed.It was found that the displacements decreased and stabilized as the dis-tance between the tunnel centres increased,depending on the size of the existing tunnel.Suwansawat and Einstein(2007)introduced interestingfield measurement results on ground movements induced by parallel EPB tunnels excavated in soft ground in Bangkok.They showed that the operational parameters,such as face pressure,penetration rate,grouting pressure andfilling,have significant effects on the maximum settlement and extent of the settlement trough.They also showed that the maximum settlement for twin tunnels is not usually located over the midpoint between the two tunnels and that the settlement trough is often asymmetric.Chen et al.(2011)presentedfield measurements conducted on parallel tunnels using EPB shields in silty soil.Their results showed a great dependence of the ground movements on the distance be-tween the second tunnel face and the monitored section.They also indicated that the two settlement troughs caused by the construc-tion of thefirst and the second tunnel had similar shapes.However, the second tunnel trough was shallower and wider than that of the first tunnel.Thefirst tunnel made the symmetric axis of thefinal trough of the parallel tunnels incline towards thefirst tunnel.In the study by Ocak(2012),thirty longitudinal monitoring sections, obtained through EPB tunnelling,were used to determine the interactions of the longitudinal surface settlement profiles in shal-low twin tunnels.He et al.(2012)carried outfield and model tests, based on Chengdu Metro Line1in China,to study the surface set-tlement caused by twin parallel shield tunnelling in sandy cobble strata.The surface settlement mechanism and the effect of tunnel distance on the surface settlement were also studied using the dis-crete element method(DEM).They showed that when the spacing between two tunnels is higher than twice the tunnel diameter,an independent collapsed arch can form.However,in any of the above studies,the resulting structural forces induced in the tunnel lining were not mentioned.Field observations remain the key to understanding the interac-tion between adjacent tunnels.Unfortunately,however,field data are often incomplete.It is clear that model testing can only be used to study limited interaction behaviour.Empirical and analytical methods,using the superposition technique(e.g.Wang et al., 2003;Hunt,2005;Suwansawat and Einstein,2007;Yang and Wang,2011),have been used on the basis of the prediction of each individual excavation in order to obtain thefinal accumulated set-tlement trough.Generally,superposition method cannot take into account rigorously the effect of an existing tunnel and the repeated unloading of the ground caused by the previous excavation of the first tunnel and,therefore,the settlement curves do not represent thefinal displacement very well(Divall et al.,2012).Furthermore, empirical and analytical methods also introduce drawbacks for those cases in which complex geological conditions(e.g.multilayer strata)are expected.The use of afinite element model seems to be a promising way of addressing this issue.Leca(1989),Addenbrooke and Potts(1996),Yamaguchi et al. (1998),Sagaseta et al.(1999),Hefny et al.(2004),Ng et al. (2004),Karakus et al.(2007),Hage Chehade and Shahrour(2008), Afifipour et al.(2011),Chakeri et al.(2011),Ercelebi et al.(2011), Mirhabibi and Soroush(2012),Hasanpour et al.(2012)have all car-ried out numerical analysis of this interaction problem.Most of these studies focused on considering the effect of the ground con-dition,tunnel size,tunnel depth,surface loads,and relative posi-tion between two tunnels on the surface settlement.Their results were similar in that the influence of the second tunnel on the pre-viously installed lining of thefirst one has been shown to depend on the relative position of the tunnel and on the spacing between the two tunnels.The literature reviewed above clearly indicates that an exten-sive amount of research has been conducted on tunnel interactions between parallel tunnels.Most of this research has focused on the influence of twin tunnels on ground deformation.However,less work has been devoted to the influence of the interaction between tunnels on the structural forces induced in a tunnel lining.Ng et al.(2004)performed a series of three dimensional(3D) numerical simulations to investigate the interactions between two parallel noncircular tunnels constructed using the new Austrian tunnelling method(NATM).Special attention was paid to the influence of the lagged distance between the excavated faces of the twin tunnels(L F)and the load-transfer mechanism between the two tunnels.It was found that L F has a greater influence on the horizontal movement than on the vertical movement of each tunnel and that the magnitude of the maximum settlement is inde-pendent of L F.They showed that the distributions of the bending moment induced in the tunnel lining are similar in shape,but different in magnitude in the two tunnels.In the study by Liu et al.(2008),the effect of tunnelling on the existing support system(i.e.shotcrete lining and rock bolts)of an adjacent tunnel was investigated through full3Dfinite element calculations,coupled with an elasto-plastic material model.It was concluded that the driving of a new tunnel significantly af-fects the existing support system when the advancing tunnel face passes the existing support system and has less effect when the face is far from the system.It was also pointed out that the effects of tunnelling on the existing support system depend to a great extent on the relative position between the existing and new tunnels.In order to investigate the influence of new shield tunnel exca-vation on the internal forces and deformations in the lining of an existing tunnel,Li et al.(2010)presented a series of3D numerical simulations of the interaction between two parallel shield tunnels and parametric analyses.Unfortunately,the existence of the joints in the segmental lining,the construction loads induced during shield tunnelling,such as face pressure,jacking force, grouting pressure,were not simulated in this numerical model. The impact of the new tunnel excavation on the existing tunnel during the advancement of the new tunnel was not considered either.The purpose of a numerical mechanized tunnelling(TBM) model is to take into consideration the large number of processes that take place during tunnel excavation.In order to conduct a rigorous analysis,a3D numerical model should be used.Obviously, there is not a full3D numerical simulation for mechanized twin tunnels in soft ground that allows both ground displacement and structural lining forces to be taken into consideration.The main purpose of this study was to provide a full3D model which would allow the behaviour of the interaction of mechanized twin tunnels to be evaluated,in terms of structural forces induced in the tunnel lining and ground displacement surrounding the two tunnels.Most of the main elements of a mechanized excavation can be simulated in this model:the conical geometry of the shield, the face pressure,the circumferential pressure acting on the cylin-drical surface of the excavated ground in the working chamber be-hind the tunnel face,the circumferential pressure caused by the migration of the grout acting on the excavated ground at the shield tail,the grouting pressure acting simultaneously on the excavated ground and on the tunnel structure behind the shield tail,progres-sive hardening of the grout,the jacking force,the weight of the shield machine,the weight of the back-up train behind the shield machine and the lining joint pattern,including the segment joints, the ring joints and their connection condition.The CYsoil model, which is a strain hardening constitutive model,has been adopted. The Bologna–Florence high speed railway line has been adopted in this study as a reference case.N.-A.Do et al./Tunnelling and Underground Space Technology42(2014)40–51412.Numerical model2.1.Three-dimensional numerical modelThe numerical model,the 3D simulation procedure of a single tunnel and the parameter calibration of the CY soil model were described in Do et al.(2013a).Therefore,only a short overview is given here.However,the numerical model introduced by Do et al.(2013a)has been improved and some other components of the tunnelling process have been simulated in the present study.It includes the weight of the shield machine and the weight of the back-up train behind the shield machine.The tunnel construction process is modelled using a step-by-step approach.Each excavation step corresponds to an advance-ment of the tunnel face of 1.5m,which is equal to the width of a lining ring.A schematic view of the present model is provided in Fig.1.Face pressure has been estimated depending on the horizontal stress induced in the ground in front of the tunnel face (Mollon et al.,2013).This face pressure has been modelled by applying a pressure distribution to the excavation face using a trapezoidal profile in order to account for the slurry density.Owing a slight overcutting,a possible slurry migration could occur over a short distance behind the cutting wheel.Therefore,in addition to the pressure acting on the tunnel face,a pressure,caused by the slurry solution,has also been applied to the cylindrical surface just be-hind the tunnel face.The shield machine has been simulated using ‘‘fictive’’shield introduced by Mollon et al.(2013),Dias et al.(2000)and Jenck and Dias (2004).The geometrical parameters of the shield are presented in Fig.1.The self-weight of the shield is simulated through the vertical loads acting on the grid points of the ground mesh at the tunnel bottom region over an assumed range of 90°in the cross-section and over the whole shield length,as can be seen in Figs.1and 2.In this study,a shield weight value of 6000kN,which refers to a tunnel diameter of 9.4m (JSCE,1996),has been adopted.The distribution of the jacking force has been assumed to be lin-ear over the height of the tunnel.The jacking forces were set on each segment,considering three plates located at 1/6,1/2,and 5/6of the segment length.A total jacking force of about 40MN was adopted in the present model on the basis of the theoretical method proposed by Rijke (2006).The grouting action is modelled in two phases:(1)the liquid state (state 1)represented by a certain pressure acting on theground surface and on the tunnel lining;(2)the solid state (state 2).The distributional radial pressure has been used to simulate this kind of pressure.The grouting pressure has been estimated depending on the ground overburden pressure at the crown of each tunnel (Mollon et al.,2013).The grout was simulated by adopting a uniform pressure which was applied to both the cylin-drical surface of the excavated ground and the external surface of the tunnel lining.As for the face pressure,the annular void be-tween the outside surface of the shield and the excavated ground made the migration of some grout towards the shield possible.This migration was simulated by means of a triangular pressure over the length of one ring (1.5m).The grout was assumed to harden beyond this length and was simulated by means of volume ele-ments with perfect elastic behaviour,and with the elastic charac-teristics E grout =10MPa and m grout =0.22(Mollon et al.,2013).In the present model,the tunnel segments have been modelled using a linear-elastic embedded liner element.The segment joints have been simulated using double node connections.The stiffness characteristics of the joint connection have been represented by a set composed of a rotational spring (K h ),an axial spring (K A )and a radial spring (K R )(Do et al.,2013a,2013b ).In the same way as for the segment joint,the ring joint has also been simulated using double connections.In this study,the rigidity characteristics of the ring joint connection have been represented by a set composed of a rotational spring (K h R ),an axial spring (K AR )and a radial spring (K RR ).The interaction mechanism of each spring is the same as that applied for a segment joint.Once the TBM back-up train enters the excavated tunnels dur-ing the excavation process,it is necessary to take its self-weight into consideration.In a study performed by Lambrughi et al.F a c e p r e s s u r eShieldCutting wheelSegmental liningFresh groutHardened groutGrouting pressure Jacking force1.5m 1.5m7.5m1.5m1.5m1.5cm2.5cm 12.5cm9.1mShield weightBack-up train weightyout of the proposed TBM model (not scaled).42N.