误差理论与测量平差基础 协方差传播律及权

合集下载

误差理论与测量平差基础

误差理论与测量平差基础

《误差理论与测量平差基础》授课教案2006~2007第一学期测绘工程系2006年9月课程名称:误差理论与测量平差基础英文名称:课程编号:??适用专业:测绘工程总学时数: 56学时其中理论课教学56学时,实验教学学时总学分:4学分◆内容简介《测量平差》是测绘工程等专业的技术基础课,测量平差的任务是利用含有观测误差的观测值求得观测量及其函数的平差值,并评定其精度。

本课程的主要内容包括误差理论﹑误差分布与精度指标﹑协方差传播律及权﹑平差数学模型与最小二乘原理﹑条件平差﹑附有参数的条件平差﹑间接平差﹑附有限制条件的间接平差﹑线性方程组解算方法﹑误差椭圆﹑平差系统的统计假设检验和近代平差概论等。

◆教学目的、课程性质任务,与其他课程的关系,所需先修课程本课程的教学目的是使学生掌握误差理论和测量平差的基本知识、基本方法和基本技能,为后续专业课程的学习和毕业后从事测绘生产打下专业基础。

课程性质为必修课、考试课。

本课程的内容将在测绘工程和地理信息系统专业的专业课程的测量数据处理内容讲授中得到应用,所需先修课程为《高等数学》、《概率与数理统计》、《线性代数》和《测量学》等。

◆主要内容重点及深度考虑到专业基础理论课教学应掌握“必须和够用”的原则,结合测绘专业建设的指导思想,教学内容以最小二乘理论为基础,误差理论及其应用、平差基本方法与计算方法,以及平差程序设计及其应用为主线。

测量误差理论,以分析解决工程测量中精度分析和工程设计的技术问题为着眼点,在掌握适当深度的前提下,有针对性的加强基本理论,并与实践结合,突出知识的应用。

平差方法,以条件平差和参数平差的介绍为主,以适应电算平差的参数平差为重点。

计算方法,以介绍适应电子计算机计算的理论、方法为主,建立新的手工计算与计算机求解线性方程组过程相对照的计算方法和计算格式。

平差程序设计及其应用,通过课程设计要求学生利用所学程序设计的知识和平差数学模型编制简单的平差程序,熟练掌握已有平差程序的使用方法。

误差理论与测量平差基础第三章 协方差传播律及权

误差理论与测量平差基础第三章  协方差传播律及权

X
0 1
,
X
0 2
,
,
X
0 n
也可写为:
dZ
f X1
dX1 0
f X
2
dX2 0
f X
n
0 dX n
KdX
因此只要对非线性函数求全微分,获得系数矩阵即 可应用协方差传播率
12
第三章 协方差传播率及权
6、多个观测向量非线性函数的方差—协方差矩阵
基本思想:a、利用泰勒级数展开,略去二次以上项,
为第l2ilj i组E观(li测 值E(l的i ))方(l j 差 E;(l j ))
为第i组观测值关于第j组观测值的协方差,协方差用 来描述第i个观测值与第j个观测值之间的相关程度。
3
第三章 协方差传播率及权
§3-2 协方差传播率
1、协方差传播律的作用 (图3-1示例)
计算观测向量函数的方差—协方差矩阵,从而评 定观测向量函数的精度。
20
第三章 协方差传播率及权
对上式求全微分,得
dZ1
f1 X 1
dX 1
f1 X 2
dX 2
f1 X n
dX n
dZ 2
f 2 X 1
dX 1
f 2 X 2
dX 2
f 2 X n
dX n
dZt
f t X 1
dX 1
f t X 2
dX 2
f t X n
dX n
21
第三章 协方差传播率及权
2、预备公式
E(C) C , E(CX ) CE(X ), E(X Y ) E(X ) E(Y )
E(X1 X 2 X n ) E(X1) E(X 2) E(X n )

误差理论与平差基础-第3章 协方差传播率及权

误差理论与平差基础-第3章 协方差传播率及权

2 0 0 2 DLL 0 0 2 0 0
2 0 0 2 / 3 1 / 3 1 / 3 2 / 3 1 / 3 1 / 3 1 / 3 2 / 3 1 / 3 0 2 0 1 / 3 2 / 3 1 / 3 DL ˆL ˆ 2 1 / 3 1 / 3 2 / 3 0 0 1 / 3 1 / 3 2 / 3

