《同底数幂的乘法》典型例题

合集下载

同底数幂的运算

同底数幂的运算

一、概念与法则:1、同底数幂的乘法:同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。

即:am﹒a n =a m+n (m 、n 均为正整数)例题1: x 2·x 5 = 2×24×23 = x m ·x 3m+1= (a+1)·(a+1)6= 2、幂的乘方:幂的乘方运算法则:幂的乘方,底数不变,指数相乘。

即:(am)n =a mn (m 、n 均为正整数)例题2:计算(1)(103)3 = (2)[(32)3]4 =(3)[(-6)3]4= (4)(x 2)5= -[(a —1)2]7 = (6)(-a s )3= (7)(x 3)4·x 2 = (9)[(x 2)3]7 = 3、积的乘方:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。

即(ab )n=a n b n (m 、n 均为正整数)例题3、计算:(1)(2a )3= (2)(-5b )3= (3)(xy 2)2= (4)(-2x 3)4=注意:①、积的乘方是指底数是乘积形式的乘方。

②、此法则也可以逆用,即:a n b n =(ab )n。

4、同底数幂的除法:同底数幂的除法法则:同底数幂相除,底数不变,指数相减, 即:am÷a n =a m-n (a ≠0; m 、n 均为正整数)例题4.计算52()()x x -÷-=_______,10234x x x x ÷÷÷ =______.5、特别规定零指数幂:零指数幂的意义:任何不等于0的数的0次幂都等于1 即:a=1(a ≠0)6、负指数幂:任何不等于零的数的―p 次幂,等于这个数的p 次幂的倒数,即:1(0)p p a a a -=≠例题5:⑴.若0(2)x -有意义,则x_________; ⑵.02(3)(0.2)π--+-=________.二、典型例题:例1:. 化简(1)、 (x-y)2(x-y)3(y-x)2(y-x)3 (2)210.52x x y x y x x x x y ⋅⋅⋅-⋅⋅+⋅⋅例2、⑴若2m =4,2n =8,求2m+n ,22m+3n 的值. ⑵若a 2n =3,求(a 3n )4的值。

同底数幂乘法练习题

同底数幂乘法练习题

同底数幂乘法练习题在数学中,幂是一个重要的概念,也是数学计算中常见的操作。

当幂的底数相同时,我们可以使用同底数幂乘法的规则来简化计算。

本文将为大家提供一些同底数幂乘法的练习题,帮助大家进一步掌握这一概念。

问题一:计算下列同底数幂的乘法:1. 2² × 2³解答:根据同底数幂乘法的规则,我们知道在计算同底数幂的乘法时,只需将底数保持不变,将指数相加。

因此,2² × 2³ = 2^(2+3) = 2⁵= 32。

2. 5⁴ × 5²解答:根据同底数幂乘法的规则,我们将底数保持不变,将指数相加。

所以5⁴ × 5² = 5^(4+2) = 5⁶ = 15625。

问题二:计算下列同底数幂的乘法,结果用指数表示:1. x⁵ × x²解答:根据同底数幂乘法的规则,我们将底数保持不变,将指数相加。

所以x⁵ × x² = x^(5+2) = x⁷。

2. a³ × a⁷解答:根据同底数幂乘法的规则,我们将底数保持不变,将指数相加。

所以a³ × a⁷ = a^(3+7) = a¹⁰。

问题三:给定数据 x = 2,y = 3,计算下列同底数幂的乘法:1. x³ × x²解答:将 x 的值代入计算式,得到 2³ × 2² = 8 × 4 = 32。

2. y⁵ × y²解答:将 y 的值代入计算式,得到 3⁵ × 3² = 243 × 9 = 2187。

问题四:根据已知条件,计算下列同底数幂的乘法:1. (2⁶)² × 2³解答:根据同底数幂乘法的规则,我们将底数保持不变,将指数相乘。

所以(2⁶)² × 2³ = 2^(6×2+3) = 2¹⁵ = 32768。

同底数幂的乘除法典型习题

同底数幂的乘除法典型习题

1、同底数幂的乘法一、知识点检测1、同底数幂相乘,底数 ,指数 ,用公式表示=n m a a (m ,n 都是正整数)2、计算32)(x x ⋅-所得的结果是( ) A.5x B.5x - C.6x D.6x - 3、下列计算正确的是( ) A.822b b b =⨯ B.642x x x =+ C.933a a a =⨯ D.98a a a =4、计算: (1)=⨯461010 (2)=⎪⎭⎫ ⎝⎛-⨯-6231)31( (3)=⋅⋅b b b 32 (4)2y ⋅ 5y = 5、若53=a ,63=b ,求b a +3的值二、典例若125512=+x ,求()x x +-20092的值三、拓展提高1、下面计算正确的是( )A.4533=-a aB.n m n m +=⋅632C.109222=⨯D.10552a a a =⋅ 2、=-⋅-23)()(a b b a 。

3、()=-⋅-⋅-62)()(a a a 。

4、已知:5 ,3==n m a a ,求2++n m a 的值四、体验中考1、计算:a 2·a 3= ( )A .a 5B .a 6C .a 8D .a 92、数学上一般把n aa a a a 个···…·记为( )A .naB .n a +C .n aD . n2、幂的乘方一、知识点检测1、幂的乘方,底数 ,指数 ,用公式表示=n m a )( (m ,n 都是正整数)2、计算23()a 的结果是( ) A .5a B .6a C .8a D .23a3、下列计算不正确的是( )A.933)(a a =B.326)(n n a a =C.2221)(++=n n x xD.623x x x =⋅4、如果正方体的棱长是2)12(+a ,则它的体积为 。

二、典例分析例题:若52=n ,求n 28的值三、拓展提高1、()=-+-2332)(a a 。

同底数幂的乘法典型例题

同底数幂的乘法典型例题

典型例题(一)例1计算题:(1)(2);(3).分析:由同底数幂相乘的法则知,能运用它的前题必须是“同底”,注意最后结果中的底数不能带负号,如不是最后结果,应写成才是最后结果.解:(1)(2)(3)例 2 计算:(1) a6·a6(2) a6+a6分析:对于(1),可利用“同底数幂的乘法公式”计算,而第(2)题,是两个幂相加,需进行合并同类项,注意两者的区别.解:(1) a6·a6=a6+6=a12(2) a6+a6=2a6说明:注意区分:同底数幂的乘法是乘法运算,且底数不变,指数相加.而合并同类项是加(减)法,且系数相加,字母与字母的指数不变.例3计算:(1);(2);(3);(4)分析:在幂的运算法则中的底数,可以是数字、字母,也可以是单项式或多项式.例如(1)中的,(3)中的,(2)中的,(4)中的.指数可以是自然数,也可以是代表自然数的字母.解:(1)(2)(3)(4)说明:(1)中的指数是1,不是0;(2)要注意区别与的不同,,而;(4)指数中含有自然数和字母,相加时要合并同类项化简.例4计算题:(1);(2);(3).分析:运用同底数幂相乘的法则要求必须“同底”,注意与的不同,它们的底不同,必须变成相同的底数之后再运算.解:(1)原式;(2)原式;(3)原式.说明:分别把,看作一修整一,第一个是三个同底数幂相乘,但必须把转化为,或者把转化为,其实质是相同的,因为互为相反数的奇次幂仍是互为相反数.例5计算:(1);(2);(3).分析:此题为混合运算,应先根据同底数幂的运算性质进行乘法运算,再进行加减运算.解:(1)原式(2)原式(3)原式说明:(2)中用到,是逆向使用运算公式.。