-A.Do et al./Tunnelling and Underground Space Technology 42(2014)40–51(2012),this weight was simulated by artificially increasing the density value of the concrete lining.Kasper and Meschke(2004, 2006)instead modelled the back-up train using an assumed load-ing scheme along the tunnel axis.In the present study,a total weight of3980kN for the back-up train has been simulated through the distribution loads which act on the lining elements at the tunnel bottom region over an assumed angle of90°in the cross-section and over a tunnel length of72m behind the shield tail(Kasper and Meschke,2004)(see Fig.1).2.2.Simulation procedure of mechanized twin tunnelsThe twin tunnel excavation sequence was modelled as follows: (i)excavation of thefirst tunnel(left);(ii)excavation of the second tunnel(right)with a lagged distance L F behind the face of thefirst tunnel.The plan view and typical cross section of the twin tunnel excavation procedure is illustrated in Figs.3and4.In this work,two different lagged distances(i.e.,L F=0D and 10D)that correspond to L F=0and7.875L S,in which L S is the shield length(L S=12m in the present model),between the tunnel on the left and the one on the right have been adopted and analysed.The case of L F=0D corresponds to the situation in which two tunnel faces are excavated simultaneously in parallel.The case of L F=10D means that the second(new)tunnel is excavated when the lining structure behaviour and ground displacement caused by thefirst(existing)tunnel excavation appear to have reached a steady state.The latter case usually occurs in reality.The twin tun-nels in the Bologna–Florence railway line project presented in this paper is a typical example.In fact,the distance between the two tunnels in the Bologna–Florence railway line project is15m (Croce,2011).However,in order to highlight the influence of the excavation process of a new tunnel on an existing tunnel,a dis-tance from centre to centre of11.75m(1.25D)has been adopted in this study.A full model of the twin tunnels considering a height of60m and a width of131.75m has been adopted.The mesh length of the model is equal to120m.The nodes at all the sides of the model werefixed in the horizontal directions on the x–z and y–z planes (i.e.y=0,y=120,x=À71.75and x=60),while the nodes at the base of the model(z=À40)werefixed in the vertical(z)direction. The perspective view of the developed numerical model,which is composed of around1,100,000grid points and900,000zones,is presented in Fig.5.The positions of the segment joints in each ring are presented in Table1.Finally,it should be mentioned that the average time nec-essary for one calculation is approximately340h when a2.67GHz core i7CPU ram24G computer is used.3.Numerical results and discussionIn order to understand the behaviour of twin tunnels during the excavation process of the new tunnel(right),this section presents variations in the structural lining forces induced in the existingMeasured ring (30) First tunnel (left)Second tunnel (right)Tunnel faceY MSTunnelling directionyx ShieldSegmental lining BL FL SL S ShieldFig.3.Plan view of the twin tunnels(not scaled).Fig.5.Perspective view of the developed numerical model introduced into FLAC3D.N.-A.Do et al./Tunnelling and Underground Space Technology42(2014)40–5143the ground displacement duringstructural forces in the newbeen extracted at the sectionwhich hereafter is called the measured negligible at this section.In Figs.7–9,11and13,and Table2,the Y MS value presents the distance from the new tunnel face(right) to the measured section.In Figs.10,12and14,and Table3,the Y FT value presents the distance from the faces of the two tunnels, which are excavated simultaneously,to the measured section.In Tables2–4,the R values present the ratios between the results ob-tained in the case of twin tunnels with L F=0D or10D and the cor-responding one obtained in the case of a single tunnel.The influence of the tunnel length advancement on the mea-sured lining ring(ring30)has been evaluated for a single tunnel, which corresponds to the tunnel construction on the left before interacting with the tunnel on the right,considering the instanta-neous variation in structural forces between two successive steps (Do et al.,2013a).The numerical results show that the instanta-neous variation in the structural force induced in the measured lin-ing ring between two excavation steps,which correspond to the installation of rings54and55,is approximately zero.This means that the structural forces determined at this excavation step canRing 1Ring 2Fig.6.Considered lining models.Table1Location of the segment joints in a ring h(degree)(measured counter clockwise fromthe right spring line)(see Fig.6).Joint location0;60;120;30;90;Fig.7.Surface settlements above the twin tunnels.44N.-A.Do et al./Tunnelling and Underground Space Technology42(2014)40–51Fig.7a shows the development of the surface settlement trough in the transverse section during the face advancement of the new tunnel on the right in the case of L F =10D.This figure shows that the twin tunnels cause an increase in the surface settlement.This could be explained by the accumulated loss of the ground in both two tunnels.In the considered case,the maximum settlementmeasured above the twin tunnels is 47.4%higher than that devel-oped above a single tunnel.In addition,the settlement profile is asymmetric.This means that the maximum settlement is not located over the mid-point between the two tunnels.During the new tunnel advancement (right),the settlement trough shifts gradually from the left to the right.An asymmetric profile of the settlement trough has also been observed through field measure-ments obtained at shield tunnelling sites (Suwansawat and Einstein,2007;Chen et al.,2011),analytical results using the superposition technique (Suwansawat and Einstein,2007)and laboratory model tests (Chapman et al.,2006;2007).Fig.7b shows that the two settlement troughs caused by the construction of the tunnels on the left and right have a similar shape.The settlement trough above the new tunnel (right)is deter-mined on the basic of the final settlement trough of the twin tun-nels minus the one developed above the existing tunnel (left)before it interacts with the new tunnel.However,the settlement trough caused by the excavation of the new tunnel is shallower and wider than the one caused by the existing tunnel.These con-clusions are in good agreement with field observations made by Chen et al.(2011),and He et al.(2012)during the excavation of twin tunnels through respectively silty and sandy soil.The volume loss ratios,determined at the final state as the ratio of settlement trough area developed on the ground surface to the cross-section area of the tunnel,of the existing tunnel and new tunnel are sim-ilar and equal to about 0.92%and 0.79%,respectively,and the total volume loss above the twin tunnels is equal to 1.71%.Above result are however different from the laboratory results obtained from the work of Chapman et al.(2007)conducted in clay.Their work showed a greater settlement above the second tunnel.This differ-ence could be attributed to the influence of the soil type or due to the undrained behaviour of soils.Fig.7b also presents a comparison of the final settlement troughs for the different construction procedures (L F =0D and 10D).The maximum settlement above the twin tunnels of about 43.8mm (0.47%D)(Table 4)and the volume loss ratio of 1.81%are observed in the L F =0D case.These results are 109%and 106%higher than the corresponding ones for the L F =10D case.However,the widths of the settlement troughs are similar in both cases.InFig.8.Horizontal displacements between the twin tunnels,for the L F =10D case.Fig.9.Normal displacement in measured lining ring 30of the existing (left)tunnel,for the L F =10D case.displacement in measured lining ring 30of the tunnel case.Space Technology 42(2014)40–5145addition,as expected for the L F=0D case,the settlement troughs that develop during tunnel face advancement are always symmet-rical over the two tunnels.3.2.Horizontal ground displacementThe variations in the horizontal displacement along the PC axis, which is located at the centreline of the two tunnels,during the advancement of the single tunnel on the left are shown in Fig.8a.First,the soil mass between the tunnel crown and the in-vert moves outwards due to the thrust effects of the face pressure in the working chamber.Then,the ground moves toward the tun-nel,due to the convergence displacement over the length of shield. The ground again moves outward at the shield tail,due to the ac-tion of the grouting pressure.These outward movements continue until the steady state is reached because of the grout consolidation and the low value of lateral earth pressure factor(K0=0.5).The maximum horizontal displacement is about6.0mm(0.064%D)at the ground surface.Fig.8b presents the effect of the advancement of the new tunnel on the right on the lateral displacement of the ground between the two tunnels.When the face of the new tunnel approaches theNormal force and longitudinal force of the existing(left)tunnel lining during the advancement of the new(right)tunnel,for force and longitudinal force of the tunnel lining on the left during the simultaneous advancement of the double tunnel faces, 46N.-A.Do et al./Tunnelling and Underground Space Technology42(2014)40–51measured section,a soil mass movement towards the new tunnel caused by the convergence displacement along the length of the shield of the new tunnel is observed.These movements,whichreach a peak value towards the new tunnel,correspond to the mo-ment in which the shield tail of the new tunnel passes over the measured section (see line Y MS =1.3D from the measured section in Fig.8b).When the shield in the new tunnel passes over the mea-sured section,a ground movement towards the existing tunnel on the left can be observed due to the action of the grouting pressure,the grout consolidation,and the low lateral earth pressure factor value (K 0=0.5).The horizontal displacements at the measured sec-tion appear to have reached a steady state when the face of the new tunnel passes over the measured section at about 49.5m,which corresponds to an Y MS value of 5.3D.It is necessary to mentioned that,compared to a corresponding 8.05mm (0.86%D)inward movement at the spring line of a single tunnel (see the ‘‘single tunnel on the left’’line in Fig.8b),the twin tunnel construction results in a 42%reduction in lateral movement at the PC axis between the two tunnels.At the final state,the dis-placement of the soil mass zone below the tunnel base is almost zero.On the basis of the above analyses on the surface settlement and lateral displacement,it is reasonable to conclude that,in the region between the two tunnels,the soil mass is subject to more vertical settlements and less horizontal displacements than a sin-gle tunnel.The same conclusion can be found through field obser-vations obtained at a shield tunnelling site (see for example,Chen et al.,2011).For the case of the faces of two tunnels advancing simulta-neously (L F =0D),as expected,the lateral displacements between the two tunnels are equal to zero.Bending moment in measured lining ring 30of the existing 10D case.Table 2Development of the structural forces and deformation in measured ring 30of the existing tunnel (left)and surface settlement during the new tunnel advancement (right)(for the L F =10D case).ParametersSingle tunnel Distance Y MS (m)Tunnel on the right –À1D 0 1.3D 3D 4.5D 5.3D –Max.pos.bending moment (kN m/m)71.982.2162.8348.1343.9347.2348.165.8R M+(%)100.0114.2226.2483.8478.0482.5483.891.5Min.neg.bending moment (kN m/m)À93.8À107.4À279.5À498.1À481.6À481.2À480.6À89.9R M À(%)100.0114.5297.8530.7513.1512.8512.095.8Max.normal force (kN/m)14901598209618591948193119271491R N (%)100.0107.2140.7124.8130.8129.6129.3100.1Max.longitudinal force (kN/m)17451966186117191736180917981667R LN (%)100.0112.7106.698.599.5103.6103.095.5Max.normal displacement (mm) 5.69 6.729.2813.1814.3315.0915.42 5.24R disp+(%)100.0118.2163.1231.8252.0265.3271.292.1Min.normal displacement (mm)À2.78À3.40À5.80À9.86À9.00À8.70À8.65À2.51R disp À(%)100.0122.2208.6354.5323.8312.9310.890.1Max.settlement (mm)À27.4À28.6À31.3À36.4À39.0À39.9À40.3–R set (%)100.0104.4114.5133.0142.6145.9147.4–Table 3Development of the structural forces and deformation in measured ring 30of the tunnel on the left and surface settlement during the simultaneous advancement of twin tunnels (for the L F =0D case).ParametersSingle tunnel Distance Y FT (m)–1.3D2.55D3.8D 5.3D Max.pos.bending moment (kN m/m)71.919.1101.3108.9109.9R M+(%)100.026.5140.8151.3152.7Min.neg.bending moment (kN m/m)À93.8À15.0À85.1À95.6À97.4R M À(%)100.016.090.6101.8103.8Max.normal force (kN/m)14901669171517261730R N (%)100.0112.0115.1115.9116.1Max.longitudinal force (kN/m)17452081165219132057R LN (%)100.0119.294.7109.6117.8Max.normal displacement (mm) 5.69 1.77 6.428.649.39R disp+(%)100.031.2112.9151.9165.1Min.normal displacement (mm)À2.78À0.22À3.34À4.41À4.74R disp À(%)100.08.1120.0158.4170.6Max.settlement (mm)À27.4À33.4À40.4À42.8À43.8R set (%)100121.9147.4156.2159.9N.-A.Do et al./Tunnelling and Underground Space Technology 42(2014)40–5147。
盾构设备中英文对照