106.1 7.8 121 2.6 6.8 244.3
二、协方差传播律
2、线性函数的方差——协方差
[例7] 求等精度观测的三角形三个内角按照闭合差分配后角 度的协方差阵。 三角形闭合差: w 180 L1 L2 L3
1 2 1 1 ˆ L1 L1 W L1 L2 L3 60 3 3 3 3 1 1 2 1 ˆ L2 L2 W L1 L2 L3 60 3 3 3 3 ˆ L 1 W 1 L 1 L 2 L 60 L 3 3 1 2 3 3 3 3 3

a1( X A X s ) b1 (YA YS ) c1 ( Z A Z S ) a3 ( X A X S ) b3 (YA YS ) c3 ( Z A Z S )
a 2 ( X A X s ) b2 (YA YS ) c2 ( Z A Z S ) a3 ( X A X S ) b3 (YA YS ) c3 ( Z A Z S )
XY
XY XY
表示X、Y 间互不相关,对于 正态分布而言,相互独立。
YX XY 0
YX XY 0
表示X、Y 间相关。
二、协方差传播律

第三章协方差传播律及权

第三章协方差传播律及权
= E K ( X − µ X )( X − µ X ) T K T
[
[
]
= KE ( X − µ X )( X − µ X ) T K T
[
]
]
]
协方差传播律
DZZ = σ = KDXX K
2 Z
T
DZZ
的纯量形式:
+ L + 2k1 k nσ 1n + L + 2k n −1 k nσ n −1, n
s = ab
先取对数然后再全微分能简化计算。 先取对数然后再全微分能简化计算。 对函数式取自然对数: 对函数式取自然对数:
σ S = 500σ d = 500 × (±0.2) = ±100mm = ±0.1m
最后写成: 最后写成
S = 11.7 ± 0.1 m
回到首页
二、多个观测值线性函数的协方差阵 推导过程: 推导过程:Z = K X + K 函数:
t ,1 t , n n ,1 0 t ,1
E ( Z ) = E ( KX + K 0 ) = Kµ x + K 0
X 0 = X 10
n ,1
[
0 X2
L
X
0 T n
]
0 0 Z = f ( X 10 , X 2 , L , X n ) + (
∂f 0 +( )0 ( X 2 − X 2 ) + L ∂X 2 ∂f 0 +( ) 0 ( X n − X n ) + (二次以上项) ∂X n
∂f ) 0 ( X 1 − X 10 ) dX = ( dX 1 dX 2 L dX n ) T ∂X 1 0 0 dZ = Z − Z 0 = Z − f (X 10 , X 2 , L , X n )

误差理论与测量平差基础1

误差理论与测量平差基础1
第一讲 协方差传播律及权
侧方交会中,A、B两点的坐标以及两点之间的距离已知, 坐标 方位角为 0 ,由交会的观测角 L , L ,求交会点的坐标。
1 2
S AC S 0
S in L1 S in L 2
0
A C 0 (1 8 0 L1 L 2 )
x C x A S A C c o s A C y C y A S A C sin A C
由协方差传播律可知:
F D F F (3, 0, 2 ) D L L (3, 0, 2 )
2 T
3 22, 0, 10 0 2
86
side4
在测站A上, BAC 例2:
的中误差 的中误差。 解:
1

2
1 . 4
t ,1 t ,n n ,1 t ,r r ,1
DYY
DXY
求 DZZ
DZX
DZY
X F2 ) Y X O) Y
解:
Z ( F1
X (E
例5:已知函数, L, DLL , X AL, Y BX
求 DXX
DYY
DXY DXL DYL
side8
3、非线性函数的情况 设有观测值X的非线性函数:
则 p1 2, p2 1, p3
side21
说明:
1)权的大小随 0 而变化,但权比不会发生变化。
2
2)
选定了 0 ,即对应一组权。
2
3)权是衡量精度的相对指标,为了使权起到比较精 度的作用,一个问题只选一个0。 4)只要事先给定一定的条件,就可以定权。 5)权可能有量纲,也可能无量纲,视0和i的单位而定。

《误差理论与测量平差基础》课程教学大纲

《误差理论与测量平差基础》课程教学大纲

《误差理论与测量平差基础》课程教学大纲《误差理论与测量平差基础》课程教学大纲一、基本信息二、教学目的与任务误差理论与测量平差基础是一门专业基础课,以培养学生掌握测量数据处理的基本方法和原理为目的。