同底数幂的乘法典型题

同底数幂的乘法典型题

同底数幂的乘法典型题同底数幂的乘法是指当底数相同时,指数相加的运算规则。

在数学中,同底数幂的乘法是非常常见的题型,它在代数运算中扮演着重要的角色。

我们来看一个简单的例子:计算2的3次方乘以2的4次方。

根据同底数幂的乘法规则,我们可以将底数相同的幂相加。

所以,2的3次方乘以2的4次方等于2的(3+4)次方,即2的7次方。

通过计算,我们可以得到2的7次方等于128。

这个例子清楚地展示了同底数幂的乘法规则。

同底数幂的乘法也可以用代数式来表示。

如果我们有两个数a和b,并且它们的底数相同,那么a的m次方乘以a的n次方等于a的(m+n)次方。

这个规则可以推广到任意个数的乘法。

例如,a的m 次方乘以a的n次方乘以a的p次方等于a的(m+n+p)次方。

这个规则在解决代数问题时非常有用。

在实际应用中,同底数幂的乘法常常用来简化计算。

例如,在科学计算、工程设计以及金融领域等等,同底数幂的乘法可以帮助我们快速计算复杂的表达式。

通过运用同底数幂的乘法规则,我们可以将复杂的问题转化为简单的乘法运算,提高计算效率。

除了同底数幂的乘法,指数运算还包括同底数幂的除法和幂的幂等运算。

同底数幂的除法是指当底数相同时,指数相减的运算规则。

例如,2的5次方除以2的3次方等于2的(5-3)次方,即2的2次方。

幂的幂等运算是指当进行多次幂运算时,指数相乘的运算规则。

例如,(2的3次方)的4次方等于2的(3*4)次方,即2的12次方。

同底数幂的乘法在数学中有着广泛的应用。

它不仅在代数运算中起到重要作用,还在其他数学分支如几何学、概率论和数论中发挥着重要的作用。

对于学习数学的学生来说,掌握同底数幂的乘法规则是非常重要的基础知识。

总结起来,同底数幂的乘法是指当底数相同时,将指数相加的运算规则。

它在数学中扮演着重要的角色,用于简化计算、解决代数问题以及应用于其他数学分支。

同底数幂的乘法规则可以通过数学表达式来表示,也可以通过具体的例子进行理解。

掌握同底数幂的乘法规则是数学学习中的基础知识,对于提高计算效率和解决实际问题具有重要意义。

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案1.同底数幂相乘,底数不变,指数相加。

2.A(5)·a4=a20.3.若102·10m=,则m=1.4.23·83=26,则n=6.5.-a3·(-a)5=a8;x·x2·x3y=x6y.6.a5·an+a3·an+2-a·an+4+a2·an+3=a5+n+a3+n+2-a+n+4+a2+n+3.7.(a-b)3·(a-b)5=(a-b)8;(x+y)·(x+y)4=(x+y)5.8.10m+1·10n-1=10(m+n);-64·(-6)5=11,718,624.9.x2x3+x4=x5;(x+y)2(x+y)5=(x+y)7.10.103·100·10+100·100·100-·10·10=1,000,000.11.若am=a3a4,则m=7;若x4xa=x16,则a=4;12.若am=2,an=5,则am+n=a7.13.-32×33=-3,276;-(-a)2=a2;(-x)2·(-x)3=-x5;(a+b)·(a+b)4=(a+b)5;0.510×211=107.1;a·am·an=a5m+1.14.a4·a5=a9;a4·a2=a6;a9·a-1=a8.15.(1) a·a3·a5=a9;(2) 3a·3a=9a2;(3) Xm·Xm+1·Xm-1=X2m;(4) (x+5)3·(x+5)2=(x+5)5;(5) 3a2·a4+5a·a5=8a9;(6) 4(m+n)2·(m+n)3-7(m+n)·(m+n)4+5(m+n)5=6(m+n)5.二、选择题1.A。

初二数学同底数幂相乘练习题

初二数学同底数幂相乘练习题

初二数学同底数幂相乘练习题在初中数学中,我们学习了幂的概念,即相同的底数与不同的指数进行乘法运算。

同底数幂相乘是我们接下来要重点讨论的内容。

在本文中,我们将通过一些练习题来帮助同学们更好地理解和掌握这一概念。

1. 计算下列同底数幂相乘。

题目1:3² × 3⁵ = ?解析:根据幂的乘法法则,当底数相同时,幂的指数相加。

所以,3² × 3⁵ = 3^(2+5) = 3⁷。

答案:3² × 3⁵ = 3⁷。

题目2:(-2)³ × (-2)⁴ = ?解析:同样地,(-2)³ × (-2)⁴ = (-2)^(3+4) = (-2)⁷。

答案:(-2)³ × (-2)⁴ = (-2)⁷。

2. 计算下列同底数幂相乘的值。

题目1:5⁶ × 5³ = ?解析:根据幂的乘法法则,当底数相同时,幂的指数相加,即5⁶× 5³ = 5^(6+3) = 5⁹。

答案:5⁶ × 5³ = 5⁹。

题目2:(-4)⁵ × (-4)² = ?解析:同样地,(-4)⁵ × (-4)² = (-4)^(5+2) = (-4)⁷。

答案:(-4)⁵ × (-4)² = (-4)⁷。

3. 请用幂的运算法则计算下列同底数幂相乘。

题目1:(2⁴) × (2²) × (2⁶) = ?解析:根据幂的乘法法则,相同的底数相乘,指数相加。

所以,(2⁴) × (2²) × (2⁶) = 2^(4+2+6) = 2¹²。

答案:(2⁴) × (2²) × (2⁶) = 2¹²。

题目2:(-3⁷) × (-3³) × (-3²) = ?解析:同样地,(-3⁷) × (-3³) × (-3²) = (-3)^(7+3+2) = (-3)¹²。

同底数幂的乘法练习题(含答案)

同底数幂的乘法练习题(含答案)