英文汉语Proportional valve block 流量阀BRAKE VALVE 闸阀DOUBLE PRESTRESS VALVE 流量阀PROPORTIONAL VALVE BLOCK 流量阀VALVE 闸阀VALVE 闸阀BALL VALVE 球阀BALL VALVE W/LEVER/ 球阀Shuttle valve 闸阀BALL VALVE 球阀CHECK VALVE SAE11/2 闸阀VALVE 闸阀BALL VALVE 球阀NOZZLE 喷嘴Proportional valve 流量阀Pressure reducing valve 减压阀PLATE 连接块PLATE 连接块ERECTOR 管片安装机CUTTING WHEEL DRIVE 刀盘主驱动TANK 水箱CYLINDER 液压油缸WAGGON 运输料槽JACK 千斤顶THRUST JACKS UNIT+STROKE MEAS 主推进油缸PLANETARY GEAR 齿轮箱Gear oil cooler 齿轮油冷却器THERMOMETER 0-80 DEGREES C 温度计BALL VALVE 球阀VALVE 闸阀CONTROL BLOCK 接线板PLATE 连接块MECHANICAL DIRECTIONAL CONTROL 方向控制器PRESSURE CONTROL VALVE 流量阀Control block 接线板Slide block 滑动轴承阻挡块Hydraulik block 液压阀组PRESSURE REDUCING VALVE 减压阀Non return valve 止回阀One-way restrictor ZP 闸门DIRECTIONAL CONTROL VALVE 流量阀PRESSURE REDUCING VALVE ZP 流量阀BALL VALVE DN13 球阀BLOCK BALL VALVE 球阀NONRETURN VALVE 止回阀BALL VALVE DN13 球阀PRESSURE TRANSDUCER 压力传感器HYDRAULIC BLOCK 液压阀组BALL VALVE DN13 球阀Control block 接线板Current dividing coil 线圈PRESSURE FUSE 保险融管Pressure Switch with indicatio 压力计SHAFT 连接轴FLOWMETER 流量计INTERLOCK MEANS 管接头COMPRESSED AIR PUMP 压缩空气泵WASHER 垫片CYLINDER HEAD SCREW 螺丝SCREW / M24x360 螺丝WASHER 垫片NUT M24 螺母FILTER 过滤器ROUND CORD 密封圈SCREW / M16x40 螺丝Ventilation filter 过滤器MEASURING DEVICE 测量装置BINDING 扎带DIVE MOTOR PUMP 排液泵SHEET METAL PACKAGE 盾体连接块Erector parts 安装机连接梁RAIL 导轨GATE VALVE 闸阀PRESSURE GAUGE , TYPE 213.53 压力表HEXAGON NUT 螺帽LAMP 灯泡PUMP 冷却泵THRUST JACKS UNIT+STROKE MEAS 推进油缸COMPENSATOR 补偿器SEAL 密封件PLACA DE GOMA 密封件PLUG 销子LOAD SUPPORT 支架SCREW FITTING 管接头SCREW PUMP 螺旋泵HIGH PRESSURE FILTER 过滤器LEVEL CONTROL 水平控制仪Steel tank 水箱SOUND ABSORBER 吸音器PRESSURE GAUGE , TYPE 213.53 压力计REPLENISH-VENTILATION FILTER 通风过滤器GREASE LUBRICATION PUMP UNIT 油脂集中润滑泵GREASE PUMP 200L 油脂泵Pressure switch 压力计COUPLING 管接头PIPE 钢管SLEEVE COUPLING 套筒T-PIECE T型块O-Ring O型圈REGULATION SYSTEM 气体调节系统FLANGE 法兰WELDING NECK 焊接用连杆FLANGE 法兰LIFTING DEVICE 起吊葫芦PRESSURE TRANSDUCER 压力传感器SHAFT SUPPORT 支架CONTROL 电力控制器GASKET 密封圈SWITCH 压力传感器cranking 7,5 kw 压力传感器SPHERICAL PLAIN BEARING 滚珠轴承INSTALLATION 安装FLANGE 法兰PIPE BEND 管接头WELDING NECK 焊接用连杆WELDING NECK 焊接用连杆HOSE 液压管COVER 盖板RING 环片FIXTURE 支座FIXTURE 支座SLIDE BEARING 滑动轴承Bearings 滚珠轴承MESH PLATFORM 防滑平台GASKET 密封圈DISTRIBUTOR 分配器GATE VALVE 闸阀CLAMP 锁紧接头THIMBLE 套管CHAIN 链条LOAD CELL 支座HOUSING 支座AMPLIFIER 沙浆座MODULE 支座HIGH PRESSURE CLEANER 高压水喷头Back flow prevention 止回阀CLAMP 锁紧接头PLAIN SLIDE VALVE FLANGE PN16 法兰MOTOR 液压马达HYDRAULIC AGGREGATE 液压阀组Hydraulic hand pump 液压手泵DIRECTIONAL CONTROL VALVE 方向阀One-way restrictor ZP 闸门RETURN VALVE 回流阀BLOCK BALL VALVE 球阀HYDRAULIC FITTING FEMALE 液压接头HYDRAULIC FITTING MALE 液压接头Pressure transducer 压力传感器Ball valve with pneumatic driv 球阀WIRE BRUSH SEAL 盾尾密封刷RAIL 支座HEAT EXCHANGER 热交换器Bend 90degree 弯头ANGLE 角接头Short bend 90 degree 弯头T-PIECE T型块NIPPLE 喷嘴Counter bearing 沙浆箱轴承Drive bearing 沙浆箱驱动轴承ANGLE 角接头ELLBOW 90°弯头BRACKET 连接件MAIN DISTRIBUTION 2 电力分配柜EQUIPMENT 电力分配柜DRUM 电缆卷筒HOSE 软管THRUST JACKS UNIT+STROKE MEAS 液压阀组SCREW COMPRESSOR 螺杆式空气压缩机WATER UNIT 水冷却单元Level control with water flush 水平控制仪Back flow prevention 止回阀PRESSURE GAUGE 压力计CAPASITIVE ROPEPROBE 14 M 连接软管SENSOR 感应器FIXTURE 支座GRATING 隔栅PLANETARY GEAR 推进齿轮PRESSURE TRANSDUCER 压力传感器REDUCING FITTING 管接头CLAMPING JAW 锁紧接头CONDUCT 导管Electric cable 电缆CONDUCT 套管Cable 电缆PLANETARY GEAR 推进齿轮LEVEL CONTROL 水平控制仪SOUND ABSORBER 吸音器BRAKE 闸门SAFESET 安全套件Bolt dynamometer 螺旋测力计THREADED ROD 螺纹连杆SAFETY-BUMPER 缓冲器NCADESCENT LAMP 白炽灯CABLE CHANNEL 电缆槽STEEL TUBE 圆钢CLAMPING JAW 锁紧接头EQUIPMENT 电力分配柜WASHER HV 垫片wdl730222zhx2008-02-25 08:42CAMERA 摄像头WELDING NECK 焊接用连杆MESH PLATFORM 防滑平台TEMPLATE 模板PLUG 销子COVER 盖板SWITCH 开关cranking 7,5 kw 发动机CHAIN 链条THIMBLE 套管CLAMP 锁紧接头GASKET 密封圈SCREW FITTING 管接头Press fittings 管接头PLACA DE GOMA 连接片Sound absorber 吸音器THERMOMETER 温度计CLOCK 钟NON RETURN VALVE 止回阀Axial full bevel nozzle 喷嘴Heating installation 加热器Heating installation 加热器BAND RECORDER DUAL 计录器LOCK 锁AGITATOR 鼓风机/搅拌机FEED PUMP 泵Pump 泵Directional solenoid valve DN5 方向阀Pressure reducer 减压器FLOWMETER 流量计AGGREGATE 液体泵站FIXING DEVICE 固定件ERECTOR HEAD 管片安装机机头ATTACHMENT 连接器TRANSFORMER 压力传感器WIRE BRUSH SEAL 盾尾密封刷VENTILATOR 通风机Rope measuring probe housing 支座SPRING 弹簧SPHERICAL DISK 连接球CAP 螺帽Compound slide 连接滑块SCREW FITTING 管接头CONNECTOR 继电器HYDRAULIC FEEDER 进料器GATE VALVE 门阀TERMINAL BLOCK 终端阀组SHACKLE 挂钩CLAMP 锁紧接头HIGH PRESSURE CLEANER 高压水枪头Bolt dynamometer 螺旋测力计BELT 输送带WIRE BRUSH SEAL 盾尾密封刷REVOLVING JOINT 主旋转接头CONSOLE 控制台FREQUENCY CONVERTER 变频器MAIN DISTRIBUTION 1 电力分配柜HIGH CONSISTENCY PUMP 排液泵Control Block 液压阀组HIGH CONSISTENCY PUMP 排液泵HYDRAULIC FEEDER 喂料器T-BLOCK T型块VENTILATOR 通风机CURRENT DIVIDING COIL 线圈MEASURING DEVICE 测量仪BUFFER 垫片Grease carton - slurry pump 泥浆泵WAGGON 输送料槽JACK 千斤顶CHANGING MAGAZINE 储管器CONTROL CABIN 电力控制柜Suction filter 过滤器STOP GATE DN80 闸门LEVEL CHECK 水平测量仪CONSOLE 控制台REDUCTION 减压器DIFFUSER 扩散器Rope clamp system 缆绳锁紧单元DIFFUSER 蓄能器CHANGING MAGAZINE 储管器Electric motor 电动马达DAMPING RAIL 缓冲槽variable displacement pump 排液泵O-Ring O型圈PROXIMITY SWITCH 接近开关LUBRICATING NIPPLE 喷嘴ROLLER 滚筒FREQUENCY CONVERTER 变频器CONNECTOR 继电器TERMINAL BLOCK 终端阀组BULKHAED GATE 盾体闸门FLUORESCENT LAMP 荧光灯SLIDE BEARING 滑动轴承BAND 带子HEMP 带子FERMIT CAN 油漆Paint brush 油刷FORK-SHAPED PIECE连接块BELT 输送带Telephone 紧急电话wdl730222zhx2008-02-25 08:42WELDING NECK 焊接用连杆BUSH 衬套STICKER 标签Housing 刀箱T-PIECE T型块CABLE SOCKET 电缆插座SLIDE BEARING 滑动轴承SCREW TENSION CYLINDER M64 M64螺栓拉伸油缸HIGH PRESSURE POWER PACK 高压动力包HIGH PRESSURE HOSE 1600Bar高压油缸HIGH POWER AGGREGATE G20 G20高压泵站INSERT FOR SCREW DRIVER SW 65 SW65套筒INSERT FOR SCREW DRIVER SW 55 SW55套筒POWER SCREW DRIVER HYDRAULIC 液压动力扳手HIGH PRESSURE HOSE 高压油管DISPLACEMENT CYLINDER 移位液压油缸AGGREGAT 液压泵站CONTAINER 20" 20"集装箱SHIELD 盾体INSTALLATION THRUST JACKS 推进千斤顶THRUST JACKS UNIT+STROKE MEAS 推进系统+THRUST CYLINDER 推进油缸CUTTINGWHEEL DRIVE 刀盘驱动SEAL 密封PLANETGEAR 行星齿轮箱MOTOR WATER COOLED 马达水冷却PINION 小齿轮SEAL 密封ERECTOR 拼装机PLANETARYGEAR 行星齿轮箱DISPLACEMENT MOTOR 变速马达HUDRAULIC SCHEME/GROUT INJECTION 液压回路/注浆回路HIGH CONSISTENCY PUMP 高压泵WATER CIRCUITS S-317 水循环S-317SLURRY CIRCUIT 泥浆回路PUMP 泵BALL VALVE+HYDRAULIC DRIVE 球阀+液压驱动ELECTRIC MOTOR 电动马达PARTICULATE PUMP 小型泵PUMP 泵MOTOR 马达FLANGE BALL VALVE 法兰球阀VACUUM SCHEME 真空装置VACUUMPUMP 真空泵Cutterheadmotor 刀盘马达Hydr.Agitator 液压搅拌机Hydr.Thrust Ram 液压推力缸Hydr.Erector 液压拼装机Circulation pump P-0.1 循环泵Hydr.Grouting 液压注浆Pump Pipe Pig 清洗泵Hydr.Auxiliary 1 液压辅助设备1Pump internal Coolingcircuit 内冷却循环泵Pump Dewatering Coolingwater 抽水泵Pump Water Highpressure 高压水泵Segment Transport Crane 管片起重机Segment Transfer Crane 管片搬运机Road-element crane 道路机Exit reserve 逃出储备sockets 插座Hydr.overcutter 液压超挖刀Pump industrialwater 工业用水泵Pump gearoil 1 齿轮油泵1Hydr.Auxiliary 2 液压辅助设备2Hydr.filtercircuit 液压滤波电路Lubrication pump 润滑油泵Grout tank 1 agitator 浆桶1 搅拌机Mobile Grout tank 1 agitator 移动浆桶1 搅拌机Coolingsystem HV 2 冷却系统HV 2Auxiliary rail crane right 辅助起重机右Duct cassette crane 管盒起重机Pipe extension crane 管子延伸起重机Heating manlock 供热人行闸Hydr.erector emergency 液压拼装机应急事故Drive cable reel 驱动电缆盘Pump vacuum erector 拼装真空泵Drive hose reel 驱动软管卷Officecontainer 办公集装箱Crewcontainer 员工集装箱manlock/working chamber 人行闸/工作室Emergency-dewatering 应急抽水efficiency 效率, 功效powerfactor 功率因数simultaneity 同时发生, 同时Slurry circuits and tunnel belt conveyor 泥水管路及隧道皮带输送机Segment moulds 管片模具Gantry crane 门吊Rolling stock incl. locomotives 运输车包括牵引机车Ventilation equipment 通风系统Transformer station 变压器Separation plant 泥水分离设备Grout mixing equipment 砂浆搅拌设备Cooling systems 冷却系统wdl730222zhx2008-02-25 08:44 Compressed air plants 压缩空气设备Segment design 管片设计OD 外径ID 内径Length 宽度Distribution 布置方式Tunnel gradient 隧道坡度Tunnel length 隧道长度Shield 盾体Front shield diameter 盾体前部直径Rear shield diameter 盾体后部直径TBM steering minimal horizontal radius 最小转弯半径Construction of the front & rear shields 盾体前部、后部结构Pressure wall 压力舱板Submerged wall 隔板Air regulation device 气压调节装置Front gate 前闸门Agitator 搅拌器Tailskin 盾尾Diameter 直径Tailskin type 盾尾类型Tailskin seal system 盾尾密封系统Emergency tailskin seal system 紧急盾尾密封系统Grease lines 油脂管Grouting lines 注浆管Grouting line cleaning system 注浆管清洗系统Air lock 空气闸Man lock 人行闸Number 数量Diameter 直径Type 类型Number persons 容纳人数Norm 标准Operating pressure 工作压力Temporary man lock 临时人行闸Number 数量 1Diameter 直径Length 长度Type 类型Number persons 容纳人员数Norm 标准Operating pressure 操作压力Material lock 材料闸Number 数量Diameter 直径Type 类型Norm 标准Operating pressure 工作压力Cutting wheel (CW) 刀盘Diameter 直径Construction 结构Type 类型Cutting wheel with exchangeable tools from within the arms 刀盘带有可从刀盘臂进行更换的刀具Soft ground tools 软土刀具Wear detection equipment 磨损监测系统Rotary unit 旋转中心接头Direction of rotation 旋转方向Centre conic area flushing 中心锥形体部位冲刷Cutting wheel drive 刀盘驱动Type of main drive 主驱动类型Main bearing type 主轴承类型Max pressure for seal system 密封最高工作压力Electric motor 电机驱动Total electrical power 总功率Nominal torque 额定扭矩Exceptional torque 最大扭矩Breakout torque 脱困扭矩Rotation speed 最大转速Outside diameter of main bearing 柱轴承外径Rotation direction 旋转方向Life time duration main bearing 设计寿命Thrust cylinders 推进油缸Quantity 数量Dimensions of the thrust cylinders 油缸尺寸Quantity of thrust cylinder groups 油缸分区数量Cylinders with stroke measurement system 油缸,带有行程及速度测量装置Support 支撑Working pressure 工作压力Nominal thrust force 额定推力Max. thrust force 最大推力Max. extension speed 最大伸出速度Retraction speed 收回速度Erector CEN Standard 管片拼装机CEN 标准Type 类型Gripping system 抓取系统Degrees of freedom 自由度Rotation 回转角度Rotation speed 回转速度Max segment weight 最大提升管片重量Radio remote control 无线遥控Specific lift for ring building 管片安装专用提升装置Air lock shuttle transportation system in the shield 盾构机内的穿梭气闸运输系统Lifting device 起吊装置Transfer crane 运输吊机Electric installation CEN Standard 电气设备CEN 标准Installed electric power 功率IP rating electric motor 电机保护等级Back-up equipment 后配套设备Tunnel lines 隧道内管线wdl730222zhx2008-02-25 08:45Slurry discharge line 泥浆排出管Slurry feed line 泥浆供应管Industrial water line 工业用水管Compressed air line 压缩空气管HV cable 高压电缆Trailer structure 拖车结构Steel structure trailer 拖车钢结构Segment handling system 管片吊运系统Segment feeder 喂片机Segment crane 管片吊机Grout injection system 注浆系统Grout type 浆液类型Grout pumps 注浆泵Grout injection capacity 注浆泵容量Fixed grout tank 固定砂浆罐Stand by positions 备用活塞Movable tanks 可移动砂浆罐Hydraulic installation 液压设施Working pressure 工作压力Air lock transportation system in the back-up system 后配套系统上的气闸运输系统Place reservation 保留空间Grease station 油脂站Pneumatic grease pump 气动油脂泵Pneumatic grease pump 气动油脂泵Pneumatic grease pump 气动油脂泵Compressed air unit 压缩空气单元On the TBM 在盾构机上Air compressor for compressed air regulation (air cushion) 用于调节压力的压缩空气机(气垫)Air tank 储气罐Breathable air filter devices 呼吸空气过滤设备Industrial water circuit 工业用水系统Cooling circuit 冷却循环系统Cooler type 热交换器类型Internal booster pump 升压泵Discharge booster pump 排出泵Intermediate tank 水箱Dewatering circuit 排水系统Pneumatic pump 气动泵Pneumatic pump for invert cleaning 反向清洗的气动泵Dirty water tank 5m3 污水箱5m3Electric installation 电气设施Primary voltage 输入电压Installed electric power 安装的电器系统电源PLC unit PLC 单元Index of protection 保护等级Control cabin 控制室Sub. distribution panels 次级配电柜Main distribution panels 主配电柜Transformer main drive motor 主驱动电机变压器Transformer back up system 后配套系统变压器Transformer slurry pump P2.1 泥浆泵P2.1变压器Medium voltage switch 中级开关Power factor correction 功率因数补偿Earth leakage relay 接地泄漏继电器Emergency lighting 应急照明Diesel generator 160kVA 柴油发电机160kVAVentilation system 通风系统Secondary ventilation 次级通风系统- Silencer - 消声器- Booster fan - 鼓风机Air duct cassette DN2,800mm 气管存储筒DN2,800mmExtension services 延伸作业HV cable 10kV 高压电缆10kVEarthing cable 接地电缆Signal cable for slurry pumps control, Data acquisition cable (including VMT) 用于泥水泵控制的信号电缆(包括井上井下数据采集、VMT)CCTV optical fibre 用于CCTV信号传输的光缆Cooling water 冷却水Dewatering water 排水管Emergency compressed air 紧急压缩空气Air duct 通风管Personnel facilities 员工设施Storage area 存储区Workshop area 工作区Recreation room 休息室Engineer room 工程师室Infirmary & toilet with washing facilities 医疗设施、洗手间带盥洗装置Slurry circuit installation 泥浆循环设施Slurry flow rate 泥浆流量Main circuit on TBM 在盾构机上的主循环Diameter of Slurry pipe on TBM 盾构机上的泥浆管直径Excavation chamber flushing 开挖舱冲刷Bentonite nozzles lines 膨润土喷注管Bentonite nozzles lines 膨润土喷注管Centre conic area flushing 中心锥形体部位冲刷flushing nozzles 膨润土冲刷喷嘴Flushing pump 冲刷泵Suction grid 入口隔栅By pass in shield 在盾体内的旁通Valves type 阀门类型Flow meter measurement devices 流量测量装置Slurry line pressure sensors 泥水管路压力传感器Density measurement on TBM TBM上的密度测量装置Density measurement in the tunnel 隧道内的密度测量装置wdl730222zhx2008-02-25 08:47Feed booster pump 供应泵Auxiliary equipment 辅助设备CCTV system CCTV-系统Communication system 通讯系统Guidance system 导向系统Tailskin clearance measuring 盾尾间隙测量系统Data logging system 数据采集系统Fire suppression system 灭火系统Gas monitoring system 毒气探测系统THRUST CYLINDER 推进油缸ROTARY TRANSMISSION LEADTHROUGH 回转接头EMERGANCY SEAL 紧急密封ELECTROMOTOR 电马达GEARBOX 齿轮箱PLANETGEAR 行星齿轮箱MOTOR 马达PINION 小齿轮SEAL 密封SEAL 密封RACERING 座圈MAIN BEARING 主轴承INSTALLATION THRUST JACKS 推进油缸回路DISPLACEMENT PUMP 变量泵MOTOR 马达HYDRAULIC SCHEME/ERECTOR 液压图/拼装机DISPLACEMENT PUMP 变量泵VACUUMPUMP 真空泵MOTOR 马达FILTER-/COOLING CIRCUIT 滤清器/冷却回路SCREWPUMP 螺旋泵HEAT EXCHAGER 热交换器HYDRAULIC SCHEME/GROUT INJECTION 液压图/注浆回路GROUTPUMP 注浆泵WATER CIRCUIT 水回路WATER PUMP 水泵SLURRY CIRCUIT 泥浆回路BALL VALVE 球阀SLURRY PUMP 泥浆泵WEEHL 轮子HOUSING 壳子MOTOR 马达GREASE LUBRICATION 油脂润滑PUMP 泵SLURRY PUMP 泥浆泵MOTOR 马达AIRPUMP 空气泵CONTAINER 20" 20"集装箱BRUSH SEAL 盾尾密封刷SEAL SET 密封组DIV.SPARE PARTS SHILD 待定盾体备件BENTONIT NOZZEL 膨润土喷嘴CYLINDER 液压油缸COMPENSATOR 补偿器CUTTINGWHEEL 刀盘CUTTING KNIFE 齿刀BUCKET 铲刀FIXING ELEMENTS 固定用元件SEAL 密封ERECTOR 拼装机VACCUM POMP 真空泵SUPPORT 支撑SEAL 密封HUSK 支架SEAL 密封CYLINDER 油缸LASER 激光工具ENERGY CHAIN 能量链条FILTERELEMENT 滤芯CIRCUITS/NETS 回路INSTALLATION THRUST JACKS 推进千斤顶VALVE 阀TRANSFORMER 传感器FILTERELEMENT 滤芯PROP.VALVE 比例阀VALVE 阀HYDRAULIC SCHEME/CUTTING WHEEL DRIVE 液压图/刀盘驱动VALVE 阀PROP.VALVE 比例阀TRANSFORMER 传感器VALVE 阀PRESSUERE SWITCH 压力开关HYDRAULIC SCHEME/ERECTOR 液压图/拼装机REP. KIT VACUUMPUMP 真空泵修理包REP. KIT VACUUMPUMP 真空泵修理包FILTERELEMENT VAKUUMPUMPE 真空泵滤芯FILTERELEMENT 滤芯PRESSURESWITCH 压力开关PRESSURE GEAUGE 压力表FILTERELEMENT 滤芯VALVE 阀PROP.VALVE 比例阀HYDRAULIC SCHEME/AUXILARY SYSTEMS 液压图/辅助系统MOTOR 马达DISPLACEMENT PUMP 变量泵NON RETURN VALVE 止回阀PRESSUERE SWITCH 压力开关FILTER-/COOLING CIRCUIT 滤清器/冷却回路FILTERELEMENT 滤芯DISPLAY 