课程内容包括误差理论和测量平差基础两部分。

误差理论主要讲授误差来源、分类、性质、分布、数字特征、传播及主要应用,以误差分布、数字特征及传播律为重点。

测量平差基础主要讲授条件平差、间接平差等经典测量平差基本理论、方法、估计理论及精度评定。

通过本课程的学习,学生应掌握误差理论和测量数据处理的基本原理和方法,了解测量平差的发展过程和近代测量平差方法,能够应用测量平差基本理论和方法进行测绘数据处理和精度分析,培养学生解决工程控制网的数据处理和测绘工程实践能力,为进一步学习测量数据处理理论和后续课程的学习打下坚实的理论基础。

三、教学内容与要求(一)绪论2学时1、观测误差2、测量平差学科的研究对象3、测量平差的简史和发展4、本课程的任务和内容要求:明确观测误差产生的原因,掌握误差分类和特点、观测误差的处理方法,了解测量平差的发展历史和本课程的主要任务和特点,明确平差理论研究的对象和所要解决的问题,提出本科程的学习方法。

(二)误差分布与精度指标2学时1、偶然误差的特性2、衡量精度的指标3、精度、准确度和精确度要求:熟悉随机变量的数字特征,掌握偶然误差的规律性,理解方差、协方差阵的概念和涵义;掌握精度、准确度、精确度等概念的区别和联系。

(三)协方差传播律及权8学时1、协方差的传播2、协方差传播律的应用3、权与定权的常用方法4、协因数阵与权阵5、协因数传播律6、协方差传播律及其在测量上的应用7、系统误差的传播要求:熟记方差、协方差传播律的基本公式,掌握非线性函数线性化的方法;掌握权与定权的常用方法,理解方差、权、与协因数的关系;了解系统误差的传播规律。

(四)平差数学模型与最小二乘原理4学时1、测量平差概述2、函数模型3、函数模型线性化4、测量平差的数学模型5、参数估计与最小二乘原理要求:明确必要起算数据、必要观测数据、多余起算数据和多余观测数据的概念,掌握必要观测数和多余观测数的计算方法,熟记各种平差方法的数学模型;了解参数估计和最小二乘原理。

测量平差 第三章 误差传播律与权

测量平差  第三章 误差传播律与权
1 2 n
1
σX X 2 σX
1 2
2
σX X ⎤ ⎥ σX X ⎥
1 n 2 n
1
σX
nX2
2 σX
n
⎥ ⎥ ⎥ ⎦
⎡ μY1 ⎤ ⎡ E (Y1 ) ⎤ ⎡Y1 ⎤ ⎢ ⎥ ⎢ ⎥ ⎢Y ⎥ ⎢ μY2 ⎥ = ⎢ E (Y2 )⎥ Y = ⎢ 2 ⎥ μY = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ μYr ⎥ ⎣ E (Yr ) ⎦ ⎣ ⎦ ⎣Yr ⎦
误差理论与测量平差基础
北京建筑工程学院 测绘工程系
把观测值函数表示为矩阵形式
⎡L ⎤ 1 2 1 1⎤ ⎢ ⎥ ˆ ⎡ L = ⎢ − − ⎥ ⎢L2 ⎥ +60 1 ⎣3 3 3⎦ ⎢L3 ⎥ ⎣ ⎦
⎡2 ˆ ⎡L ⎤ ⎢ 3 1 ⎢ ⎥ ⎢ 1 ˆ ˆ L = ⎢L2 ⎥ = ⎢− ⎢ˆ ⎥ ⎢ 3 ⎢L3 ⎥ ⎢ 1 ⎣ ⎦ ⎢ − ⎢ 3 ⎣
β ,其中误差 β 2
B
A
β1 β2 x
α
C
误差理论与测量平差基础
北京建筑工程学院 测绘工程系
1. 把已知条件写成矩阵、向量形式
⎡ β1 ⎤ β =⎢ ⎥ ⎣ β2 ⎦
⎡ σ 12 σ 12 ⎤ ⎡1.96 −1 ⎤ =⎢ = 2⎥ σ 21 σ 2 ⎦ ⎢ −1 1.96 ⎥ ⎣ ⎦ ⎣
观测量
方差
DXX
⎡1 = σ = KDLL K = ⎢ ⎣7
2 X T
2 7
σ X = 0.84 = 0.9mm
误差理论与测量平差基础
北京建筑工程学院 测绘工程系
协方差计算步骤:
D X X
希望同学们把它记下来