同底数幂的乘法基础练习1.填空:(1)m a 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________;(3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a⋅=)()()(+ 2.计算:(1)=⋅64a a (2)=⋅5b b(3)=⋅⋅32m mm (4)=⋅⋅⋅953c c c c (5)=⋅⋅p n m a a a(6)=-⋅12m t t (7)=⋅+q q n 1 (8)=-+⋅⋅112p p n n n3.计算: (1)=-⋅23b b (2)=-⋅3)(a a(3)=--⋅32)()(y y (4)=--⋅43)()(a a (5)=-⋅2433 (6)=--⋅67)5()5( (7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32 (10)=--⋅54)2()2( (11)=--⋅69)(b b (12)=--⋅)()(33a a4.下面的计算对不对如果不对,应怎样改正 (1)523632=⨯; (2)633a a a =+;(3)n n n y y y 22=⨯; (4)22m m m =⋅; (5)422)()(a a a =-⋅-; (6)1243a a a =⋅; (7)334)4(=-; (8)6327777=⨯⨯; (9)42-=-a ; (10)32n n n =+.5.选择题:(1)22+m a可以写成( ). A .12+m a B .22a a m + C .22a a m ⋅ D .12+⋅m a a(2)下列式子正确的是( ).A .4334⨯=B .443)3(=- C .4433=- D .3443= (3)下列计算正确的是( ).A .44a a a =⋅B .844a a a =+ C .4442a a a =+ D .1644a a a=⋅综合练习1.计算:(1)=++⋅⋅21n n n a a a(2)=⋅⋅n n n b b b 53 (3)=+-⋅⋅132m m b b b b (4)=--⋅4031)1()1((5)=⨯-⨯672623 (6)=⨯+⨯543736(7)=++⋅⋅⋅5334232x x x xx x (8)=-+⋅⋅⋅2563427x x x x x x (9)=++++⋅⋅121133n n n x x x x (10)=+-+⋅x y x y x a a a 23(11)=+---⋅⋅⋅656233)()()(a a a a a (12)=-++⋅12322n n n (13)=-⋅⋅m c c c 53)(2.计算:(结果可以化成以)(b a +或)(b a -为底时幂的形式).(1)=---⋅⋅432)()()(b a b a b a (2)=+++++⋅⋅+21)()()()(b a b a b a b a m m(3)=----⋅⋅12)()()(n a b b a a b (4)=----+⋅⋅131)()()(n n a b a b b a(5)=++-++⋅⋅--3212)()(3)()(2b a b a b a b a n n(6)32212)()(2)()(3b a a b b a b a m m --+--⋅⋅+ (7)=++++++-+⋅⋅⋅12)()(3)()()(p n p n m b a b a b a b a b a(8)=---⋅⋅532)(5)(4)(3a b b a a b 3.填空题:(1)1243)(a a a=⋅. (2)1042)()(a a a ==⋅⋅. (3)45)(63)()()()()()(y x y x y x y x y x --=--=--⋅⋅⋅.(4)已知3=m b ,4=n b ,则n m b +=________.(5))(3221)(212121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅=________. (6))()(5432)()()()()()()(a b b a b a a b b a a b b a --=-=-----⋅⋅⋅⋅ 4.选择题:1.n m b a b a )2()2(++⋅等于( ).A .2)2(b a +B .n m b a ++)2( C .n m b a ⋅+)2( D .n m b a -+)2( 2.12+m a可写成( ). A .12+⋅m a a B .a m a +2 C .m a a 2⋅ D .1m 2+a3.32)()(c a b c b a --+-⋅等于( ).A .2)(c b a +-B .5)(c a b --C .5)(c b a +--D .5)(c a b ---4.把下列各题的计算结果写成10的幂的形式,其中正确的选项是( ).A .6310101000=⨯B .2001001010100=⨯ C .n m m n +=⋅10010102 D .881001010=⋅5.解答题: (1)如果1313y y y n n m =+-⋅,且641x x x n m =--⋅的值.(2)设p m =+++ 321,计算:m m m m xy y x y x y x ⋅⋅⋅⋅⋅-- 3221.。

同底数幂的乘法(复习题)

同底数幂的乘法(复习题)

同底数幂的乘法(复习题)同底数幂的乘法的乘法运算性质:同底数幂相乘,底数不变,指数相加。

用式子表示为a m ·a n =a m+n (m,n 是正整数)典例分析:例1、计算:(1)(-12 )5·(-12 )6·(-12) (2)108×1015×103×10 解:=(-12)5+6+1 解:=108+15+3+1 =(-12)12 =1027 =-1212 (3)-(-x )5·(-x )6·(-x )8解:=-(-x )5+6+8=-(-x )19=x 19例2: (1)a 6·a 6 (2)a 6+ a 6解:=a 6+6 解:=2a 6=a 12训练:一、填空:1、10m+1×10n-1=( ), -64×(-6)5=( )2、x 2x 3+xx 4=( ), (x+y )2(x+y )5=( )3、103×100×10+100×100×100-10000×10×10=( )4、若a m =a 3a 4,则m=( );若x 4x a =x 16,则a=( )5、若a m =2,a n =5,则a m+n =( )6、下面计算正确的是( )A 、b 3b 2=b 6B 、x 3+ x 3= x 6C 、a 4+ a 2= a 6D 、mm 5=m 6 7、81×27可记为( )A 、93B 、37C 、36D 、3128、若x ≠y,则下面多项式不成立的是( )A 、(y-x )2=(x-y )2B 、(-x )3=-x 3C 、(-y )2=y 2D 、(x+y )2=x 2+y 29、计算22017-22016的结果是( )A 、22016B 、2C 、1D 、-22017二、计算:1、x ·x 2·x 32、(x-y )2·(y-x )33、(-13 )2·(-13 )3·(-13)4 4、5m-1×5n+25、(-x )3·x 2n-1+ x 2n ·(-x )26、x ·x m-1+ x 2·x m-2- 3·x 3·x m-3三、计算并把结果写成一个底数幂的形式。