指示器HYDRAULIC SCHEME/GROUT INJECTION 液压图/注浆系统DISPLACEMENT PUMP 变量泵wdl730222zhx2008-02-25 08:49DISPLACEMENT PUMP 变量泵CYLINDER 液压油缸CYLINDER 液压油缸PISTON 活塞泵TRANSFORMER 传感器WATER HIGH PRESSURE UNIT 高压水系统HIGHPRESSUREAGGREGAT 高压站REP. KIT PUMP 泵修理包REP. KIT AGGREGAT 高压站修理包WEAR KIT PUMP 泵易损件修理包WEAR KIT AGGREGAT 高压站易损件修理包FILTERELEMENT 滤芯TEMP.SWITCH 温度开关PRESSURE SWITCH 压力开关WATER CIRCUIT 水回路HOSE DN150 DN150的管子FLOWMETER 流量计PUMP 泵SLURRY CIRCUIT 泥浆回路FLOWMETER 流量计FLOWMETER 流量计TRANSFORMER 传感器FLOWMETER 流量计BALL VALVE DRIVE 球阀驱动COMPENSATOR 补偿器PUMP 泵PACKING 密封WEEHL 轮子O-RING 密封HOUSING 壳子SEAL 密封HUSK 架子RING 环O-RING 密封环SLURRY PUMP 泥浆泵HUSK 架子PACKING 密封HOUSING 壳子SEALING 密封AIRPUMP 空气泵REP.KIT 修理包SEAL 密封AIRPUMP 空气泵REP.KIT 修理包SEAL SET 密封组件REP.KIT 修理包SEALING PLATE 密封盘HYDRAULIC SCHEME/GROUT INJECTION 液压图/注浆系统TRANSFORMER 传感器VALVE 阀COMPRESSED AIR SCHEME 压缩空气系统REGULATOR 调节器PRESSURE TRANSDUCER MIX 压力传感器PRESSURE RED: VAVE 红色压力阀JOYSTICK 控制器CONTROL LEVER 控制杆POWER SUPPLY 电力供应POWER SUPPLY UNIT 电力供应单元FREQUENCY CONVERTER - INTERFAC 变频器- 界面FREQUENCY CONVERTER 变频器DIGITAL MEASURING DEVICE 数字测量装置ABSOLUT VALUE INDICATOR 绝缘值指示器CARBON MONOXIDE SENSOR 一氧化碳感应塞METHANE SENSOR 甲烷感应塞OXYGEN SENSOR 氧气感应塞COMMUNICATION SYSTEM 通讯系统INTERFACE MODULES 模块PROCESSOR 处理器PERIPHERAL SYSTEM S7-300 外围系统S7-300DIGITAL INPUT SM321 数字输入SM321FRONT PLUG 392 40-POLIG 前塞392 40-POLIGPLUG-PROFIBUS 塞子-PROFIBUSSOFTWARE 软件ANALOG INPUT 模拟输入ANALOG OUTPUT SM332 模拟输出SM332PLUG 塞子COLOUR CAMERA WITH INFRA-RED 红外线彩色像头LEVEL CARD 液位卡ELECTRIC LIGHT BULB 28V/40MA 灯泡28V/40MABUSH BUTTOM 按钮BUSH BUTTOM 按钮PRESSURE SWITCH WITH ML24V 22, ML24V 22压力开关SPHERICAL CAP RED 红色球形盖SPHERICAL CAP GREEN 绿色球形盖SPHERICAL CAP YELLOW 黄色球形盖CONTROL CARD 控制卡DIGITAL CARD 数字卡AMPLYFYING CARD 信号放大卡CONTROL CARD 控制卡SEGMENTFEEDER 管片喂送器CYLINDER 油缸DIV.SPARE PARTS SEGMENTFEEDER 待定管片喂送器备件SEGMENTCRANE 管片吊机GEAR MOTOR 齿轮马达DRIVE MOTOR 驱动马达SPARE PART PACK SEGMENT CRANE 管片吊机备件包DIV.SPARE PARTS 待定备件DIV.SPARE PARTS ERECTORPULT 待定拼装机备件拼装机控制面板SCREW TENSION CYLINDER M42 M42螺栓拉伸油缸SCREW TIGHTENING DEVICE M60 M60螺栓上进装置wdl730222zhx2008-02-25 08:50HIGH PRESSURE POWER PACK 高压动力包HIGH-PRESSURE HOSE 高压油管HIGH PRESSURE HOSE 1600Bar高压油缸HIGH POWER AGGREGATE G20 G20高压泵站HIGH PRESSURE HOSE 高压油管INSERT FOR SCREW DRIVER SW 65 SW65套筒INSERT FOR SCREW DRIVER SW 55 SW55套筒POWER SCREW DRIVER HYDRAULIC 液压动力扳手DISPLACEMENT CYLINDER + AGGREGAT 移位油缸+液压泵站TOOL BOX 工具箱CABLE SHEARS 电缆剪SCREW DRIVER 螺丝刀SOCKET WRENCH SET 12K 12K套筒扳手装置DRILLING MACHINE 钻机GAS SOLDERING IRON SET 气体烙铁TIN 锡罐KALIBRATION DEVICE 校准装置MULTIMETER 万用表PLIERS 钳子TORCH 手电筒TWIST DRILL 螺旋钻INDICATION 指示器FAN 风扇TORQUE WRENCH 扭矩扳手COAL DRILL 煤钻GRINDER 电砂轮Segment data: 管片参数:Outside diameter: 15,000mm 外径: 15,000mmInside diameter 13,700mm 内径: 13,700mmLength 2,000mm 宽度: 2,000mmRing distribution: 9+1 管片分布: 9+1MIX shield with back-up system 混合式盾构机及后配套系统Shield body 盾体segmental steel structure (front and rear shields) 钢结构块(前盾和后盾) pressure wall 压力壁submerged wall (air bubble chamber) 分隔板(气泡调压舱)pressure sensors 土压传感器Access door in the pressure wall 压力舱壁中的进入门Access door in the submerged wall 分隔板中的进入门flange manlock 人闸法兰lange for material lock 材料闸法兰main drive support 主驱动支架agitators Æ 1,900mm 搅拌器Æ 1,900mmfront gate 前闸门protection grid 保护隔条Flushing circuit in the excavation chamber 开挖舱内的冲洗回路19 x triple thrust cylinders 19 x 3个推进油缸Injection points 2” for shield lubrication2”盾体润滑注入点Tailskin 盾尾sandwich type steel structure 夹层“三明治”式钢结构rows of wire brush seal 排密封钢丝刷emergency seal system 紧急密封系统injection pipes for tailskin grease per grease chamber 每个油脂舱盾尾注脂管single grout injection channels for mortar 单液砂浆注入管道Grout and grease pipes are integrated in the tailskin steel structure 注浆管和注脂管集成在盾尾钢结构里Cutting wheel 刀盘spokes star design 星形轮辐设计centre cone to connect the cutting wheel the main drive unit 中心锥用于连接刀盘和主驱动单元with man access to change the tools from within the arms 有人员通道,可以从刀盘臂内进入进行换刀First dress of cutting tools including exchangeable cutting tools, standard cutting tools and standard bucket lips, 初装刀,包括可更换刀具、标准切刀和标准铲刀copy cutter, 仿型刀Center flushing circuit equipment 中心冲刷设备rotary unit DN150mm for bentonite 膨润土旋转单元DN150mmstandard scrapers equipped with wear detection equipment 标准刮刀,带磨损监测装置bucket lips equipped with wear detection equipment 铲刀,带磨损监测装置Main drive including main bearing ø 8m and lubrication system 主驱动,包括主轴承ø 8m 和润滑系统Inner and outer sealing system 内外密封系统Main bearing Æ 8,000mm 主轴承Æ 8,000mmElectric motor 250kW with safe set 电机250kW,带安全单元Planetary gear box 行星齿轮箱Frequency drive units 变频驱动单元Installed power 3,500kW 安装功率3,500kWSegment erector 管片安装机Erector beam 安装机梁Base frame 基架Rotation frame with telescope 伸缩旋转架Traverse with erector head 横梁及安装机头Lift for ring building 管片安装升降系统Erector bearing 安装机轴承remote control (radio) 遥控设备(无线和线控)auxiliary crane for installation of the auxiliary invert segment 辅助吊机,用于安装辅助仰拱块counter weight 平衡块Vacuum gripping device incl. vacuum pump 真空抓取系统,包括真空泵Man lock incl. each 人闸,每个包括Steelwork 钢架Double chamber 两个舱体According to DIN EN 12110 依据DIN EN 12110Pipes and installations 管道和安装设施air lock is equipped with flange 空气闸,有法兰盘Material lock incl. each 材料闸,每个包括Steelwork 钢架Single chamber 单舱体According to DIN EN 12110 依据DIN EN 12110Pipes and installations 管道和安装设施Hydraulic system 液压系统Thrust cylinder hydraulic 推进油缸液压系统Grout pumps hydraulic 砂浆泵液压系统Erector hydraulic 管片安装机液压系统Erector auxiliary hydraulic 管片安装机辅助液压系统Copy cutter hydraulic 仿型刀液压系统wdl730222zhx2008-02-25 08:51 Auxiliary hydraulic (front gate, bentonite nozzles, …)辅助液压系统(前闸门、膨润土喷嘴、….)Filter and cooling circuit 过滤器和冷却回路Electrical equipment 电气设备Transformers 变压器Main and sub distribution 主、副配电柜Lighting and emergency lighting with battery 照明及应急照明系统,备电池Control voltage system 电压控制系统Control cabin with air conditioning device 控制室,带空调设备Earth leakage relay units 接地泄漏继电器Medium voltage switch units 中压开关单元Compensation units 补偿单元Electrical equipment (continue) 电气设备(续)Emergency stops 紧急停止开关PLC configuration S7 incl. USV battery PLC系统S7 ,包括USV 电池HV cable drum incl. 200m HV cable 高压电缆卷筒,包括200m 高压电缆earth cable box 接地电缆盒communication cable drum incl. 200m of communication cable 通讯电缆卷筒,包括200m通讯电缆Secondary ventilation system 二次通风系统booster fan 鼓风扇silencers 消声器air duct cassette w/o air duct 风管盒,不含风管handling device for air duct cassette 风管盒操作设备Back-up gantries and installation: 后配套拖车及装备:gantry 1 running on auxiliary rails 1号拖车,行走于辅助轨道bridge section 连接桥部分gantry 2 running on auxiliary rails 2号拖车,行走于辅助轨道segment feeder running on auxiliary invert segment 喂片机,行走于辅助仰拱块上turning table 转板segment crane 1 管片吊机1segment crane 2 管片吊机2road element crane 箱涵吊机set of cranes to handle the auxiliary rails/ consoles 套吊机设备,用于操作辅助轨道/托架Place reservation for the air lock shuttle transport 预留空气闸穿梭运输的空间grease pump station 油脂泵站grease pump for main drive 主驱动油脂泵grease pump for labyrinth (HBW) 迷宫环油脂泵(HBW)control cabin with air conditioning 控制室,带空调设备Communication system (10 telephones) 通讯系统(10 部电话机)CCTV system incl. 4 cameras CCTV 系统,包含4个摄像机diesel generator 柴油发电机fire fighting equipment 灭火设备gas detection equipment 气体检测设备storage area with shelves 存储区域,含架子storage area for the tunnel pipes 隧道内管子存储区域workshop area with work bench (w/o tools) 工作台(不含工具)操作区域recreation room with air conditioning 休息室,带空调engineer room with air conditioning 工程师办公室,带空调Infirmary & toilet with washing facilities 医务及盥洗室,有清洗设施Auxiliary rails incl. consoles and the invert segment are to be provided by the Buyer. 辅助轨道(包括托架,仰拱块)由买方提供Data acquisition system 数据采集系统industrial PC (located at the surface) with modem 工业计算机(在地面上) ,带调制解调器Screen and messages in Chinese and English languages 显示屏及中英文信息Software (windows, excel, PC anywhere, word) in English 英文软件(windows, excel, PC anywhere, word)Modem to connect to the surface (without telephone cable) 连接到地面的调制解调器(不含电话线)Telephone cable drum 电话电缆卷鼓Guidance system (SLS-T APD) 导向系统(SLS-T APD)laser station 激光站ELS target ELS 电子靶industrial PC (located on the machine) 工业计算机(在机器上)software in English 英文软件data acquisition unit 数据采集单元Pre-calculation of the ring sequence 管片序列预计算Tailskin measurement system 盾尾测量系统Slurry circuit on the TBM TBM上的泥水回路Output 3,000m³/h 输出3,000m³/hset of slurry pipes on the TBM Æ 500mm 套TBM上的泥水管Æ 500mm density measurement system 密度测量系统1 set of valves DN 500mm 1 套阀,DN 500mmby pass in shield 旁通站,在盾体上flow meter devices 流量表booster pump for center flushing 中心冲刷增压泵discharge pump 300 SHG type 排泥泵,型号300 SHGslurry pipes extension system (hose loop) 泥水管延伸系统(胶管回路)Slurry circuit in the tunnel 隧道内的泥水回路Output discharge line : 3,000m³/h 排泥管输出: 3,000m³/hOutput feed line : 2,700m³/h 进泥管输出: 2,700m³/h200m of discharge and feed pipes Æ 600mm 200m 排泥管和进泥管Æ 600mm density measurement system 密度测量装置by pass in shaft 竖井内的旁通pressure sensors installed on the discharge line incl. communication cable 压力传感器,安装在排泥管上,包括通讯电缆discharge pump 300 SHG type incl. transformer and medium switch unit 排泥泵,类型300 SHG,包括变压器和中压开关单元feed pump 14/12 GGG excl. transformer and medium switch unit 进泥泵,14/12 GGG ,不包含变压器和中压开关单元Grout injection system 砂浆注入系统Injection pump KSP 20 注浆泵KSP 20fix tank with agitator 固定砂浆罐,带搅拌器transport tank with agitator 运输罐,带搅拌器control panel 控制面板manual switch to connect the spare lines 人工开关,用来连接备用管线automatic regulation system 自动调节系统grout lines cleaning device 注浆管清洁设备Pipes, measurement devices and installation 管子、测量设备及配备Industrial water circuit 工业水回路Closed type circuit 关闭回路booster pump 增压泵industrial water tank 工业水箱single hose reel 单胶管卷轴Dewatering circuit 排水回路dewatering pump in shield 排水泵,在盾体上dewatering pump in the back up system 排水泵,在后配套上waste water tank 废水箱wdl730222zhx2008-02-25 08:55Compressed air 压缩空气compressed air regulation system (double line / redundant system) 压缩空气调节系统(双管/ 其余系统),用于气泡调节和空气闸操作90kW air compressor 10m3/min. 13 bar 90kW 空压机10m3/min. 13 bar air tank 4m³空气罐4m³pipes and installation 管道设备breathable air installation for 30m³/min. 呼吸空气设备,30m³/min.single hose reel 单胶管卷轴Additional air compressors for air lock operations are to be provided by the Buyer 其余空压机,用于空气闸操作,由买方提供Miscellaneous 其它TBM model 1/20 TBM 模型1/20TBM animation film TBM 多媒体资料First filling 初装油Hydraulic oil 液压油Mechanical grease 机械油脂Special tools 专用工具According to attached list 根据所附清单Standard tools 标准工具According to attached list 根据所附清单Consumables, wear and spare parts packages 消耗材料、易损件和备件According to the attached lists 根据所附清单。
土木工程毕业论文外文翻译--盾构(外文原文+中文翻译)
毕业设计(论文)外文文献翻译院系:土木工程与建筑系年级专业:姓名:学号:附件:盾构SHIELDSSHIELDS【Abstract】A tunnel shield is a structural system, used during the face excavation process. The paper mainly discusses the form and the structure of the shield. Propulsion for the shield is provided by a series of hydraulic jacks installed in the tail of the shield and the shield is widespread used in the underground environment where can not be in long time stable. The main enemy of the shield is ground pressure. Non-uniform ground pressure caused by the steering may act on the skin tends to force the shield off line and grade. And working decks inside the shield enable the miners to excavate the face, drill and load holes.【Keywords】shield hydraulic jacks ground pressure steering working decksA tunnel shield is a structural system, normally constructed of steel, used during the face excavation process. The shield has an outside configuration which matches the tunnel. The shield provides protection for the men and equipment and also furnished initial ground support until structural supports can be installed within the tail section of the shield. The shield also provides a reaction base for the breast-board system used to control face movement. The shield may have either an open or closed bottom. In a closed-bottom shield, the shield structure and skin provide 360-degree ground contact and the weight of the shield rests upon the invert section of the shield skin. The open shield has no bottom section and requires some additional provision is a pair of side drifts driven in advance of shield excavation. Rails or skid tracks are installed within these side drifts to provide bearing support for the shield.Shield length generally varies from1/2 to 3/4 of the tunnel diameter. The front of the shield is generally hooded to so that the top of the shield protrudes forward further than the invert portion which provides additional protection for the men working at the face and also ease pressure on the breast-boards. The steel skin of the shield may varyfrom 1.3 to 10 cm in thickness, depending on the expected ground pressures. The type of steel used in the shield is the subject of many arguments within the tunneling fraternity. Some prefer mild steel in the A36 category because of its ductility and case of welding in the underground environment where precision work is difficult. Others prefer a high-strength steel such as T-1 because of its higher strength/weight ratio. Shield weight may range from 5 to 500 tons. Most of the heaviest shields are found in the former Sovier Union because of their preference for cast-iron in both structural and skin elements.Propulsion for the shield is provided by a series of hydraulic jacks installed in the tail of the shield that thrust against the last steel set that has been installed. The total required thrust will vary with skin area and ground pressure. Several shields have been constructed with total thrust capabilities in excess of 10000 tons. Hydraulic systems are usually self-contained, air-motor powered, and