《误差理论与测量平差基础》第三章

《误差理论与测量平差基础》第三章

1n 2n 2 n
§3.1 协方差传播律
设有t个 X 的线性函数: n ,1 Z1 k11 X 1 k12 X 2 k1n X n k10 Z 2 k 21 X 1 k 22 X 2 k 2 n X n k 20 Z t k t1 X 1 k t 2 X 2 k tn X n k t 0
E ( Z ) E ( KX k0 ) KE( X ) k0 K X k0
Z的方差为: DZZ E Z E ( Z )Z E ( Z )
E ( KX k 0 K X k 0 )( KX k 0 K X k 0 )
E K ( X X )( X X )T K T
Z K X K0
t ,1 t , n n ,1 t ,1
E ( Z ) E ( KX K 0 ) K x K 0
D ZZ E[( Z E ( Z ))( Z E ( Z )) T ]
t ,t
E[( KX K x )( KX K x ) T ]
KE[( X x )( X x ) T ]K T
T
§3.1 协方差传播律
例3-4 在一个三角形中,同精度独立观测得到
三个内角L1、L2、L3,其中误差均为,将
闭合差平均分配后各角的协方差阵。 例3-5 设有函数: 已知:
Z F1 X F1 Y
t ,1 t , n n ,1
t , r r ,1
DXX、DYY 和DXY DZZ、DZX 和DZY
DYZ E[(Y E (Y ))( Z E (Z )) ]
T r ,t

《误差理论与测量平差基础》学习指南

《误差理论与测量平差基础》学习指南

学习指南本课程是基础理论课,概念多、公式多、符号多、计算多。

要学好这门课,希望注意以下几点:1、按照教材内容,循序渐进;2、课前预习,课后复习;3、每一章做好小结,课后应按要求完成习题;4、对于五种平差方法,要理解原理,不要孤立地看,要联系起来,找它们的共同点。

所研究的“抓住一个字母,掌握两个步骤”的学习方法可供大家研究。

所谓“一个字母”指的是参数的个数“u”,正因为它的变化,才产生了不同的平差函数模型。

“两个步骤”指的是每种平差方法都分两步进行,一步是求参数、观测值的估值,一步是精度评定。

几种平差方法都是这样,思路一致,方法一致。

这样思考,使平差方法之间的联系非常清楚。

第一章绪论§1-1 观测误差内容:观测误差来源、分类、观测条件重点:观测误差的性质及分类主要掌握一些概念。

§1-2 测量平差学科的研究对象内容:测量平差的研究对象主要对测量平差的研究对象—偶然误差有清楚的认识。

§1-3 测量平差的简史和发展内容:测量平差理论、计算方法、计算工具的历史与发展重点:测量平差理论的发展主要对测量平差的发展有个概括的认识。

§1-4 本课程的任务和内容内容:本课程的研究对象和主要内容重点:主要内容主要对所学习的内容有个简洁的了解。

第二章误差分布与精度指标§2-1 随机变量的数字特征内容:随机变量的数学期望、方差、协方差及相关系数的定义随机向量的数学期望、方差-协方差阵重点:数学期望、方差的定义与运算规则要求熟知数学期望和方差的运算规则。

§2-2 正态分布内容:一维、多维正态分布重点:一维正态分布、正态随机变量的期望与方差要求能够理解密度函数的概念和其中参数的意义。

§2-3 偶然误差的规律性内容:偶然误差的规律重点:偶然误差的特性要求熟知偶然误差的特性§2-4 衡量精度的指标内容:中误差、平均误差、或然误差、极限误差及相对误差的概念与定义重点:中误差、极限误差及相对误差的定义要求熟知中误差、极限误差及相对误差的定义和计算。