同底数幂乘法计算70题(试题版) - 百度版

同底数幂乘法计算70题(试题版) - 百度版

七下数学《幂运算》易错点同底数幂乘法计算70题(试题版)学校:________ 班级:________ 姓名:________ 成绩:________一、填空题(共62小题)1.﹣b•b3=.2.若a m•a2=a7,则m的值为.3.已知a x=3,a y=9,则a x+y=.4.计算:x3•(﹣x)3=.5.计算:(b﹣a)2(a﹣b)3=(结果用幂的形式表示).6.如果2a=6,2b=5,那么2a+b=.7.计算:a2•(﹣a)4=.8.用幂的形式表示结果:(m﹣3n)3(3n﹣m)2=.9.若a m•a3=a9,则m=.10.已知10x=2,10y=5,则10x+y=.11.计算:(a﹣2b)3•(2b﹣a)2=.12.已知x m=6,x n=3,则x2m+n的值为.13.若23•2y=28,则y=.14.计算:﹣x2•(﹣x)3=.15.若a4•a2m﹣1=a11,则m=.16.若2a=6,2b=5,则22a+b=.17.若a m=4,a n=8,则a m+n=.18.计算:a2•a3=.19.计算:(﹣2)2n+1+2•(﹣2)2n=.20.计算a3•a的结果是.21.(﹣b)4•(﹣b)3=22.计算x5•x的结果等于.23.计算:(﹣2)2×23=.24.计算:(﹣p)2•(﹣p)2=.25.若x+y=2,则3x•3y的值为.26.计算:(﹣c)3•(﹣c)2m+1=.27.计算:y•y n=.28.计算a4•a3的结果等于.29.2a2﹣a•a=.30.已知3x=5,3y=8,则3x+2y=.31.计算x3•x2的结果等于.32.计算(﹣x)2•x3所得的结果是.33.化简(﹣a2)•a5所得的结果是.34.计算:x4•x2=.35.﹣a2•(﹣a)3=.36.计算:x•x2=.37.计算(x﹣y)2(y﹣x)3(x﹣y)=38.计算:(﹣x)2(﹣x)3=.39.计算:x5•x3的结果等于.40.计算:﹣x2•x3=.41.化简:(﹣a2)•a5=.42.计算:a4•a﹣3=.43.计算:105×(﹣10)4×106=.44.已知2m•2m•8=211,则m=.45.计算:﹣22•(﹣23)=46.计算:﹣b3•b2=.47.计算:a3•a4=.48.计算:x2•x=.49.若a+b﹣2=0,则3a•3b=.50.计算(﹣a)3•a2的结果等于.51.计算a2•a4的结果等于.52.计算a4•a的结果等于.53.计算:(﹣2)•(﹣2)2•(﹣2)5=.54.计算﹣x2•x5的结果等于.55.计算:结果用幂的形式来表示(b﹣a)2(a﹣b)5=.56.计算:(﹣a﹣b)4(a+b)3=57.计算:(﹣p)2•p3=.58.计算x2•(﹣x)3=.59.计算(x﹣y)2(x﹣y)3(y﹣x)4(y﹣x)5=.60.计算a﹣3•a5的结果等于.61.化简:(a﹣b)6(b﹣a)3=.62.计算:(﹣x)3•x2=.二、解答题(共8小题)63.计算结果用幂的形式表示:[(a﹣b)3•(a﹣b)]2•(b﹣a)5;64.计算:(m﹣n)2×(n﹣m)3×(m﹣n)665.计算:y3•(﹣y)•(﹣y)5•(﹣y)266.计算:(﹣x)3•x•(﹣x)2.67.计算:(a﹣b)2(b﹣a)4.68.计算:a+2a+3a+a2•a5+a•a3•a3.69.计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.70.(x﹣y)3•(x﹣y)4•(x﹣y)2.七下数学《幂运算》易错点同底数幂乘法计算70题(答案版)学校:________ 班级:________ 姓名:________ 成绩:________一、填空题(共62小题)1.﹣b•b3=.【答案】-b4【解答】解:﹣b•b3=﹣b1+3=﹣b4.2.若a m•a2=a7,则m的值为.【答案】5【解答】解:根据题意得m+2=7解得m=5.3.已知a x=3,a y=9,则a x+y=.【答案】27【解答】解:a x+y=a x•a y=3×9=27,4.计算:x3•(﹣x)3=.【答案】-x6【解答】解:x3•(﹣x)3=x3•(﹣x3)=﹣x6.5.计算:(b﹣a)2(a﹣b)3=【答案】(a-b)5【解答】解:(b﹣a)2(a﹣b)3=(a﹣b)2(a﹣b)3=(a﹣b)2+3=(a-b)5.6.如果2a=6,2b=5,那么2a+b=.【答案】30【解答】解:∵2a=6,2b=5,∴2a+b=2a•2b=6×5=30.7.计算:a2•(﹣a)4=.【答案】a6【解答】解:a2•(﹣a)4=a2•a4=a6.8.用幂的形式表示结果:(m﹣3n)3(3n﹣m)2=.【答案】(m-3n)5【解答】解:(m﹣3n)3(3n﹣m)2=(m﹣3n)3(m﹣3n)2=(m﹣3n)5.9.若a m•a3=a9,则m=.【答案】6【解答】解:∵a m•a3=a9,∴m+3=9,解得m=6.10.已知10x=2,10y=5,则10x+y=.【答案】10【解答】解:∵10x=2,10y=5,∴10x+y=10x•10y=2×5=10.11.计算:(a﹣2b)3•(2b﹣a)2=.【答案】(a-2b)5【解答】解:(a﹣2b)3•(2b﹣a)2=(a﹣2b)3•(a﹣2b)2=(a﹣2b)5.12.已知x m=6,x n=3,则x2m+n的值为.【答案】108【解答】解:∵x m=6,x n=3,∴x2m+n=(x m)2•x n=62×3=36×3=108.13.若23•2y=28,则y=.【答案】5【解答】解:∵23•2y=28,∴3+y=8,解得y=5.14.计算:﹣x2•(﹣x)3=.【答案】x5【解答】解:﹣x2•(﹣x)3=﹣x2•(﹣x3)=x2+3=x5.15.若a4•a2m﹣1=a11,则m=.【答案】4【解答】解:∵a4•a2m﹣1=a11,∴4+(2m﹣1)=11,解得m=4.16.若2a=6,2b=5,则22a+b=.【答案】180【解答】解:∵2a=6,2b=5,∴22a+b=22a•2b=(2a)2•2b=62×5=36×5=180.17.若a m=4,a n=8,则a m+n=.【答案】32【解答】解:∵a m=4,a n=8,∴a m+n=a m×a n=4×8=32.18.计算:a2•a3=.【答案】a5【解答】解:a2•a3=a2+3=a5.19.计算:(﹣2)2n+1+2•(﹣2)2n=.【答案】0【解答】解:(﹣2)2n+1+2•(﹣2)2n,=﹣22n+1+2•22n,=﹣22n+1+22n+1,=0.20.计算a3•a的结果是.【答案】a4【解答】解:a3•a=a4,21.(﹣b)4•(﹣b)3=【答案】-b7【解答】解:(﹣b)4•(﹣b)3=(﹣b)7=﹣b7,22.计算x5•x的结果等于.【答案】x6【解答】解:x5•x=x6.23.计算:(﹣2)2×23=.【答案】32【解答】解:(﹣2)2×23=4×8=32.24.计算:(﹣p)2•(﹣p)2=.【答案】p4【解答】解:(﹣p)2•(﹣p)2=(﹣p)4=p4,25.若x+y=2,则3x•3y的值为.【答案】9【解答】解:∵x+y=2,∴3x•3y=3x+y=32=9.26.计算:(﹣c)3•(﹣c)2m+1=.【答案】c2m+4【解答】解:(﹣c)3•(﹣c)2m+1=(﹣c)2m+4=c2m+4.27.计算:y•y n=.【答案】y1+n【解答】解:y•y n=y1+n.28.计算a4•a3的结果等于.【答案】a7【解答】解:a4•a3=a7.29.2a2﹣a•a=.【答案】a2【解答】解:2a2﹣a•a=2a2﹣a2=a230.已知3x=5,3y=8,则3x+2y=.【答案】320【解答】解:∵3x=5,3y=8,∴3x+2y=3x•3y•3y=5×8×8=320.31.计算x3•x2的结果等于.【答案】x5【解答】解:x3•x2=x5,32.计算(﹣x)2•x3所得的结果是.【答案】x5【解答】解:原式=x2.x3=x2+3=x5.33.化简(﹣a2)•a5所得的结果是.【答案】-a7【解答】解:(﹣a2)•a5=﹣a7,34.计算:x4•x2=.【答案】x6【解答】解:x4•x2=x6,35.﹣a2•(﹣a)3=.【答案】a5【解答】解:原式=a2•a3=a5.36.计算:x•x2=.【答案】x3【解答】解:原式=x3,37.计算(x﹣y)2(y﹣x)3(x﹣y)=【答案】-(x-y)6【解答】解:(x﹣y)2(y﹣x)3(x﹣y)=﹣(x﹣y)2(x﹣y)3(x﹣y)=﹣(x﹣y)6.38.计算:(﹣x)2(﹣x)3=.【答案】-x5【解答】解:(﹣x)2(﹣x)3=x2•(﹣x)3=﹣x5.39.计算:x 5•x 3的结果等于 .【答案】x 8【解答】解:x 5•x 3=x 5+3=x 840.计算:﹣x 2•x 3= .【答案】-x 5【解答】解:﹣x 2•x 3=﹣x 2+3=﹣x 5.41.化简:(﹣a 2)•a 5= .【答案】-a 7【解答】解:原式=﹣a 2•a 5=﹣a 7.故答案为:﹣a 7.42.计算:a 4•a ﹣3= .【答案】a【解答】解:a 4•a ﹣3=()a a =-+3443.计算:105×(﹣10)4×106= .【答案】1015【解答】解:原式=105×104×106=1015.44.已知2m •2m •8=211,则m = .【答案】4【解答】解:2m •2m •8,=2m •2m •23,=2m +m +3,∵2m •2m •8=211,∴m +m +3=11,解得m=4.45.计算:﹣22•(﹣23)=【答案】25【解答】解:﹣22•(﹣23)=25.46.计算:﹣b3•b2=.【答案】-b5【解答】解:原式=﹣b3+2=﹣b5,47.计算:a3•a4=.【答案】a7【解答】解:a3•a4=a3+4=a7,48.计算:x2•x=.【答案】x3【解答】解:x2•x=x3,49.若a+b﹣2=0,则3a•3b=.【答案】9【解答】解:∵a+b﹣2=0,∴a+b=2,原式=3a+b=32=9,50.计算(﹣a)3•a2的结果等于.【答案】-a5【解答】解:(﹣a)3•a2=﹣a3•a2=﹣a5,51.计算a2•a4的结果等于.52.计算a4•a的结果等于.【答案】a5【解答】解:a4•a=a5.53.计算:(﹣2)•(﹣2)2•(﹣2)5=.【答案】28【解答】解:(﹣2)•(﹣2)2•(﹣2)5=(﹣2)8=28,54.计算﹣x2•x5的结果等于.【答案】-x7【解答】解:原式=﹣x2+5=﹣x7,55.计算:结果用幂的形式来表示(b﹣a)2(a﹣b)5=.【答案】(a-b)7【解答】解:(b﹣a)2(a﹣b)5=(a﹣b)2•(a﹣b)5=(a﹣b)7,56.计算:(﹣a﹣b)4(a+b)3=【答案】(a+b)7【解答】解:(﹣a﹣b)4(a+b)3,=(a+b)4(a+b)3,=(a+b)4+3,=(a+b)7.57.计算:(﹣p)2•p3=.【答案】p5【解答】解:(﹣p)2•p3=p5.58.计算x2•(﹣x)3=.59.计算(x﹣y)2(x﹣y)3(y﹣x)4(y﹣x)5=.【答案】-(x-y)14【解答】解:原式=﹣(x﹣y)2(x﹣y)3(x﹣y)4(x﹣y)5=﹣(x﹣y)2+3+4+5=﹣(x﹣y)14,60.计算a﹣3•a5的结果等于.【答案】a2【解答】解:a﹣3•a5=a﹣3+5=a2,61.化简:(a﹣b)6(b﹣a)3=.【答案】(b-a)9【解答】解:原式=(b﹣a)6(b﹣a)3=(b﹣a)6+3=(b﹣a)9,62.计算:(﹣x)3•x2=.【答案】-x5【解答】解:原式=(﹣x3)•x2=﹣x5.二、解答题(共8小题)63.计算结果用幂的形式表示:[(a﹣b)3•(a﹣b)]2•(b﹣a)5;【解答】解:原式=(a﹣b)7•[﹣(a﹣b)5]=﹣(a﹣b)12.64.计算:(m﹣n)2×(n﹣m)3×(m﹣n)6【解答】解:原式=(n﹣m)2×(n﹣m)3×(n﹣m)6=(n﹣m)2+3+6=(n﹣m)11.65.计算:y3•(﹣y)•(﹣y)5•(﹣y)2【解答】解:原式=y3•(﹣y)•(﹣y)5•y2=y3+1+5+2=y11.66.计算:(﹣x)3•x•(﹣x)2.【解答】解:原式=﹣x3•x•x2=﹣x6.67.计算:(a﹣b)2(b﹣a)4.【解答】解:原式=(a﹣b)2(a﹣b)4=(a﹣b)6.68.计算:a+2a+3a+a2•a5+a•a3•a3.【解答】解:原式=(a+2a+3a)+(a7+a7)=6a+2a7.69.计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.【解答】解:原式=a9+a9=2a9.70.(x﹣y)3•(x﹣y)4•(x﹣y)2.【解答】解:原式=(x﹣y)3+4+2=(x﹣y)9.。