mounted on the shield. Working pressures in the hydraulic system may range from 20-70 Mpa. To resist the thrust of the shield jacks, a horizontal structure member (collar brace) must be installed opposite each jack location and between the flanges of the steel set. In addition, some structural provision must be made for transferring this thrust load into the tunnel walls. Without this provision the thrust will extend through the collar braces to the tunnel portal.An Englishman, Marc Brunel, is credited with inventing the shield. Brunel supposedly got his idea by studying the action of the Teredo navalis, a highly destructive woodworm, when he was working at the Chatham dock yard. In 1818 Brunel obtained an English patent for his rectangular shield which was subsequently uses to construct the first tunnel under the River Thames in London. In 1869 the first circular shield was devised by Barlow and Great Head in London and is referred to as the Great Head-type shield. Later that same year, Beach in New York City produced similar shield. The first use of the circular shield came during 1869 when Barlow and Great Head employed their device in the construction of the 2.1 in diameter Tower Subway under the River Thames. Despite the name of the tunnel, it was used only for pedestrian traffic. Beach also put his circular shield to work in 1869 to construct a demonstration project for a proposed NewYork City subway system. The project consisted of a 2.4 m diameter tunnel, 90 m long, used to experiment with a subway car propelled by air pressure.Here are some tunnels which were built by shield principle.Soft-ground tunneling Some tunnels are driven wholly or mostly through soft material. In very soft ground, little or no blasting is necessary because the material is easily excavated.At first, forepoling was the only method for building tunnels through very soft ground. Forepoles are heavy planks about 1.5 m long and sharpened to a point. They were inserted over the top horizontal bar of the bracing at the face of the tunnel. The forepoles were driven into the ground of the face with an outward inclination. After all the roof poles were driven for about half of their length, a timber was laid across their exposed ends to counter any strain on the outer ends. The forepoles thus provided an extension of the tunnel support, and the face was extended under them. When the ends of the forepoles were reached, new timbering support was added, and the forepoles were driven into the ground for the next advance of the tunneling.The use of compressed air simplified working in soft ground. An airlock was built, though which men and equipment passed, and sufficient air pressure was maintained at the tunnel face to hold the ground firm during excavation until timbering or other support was erected.Another development was the use of hydraulically powered shields behind which cast-iron or steel plates were placed on the circumference of the tunnels. These plates provided sufficient support for the tunnel while the work proceeded, as well as full working space for men in the tunnel.Under water tunneling The most difficult tunneling is that undertaken at considerable depths below a river or other body of water. In such cases, water seeps through porous material or crevices, subjecting the work in progress to the pressure of the water above the tunneling path. When the tunnel is driven through stiff clay, the flow of water may be small enough to be removed by pumping. In more porous ground,compressed air must be used to exclude water. The amount of air pressure that is needed increases as the depth of the tunnel increases below the surface.A circular shield has proved to be most efficient in resisting the pressure of soft ground, so most shield-driven tunnels are circular. The shield once consisted of steel plates and angle supports, with a heavily braced diaphragm across its face. The diaphragm had a number of openings with doors so that workers could excavate material in front of the shield. In a further development, the shield was shoved forward into the silty material of a riverbed, thereby squeezing displaced material through the doors and into the tunnel, from which the muck was removed. The cylindrical shell of the shield may extend several feet in front of the diaphragm to provide a cutting edge. A rear section, called the tail, extends for several feet behind the body of the shield to protect workers. In large shields, an erector arm is used in the rear side of the shield to place the metal support segments along the circumference of the tunnel.The pressure against the forward motion of a shield may exceed 48.8 Mpa. Hydraulic jacks are used to overcome this pressure and advance the shield, producing a pressure of about 245 Mpa on the outside surface of the shield.Shields can be steered by varying the thrust of the jacks from left side to right side or from top to bottom, thus varying the tunnel direction left or right or up or down. The jacks shove against the tunnel lining for each forward shove. The cycle of operation is forward shove, line, muck, and then another forward shove. The shield used about 1955 on the third tube of the Lincoln Tunnel in New York City was 5.5 m long and 9.6 m in diameter. It was moved about 81.2 cm per shove, permitting the fabrication of a 81.2 cm support ring behind it.Cast-iron segments commonly are used in working behind such a shield. They are erected and bolted together in a short time to provide strength and water tightness. In the third tube of the Lincoln Tunnel each segment is 2 m long, 81.2 cm wide, and 35.5 cm thick, and weighs about 1.5 tons. These sections form a ring of 14 segments that are linked together by bolts. The bolts were tightened by hand and then by machine.Immediately after they were in place, the sections were sealed at the joints to ensure permanent water tightness.Shields are most commonly used in ground condition where adequate stand-up time does not exist. The advantage of the shield in this type of ground, in addition to the protection afforded men and equipment , is the time available to install steel ribs, liner plates, or precast concrete segments under the tail segment of the shield before ground pressure and movement become adverse factors.One of the principle problems associated with shield use is steering. Non-uniform ground pressure acting on the skin tends to force the shield off line and grade. This problem is particularly acute with closed bottom shield that do not ride on rails or skid tracks. Steering is accomplished by varying the hydraulic pressure in individual thrust jacks. If the shied is trying to dive, additional pressure on the invert jacks will resist this tendency. It is not unusual to find shield wandering several feet from the required. Although lasers are frequently used to provide continuous line and grade data to operator, once the shield wanders off its course, its sheer bulk resists efforts to bring it back. Heterogeneous ground conditions, such as clay with random boulders, also presents steering problems.One theoretical disadvantage of the shield is the annular space left between the support system and the ground surface. When the support system is installed within the tail section of the shield, the individual support members are separated from the ground surface by the thickness of the tail skin. When steel ribs are used, the annular space is filled with timber blocking as the forward motion of the shield exposes the individual ribs. A continuous support system presents a different problem. In this case, a filler material, such as pea gravel or grout, is pumped behind the support system to fill the void between it and the ground surface.The main enemy of the shield is ground pressure. As ground pressure begins to build, two things happen, more thrust is required for shield propulsion and stress increases in the structural members of the shield. Shields are designed and function undera preselected ground pressure. Designers will select this pressure as a percentage of the maximum ground pressure contemplated by the permanent tunnel design. In some cases, unfortunately, the shield just gets built without specific consideration of the ground pressures it might encounter. When ground pressure exceeds the design limit, the shield gets “stuck”. The friction component of the ground pressure on the skin becomes greater than the thrust capability of the jacks. Several methods, including pumping bentonite slurry into the skin, ground interface, pushing heavy equipment, and bumping with dynamite, have been applied to stuck shields with occasional success.Because ground pressure tends to increase with time, the cardinal rule of operation is “keeping moving”. This accounts for the fracture activity when a shield has suffered a temporary mechanical failure. As ground pressure continues to build on the nonmoving shield , the load finally exceeds its structural limit and bucking begins. An example of shield destruction occurred in California in 1968 when two shields being used to drive the CarlyV.Porter Tunnel were caught by excessive ground pressure and deformed beyond repair. One of the Porter Tunnel shields was brought to a halt in reasonably good ground by water bearing ground fault that required full breast-boards. While the contractor was trying to bring the face under control, skin pressure began to increase. While the face condition finally stabilized, the contractor prepared to resume operations and discovered the shield was stuck. No combination of methods was able to move it, and the increasing ground pressure destroyed the shield.To offset the ground pressure effect, a standard provision in design is a cutting edge radius several inches greater than the main body radius. This allows a certain degree of ground movement before pressure can come to bear on the shield skin. Another approach, considered in theory but not yet put into practice, is the “watermelon seed” design. The theory calls for a continuous taper in the shield configuration; maximum radius at the cutting edge and the minimum radius at the trailing edge of the tail. With this configuration, any amount of forward movement would create a drop in skin pressure.Working decks, spaced 2.4 to 3.0 m vertically, are provided inside the shield. These working decks enable the miners to excavate the face, drill and load holes, if necessary, and adjust the breast-board system. The hydraulic jacks for the breast-board are mounted on the underside of the work decks. Blast doors are sometimes installed as an integral part of the work decks if a substantial amount of blasting is expected.Some form of mechanical equipment is provided on the rear end of the working decks to assist the miners in handing and placing the element of the support system. In large tunnels, these individual support elements can weigh several tons and mechanical assistance becomes essential. Sufficient vertical clearance must be provided between the invert and the first working deck to permit access to the face by the loading equipment.盾构【摘要】隧道盾构是一结构系统,通常用于洞室开挖。
地下建筑结构课程设计隧道衬砌设计(英文)
Underground Structure Course DesigningA Design of Shield Tunnel LiningCollege Civil EngineeringMajor Department of Geotechnical EngineeringStudent No.100xxxName xxxDirector xxxDate6th Sep. 2021Part One: Design Data1 Function of TunnelThe planned tunnel is to be used as a subway tunnel.2 Design Conditions(1)Dimensions of SegmentType of segment: RC , Flat typeDiameter of segmental lining: D 0=9500mmRadius of centroid of segmental lining: R c =4550mm Width of segment: b=1200mm Thickness of segment: t=400mm (2)Ground Conditions Overburden: H=12.3mGroundwater table: G.L.+0.6m =12.3+0.6=12.9m N Value: N=50Unit weight of soil: γ=18kN/m 3Submerged unit weight of soil: γ'=8kN/m 3 Angle of internal friction of soil: φ=30o Cohesion of soil: c =0 kN/m 2Coefficient of reaction: k=50MN/m 3Coefficient of lateral earth pressure: λ=0.4 Surcharge: P 0=39.7kN/m 2 Soil condition: Sandy (3)MaterialsThe grade of concrete: C30Nominal strength: f ck =20.1N/mm 2Allowable compressive strength: f c =14.3N/mm 2 Allowable tensile strength: f t =1.43N/mm 2 The type of steel bars: HRB335Allowable strength: f y = f y ’= 300N/mm 2 Bolt:Yield strength: f By =240N/mm 2 Shear strength: B τ=150N/mm 23 Design Method Requirement(1)How to check member forces: ① Elastic equation method(option)② Force method based on the textbook (must do this)③ Bedded frame model(Beam element with elastic support)(option)0P K =constant of rotation spring for positive moment at joint=18070/kN m rad⋅Figure 1 Judgment of tunnel type0N K =constant of rotation spring for negative moment at joint=32100/kN m rad ⋅ (2)How to calculate reinforcement for segmental lining:Limit state method①Based on the national code GB50010-2002 for reinforcement concrete design. ②Please choose the grade of concrete and the type of steel rebars.Bolt: yield strength 2240/By f MN m =shear strength 2150/B MN m τ=Part Two: Computation by Force Method1 Load Conditions(1)Judgment of Tunnel Type (by Terzaghi’s formula) 1018030cot() 4.75cot()8.238484B R m πφ=+=⨯+=42πφ+[]()1100111/()1exp tan exp tan tan 8.231012.312.31exp tan 3039.7exp tan 30tan 308.238.2324.9912.3B C B H H h P B B m H mγφφφ⎡⎤-⎛⎫⎛⎫=--+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⨯-⎡⎤⎛⎫⎛⎫=--⨯+⨯-⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=>= So the designed tunnel is a shallow tunnel .