误差理论与测量平差基础第三章协方差传播律及权

误差理论与测量平差基础第三章协方差传播律及权
参数估计
参数估计可采用最小二乘法或加权最小二乘法。在选择方 法时,需根据实际问题的特点和需求进行权衡。
算法性能评估指标选取
精度指标
精度指标是衡量算法性能的重要指标之一。常用的精度指标包括均方误差、均方根误差、 中误差等,可用于评估算法的估计精度和稳定性。
可靠性指标
可靠性指标用于评估算法在复杂环境和噪声干扰下的性能表现。常用的可靠性指标包括失 败率、误警率、漏警率等。
误差传递规律探讨
误差传递概念
在测量过程中,由于各种因素的影响,观测值会存在一定 的误差。这些误差在传播过程中会遵循一定的规律,即误 差传递规律。
线性函数误差传递
对于线性函数Z=aX+bY(其中a、b为常数),其误差传 递公式为D(Z)=a^2D(X)+b^2D(Y)+2abcov(X,Y)。可以 看出,误差传递与观测值的方差和协方差有关。
的线性相关程度。
对称性
Cov(X,Y) = Cov(Y,X)
加法性
Cov(aX+b, cY+d) = acCov(X,Y)
独立性
若X与Y独立,则Cov(X,Y) = 0
传播律意义与作用
传播律意义
协方差传播律描述了随机变量经过线 性变换后,其协方差矩阵如何变化。 这对于理解和分析复杂系统的误差传 递机制具有重要意义。
权重因子的选择应根据实际情况和测量任务的要求进行,要综合考虑观测值的 精度、稳定性、可靠性等因素。
使用方法
在平差计算中,应根据所选权重因子对观测值进行加权处理,以充分利用观测 值的信息并提高平差结果的精度和可靠性。同时,要注意避免过度加权或欠加 权的情况,以免对结果产生不良影响。
04
基于协方差传播律和权的平差算法设

误差平差:协方差传播定律及权

误差平差:协方差传播定律及权

非线性函数的线性化
如果函数 f ( x) 在 x 0的某一邻域内具有直到n+1阶的导数,则 在该邻域内 f ( x) 的泰勒公式为
f ′′(x0 ) f (x) = f (x0 ) + f ′(x0 )(x − x0 ) + (x − x0 )2 +L 2! f (n) (x0 ) + (x − x0 )n +L +L n!
故:
D = [ F 0] DXX [ 0 K] YZ = FD KT 12
T
协方差传播律小节 求函数(也可是向量)的方差(方差阵); 求函数(也可是向量)的方差(方差阵); 适用于各观测为相关观测情况; 适用于各观测为相关观测情况; 定律的通式为: 定律的通式为:
若 则
F = KX + K 0 DFF = KDXX K
L
1
ˆ
L2
ˆ
L3
1 8 00 3( L1 + L2 + L3 − = L− ) 1 1 8 00 3 ) = L2 − ( L1 + L2 + L3 − 1 1 8 00 3 − ( L + L2 + L3 − 1 3 = L )
1
试求各函数的方差
ˆ σ L,σ Lˆ ,σ
1 2
ˆ
L 3
DLˆ Lˆ
误差理论与测量平差基础
—协方差传播定律及权
第三章 协方差传播律及权
本章内容包括: 本章内容包括:
§3-1 §3-2 §3-3 §3-4 §3-5 §3-6 数学期望的传播 协方差传播律 协方差传播律的应用 权与定权的常用方法 协因数和协因数传播律 由真误差计算中误差及其实际应用

误差理论与测量平差基础CH03

误差理论与测量平差基础CH03

误差理论与测量平差基础 第三章 协防差传播律及权 3-1 协防差传播律
2、多个观测值线性函数的方差阵
t×1
Z 和 Y 为多个观测值线性函数:
r×1 t ×1
Z = K X + K0
t×nn×1
t×1
r ×1
Y = F X + F0
r×nn×1
r×1
数学期望分别为: E (Z ) = K µ X + K 0
1×1
Z = f ( X ) = f ([X1 , X2 , · · · , Xn ]T )
n×1
在近似值X 0 按泰勒(台劳)级数展开(乎略二次以上项)
1×1
Z = k1 X1 + k2 X2 + · · · + kn Xn + k0 = K X + k0
1×nn×1
1×1
∂f ki = ( ∂ Xi )0
20
0 1 0.8 0.6 C 0.4 0.2 0
误差理论与测量平差基础 第三章 协防差传播律及权 3-2 协防差传播律的应用
三、若干独立误差的联合影响
一个观测结果同时受到许多独立误差的联合影响,如测角受 到照准、读数、目标偏心仪器偏心等误差的影响,观测结果真误 差是各独立误差的代数和 ∆Z = ∆1 + ∆2 + · · · + ∆n 它们的方差之间的关系为
2 2 2 2 σZ = σ1 + σ2 + · · · + σn
2 DZZ = σZ = KDXX K = K 2 DXX
变成上一章中所讲的方差的运算规则。
误差理论与测量平差基础 第三章 协防差传播律及权 3-1 协防差传播律