同底数幂的乘法练习题(含答案)

同底数幂的乘法练习题(含答案)

同底数幂的乘法基础练习1.填空:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a⋅=)()()(+。

2.计算: (1)=⋅64a a(2)=⋅5b b(3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c(5)=⋅⋅p n ma a a (6)=-⋅12m t t (7)=⋅+q qn 1(8)=-+⋅⋅112p p n n n3.计算:(1)=-⋅23b b (2)=-⋅3)(a a(3)=--⋅32)()(y y (4)=--⋅43)()(a a%(5)=-⋅2433 (6)=--⋅67)5()5((7)=--⋅32)()(q q n(8)=--⋅24)()(m m(9)=-32 (10)=--⋅54)2()2((11)=--⋅69)(b b(12)=--⋅)()(33a a4.下面的计算对不对如果不对,应怎样改正(1)523632=⨯; (2)633a a a =+;(3)nnny y y 22=⨯; (4)22m m m =⋅;(5)422)()(a a a =-⋅-; (6)1243a a a =⋅;,(7)334)4(=-; (8)6327777=⨯⨯;(9)42-=-a ; (10)32n n n =+. 5.选择题: (1)22+m a 可以写成( ).A .12+m aB .22a am+ C .22a a m ⋅ D .12+⋅m a a(2)下列式子正确的是( ).A .4334⨯=B .443)3(=- C .4433=- D .3443=(3)下列计算正确的是( ).)A .44a a a =⋅ B .844a a a =+C .4442a a a =+D .1644a a a =⋅综合练习1.计算: (1)=++⋅⋅21n n na a a (2)=⋅⋅n n nb b b 53 (3)=+-⋅⋅132m m b b b b(4)=--⋅4031)1()1((5)=⨯-⨯672623 (6)=⨯+⨯543736>(7)=++⋅⋅⋅5334232x x x x x x (8)=-+⋅⋅⋅2563427x x x x x x(9)=++++⋅⋅121133n n n x x x x(10)=+-+⋅x y x y x a a a 23(11)=+---⋅⋅⋅656233)()()(a a a a a (12)=-++⋅12322n n n(13)=-⋅⋅m c c c53)(2.计算:(结果可以化成以)(b a +或)(b a -为底时幂的形式). (1)=---⋅⋅432)()()(b a b a b a(2)=+++++⋅⋅+21)()()()(b a b a b a b a m m(3)=----⋅⋅12)()()(n a b b a a b》(4)=----+⋅⋅131)()()(n n a b a b b a(5)=++-++⋅⋅--3212)()(3)()(2b a b a b a b a n n (6)32212)()(2)()(3b a a b b a b a m m --+--⋅⋅+(7)=++++++-+⋅⋅⋅12)()(3)()()(p n p n mb a b a b a b a b a(8)=---⋅⋅532)(5)(4)(3a b b a a b3.填空题: (1)1243)(a a a=⋅.(2)1042)()(a a a==⋅⋅.(3)45)(63)()()()()()(y x y x y x y x y x --=--=--⋅⋅⋅.(4)已知3=mb ,4=nb ,则nm b+=________.(5))(3221)(212121⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-⋅=________.(6))()(5432)()()()()()()(a b b a b a a b b a a b b a --=-=-----⋅⋅⋅⋅4.选择题: 1.n mb a b a )2()2(++⋅等于().A .2)2(b a + B .nm b a ++)2( C .nm b a ⋅+)2( D .nm b a -+)2(2.12+m a可写成( ).`A .12+⋅m a aB .a m a +2C .m a a 2⋅D .1m 2+a3.32)()(c a b c b a --+-⋅等于().A .2)(c b a +- B .5)(c a b -- C .5)(c b a +-- D .5)(c a b ---4.把下列各题的计算结果写成10的幂的形式,其中正确的选项是( ). A .6310101000=⨯ B .2001001010100=⨯C .n m m n+=⋅10010102 D .881001010=⋅5.解答题: %(1)如果1313y y yn nm =+-⋅,且641x x x n m =--⋅的值.(2)设p m =+++ 321,计算:m m m mxy y x y x y x ⋅⋅⋅⋅⋅-- 3221.拓展练习1.下面的算式是按一定规律排列的:1211999735,,,++++,……你能找出其中的规律吗试一试,算出它的第90个算式的得数.2.某商店一种货物售价目表如下:数量x (千克)@售价c (元)1 14+2 28+ 370+6(1)写出用x 表示c 的公式; ((2)计算3千克的售价. 3.观察下列等式: 23333233323323104321632132111,,,=+++=++=+=,……想一想等式左边各项幂的底数与右边幂的底数有什么关系猜一猜可以引出什么规律,并把这种规律用等式写出来.4.下列各个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有)1(>n n 盆花,每个图案花盆的总数是s .按此规律推算,求出s 与n 的关系式.、参考答案 基础1.(1)底数,指数 (2)3c (3)4个-2相乘,4个2相乘的积的相反数(4)a a a ⨯⨯ a a a a ⨯⨯⨯,a ,3,4,7 2.(1)10a (2)2)(2++m b a (3)6)(b a -- (4)32)()1(+--n n b a(5)1)(++-n b a (6)32)(5+-m b a (7)pn m b a +++)(4 (8)10)(60a b --[3.(1)5b - (2)4a - (3)5y - (4)7a - (5)-729 (6)135- (7)32+-n q(8)6m - (9)-8 (10)-512 (11)15b - (12)6a 4.(1)应改为123223=⨯ (2)改为633a a a =⋅ (3)改为n n n y y y 2=⨯(4)改为32m m m =⋅ (5)改为422)()(a a a -=--⋅ (6)改为743a a a =⋅(7)改为334)4(-=- (8)对 (9)对 (10)改为32n n n =⋅5.(1)C (2)B (3)C综合1.(1)33+n a(2)n b 9 (3)22+m b(4)-1 (5)0 (6)73 (7)66x (8)76x (9)24+3n x(10)x a24 (11)114a (12)22+-n (13)8+-m c2.(1)9)(b a - (2)2)(2++m b a (3)6)(b a -- (4)32)()(+--n nb a b(5)1)(++-n b a (6)32)(5+-m b a (7)pn m b a +++)(4 (8)10)(60a b --3.(1)5a (2)8a ,6a (3)8,x y - (4)12 (5)101,5,321- (6)15,15 4.(1)B (2)C (3)C (4)A 5.(1)3=n ,6=m (2)ppy x拓展1.453 2.x c 2.15= 3.23333)321(321n n +++=++++ 4.)1(3-=n x欢迎访问。