(2)Load Types and Partial FactorsTable 1 shows the loads should be considered in the design and corresponding partial factors.(3)Computation of LoadsComputational element is a 1.2 meter (width of segment) part along the longitudinal direction, and Figure 2 shows the load condition to compute member forces of the segmental lining.Figure 2 Load condition of the designed tunnel①Vertical Pressure at the Tunnel Crown Earth Pressure()()101.4 1.2 1.2 1.439.7 1.2812.3208.392/e P b P H kN m γ'=+=⨯⨯+⨯⨯=Water Pressure1 1.2 1.2 1.21012.9185.76/w w w p b H kN m γ==⨯⨯⨯= 111208.392185.76394.152/e w q p p kN m =+=+= 29.51.20.215 1.2 1.20.2151826.4708/2q b R kN m γ=⨯=⨯⨯⨯⨯= 112394.15226.4708420.6228/p q q kN m =+=+=②Vertical Pressure at the Tunnel Bottom21 1.2420.6228 1.2 1.2260.4467.6713/c p p b t kN m πγπ=+=+⨯⨯⨯=③Lateral Pressure at the Tunnel Crown Earth Pressure110.41.20.4208.392 1.2 1.2884.2784/22e e t q p b kN m λγ⎛⎫⎛⎫'=+=⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭Water Pressure()()1 1.2/2 1.2 1.21012.90.4/2188.64/w w w q b H t kN m γ=+=⨯⨯⨯+=31184.2784188.64272.9184/e w p q q kN m =+=+=④ Lateral Pressure at the Tunnel Bottom()()4 1.2 1.2 1.20.489.1109.1172.9728/c w c p b D D kN m λγγ'=+=⨯⨯⨯⨯+⨯=3434272.9184172.9728445.8912/p p p kN m +=+=+=Wherec D = Computational diameter 09.50.49.1D t m =-=-=⑤Average Self -weight5 1.2 1.2 1.2260.414.976/c p b t kN m γ==⨯⨯⨯=Wherec γ= Unit weight of RC segment 326/kN m =⑥Lateral Resistance PressureFigure 3 Simplified model diagram for calculation()()()()41334544737432240.04542420.6228272.9184445.891214.976 4.55240.8 3.010 6.4100.04547.210 4.551.946910c c p p p p R EI KR mπδηπ+----+=+⨯--+⨯⨯=⨯⨯⨯⨯⨯+⨯⨯⨯=⨯336010 1.946910 1.2140.1768/h p k b kN m δ-==⨯⨯⨯⨯=()2612cos h p p ϕ=- 344ππϕ⎛⎫≤≤⎪⎝⎭Whereδ= Displacement of lining at tunnel spring η= Reduction factor of model rigidity = 0.8E = Modulus of elasticity of segment = 423.010/N mm ⨯I = Moment of inertia of area of segment =33411.20.4 6.41012m -⨯⨯=⨯ k = Coefficient of reaction = 360/MN m260 1.272/K k b MN m ==⨯=ϕ= the angle of measured from the vertical direction around the tunnel2 Computation of Member ForcesFigure 4 shows the simplified model of the segmental lining.(1)Calculation Data18070/P K kN m rad θ= (if inside part of lining is tensile) 32100/K kN m rad θN = (if outside part of lining is tensile)43323.01010 6.410192000EI kN m -=⨯⨯⨯⨯=(2)Coefficients Calculation123411125n n n n n =+++=+++=NOTE: if the joint just located at 180 degree of the half -ring lining, then its stiffness contribution to the whole structure should be considered as half of the total value.41111()11 2.52 4.55 2.52 2.751101920001807032100ni i P N R R kN m EI K EI K K θθθπππδ---=⨯=+=++=++=⨯∑()2212()12311 2.826 1.6741cos 4.55 2.826 4.55 1.674 4.551.288101920001807032100n i i i P N R R R R R EI K EI K K kN θθθππδϕπ=--=+-=++⨯⨯⨯=++=⨯∑()33222222()13223313 5.122 1.6271cos 223 4.55 5.122 4.55 1.627 4.559.22910/21920001807032100ni i i P N R R R R R EI K EI K K m kNθθθππδϕπ=-=+-=++⨯⨯⨯⨯=++=⨯⨯∑322211111()12110.2650.860sin 4244.550.2650.860420.6228 4.550.52341920001807032100np i i i P N p R R p R p R EI K EI K K θθθππϕπ=⎛⎫∆=--=-++ ⎪⎝⎭⨯⎛⎫=-⨯⨯++=- ⎪⨯⎝⎭∑()()12322212112()12212()3()121sin 24230.3140.00012()224 4.5530.3140.00012467.6713420.6228 4.5522192000418070321000.np i i i n n P N p p R p p R EI K R p p R EI K K θθθπϕππ=++--⎛⎫∆=---- ⎪⎝⎭⎡⎤⎛⎫=---++⎢⎥ ⎪⎝⎭⎣⎦⎡⎤⎛⎫=--⨯⨯-++ ⎪⎢⎥⨯⎝⎭⎣⎦=-∑021124243 4.55 2.5610.814272.9184 4.55 1.25941920001807032100i P N EI K EI K K θθθπ=⎝⎭⨯⎛⎫=-⨯⨯++=- ⎪⨯⎝⎭()323244144()125150.7920.1451cos 2412245 4.550.7920.145172.9782 4.550.229241920001807032100n p i i i P N p R p R R p R EI K EI K K θθθππϕπ=⎛⎫∆=---=-++ ⎪⎝⎭⨯⎛⎫=-⨯⨯++=- ⎪⨯⎝⎭∑()221555()121 1.1360.952cos sin 11.1360.95214.976 4.550.011807032100np i i i i i PN p R p R K K K θθθϕϕϕ=⎛⎫∆=-+-=- ⎪⎝⎭⎛⎫=⨯⨯-= ⎪⎝⎭∑4143216()()112211cos(2)2cos cos 341.1940.239 4.55 1.1940.239140.1768 4.5519200018070321000.282n n n h h p i i i i i i n i n n h P N p R p R EI K K R p R EI K K θθθθπϕϕϕ-=+=-+⎡⎤⎛⎫∆=---++ ⎪⎢⎥⎝⎭⎣⎦⎛⎫⎛⎫=-++=-⨯⨯++ ⎪ ⎪⎝⎭⎝⎭=-∑∑()6111(0.523)(0.021)( 1.259)0.2290.01(0.282)2.304p pi i =∆=∆=-+-+-+-++-=-∑432311211()1310.3680.757sin (1cos )4244.550.3680.757420.6228 4.55 2.47941920001807032100n p i i i i P N p R p R R p R EI K EI K K mθθθππϕϕπ=⎛⎫∆=---=-++ ⎪⎝⎭⨯⎛⎫=-⨯⨯++=- ⎪⨯⎝⎭∑()()12432212122()13213()35()1(1cos )1sin 2432350.6130.00014()243 4.55350.6130.00014467.6713420.6228 4.5521920004318070321n p i i i i n n P N p p R p p R EI K R p p R EI K K θθθπϕϕππ=++--⎛⎫∆=----- ⎪⎝⎭⎡⎤⎛⎫=---++⎢⎥⎪⎝⎭⎣⎦⎛⎫=--⨯⨯-++⎪⨯⎝⎭∑000.187m⎡⎤⎢⎥⎣⎦=-134245 4.55 4.7540.871272.9184 4.559.85341920001807032100i P N EI K EI K K mθθθπ=⎝⎭⨯⎛⎫=-⨯⨯++=- ⎪⨯⎝⎭()434344244()1335135 1.4770.1631cos 96129635 4.55 1.4770.163172.9728 4.55 1.857961920001807032100n p i i i P N p R p R R p R EI K EI K K mθθθππϕπ=⎛⎫∆=---=-++ ⎪⎝⎭⨯⎛⎫=-⨯⨯++=- ⎪⨯⎝⎭∑()()435255()135311cos cos sin 14 2.3420.8434 4.552.3420.84314.976 4.550.17241920001807032100np i i i i i i P N p R p REIK R p R EIK K mθθθπϕϕϕϕππ=∆=--+-⎛⎫=+- ⎪⎝⎭⨯⎛⎫=⨯⨯+-= ⎪⨯⎝⎭∑ ()4144326()13()1331cos 22cos 1cos 3341cos 1cos 3 2.2180.27633 4.55140.1768 4.55331920002n n h h p i i i i i n n h i i i i n n h P N p R p R EI K R K R p R EI K K θθθθπϕϕϕϕϕπ-=+=-+⎡⎤⎛⎫∆=---+- ⎪⎢⎥⎝⎭⎣⎦+-⎡⎤⎛=-+++⎢⎥ ⎢⎥⎝⎭⎣⎦⎛=-⨯⨯⨯++ ⨯⎝⎭∑∑ 2.2180.27618070321002.279m ⎡⎤+⎢⎥⎢⎥⎣⎦=-()()()()62212.2790.1879.853 1.8570.172 2.27916.483p pi i m=∆=∆=-+-+-+-++-=-∑The value of coefficients by force -method equations can be summarized as shown in Table 2.1)m - 12δ410-1.288Then the bending moment and axial force (per 1.2 m) acting at the crown can be obtained by the following equations:()()()331222211243311221221 1.2881016.4839.22910 2.30438.12.751109.22910 1.28810p p x kN m δδδδδδ-----∆-∆⨯⨯--⨯⨯-===-⨯⨯⨯-⨯()()()342111122243311221221 1.28810 2.304 2.7511016.4831780.72.751109.22910 1.28810p p x kN δδδδδδ-----∆-∆⨯⨯--⨯⨯-===-⨯⨯⨯-⨯(3)Member Forces For loading case 1,2211211111sin 2sin sin cos p p p M p R N p R Q p R θθθθ=-== ()0θπ≤≤For loading case 2,()()()()()()2222122122111sin 21sin sin 1sin cos p p p M p p R N p p R Q p p R θθθθθ=---=---=--- 2πθπ⎛⎫≤≤ ⎪⎝⎭For loading case 3,()()()2233333311cos 21cos cos 1cos sin p p p M p R N p R Q p R θθθθθ=--=--=-- ()0θπ≤≤For loading case 4,()()()324424424411cos 1211cos cos 411cos sin 4p p p M p R N p R Q p R θθθθθ=--=--=- ()0θπ≤≤For loading case 5,()2555555cos sin 1sin cos p p p M p R N p R Q p R θθθθθθθ=-+-==()0θπ≤≤For loading case 6,2666cos 22cos 34cos 22cos 342sin 22sin 34h p h p h p p R M p R N p R Q πθθπθθπθθ⎡⎤⎛⎫=--+ ⎪⎢⎥⎝⎭⎣⎦⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦⎡⎤⎛⎫=--+ ⎪⎢⎥⎝⎭⎣⎦344ππθ⎛⎫≤≤⎪⎝⎭2666cos 3sin 3h p p h p R M N R Q θθθ=== 34πθπ⎛⎫≤≤ ⎪⎝⎭So the internal forces caused by surrounding pressures can be determined by accumulating the six loading cases, that is:616161p pjj p pj j p pjj M M N N Q Q ======∑∑∑Where ,,pj pj pj M N Q are the bending moment, the axial force and the shear force (per unit length) under the j th loading case, respectively.Then the total internal forces (i.e. the total bending moment, M, the total axial force, N, the total shear force, Q) per unit length (1.2m) along the lining can be obtained by the following equations:112211221122p p pM M x M x M N N x N x N Q Q x Q x Q =++=++=++ Where111100M N Q === ()2221cos cos sin M R N Q θθθ=-==-And with MATLAB software, the maximum (positive and passive) moment, axial force, and shear force, which is shown in the Table 3. (The original code of MA TLAB can be seen in the addendum.))m38.10 24.56 11.25 55.96 90.95 NOTE: The data in bold face represents the member forces on joint sections, and the data in tilt face represents thedominate member forces.According to the Table 3, it is obvious that the maximum positive moment occurs at the section located at 100 degrees from the tunnel crown (Section A), while the maximum negative moment occurs at the section located at 50 degrees (Section B), and that the maximum axial force occurs at the section located at 100 degrees (Section A).Figure 4 The position of Section A, B, and CThe safety of the segmental lining should be checked at Section A, Section B, and the joint parts.Part Three: Arrangement of Steel Bars of Segmental Lining1 Section AFigure 5Simplified sketch of section A000105.81,2109.5,1200,400,50105.8240050350,0.050502109.5max ,2020,502070304001.0705022022s s s a i a i s M kN m N kN b mm t mm a a mm M h t a mm e m mm N t e mm mm e e e mmt e e a mmη'=======-=-=====⎛⎫===+=+= ⎪⎝⎭=+-=⨯+-=(2)Judgment on the type if eccentric compression50.80.80.55300112100.0033b y s cuf E ξε===++⨯⨯The steel bars can be arranged symmetrically.302109.5100.3510.5514.31200350b c N f bh ξξ⨯===<=⨯⨯Thus, this section should be calculated as a large eccentric compression section.(3)Calculation of s A and sA ' ()()()()0221003222min 0.351350122.852*******.52109.510220 1.014.312003500.3510.50.351300350500.0021200400960s c s y s s s x h mm a mm Ne f bh A f h a A A bt mm ξαξξρ'==⨯=>=⨯=--'='-⨯⨯-⨯⨯⨯⨯-⨯=<⨯-'===⨯⨯=(4)Check the out -plane capacity()()614.312004003009609607.441074402109.5cu c c y s s N f A f A A N kN N kN''=++=⨯⨯+⨯+=⨯=>=So the out -plane capacity of this section is safe.Finally, the steel bars of all segments can be chosen primarily as: 7B 14 both in compressive region and tensile region (Actually,21077.6s sA A mm '==).2 Check of Safety at Section BSupposing that and are unknown, then the value of can be calculated and whether it is smallerthan the result calculated at section A shall also be checked.00093.95,2102.1,1200,400,5093.9540050350,0.047472102.1max ,2020,472067304001.0675021722s s s a i a i s M kN m N kN b mm t mm a a mm M h t a mm e m mm N t e mm mm e e e mmt e e a mmη'=======-=-=====⎛⎫===+=+= ⎪⎝⎭=+-=⨯+-=(2)Judgment on the type if eccentric compression50.80.80.55300112100.0033b y s cuf E ξε===++⨯⨯The steel bars can be arranged symmetrically.302012.1100.3350.5514.31200350b c N f bh ξξ⨯===<=⨯⨯Thus, this section should be calculated as a large eccentric compression section.(3)Calculation of s A and sA ' ()()()()022100322**'20.335350117.2522501000.52109.510220 1.014.312003500.3510.50.351300350501077.6s c s y s s s s s x h mm a mm Ne f bh A f h a A A A A mm ξαξξ'==⨯=>=⨯=--'='-⨯⨯-⨯⨯⨯⨯-⨯=<⨯-'=<==Therefore, section B is safe.3 Arrangement of Steel BarsAs shown in design drawing (see Attachment 2).Part Four: Determination of Bolts of Joint Section1 Bolt TypeBolt (M30) and Bolt (M45) is used between the segment pieces and between the segmental rings, respectively.2 Arrangement of Bolts in Joint SectionsFigure 6 Section of jointFigure 6 shows the primary arrangement of joint section whose safety could be checked later. Four Bolts (M30) are used in one joint between segment pieces, and then2212301413.74s s A A mm π'==⨯⨯⨯=.3 Check the Safety of BoltsThe safety of joint sections can be checked at section located at 100 degrees (Section A) with maximum moment and at 60 degrees (Section C) with maximum shear force. (1) Section A ①Calculation data000105.81,2109.5,1200,400,80105.8240080320,0.050502109.5max ,2020,502070304001.0708019022s s s a i a i s M kN m N kN b mm t mm a a mm M h t a mm e m mm N t e mm mm e e e mmt e e a mmη'=======-=-=====⎛⎫===+=+= ⎪⎝⎭=+-=⨯+-=②Judgment on the type of eccentric compression50.80.80.59240112100.0033b y s cuf E ξε===++⨯⨯The bolts are be arranged symmetrically.302109.5100.3840.5914.31200320b c N f bh ξξ⨯===<=⨯⨯Therefore, this section should be calculated as a large eccentric compression section. ③Safety check00.384320122.882280160sx h mm a mm ξ'==⨯=<=⨯= Then suppose that 2160sx a mm '== ()03()24002401413.7320802109.510 1.0708021.01868868400186.89105.81By s s i s u t f A h a N e a M N mm kN m M kN mηη⎛⎫''---+ ⎪⎝⎭=⎛⎫⨯⨯--⨯⨯⨯-+ ⎪⎝⎭===>=Therefore, the bolts at section A are safe. (2) Section CAt this section, shear force occurs maximum, equaling to 355.76kN .322355.7610125.83/150/21413.7B By s Q N mm N mm A ττ⨯===<=⨯Therefore, the bolts at section C are safe.ConclusionAccording above analysis, computation and checking, the designed segmental lining is safeagainst the design loads.Attachment 1:The initial code of MATLAB software>> k = 0;R = 4.55;x1 = 38.1;x2 = 1780.7;P = [420.6228 467.6713 272.9184 172.9728 14.976 140.1768];for theta = 0:pi/18:pi;k = k + 1;Mp1 = -0.5*P(1)*R^2*sin(theta)^2;Np1 = P(1)*R*sin(theta)^2;Qp1 = P(1)*R*sin(theta)*cos(theta);if theta < pi/2Mp2 = 0;Np2 = 0;Qp2 = 0;elseMp2 = -0.5*(P(2)-P(1))*R^2*(1-sin(theta))^2;Np2 = -(P(2)-P(1))*R*(1-sin(theta))*sin(theta);Qp2 = -(P(2)-P(1))*R*(1-sin(theta))*cos(theta);endMp3 = -0.5*P(3)*R^2*(1-cos(theta))^2;Np3 = -P(3)*R*(1-cos(theta))*cos(theta);Qp3 = P(3)*R*(1-cos(theta))*sin(theta);Mp4 = -1/12*P(4)*R^2*(1-cos(theta))^3;Np4 = -0.25*P(4)*R*(1-cos(theta))^2*cos(theta);Qp4 = 0.25*P(4)*R*(1-cos(theta))^2*sin(theta);Mp5 = -P(5)*R^2*(cos(theta) + theta*sin(theta)-1);Np5 = P(5)*R*theta*sin(theta);Qp5 = P(5)*R*theta*cos(theta);if theta < pi/4Mp6 = 0;Np6 = 0;Qp6 = 0;else if theta >= pi/4 && theta <= 3*pi/4Mp6 = -1/3*P(6)*R^2*(cos(2*theta) - 2*cos(theta + pi/4));Np6 = 1/3*P(6)*R*(cos(2*theta) - 2*cos(theta + pi/4));Qp6 = -2/3*P(6)*R*(sin(2*theta) - 2*sin(theta + pi/4));elseMp6 = 2*sqrt(2)/3*P(6)*R^2*cos(theta);Np6 = -2*sqrt(2)/3*P(6)*R*cos(theta);Qp6 = 2*sqrt(2)/3*P(6)*R*sin(theta);endendMp = Mp1 + Mp2 + Mp3 + Mp4 + Mp5 + Mp6;Np = Np1 + Np2 + Np3 + Np4 + Np5 + Np6;Qp = Qp1 + Qp2 + Qp3 + Qp4 + Qp5 + Qp6;M1 = 1;N1 = 0;Q1 = 0;M2 = R*(1-cos(theta));N2 = cos(theta);Q2 = -sin(theta);M(k) = M1*x1 + M2*x2 + Mp;N(k) = N1*x1 + N2*x2 + Np;Q(k) = Q1*x1 + Q2*x2 + Qp;end>> MM =Columns 1 through 1038.1000 24.5627 -11.2537 -55.9618 -90.3510 -93.9478 -63.0671 -12.1028 42.3759 85.1985Columns 11 through 19105.8135 100.0987 71.2815 30.6020 -4.3031 -25.9724 -38.8660 -45.7972 -48.0002>> NN =1.0e+003 *Columns 1 through 101.7807 1.7948 1.8343 1.8913 1.95462.0121 2.0562 2.08552.1016 2.1089Columns 11 through 192.1095 2.1054 2.1009 2.0978 2.0952 2.0928 2.0916 2.0912 2.0912>> QQ =Columns 1 through 100 33.0655 54.2683 54.2120 27.8748 403.9668 355.7588 315.5075 284.2149 259.1631Columns 11 through 19234.3567 202.9612 156.9845 88.6816 34.6814 20.9562 12.0903 5.6098 0.0000。