《误差理论与测量平差基础》课程学习指南

《误差理论与测量平差基础》课程学习指南

《误差理论与测量平差基础》课程学习指南2011.09一、课程学习目标通过学习牢固地掌握测量数据处理的理论和方法,熟悉三种控制网平差的全过程,为后续专业课程的学习打下扎实的基础。

二、课程知识结构本课程由两大部分内容组成,即误差理论和测量平差基础。

误差理论部分是研究误差来源以及处理方法、研究偶然误差的统计性质、误差分布、误差的传播以及衡量精度的指标等。

测量平差基础部分处理带有偶然误差的观测值,求出待求量的最佳估值,并评定测量成果的精度。

课程学习内容分细为七块,即,误差理论、测量平差原理、测量平差方法、测量平差计算、点和线的位置误差、假设检验、近代测量平差等。

学习的层次可分为:理论、原理、方法、应用四个层次,其中,平差原理、平差方法、平差计算为测量平差学习的核心内容。

三、基本要求1、基本知识部分:1)误差理论部分✧了解观测误差产生的原因;✧掌握误差分类及其处理方法;✧掌握偶然误差的统计特性以及误差分布;✧掌握衡量精度的绝对指标和相对指标;✧了解测量平差的任务和内容。

✧掌握求函数的协方差阵(协因数阵)的方法。

2)测量平差基础部分✧掌握测量平差的数学模型(包括函数模型和随机模型)概念;✧掌握间接平差、条件平差以及附有限制条件的条件平差函数模型建立方法;✧了解最小二乘准则及其最小二乘估计的统计特性。