同底数幂的乘法试题精选(一)附答案

同底数幂的乘法试题精选(一)附答案

同底数幂的乘法试题精选(一)一.选择题(共30小题)1.(2014•河北区三模)下列各式中,正确的是()A.a4•a2=a8B.a4•a2=a6C.a4•a2=a16D.a4•a2=a22.(2013•玄武区一模)下列计算中正确的是()A.a2+a3=2a5B.a2•a3=a5C.a2•a3=a6D.a2+a3=a5 3.(2012•南通)计算(﹣x2)•x3的结果是()A.x3B.﹣x5C.x6D.﹣x6 4.(2011•泉州)a2•a3等于()A.3a2B.a5C.a6D.a85.(2012•赣州模拟)化简(﹣a)•(﹣a)2的结果是()A.a2B.﹣a2C.﹣a3D.a36.(2010•邵阳)(﹣a)2•a3=()A.﹣a5B.a5C.﹣a6D.a67.(2008•西宁)计算:﹣m2•m3的结果是()A.﹣m6B.m5C.m6D.﹣m58.(2006•佛山)计算(﹣x)3•x2的结果是()A.x5B.x6C.﹣x5D.﹣x69.已知a m=3,a n=2,那么a m+n+2的值为()A. 8 B.7 C.6a2D.6+a210.在等式x2•x5•()=x11中,括号里的代数式应为()A.x2B.x3C.x4D.x511.已知a m=3,a n=5,则a m+n等于()A.15 B.8 C.0。