盾构机部件各英语词汇
盾构相关专业英语词汇词汇A部abnormal resistance 异常阻力abrasion resistant 耐磨性abrasion 磨损access 到达accumulator 蓄能器actual 实际的adopt 采用advance 推进agent 起泡母液agitator tank 搅拌罐air compressor 空气压缩机air conditioning 空调air filter unit 空气过滤装置air lock 气舱alignment control 线形控制allowable stress 容许应力angle 角度anti-corrosive paint 防锈漆anti-pressure seal 抗压密封appearance test 外观测试arching action effect 拱形效应articulate cylinder 铰接油缸articulation angle 铰接角度articulation jack 铰接千斤顶articulation stroke 铰接行程articulation system 铰接系统articulation 铰接assembling method K片组装方法assembling 组装automatic mode 自动模式automatic oil lubricating system 自动油脂润滑系统automatic 自动的auxiliary bit 保护切削刀头auxiliary cutter bit 辅助切削刀auxiliary pump 辅助泵axial 轴向的axis type screw conveyor 轴承螺旋输送机axis 轴词汇B部back filling injection device 壁后灌浆设备back filling injection 同步注入(背填)back grouting system 同步回填系统back up system 备份系统back-up gantry 支承架back-up pressure 备用压力balk head 隔板ball valve 球阀bar 巴(压强单位)baseline 基准线beam 梁bearing housing 轴承套bearing life 轴承寿命bearing roller 轴承滚轴bearing 轴承belt conveyor 带式输送机(传送带)bentonite 膨润土(皂土)blade 叶片bolt 螺杆bottom screw 底部螺旋机boundary condition 边界条件breasting plate 承冲板,面板brush packing 密封刷(注:packing 为填充) brush type tail seal 盾尾密封刷bulkhead 舱壁bull gear 大齿轮词汇C部cable reel电缆盘cable 电缆calibration 校验,标定cam switch 凸轮开关capacity 能力,运量casing I.D 螺旋输送机内径cavity 轴承腔center cutter 中央刀头center shaft radius 中心轴半径center shield 中盾chain hoist 链式葫芦circuit breaker 断路器(断路开关)clay layer 粘土层clay 粘土cleaning device 清洗装置clockwise and counterclockwise 顺时针和逆时针clogging 阻塞coefficient 系数cohesion 粘度,内聚力cohesive (土体)粘性coil 线圈compression system for man lock (regulator)人孔闸的压缩系统(调节阀) compression 压力compressor and slurry pumpcompressor 压缩机control cabin 控制室control circuit 控制电路control 控制cooling circuit 冷却回路copy cut device 仿形刀装置copy cutter 仿形刀(超挖刀)corrective operation 校正操作corresponding 相应的coupling 接头crack 断裂,破坏crane 起重机criterion 验收标准cross-sectional 截面积current 电流curvature 转弯段curve configuration 曲线轮廓curve radius 转弯半径,曲线半径curving performance 曲线段施工cutter bit 刀头cutter chamber 土仓cutter device 刀盘装置cutter driving unit 刀盘驱动单元cutter drum 刀盘滚筒cutter electric motorcutter head 刀盘cutter main sealing system 刀盘主密封系统cutting blade 切削刀cutting face 开挖面cutting resistance 切削阻力cylinder 汽缸词汇D部data logging system 数据录入系统data 数据date 日期dead load 恒载, 固定荷载defect 缺陷deformation 变形delivery 输送量density 密度description 名称designed figure 设计值detector 检测器deviation 偏差,误差device 装置diagram 图,图解diameter (dia.) 直径(outer diameter 外径;inner diameter 内径) dilution ratio 稀释倍率dimension 尺寸dimensional inspection 尺寸检验direct starting 直接启动discharge 排出displacement 排量,位移distance 距离distortion 变形,扭曲disturbance of ground 土体扰动disturbance 扰动down-stream equipment 后续设备drag bit 切削刀头drag type cutter bit 挖掘式切削刀drain water pump 废水泵drawing 图drilling 钻掘driving method 驱动方式driving motors 驱动马达drum 圆桶,卷盘duct 管,输送管词汇E部earth pressure gauge 土压计earth pressure 土压edge 边缘effective stroke 有效行程ELB 断路保护器electric control system 电控制系统electric drive (inverter drive) 电驱动(变频驱动)electric instruments 电气仪表electric items 电气项目electric motor capacity电动马达容量electric motor 电动马达electric system电气系统electronic pressure gauge 电子压力计emergency lighting 应急照明emergency stop 紧急停车energy-saving 节能EPB (EARTH PRESSURE BALANCED) 土压平衡盾构equipped force 装备推力erector operating box 拼装机操纵盒excavation diameter 挖掘直径explanation 解释,说明extension 伸出external unit of air conditioner ? 空调出风口?词汇F部face angle of cutting blade 切削刀面角facilitate 便于facility 设施,设备,工具filter circuit 过滤回路filter 滤芯filtration 过滤fine sand 细砂fish tail 中央转刀(鱼尾板)flexural rigidity 抗弯刚度flow divider 流量分配器flow rate 流速flow 流量,流速,流入flow-meter 流量计fluctuation 晃动,波动fluorescent light 荧光灯foam injecting system 泡沫注入系统foam unit 泡沫系统foaming ratio 发泡倍率following carriage 后续车架force-fed 强制输入form injection system 泡沫注入系统formula 公式frequency converter 变频器frequency relay 频率继电器frequency 频率friction摩擦front shield 前盾,前筒词汇G部gantry 门架,台车gap 间隙gate jack 闸门千斤顶gear box 齿轮(变速)箱gear reducer 齿轮减速机gearing 齿轮装置geological condition 地质条件geological 地质的gradient 坡度granule gravel 砂砾gravel 介质,砾石grease cavity 油脂腔grease lubrication 脂润滑grease purging system 油脂清除系统grip 手柄gross weight 总重量ground tunneling job 地下隧道施工grout hole 注浆孔grout injection 注浆grouting system 同步注入系统guidance system 导向系统词汇H部handing weight 可操作重量hauling capacity 输送能力heat exchanger 热交换器helical rotor pump 螺旋泵heterogeneity 不均匀性high voltage transformer 高压变压器high voltage 高压hinge 铰链hoist beamhood 护罩horizontally 水平地hose reel 软管盘hydraulic accumulator 液压蓄能器hydraulic circuit 液压回路hydraulic cylinder actuated 液压汽缸传动hydraulic items 液压项目词汇I部idler roller 惰辊index 指数,索引indicator 指示器industrial water supply system 工业送水系统injection holeinjection pipeinjection port 注入口injection pump 注入泵injection 注入inner race 内环inspection report 检验报告Inspection 检查installation 安装insulation resistance 绝缘电阻integration operation 积分操作intelligent terminal 智能终端intermediate beam 中间梁intermediate support type 中间支撑型internal free space 内部自由空间internal friction angle 内摩擦角invade 侵入Inverter control 变频控制Inverter electric motor 变频电机Inverter panelisolated 被隔离item 项目词汇J部jack 千斤顶词汇K部key segment 楔形片(K片),封顶块knife edge bitknife gate 闸门词汇L部labor safety hygiene regulations 劳动安全卫生规定Labyrinth seal 迷宫式密封laser space ?leaser guidance system 激光导向系统left wing 左侧length 长度lift cylinder 起重油缸lifting force 提升力lighting circuit 照明电路lighting 照明liquid 液体loading point 负载点lubricant 润滑油lubrication 润滑词汇M部magnetic flow meter 电磁式流量计main bearing 主轴承main component 主要部件maintenance 维修保养malfunction 故障man lock 人孔闸manhole 人闸孔manual mode 手动方式manual 手动的material 材料mean radius平均半径measured figure 测量值measurement device 计量装置measuring instrument 测量仪器medium sand 中砂metro 地铁middle screw 中部螺旋机moment 力矩mortar agitator 浆液搅拌器mortar injection 注浆mortar tank 储浆槽motor 马达moving average processing 移动平均处理muck discharging system 渣土排运系统(muck 意思为渣土)muddy clay 泥质粘土MV (manipulated value) 操作值词汇N部non-load operation 空载运行number of sampling 取样次数nut 螺帽词汇O部obstacle 障碍物oil lubrication 油润滑operating method 操纵方式operation panel 操纵盘,操作面板operation switch 操作开关over cut depth 超挖量over cutter 超挖刀overburden 覆土厚度overview 概述词汇P部painting 涂漆parameter 参数performance test 性能测试phase 相位pinion 小齿轮piping and wiring 管路和线路pitching rolling detector 俯仰、滚转检测器planetary gear 行星齿轮PLC control system and data collection system PLC控制系统和数据采集与监控系统plumbing 管件portable type 手提式portal shaped type 龙门型portal structure 门型结构powdery clay 粉质粘土powdery soil 粉土power board 配电板power circuit 电源电路power source 电源power 动力,功率precise 准确的,精确的preset earth pressure 预设土压pressure sensor压力传感器pressure transmitter 压力传感器pressure 压力prevent 防止primary transformer 一级变压器primary voltage 一级电压principle 原理procedure 程序,步骤propelling speed 推进速度proportional operation 比例操作propose 建议,推荐propulsion force per area 单位面积推力propulsion 推力protrusion allowance of cutter face 刀盘面的允许凸出长度protrusion 凸出provided torque 装备扭矩provisional 暂时的,临时的PU (power unit) 动力单元pulse monitoring device 脉冲控制装置pump 泵purge 清洗push button switch 按钮开关push-in force 推进力PV(process value) 进程值词汇Q部quantity 数量词汇R部radial 径向的radius 半径rail 轨道rake angle 前倾角range 范围rate 比率ratio 比例reaction load 反作用力rear shield 后筒rear 背部,后部regulate 调节,调整reinforced concrete segment 钢筋混凝土管片relatively 相对地reliability 可靠性relief valve 溢流阀remark 备注replacement 更换resin dry type 树脂干燥型resistance force 阻力retain 护圈?retract 收缩retraction 回缩reverse rotation 反转revolution 旋转ribbon type 带式right wing 右侧rigidity 刚度ring adjuster 整圆器ring gear 环形齿轮ring girder 环梁ring 环Robotic survey system 自动化测量系统robust 坚固的roll 滚转roller 滚轴room controller 控制室rotary speed 转速rotate 旋转rotating direction 回转方向rotation angle 转角rotation speed 转速rotation test 旋转测试roundness 圆度route 路线,航线rub 摩擦rubbing surface 摩擦表面rubbing wear 磨耗runnel 水的rust 锈蚀词汇S部Safety coefficient 安全系数Safety factor 安全系数safety valve 安全阀sampling cycle 取样周期sand paper 砂纸sandy silt 砂质粉土Scaffold 脚手架,支架Screw conveyor 螺旋输送机Screw gate opening 螺旋门开度Screw gate 螺旋门Screw inlet 螺运机进口Screw pitch 螺距Screw revolution 螺旋机转速Screw slide 螺旋滑动Screw trough 螺旋输送槽Screw’s angle of inclination 螺旋机倾角Screw’s lead angle 螺旋超前角seal mounting diameter 密封安装直径seal 密封sealing mastic 密封乳剂sealing system 密封系统secondary voltage 二级电压secondary 二次的Secure 保证,确保segment adjustor jack 整圆器千斤顶segment end surface 管片端面segment erector 管片拼装机segment feeder 喂片机segment hoist 管片提升器segment lining 管片内衬segment reformer 管片整圆器segment steel mould 管片钢模segment transportation system 管片输送系统segment 管片semi- 半sensor box 传感器盒sensor 传感器shaft slide 轴滑动shaft 轴shearing force 剪切力shield body 盾构壳体shield guidance system 盾构机导向系统shield machine 盾构机shield shell 盾构机体shield 盾体short-telescoped 小距离缩进side protection bitsilencer 消声器silty clay 粉质粘土silty sand 粉质砂土simultaneous back grouting system 同步反向注入系统skip 料罐,吊斗slide cylinder 滑动油缸slide jack 滑动千斤顶slide 滑动slurry injection system 泥浆注入系统soil conditioner injection system 加泥注入系统soil treatment 土质改良solenoid valve电磁阀solution 溶液SP(set point) 设定值spare electric plug 备用插头special knife bits 特殊切削刀头(先行刀) specification 规范spoke type 辐条式standard 标准star-delta starting 星形-三角形启动start condition 初始条件starting method 启动方式stationary 静止地steel construction 钢结构stoppage 停止,停工strain energy 应变能strain 应变strength 强度stress analysis 应力分析stress 应力stroke counter 行程测量stroke 行程submerged sand 含水砂层support cylinder 支撑油缸surface load 表面负载surrounding-preserve 环保survey inspection 验收symmetry 对称词汇T部tail clearance 盾尾间隙tail grease injecting system 盾尾油脂注入系统tail grease injection pipetail greasing system 盾尾油脂系统tail inner diameter 盾尾内径tail outer diameter 盾尾外径tail sealing compound 盾尾密封化合物tail sealing 盾尾密封tail thickness 盾尾厚度tank 箱,罐temperature 温度tension 张力terminal box 接线盒Terzaghi theory 太沙基理论thickness 厚度threaded muffle 螺纹消声器thrust cylinder pad 推力千斤顶顶靴thrust cylinder speed stroke detector 推力油缸速度、行程检测器thrust cylinder 推力油缸thrust jack 推进千斤顶timing 计时tolerance 公差torque 扭矩total station 全站仪total thrust 总推力totally enclosed fan-cooled outdoor 全封闭风扇冷却室touch-panel screen 触摸屏towing beam牵引梁transformer 变压器transistor megger 晶体管高阻表transmission 传递tungsten carbide tip 碳化钨刀刃tunnel 隧道tunneling machine 隧道掘进机tunneling routes 地铁沿线turning angle 回转角度turning 转弯two-chamber man lock 2室人孔闸type 类型词汇U部underground water level 地下水位unit weight 容重uptake 改善的词汇V部valve block 阀体valve 阀variable speed 速度可调ventilation duct 通风管道ventilation通风vertical earth pressure 垂直土压vertical stroke 垂直行程vertically 垂直地voltage 电压volume 容积词汇W部water injecting system 注水系统water tank 水箱water tightness 水密性wear 磨损wearing impact 磨损冲击weather 天气weight 重量weld 焊接wide opening ratio 开口率width 宽度wire connected pendant controller 有线控制器wireless controller 无限控制器wiring 配线。
盾构隧道管片设计方法
梯形管片
箱形管片
六边形管片
楔形管片
管片尺寸设计
管片环的外径 1. 取决于隧道隧道净空和衬砌厚度(管片厚度与二次衬砌厚度) 2. 考虑施工误差与后期变形等 管片的厚度 1. 主要由荷载条件决定,兼顾隧道施工条件和使用目的 2. 同一条隧道一般采用统一厚度,通过调整配筋来满足受力要求 管片的宽度 1. 从降低工程成本,减少接头,提高防水性能,加快施工速度方面考虑,管片宽度 大些好 2. 为便于运输、组装以及在隧道曲线上的施工,管片宽度小一些好 3. 根据隧道断面,结合施工机械情况和实际工程经验,选择在经济、施工方面均较 合理的宽度 4. 中至大直径隧道管片宽度一般为1000~2000mm,隧道直径大则采用的管片宽 管片的分块 1. 满足管片运输、吊装和拼装的要求 2. 考虑封顶块的拼装方式和连接螺栓的布置与形式 3. 据以往经验,管片环一般由5~11块管片组成,小直径隧道管片数少
盾构隧道(TBM Tunnel) 管片设计
内 容
管片类型
管片尺寸设计
作用荷载 计算模型
结构验算
管片堆放及吊装
管片类型
分类标准 管片材料 (1)钢管片 (2)钢筋混凝土管片 管片类型 管片形状 (1)矩形管片 (2)楔形管片 (3)梯形管片 (4)六边形管片 (5)箱形管片
矩形管片
缓冲垫结构验算 1. 承受管片间挤压力能力(轴力Nmax) 2. 承受地下水压能力 (basing on gasket offset and max. gap)
管片堆放及吊装
1. 一般一个管片环上的所有管片堆在一堆 2. 二个垫块的位置选择应保证由管片自重产生的正、反弯矩基本相等 3. 验算管片一天 (堆放) 和七天(吊装)抗弯和抗剪强度是否满足要求 4. 考虑上下垫块位置出现偏差的情况
盾构隧道管片衬砌计算方法比较
On the evening of July 24, 2021
Courseware template
On the evening of July 24, 2021
即:
{F1} =[A-1] {F2} {F1} =[k12] {δ2}
On the evening of July 24, 2021
Courseware template
最终得到曲梁弹簧的节点力与节点位移的关系:
FF12kk1211
k12 k22
1 2
On the evening of July 24, 2021
On the evening of July 24, 2021
Courseware template
谢谢大家
On the evening of July 24, 2021
Courseware template
由图可知: 自由变形圆环法、弹性铰法和弹性地基梁法 三种方法计算得到的最大弯距和最大轴力分别为:
方法
最大弯矩(kN·m) 最大轴力(kN)
自由变形圆 环法
156. 1
738. 0
弹性铰法 弹性地基梁 法
151. 0 131. 0
792. 0 10115
On the evening of July 24, 2021
On the evening of July 24, 2021
Courseware template
(3) 弹性铰法拱顶弯矩与弹性地基梁法、自由变 形圆环法拱顶弯矩相比相差较大, 主要由于弹 性铰法考虑了管片接头刚度的削弱, 一般来说, 随着接头刚度的减小, 其弯矩明显减小。可见, 弹性铰法内力计算结果的准确性与接头刚度取 值的准确性有关, 而接头刚度又与管片接头形 式有关, 在无可靠的参考资料情况下, 通常只能 通过接头试验或经验确定。一般情况下, 弹性 铰法在管片衬砌内力计算中主要起校核作用。
盾构常用英语tunnnelier
Gripper shield Telescopic (telescope) shield Slurry Bentonite slurry High Density slurry Slurry Pressurized slurry Bearing bolts Push-button Arm Air bubble Control cabin Stone Limestone Shim Sensor Detector Level sensor Pressure detector Pressure sensor Earth pressure detector Proximity switch Collapse detector Wear detector Volumetric sensors Extension measurement device Thrust cylinders sensors Displacement detectors Cardan joint Electronic card Cartridge ( of filter ) Segment feeder Ventilation duct cassette Spare ventilation duct cassette H.V. cell L.V. cell Lubricating unit Power unit (P.U.) Chain Cutter chamber Inspection chamber Cutter chamber Connecting beam Load 2 / 12