✧掌握基本平差原理、平差计算公式以及精度评定方法。

2、理论联系实际部分1)掌握三角网、导线网、GPS网间接平差时误差方程式建立、条件平差时条件式建立方法、观测值权阵确立方法。

2)平差计算:分组平差原理、高斯约化原理。

3)掌握点位(误差椭圆)、直线元位置误差的计算。

3、近代平差部分掌握秩亏自由网平差原理及其平差计算公式。

四、学习建议1、开始学习前预习高等数学,线性代数和概率与数理统计等课程的知识。

2、对公式推导过程要有清晰的认识,熟悉各种平差方法中基本向量之间的关系,且明辨公式中的符号所对应的向量。

3、每一个知识点均需做一定的习题,巩固课堂理论知识;4、所有平差方法学习之后,同一算例采用不同方法求解,得出一致结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其矩阵形式为: Y FX F0
第三章 协方差传播率及权
则有:
DYY FDXX F T DYTY
rr
而 DYZ E[(Y E(Y ))(Z E(Z ))T ]
rt
E[(FX F0 FE( X ) F0 )(KX k0 KE( X ) k0 )T ]
FE[(X E( X ))(X E(EX ))T ]K T
X、Y相互独立时:
E(X ,Y ) E(X )E(Y )
第三章 协方差传播率及权
3、观测向量线性函数的方差
设观测向量X及其期望和方差为:
X ( X 1 X 2 X n )T , E( X ) ( E( X1 ) E( X 2 ) E( X n ))T
2 1
12
1n
DXX E (X E(X ))(X E(X ))T
Z k1X1 k2 X 2 kn X n k0
第三章 协方差传播率及权
如果令:
dX i
Xi
X
0 i
i 1,2,, n
dX dX1 dX2 dXn T
dZ Z Z 0 Z f
X
0 1
,
X
0 2
,,
X
0 n
也可写为:
dZ
f X1
dX1 0
f X 2
dX2 0
f X n
第三章 协方差传播率及权
在近似值
X
0 1
,
X
0 2
,
,
X
0 n
处展开
Z
f
X
0 1
,
X
0 2
,,
X
0 n
f X
1
0
X1
X
0 1
f X
2
0
X
2
X
0 2Biblioteka f Xn0
Xn
X
0 n
二次以上项
当X与X0非常接近时,可以略去二次以上小项(影响非常小) 微分以后的系数均为具体数值,将常数提取出来,即得:
12
2 2
2n
DXTX
1n
2n
2 n
观测向量线性函数为
Z KX k0
式中: K k1 k2 kn , k 0 为常数。
第三章 协方差传播率及权
Z的期望为 Z的方差为
E(Z ) E(KX k0 ) KE( X ) k0
DZZ E[(Z E(Z ))(Z E(Z ))T ] E[(KX k0 KE( X ) k0 )(KX k0 KE( X ) k0 )T ] KE[(X E( X ))(X E(EX ))T ]K T
第三章 协方差传播率及权
第三章 协方差传播律及权
§3-1 观测向量及其方差—协方差矩阵 §3-2 协方差传播率 §3-3 协方差传播律的应用 §3-4 权与定权的常用方法 §3-5 协因数和协因数传律 §3-6 由真误差计算中误差及其实际应用 §3-7 系统误差的传播
第三章 协方差传播率及权
§3-1 观测向量及其方差—协方差矩阵
2、预备公式
E(C) C , E(CX ) CE(X ), E(X Y ) E(X ) E(Y ) E(X1 X 2 X n ) E(X1) E(X 2) E(X n )
当随机变量 X1, X 2 ,, X n 两两独立时,有
E(X1X 2 X n ) E(X1)E(X 2 )E(X n )
第三章 协方差传播率及权
DLL E L E(L)L E(L)T
nn
l2l21l1
l1l2 2
l2
T
l1ln
l2ln
式中:
lnl1
lnl2
2 ln
E(L) E(l1) E(l2 ) E(ln )T 为观测向量的期望;
2 li
D(li )
E
(li
E(li ))2
FDXX K T
同理:
DZY KDXX F T DYTZ
tr
教材:例 3-4,3-5,P30上角例题 习题:3.2.14
第三章 协方差传播率及权
5、观测向量非线性函数的方差—协方差矩阵
设观测向量 X 的非线性函数为: n1 Z f X1, X2, , Xn
已知X的协方差矩阵DXX,求函数Z的方差DZZ 基本思想:a、利用泰勒级数展开,略去二次以上项, 得到函数的线性表达式;b、应用协方差传播律。
Zt kt1X1 kt2 X 2 ktn X n kt0
则令
Z1
Z
t1
Z2
,
Zt
k11
K
tn
k21
kt1
k12 k 22
kt2
k1n
k2n
,
ktn
K0
t1
k10
k 20
kt0
第三章 协方差传播率及权
于是,观测向量的多个线性函数可写为 Z KX K0
故有
DZZ KDXX K T
式中:DZZ DZTZ为对称方阵。 若还有观测向量的另外r个线性函数
Y1 f11 X 1 f12 X 2 f1n X n f10 Y2 f 21 X 1 f 22 X 2 f 2n X n f 20
Yr f r1 X 1 f r2 X 2 f rn X n f r0
为第i组观测值的方差;
2 lil j
E (li
E(li ))(l j
E(l j ))
为第i组观测值关于第j组观
测值的协方差,协方差用来描述第i个观测值与第j个观
测值之间的相关程度。
第三章 协方差传播率及权
§3-2 协方差传播率
1、协方差传播律的作用 (图3-1示例)
计算观测向量函数的方差—协方差矩阵,从而评定观 测向量函数的精度。
作为衡量精度的指标,中误差可衡量一组观测值的
精度。在实际工作中,我们得到的观测值往往是由多 组观测值所构成的观测向量。比如,在GPS测量中, 基线观测值 L (x y z)T 就是观测向量。
衡量观测向量之精度的指标是方差—协方差矩阵。 一般地,设n维观测向量为
L
n1
(l1
l2
ln )T
则其方差——协方差矩阵定义为:
0 dX n
KdX
因此只要对非线性函数求全微分,获得系数矩阵即 可应用协方差传播率
第三章 协方差传播率及权
6、多个观测向量非线性函数的方差—协方差矩阵

KDXX K T
DZZ KDXX K T
万能公式
教材:例 3-1,3-2,3-3 P25下角例题 习题:3.2.07(1),3.2.11(1)
第三章 协方差传播率及权
4、多个观测向量线性函数的方差—协方差矩阵
若观测向量的多个线性函数为
Z1 k11X1 k12 X 2 k1n X n k10 Z2 k21X1 k22 X 2 k2n X n k20
相关文档
最新文档