6 D.12512.已知x+y﹣3=0,则2y•2x的值是()A. 6 B.﹣6 C.D.813.计算a5•(﹣a)3﹣a8的结果等于()A. 0 B.﹣2a8C.﹣a16D.﹣2a1614.计算:a5•a2的结果正确的是()A.a7B.a10C.a25D.2a715.已知:24×8n=213,那么n的值是()A. 2 B.3 C.5 D. 816.计算(x﹣y)3•(y﹣x)=()A.(x﹣y)4B.(y﹣x)4C.﹣(x﹣y)4D.(x+y)417.计算a2•a3+2a5的结果为()A.a5B.3a5C.a10D.3a1018.下列计算中,正确的个数有()①102×103=106;②5×54=54 ;③a2•a2=2a2;④c•c4=c5;⑤b+b3=b4 ;⑥b5+b5=2b5;(7)33+23=53;(8)x5•x5=x25.A. 1 B.2 C.3 D. 419.若a3•a4•a n=a9,则n=()A.1 B. 2 C. 3 D.420.下列各项中的两个幂,其中是同底数幂的是()A.﹣a与(﹣a)B.a与(﹣a) C.﹣a与a D.(a﹣b)与(b﹣a)21.(a﹣b)3(b﹣a)4的计算结果是()A.﹣(a﹣b)12B.﹣(a﹣b)7C.(b﹣a)7D.(a﹣b)722.(﹣a)3(﹣a)2(﹣a5)=()A.a10B.﹣a10C.a30D.﹣a3023.若x,y为正整数,且2x•2y=25,则x,y的值有()A.4对B.3对C.2对D.1对24.a7=()A.(﹣a)2(﹣a)5B.(﹣a)2(﹣a5)C.(﹣a2)(﹣a)5D. (﹣a)(﹣a)625.(4•2n)(4•2n)等于()A.4•2n B.8•2n C.4•4n D.22n+426.(m+n﹣p)(p﹣m﹣n)(m﹣p﹣n)4(p+n﹣m)2等于()A.﹣(m+n﹣p)2(p+n﹣m)6B.(m+n﹣p)2(m﹣n﹣p)6C.(﹣m+n+p)8D.﹣(m+n+p)827.a•a3x可以写成()A.(a3)x+1B.(a x)3+1C.a3x+1D.(a x)2x+128.m为偶数,则(a﹣b)m•(b﹣a)n与(b﹣a)m+n的结果是()A.相等B.互为相反数C.不相等D.以上说法都不对29.下列各式中,不能用同底数幂的乘法法则化简的是()A.(x﹣y)(x﹣y)2B.(x+y)(x﹣y)2C.(x﹣y)(y﹣x)2D. (x﹣y)(y﹣x)2(x﹣y)230.若x>1,y>0,且满足,则x+y的值为()A.1 B.2 C.D.同底数幂的乘法试题精选(一)参考答案与试题解析一.选择题(共30小题)1.(2014•河北区三模)下列各式中,正确的是()A.a4•a2=a8B.a4•a2=a6C.a4•a2=a16D.a4•a2=a2考点:同底数幂的乘法.分析:根据同底数幂的乘法,底数不变指数相加,可得答案.解答:解:a4•a2=a4+2=a6,故选:B.点评:本题考查了同底数幂的乘法,同底数幂的乘法,底数不变指数相加.2.(2013•玄武区一模)下列计算中正确的是()A.a2+a3=2a5B.a2•a3=a5C.a2•a3=a6D.a2+a3=a5考点:同底数幂的乘法;合并同类项.分析:根据同底数幂相乘,底数不变指数相加的性质,合并同类项的法则对各选项分析判断后利用排除法求解.解答:解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a2•a3=a5,正确;C、应为a2•a3=a5,故本选项错误;D、a2与a3不是同类项,不能合并,故本选项错误.故选B.点评:本题主要考查同底数幂的乘法的性质;合并同类项的法则,不是同类项的不能合并.3.(2012•南通)计算(﹣x2)•x3的结果是()A.x3B.﹣x5C.x6D.﹣x6考点: 同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加,计算后直接选取答案.解答:解:(﹣x2)•x3=﹣x2+3=﹣x5.故选B.点评:本题主要考查同底数幂的乘法运算法则:底数不变,指数相加.熟练掌握运算法则是解题的关键.4.(2011•泉州)a2•a3等于()A.3a2B.a5C.a6D.a8考点: 同底数幂的乘法.专题:探究型.分析:根据同底数幂的乘法法则进行计算即可.解答:解:原式=a2•a3=a2+3=a5.故选B.点评:本题考查的是同底数幂的乘法,即同底数的幂相乘,底数不变,指数相加.5.(2012•赣州模拟)化简(﹣a)•(﹣a)2的结果是()A.a2B.﹣a2C.﹣a3D.a3考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n,计算后直接选取答案.解答:解:(﹣a)•(﹣a)2=(﹣a)2+1=﹣a3.故选C.点评:本题主要考查同底数幂的乘法的性质,要注意底数是﹣a,而不是a,运算时一定要注意.6.(2010•邵阳)(﹣a)2•a3=()A.﹣a5B.a5C.﹣a6D.a6考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加解答,即a m•a n=a m+n.解答:解:(﹣a)2•a3=a2•a3=a2+3=a5.故选B.点评:本题主要考查同底数幂的乘法的性质,本题需要注意(﹣a)2=a2.7.(2008•西宁)计算:﹣m2•m3的结果是()A.﹣m6B.m5C.m6D.﹣m5考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加,计算后直接选取答案.解答:解:﹣m2•m3=﹣m2+3=﹣m5.故选D.点评:熟练掌握同底数幂乘法的运算性质是解题的关键.8.(2006•佛山)计算(﹣x)3•x2的结果是()A.x5B.x6C.﹣x5D.﹣x6考点: 同底数幂的乘法.分析:根据同底数幂乘法的运算性质,运算后直接选取答案.解答:解:(﹣x)3•x2=﹣x3•x2=﹣x5.故选C.点评:本题主要考查同底数幂的乘法,底数不变,指数相加的性质,熟练掌握性质是解题的关键.9.已知a m=3,a n=2,那么a m+n+2的值为()A.8B.7C.6a2D.6+a2考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加的性质的逆用解答即可.解答:解:a m+n+2=a m•a n•a2=3×2×a2=6a2.故选C.点评:本题主要考查同底数幂的乘法,熟练掌握性质并灵活运用是解题的关键.10.在等式x2•x5•()=x11中,括号里的代数式应为()A.x2B.x3C.x4D.x5考点:同底数幂的乘法.分析:根据同底数幂的乘法,底数不变指数相加,可得答案.解答:解:设括号里的是x n,x2+5+n=x11,n=4,x n=x4,故选:C.点评:本题考察了同底数幂的乘法,底数不变指数相加.11.已知a m=3,a n=5,则a m+n等于()A.15 B.8C.0.6 D.125考点:同底数幂的乘法.分析:根据同底数幂的乘法,底数不变指数相加,可得答案.解答:解:a m+n=a m•a n=3×5=15,故选:A.点评:本题考查了同底数幂的乘法,底数不变指数相加,是解题关键.12.已知x+y﹣3=0,则2y•2x的值是()A.6B.﹣6 C.D.8考点:同底数幂的乘法.分析:根据同底数幂的乘法求解即可.解答:解:∵x+y﹣3=0,∴x+y=3,∴2y•2x=2x+y=23=8,故选:D.点评:此题考查了同底数幂的乘法等知识,解题的关键是把2y•2x化为2x+y.13.计算a5•(﹣a)3﹣a8的结果等于()A.0B.﹣2a8C.﹣a16D.﹣2a16考点: 同底数幂的乘法;合并同类项.分析:先根据同底数幂相乘,底数不变指数相加计算,再合并同类项.解答:解:a5•(﹣a)3﹣a8=﹣a8﹣a8=﹣2a8.故选B.点评:同底数幂的乘法的性质:底数不变,指数相加.合并同类项的法则:只把系数相加减,字母与字母的次数不变.14.计算:a5•a2的结果正确的是()A.a7B.a10C.a25D.2a7考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n解答即可.解答:解:a5•a2=a5+2=a7.故选A.点评:本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.15.已知:24×8n=213,那么n的值是()A.2B.3C.5D.8考点:同底数幂的乘法.分析:将等式左边化为以2为底的幂的形式,再根据指数相等列方程求解.解答:解:由24×8n=213,得24×23n=213,∴4+3n=13,解得n=3.