Chinois(Liu) ( ) 可编程控制模块 蓄电池 搅拌器 Y型轨道闸 压缩空气 气流缓冲器 环、环线 支撑环 管片环 转向环 轴、竖井 中轴 中空轴 泥土 动力室、电控房 紧急停止 管片调节装置 桶、 控制杆 可编程逻辑控制器 旋转轴、转向轴 切刀定位销 马达油箱、油罐 基层传送带废水箱、缸 废水、污水箱(罐) 衬套 自润滑衬套 传送带 倾斜 膨润土 加强混凝土(结构) 接线盒 插头、插、拔 高密度泥浆盾体 承压泥浆盾体 泥浆盾体 地压平衡盾体 尾盾 尾盾(尾壳) 掘进盾体 2010-12-5
盾构英语
Tunnelling Equipment 隧道盾构机设备-英汉对照Pump Water Highpressure 高压水泵Segment Transport Crane 管片起重机Segment Transfer Crane 管片搬运机Road-element crane 道路机Exit reserve 逃出储备sockets 插座Hydr.overcutter 液压超挖刀Pump industrialwater 工业用水泵Pump gearoil 1 齿轮油泵 1Hydr.Auxiliary 2 液压辅助设备 2Hydr.filtercircuit 液压滤波电路Lubrication pump 润滑油泵Grout tank 1 agitator 浆桶 1 搅拌机Mobile Grout tank 1 agitator 移动浆桶 1 搅拌机Coolingsystem HV 2 冷却系统 HV 2Auxiliary rail crane right 辅助起重机右Duct cassette crane 管盒起重机Pipe extension crane 管子延伸起重机Heating manlock 供热人行闸Hydr.erector emergency 液压拼装机应急事故Drive cable reel 驱动电缆盘Pump vacuum erector 拼装真空泵Drive hose reel 驱动软管卷Officecontainer 办公集装箱Crewcontainer 员工集装箱manlock/working chamber 人行闸/工作室Emergency-dewatering 应急抽水efficiency 效率, 功效powerfactor 功率因数simultaneity 同时发生, 同时Slurry circuits and tunnel belt conveyor 泥水管路及隧道皮带输送机Segment moulds 管片模具Gantry crane 门吊Rolling stock incl. locomotives 运输车包括牵引机车Ventilation equipment 通风系统Transformer station 变压器Separation plant 泥水分离设备Grout mixing equipment 砂浆搅拌设备Cooling systems 冷却系统Compressed air plants 压缩空气设备Segment design 管片设计OD 外径ID 内径Length 宽度Distribution 布置方式Tunnel gradient 隧道坡度Tunnel length 隧道长度Shield 盾体Front shield diameter 盾体前部直径Rear shield diameter 盾体后部直径TBM steering minimal horizontal radius 最小转弯半径Construction of the front & rear shields 盾体前部、后部结构 Pressure wall 压力舱板Submerged wall 隔板Air regulation device 气压调节装置Front gate 前闸门Agitator 搅拌器Tailskin 盾尾Diameter 直径Tailskin type 盾尾类型Tailskin seal system 盾尾密封系统Emergency tailskin seal system 紧急盾尾密封系统Grease lines 油脂管Grouting lines 注浆管Grouting line cleaning system 注浆管清洗系统Air lock 空气闸Man lock 人行闸Number 数量Diameter 直径Type 类型Number persons 容纳人数Norm 标准Operating pressure 工作压力Temporary man lock 临时人行闸Number 数量 1Diameter 直径Length 长度Type 类型Number persons 容纳人员数Norm 标准Operating pressure 操作压力Material lock 材料闸Number 数量Diameter 直径Type 类型Norm 标准Operating pressure 工作压力Cutting wheel (CW) 刀盘Diameter 直径Construction 结构Type 类型Cutting wheel with exchangeable tools from within the arms 刀盘带有可从刀盘臂进行更换的刀具Soft ground tools 软土刀具Wear detection equipment 磨损监测系统Rotary unit 旋转中心接头Direction of rotation 旋转方向Centre conic area flushing 中心锥形体部位冲刷Cutting wheel drive 刀盘驱动Type of main drive 主驱动类型Main bearing type 主轴承类型Max pressure for seal system 密封最高工作压力Electric motor 电机驱动Total electrical power 总功率Nominal torque 额定扭矩Exceptional torque 最大扭矩Breakout torque 脱困扭矩Rotation speed 最大转速Outside diameter of main bearing 柱轴承外径Rotation direction 旋转方向Life time duration main bearing 设计寿命Thrust cylinders 推进油缸Quantity 数量Dimensions of the thrust cylinders 油缸尺寸Quantity of thrust cylinder groups 油缸分区数量Cylinders with stroke measurement system 油缸,带有行程及速度测量装置Support 支撑Working pressure 工作压力Nominal thrust force 额定推力Max. thrust force 最大推力Max. extension speed 最大伸出速度Retraction speed 收回速度Erector CEN Standard 管片拼装机 CEN 标准Type 类型Gripping system 抓取系统Degrees of freedom 自由度Rotation 回转角度Rotation speed 回转速度Max segment weight 最大提升管片重量Radio remote control 无线遥控Specific lift for ring building 管片安装专用提升装置Air lock shuttle transportation system in the shield 盾构机内的穿梭气闸运输系统Lifting device 起吊装置 Transfer crane 运输吊机Electric installation CEN Standard 电气设备 CEN 标准Installed electric power 功率IP rating electric motor 电机保护等级Back-up equipment 后配套设备Tunnel lines 隧道内管线Slurry discharge line 泥浆排出管Slurry feed line 泥浆供应管Industrial water line 工业用水管Compressed air line 压缩空气管HV cable 高压电缆Trailer structure 拖车结构Steel structure trailer 拖车钢结构Segment handling system 管片吊运系统Segment feeder 喂片机Segment crane 管片吊机Grout injection system 注浆系统Grout type 浆液类型Grout pumps 注浆泵Grout injection capacity 注浆泵容量Fixed grout tank 固定砂浆罐Stand by positions 备用活塞Movable tanks 可移动砂浆罐Hydraulic installation 液压设施Working pressure 工作压力Air lock transportation system in the back-up system 后配套系统上的气闸运输系统Place reservation 保留空间Grease station 油脂站Pneumatic grease pump 气动油脂泵Pneumatic grease pump 气动油脂泵Pneumatic grease pump 气动油脂泵Compressed air unit 压缩空气单元On the TBM 在盾构机上Air compressor for compressed air regulation (air cushion) 用于调节压力的压缩空气机 (气垫)Air tank 储气罐Breathable air filter devices 呼吸空气过滤设备Industrial water circuit 工业用水系统Cooling circuit 冷却循环系统Cooler type 热交换器类型Internal booster pump 升压泵Discharge booster pump 排出泵Intermediate tank 水箱Dewatering circuit 排水系统Pneumatic pump 气动泵Pneumatic pump for invert cleaning 反向清洗的气动泵Dirty water tank 5m3 污水箱 5m3Electric installation 电气设施Primary voltage 输入电压Installed electric power 安装的电器系统电源PLC unit PLC 单元Index of protection 保护等级Control cabin 控制室Sub. distribution panels 次级配电柜Main distribution panels 主配电柜Transformer main drive motor 主驱动电机变压器Transformer back up system 后配套系统变压器Transformer slurry pump P2.1 泥浆泵 P2.1变压器Medium voltage switch 中级开关Power factor correction 功率因数补偿Earth leakage relay 接地泄漏继电器Emergency lighting 应急照明Diesel generator 160kVA 柴油发电机 160kVAVentilation system 通风系统Secondary ventilation 次级通风系统- Silencer - 消声器- Booster fan - 鼓风机Air duct cassette DN2,800mm 气管存储筒 DN2,800mmExtension services 延伸作业HV cable 10kV 高压电缆10kVEarthing cable 接地电缆Signal cable for slurry pumps control, Data acquisition cable (including VMT) 用于泥水泵控制的信号电缆(包括井上井下数据采集、VMT)CCTV optical fibre 用于CCTV信号传输的光缆Cooling water 冷却水Dewatering water 排水管Emergency compressed air 紧急压缩空气Air duct 通风管Personnel facilities 员工设施Storage area 存储区Workshop area 工作区Recreation room 休息室Engineer room 工程师室Infirmary & toilet with washing facilities 医疗设施、洗手间带盥洗装置Slurry circuit installation 泥浆循环设施Slurry flow rate 泥浆流量Main circuit on TBM 在盾构机上的主循环Diameter of Slurry pipe on TBM 盾构机上的泥浆管直径Excavation chamber flushing 开挖舱冲刷Bentonite nozzles lines 膨润土喷注管Bentonite nozzles lines 膨润土喷注管Centre conic area flushing 中心锥形体部位冲刷flushing nozzles 膨润土冲刷喷嘴Flushing pump 冲刷泵Suction grid 入口隔栅By pass in shield 在盾体内的旁通Valves type 阀门类型Flow meter measurement devices 流量测量装置Slurry line pressure sensors 泥水管路压力传感器Density measurement on TBM TBM上的密度测量装置Density measurement in the tunnel 隧道内的密度测量装置Slurry pump on back-up 后配套上的泥浆泵Slurry pipes extension system 泥浆管延伸系统Slurry pipes storage area 泥浆管存储区Main circuit in tunnel 隧道内主循环Diameter of slurry pipeline in tunnel 隧道内泥浆管直径Slurry pump 排渣泵Diameter of feed pipeline 供应管路直径Feed booster pump 供应泵Auxiliary equipment 辅助设备CCTV system CCTV-系统Communication system 通讯系统Guidance system 导向系统Tailskin clearance measuring 盾尾间隙测量系统Data logging system 数据采集系统Fire suppression system 灭火系统Gas monitoring system 毒气探测系统THRUST CYLINDER 推进油缸ROTARY TRANSMISSION LEADTHROUGH 回转接头EMERGANCY SEAL 紧急密封ELECTROMOTOR 电马达GEARBOX 齿轮箱PLANETGEAR 行星齿轮箱MOTOR 马达PINION 小齿轮SEAL 密封SEAL 密封RACERING 座圈MAIN BEARING 主轴承INSTALLATION THRUST JACKS 推进油缸回路DISPLACEMENT PUMP 变量泵MOTOR 马达HYDRAULIC SCHEME/ERECTOR 液压图/拼装机DISPLACEMENT PUMP 变量泵VACUUMPUMP 真空泵MOTOR 马达FILTER-/COOLING CIRCUIT 滤清器/冷却回路SCREWPUMP 螺旋泵HEAT EXCHAGER 热交换器HYDRAULIC SCHEME/GROUT INJECTION 液压图/注浆回路GROUTPUMP 注浆泵WATER CIRCUIT 水回路WATER PUMP 水泵SLURRY CIRCUIT 泥浆回路BALL VALVE 球阀SLURRY PUMP 泥浆泵WEEHL 轮子HOUSING 壳子MOTOR 马达GREASE LUBRICATION 油脂润滑PUMP 泵SLURRY PUMP 泥浆泵MOTOR 马达AIRPUMP 空气泵CONTAINER 20" 20"集装箱BRUSH SEAL 盾尾密封刷SEAL SET 密封组DIV.SPARE PARTS SHILD 待定盾体备件BENTONIT NOZZEL 膨润土喷嘴CYLINDER 液压油缸COMPENSATOR 补偿器CUTTINGWHEEL 刀盘CUTTING KNIFE 齿刀BUCKET 铲刀FIXING ELEMENTS 固定用元件SEAL 密封ERECTOR 拼装机VACCUM POMP 真空泵SUPPORT 支撑SEAL 密封HUSK 支架SEAL 密封CYLINDER 油缸LASER 激光工具ENERGY CHAIN 能量链条FILTERELEMENT 滤芯CIRCUITS/NETS 回路INSTALLATION THRUST JACKS 推进千斤顶VALVE 阀TRANSFORMER 传感器FILTERELEMENT 滤芯PROP.VALVE 比例阀VALVE 阀HYDRAULIC SCHEME/CUTTING WHEEL DRIVE 液压图/刀盘驱动VALVE 阀PROP.VALVE 比例阀TRANSFORMER 传感器VALVE 阀。
盾构机设计部分
一、 设计依据
1.管片构造设计 内径5500,外径6200,宽度1.2m。 2.衬砌形式及拼装方式 标准环+左转弯环+右转弯环,采用错缝拼装。 3. 地质状况 隧道穿越粉质粘土、强风化闪长岩、中风化闪长岩、强风化角岩化泥岩和中风化 角岩化泥岩 ,属于复合地层。 4. 线路平纵面特点 平面R=350、R=400m半径各一处,纵断面最大坡度为2.7%。
52 x 刮刀 (160mm) 1 x 仿形刀
Page 5
Jan 2011
HERRENKNECHT AG | UTILITY TUNNELLING | TRAFFIC TUNNELLING
(2)刀盘直径6,480mm (滚刀配置)
刀盘开口率为38% :
- 4 x 中心双刃滚刀可与软土刀具互换 - 20 x 面板滚刀可与软土刀具互换 - 8 x 铲刀 11 x 边缘滚刀可与齿刀互换 - 8 x 泡沫/水喷嘴 2 x 磨损探测装置
-17” Twin Centre Disc Cutters (中心双刃滚刀) - Height: 175 mm - Spacing 90mm
Page 8
Jan 2011
HERRENKNECHT AG | UTILITY TUNNELLING | TRAFFIC TUNNELLING
(4)刮刀与滚刀的高度对比
三、盾构机部件设计介绍
1. 盾体
盾体:
- 2 x16 推进推进油缸:总推力 42,000 kN -4 水平方向超前钻孔DN100 - 8 倾斜超前钻孔DN100 - 5 土压传感器 - 14 盾尾铰接油缸(被动式) - 4 x 2单液浆注浆管路集成在盾尾中 - 3 道盾尾钢丝刷 - 2 x 4盾尾油脂管路
(6)各种刀具的细节视图
盾构管片设计
•
错缝拼装的优点在于:能使圆环接缝刚度分布均匀,减小接缝 及整个结构的变形;错缝拼装方式下,纵、环缝相交处仅有三缝交 汇,相比通缝拼装方式下的十字缝,在接缝防水上较易处理;而且 错缝拼装方式下接缝变形较小,这对防水是十分有利的。 由于错缝拼装方式有着这样的优点,在防水要求较高的盾构 法隧道(如过江、海底隧道、地铁等)或软土地区盾构法隧道中, 往往采用错缝拼装方式,以取得较好的空间刚度,达到控制隧道 衬砌的变形、保证隧道正常使用性能的目的。表1列举了一些采用 错缝拼装技术的盾构法隧道。
•
•
•
新奥法通过允许和激励地层有控制的变形,调动土体的剪切 强度,从而限制了地层侵入隧道的趋势,也就是说,减小了衬砌 上的荷载。在盾构法隧道中,柔性衬砌设计理论也有着类似的应 用,比如通过减薄衬砌厚度、减小接头刚度、增加接头数量等来 达到〕。 在国内,由于通缝拼装方式能够使衬砌结构获得较好的柔性, 故随着柔性衬砌的采用而得到了广泛的应用。以上海为例,上海 地铁一、二号线,延安东路南线、北线隧道等均采用了通缝的拼 装方式。实践证明,柔性衬砌设计理论大大改进了隧道的环、纵 向受力性能,但在较差的土层中正是由于柔性衬砌的“柔性”,使 得隧道变形较大,给隧道防水带来了困难。为了克服这种太“柔” 的隧道,于是选择了较厚的大刚度管片,这也是350mm的原因之 一。
• B)通用型管片。
• 目前欧洲较为流行通用管片。它 只采用一种类型的楔形衬砌环,盾构 掘进时通过盾构机内环向千斤顶的传 感器的信息确定下环转动的角度,以 使楔形量最大处置于千斤顶行程最长 处,也就是说,管片衬砌环是可以 360°旋转的。国内深圳地铁首次采用 通用管片。由于它只需一种管片类 型,可降低管模成本,不会因管片类 型供应不上造成工程质量问题。但是 通用管片拼装难度较高,需要有经验 的盾构机操作人员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) Geometric Design of Shield Lining
KθP = 18070 kN ⋅ m / rad (if inside part of lining is tensile) KθN = 32100 kN ⋅ m / rad (if outside part of lining is tensile) Design Method
¾ How to compute member forces? Force method (Part Two) and Elastic equation method (Part Three) are used respectively to calculate member forces.
¾ Lateral resistance pressure
δ =(2 p1 − p3 − p3+4 + πp5 )Rc4 /[24(ηEI + 0.0454KRc4 )]
= (2×420.623-272.918-445.891+π×14.976) ×103×4.554/[24×(0.8 ×3.0×104×106×6.4×10-3+0.0454×60×106×4.554)]
A Design of Shield Tunnel Lining
Part One: Design Data
(1) Function of Tunnel
The planned tunnel is to be used as a subway tunnel.
(2) Design Conditions Dimensions of Segment
(2) Computation of Member Forces
Figure 4 shows the simplified model of the segmental lining.
Figure 4 Simplified model diagram for calculation
¾ Calculation data
Materials
¾ The grade of concrete: C30 Nominal strength: fck=20.1N/mm2 Allowable compressive strength: fc=14.3N/mm2 Allowable tensile strength: ft=1.43N/mm2 Elastic modules: E=3.0×104N/mm2
tan 31°
8.227
8.227
= 24.986m > H = 12.3m
So the designed tunnel is a shallow tunnel.
Load Types and Partial Factors
Table 1 shows the loads should be considered in the design and corresponding partial factors.
The shield lining is fitted with 9 segmental pieces (one Key-type segment, two B-type segments and six other segments) as shown in Figure 1. Central angle of each segment piece is 40 degrees.
¾ Coefficients Calculation
n = n1 + n2 + n3 + n4 = 1 + 1 + 1 + 2 = 5
Note: if the joint just located at 180 degree of the half-ring lining, then its stiffness contribution to the whole structure should be considered as half of the total value.
Water pressure
1.2
Computation of Loads
Computation element is a 1.2 meter (width of segment) part along the longitudinal direction, and Figure 3 shows the load condition to compute member forces of the segmental lining.
¾ Lateral pressure at tunnel crown Earth pressure:
qe1
=
λ(
pe1
+
1.2bγ
'
t) 2
=
0.4× (208.392
+
1.2 × 1.2 ×
8×
0.4 ) 2
=
84.278kN
/
m
Water pressure:
qw1
=
1.2bγ
w
(Hw
+
t 2
)
=
Water pressure:
pw1 = 1.2bγ w H w = 1.2×1.2×10×12.9 = 185.76kN / m
q1 = pe1 + pw1 = 208.392 + 185.76 = 394.152kN / m
q2 = 1.2b × 0.215Rγ = 1.2×1.2× 0.215× 4.75 ×18 = 26.471kN / m
KθP = 18070kN ⋅ m / rad (if inside part of lining is tensile)
KθN = 32100kN ⋅ m / rad (if outside part of lining is tensile)
EI = 3.0×104 ×103 × 6.4×10−3 = 192000kN ⋅ m2
Table 1 Load Types and Partial Factors
Load types Partial factors
Load types
Partial factors
Surcharge
1.4
Earth pressure
1.2
Dead load
1.2
Subgrade reaction
1.2
Figure 3 Load condition of the designed tunnel ¾ Vertical pressure at tunnel crown
Earth pressure:
pe1 = b(1.4P0 + 1.2γ ' H ) = 1.2× (1.4× 39.7 + 1.2×12.3) = 208.392kN / m
K
B1
B2
A1
A6
A2
A5
A3
A4
Figure 1 The cross section of the shield lining
Part Two: Computation by Force Method
(1) Load Conditions Judgment of Tunnel Type (by Terzaghi’s formula)
∑ δ 11
=
Rπ EI
+
n i =1
1 Kθ(i )
=
Rπ EI
+
2.5 KθP
+
2 KθN
=
4.55 × π 192000
= 2.29104×10-3m
pk = kδ ⋅ b = 50 × 103 × 2.29104 × 10−3 × 1.2 = 137.462kN / m
p6 = ph(1 − 2 cos2 ϕ )
π (
≤ϕ
≤
3π
)
4
4
Where
δ = Displacement of lining at tunnel spring η = Reduction factor of model rigidity = 0.8 E = Modulus of elasticity of segment = 3.0×104N/mm2 I = Moment of inertia of area of segment = 1/12×1.2×0.43 = 6.4×10-3m4 k = Coefficient of reaction = 50MN/m3 K = k ⋅ b = 50×1.2 = 60MN / m2 ϕ = the angle measured from the vertical direction around the tunnel
Angle of internal friction of soil: φ =30o
Cohesion of soil: c=0 kN/m2 Coefficient of reaction: k=50MN/m3 Coefficient of lateral earth pressure: λ =0.4 Surcharge: P0=39.7kN/m2 Soil condition: Sandy
φπ
Figure 2 Judgment of tunnel type
B1
=
R0
cot(π 8