故选B.点评:本题考查了同底数幂的乘法的性质,熟练掌握性质是解题的关键.16.计算(x﹣y)3•(y﹣x)=()A.(x﹣y)4B.(y﹣x)4C.﹣(x﹣y)4D.(x+y)4考点:同底数幂的乘法.专题: 整体思想.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加计算.解答:解:(x﹣y)3•(y﹣x)=﹣(x﹣y)3•(x﹣y)=﹣(x﹣y)3+1=﹣(x﹣y)4;故选C.点评:本题主要考查同底数幂的乘法的性质.解题时,要先转化为同底数的幂后,再相乘.17.计算a2•a3+2a5的结果为()A.a5B.3a5C.a10D.3a10考点:同底数幂的乘法;合并同类项.分析:根据同底数幂的乘法,可得a2•a3,根据整式加法,可得a2•a3+2a5的结果.解答:解:a2•a3+2a5=a5+2a5=3a5,故选:B.点评:本题考查了同底数幂的乘法,先计算同底数幂的乘法,再合并同类项.18.下列计算中,正确的个数有()①102×103=106;②5×54=54 ;③a2•a2=2a2;④c•c4=c5;⑤b+b3=b4 ;⑥b5+b5=2b5;(7)33+23=53;(8)x5•x5=x25.A.1B.2C.3D.4考点:同底数幂的乘法;合并同类项.专题:计算题.分析:根据同底数的幂的法则和合并同类项法则进行计算即可.解答:解:①102×103=105,∴①错误;②②5×54=55∴②错误;③a2•a2=a4∴③错误;④c•c4=c5∴④正确;⑤b+b3不能合并同类项∴⑤错误;⑥b5+b5=2b5,∴⑥正确;(7)33+23,不能合并同类项,∴(7)错误;(8)x5•x5=x10,∴(8)错误.正确的有2个.故选B.点评:本题主要考查对同底数的幂的法则和合并同类项法则等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.19.若a3•a4•a n=a9,则n=()A.1B.2C.3D.4考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加计算,然后再根据指数相等列出方程求解即可.解答:解:∵a3•a4•a n=a3+4+n,∴3+4+n=9解得n=2.故选B.点评:本题考查同底数幂乘法法则:底数不变,指数相加的性质,熟练掌握性质是解题的关键.20.下列各项中的两个幂,其中是同底数幂的是()A.﹣a与(﹣a)B.a与(﹣a) C.﹣a与a D.(a﹣b)与(b﹣a)考点:同底数幂的乘法;有理数的乘方.分析:根据带有负号的数的乘方的书写规范,对各选项分析判断后利用排除法求解.解答:解:A、﹣a的底数是a,(﹣a)的底数是﹣a,故不是同底数幂;B、a的底数是a,(﹣a)的底数是﹣a,故不是同底数幂;C、﹣a的底数是a,a的底数是a,故是同底数幂D、(a﹣b)与(b﹣a)底数互为相反数,故不是同底数幂.故选C.点评:本题主要考查带有负号的数的乘方的书写规范,良好的书写习惯对学好数学大有帮助.21.(a﹣b)3(b﹣a)4的计算结果是()A.﹣(a﹣b)12B.﹣(a﹣b)7C.(b﹣a)7D.(a﹣b)7考点:同底数幂的乘法.专题:计算题.分析:把原式的第二个因式中的b﹣a,提取﹣1变形,然后根据﹣1的偶次幂为1化简,最后根据同底数幂的乘法运算法则:底数不变,指数相加即可得到运算结果.解答:解:(a﹣b)3(b﹣a)4=(a﹣b)3([﹣(a﹣b)])4=(a﹣b)3(a﹣b)4=(a﹣b)3+4=(a﹣b)7.故选D.点评:此题考查了同底数幂的乘法运算,把两因式的底数化为相同的底数再利用法则计算是解本题的关键,同时要求学生掌握同底数幂的乘法法则,理清指数的变化.22.(﹣a)3(﹣a)2(﹣a5)=()A.a10B.﹣a10C.a30D.﹣a30考点: 同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加求解即可.解答:解:(﹣a)3(﹣a)2(﹣a5)=(﹣a3)•a2(﹣a5)=a3+2+5=a10.故选A.点评:本题主要利用同底数幂的乘法的性质求解,符号的运算是容易出错的地方.23.若x,y为正整数,且2x•2y=25,则x,y的值有()A.4对B.3对C.2对D.1对考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加,再根据指数相等即可求解.解答:解:∵2x•2y=2x+y,∴x+y=5,∵x,y为正整数,∴x,y的值有x=1,y=4;x=2,y=3;x=3,y=2;x=4,y=1.共4对.故选A.点评:灵活运用同底数幂的乘法法则是解决本题的关键.24.a7=()A.(﹣a)2(﹣a)5B.(﹣a)2(﹣a5)C.(﹣a2)(﹣a)5D.(﹣a)(﹣a)6考点: 同底数幂的乘法.分析:根据同底数幂的乘法,底数不变,指数相加,计算后利用排除法求解.解答:解:A、(﹣a)2(﹣a)5=a2(﹣a5)=﹣a7,错误;B、(﹣a)2(﹣a5)=﹣a7,错误;C、(﹣a2)(﹣a)5=a7,正确;D、(﹣a) (﹣a)6=﹣a•a6=﹣a7,错误.故选C.点评:负数的偶次幂是正数,负数的奇次幂是负数,结合同底数幂的乘法,底数不变,指数相加可解决此类问题.25.(4•2n)(4•2n)等于()A.4•2n B.8•2n C.4•4n D.22n+4考点: 同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加,计算后直接选取答案.解答:解:(4•2n)(4•2n)=22+n•22+n=22n+4.故选D.点评:本题主要考查同底数幂的乘法的性质,熟练掌握性质并灵活运用是解题的关键.26.(m+n﹣p)(p﹣m﹣n)(m﹣p﹣n)4(p+n﹣m)2等于()A.﹣(m+n﹣p)2(p+n﹣m)6B.(m+n﹣p)2(m﹣n﹣p)6C.(﹣m+n+p)8D.﹣(m+n+p)8考点:同底数幂的乘法.分析:根据实数偶次幂的性质和相反数的定义,再利用同底数相乘,底数不变指数相加计算.解答:解:由于p﹣m﹣n和(m+n﹣p)互为相反数,∴p﹣m﹣n=﹣(m+n﹣p);p+n﹣m和m﹣p﹣n互为相反数,(p+n﹣m)2=(m﹣p﹣n)2,∴原式=﹣(m+n﹣p)(m+n﹣p)(p+n﹣m)4(p+n﹣m)2=﹣(m+n﹣p)2(p+n﹣m)6.故选A.点评:本题考查了同底数幂的乘法,要熟悉相反数的定义和实数偶次幂的性质.27.a•a3x可以写成()A.(a3)x+1B.(a x)3+1C.a3x+1D.(a x)2x+1考点: 同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n解答.解答:解:a•a3x=a1+3x.故选C.点评:本题主要利用同底数幂的乘法的性质求解,是基础题.28.m为偶数,则(a﹣b)m•(b﹣a)n与(b﹣a)m+n的结果是()A.相等B.互为相反数C.不相等D.以上说法都不对考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,求解即可.解答:解:因为m为偶数,(a﹣b)m=(b﹣a)m,所以(a﹣b)m•(b﹣a)n=(b﹣a)m•(b﹣a)n=(b﹣a)m+n.故选A.点评:熟练掌握互为相反数的两数的偶数次方相等是解本题的关键.29.下列各式中,不能用同底数幂的乘法法则化简的是()A.(x﹣y)(x﹣y)2B.(x+y)(x﹣y)2C.(x﹣y)(y﹣x)2D.(x﹣y)(y﹣x)2(x﹣y)2考点:同底数幂的乘法.分析:根据能用同底数幂的乘法法则,底数一定相同,或互为相反数,对各选项分析判断后利用排除法求解.解答:解:底数不相同的是(x+y)(x﹣y)2.故选B.点评:本题特别要注意的是:互为相反数的两个式子可以通过符号的变化化成同一式子,以及整体思想的运用.30.若x>1,y>0,且满足,则x+y的值为()A.1B.2C.D.考点:同底数幂的乘法.专题:计算题.分析:首先将xy=x y变形,得y=x y﹣1,然后将其代入,利用幂的性质,即可求得y的值,则可得x的值,代入x+y求得答案.解答:解:由题设可知y=x y﹣1,∴x=yx3y=x4y﹣1,∴4y﹣1=1.故,从而x=4.于是.故选C.点评:此题考查了同底数幂的性质:如果两个幂相等,则当底数相同时,指数也相同.。

同底数幂的乘法练习题

同底数幂的乘法练习题

同底数幂的乘法练习题一、选择题1. 若\( a^3 \times a^2 = a^5 \),则\( a \)的值为()A. 5B. 1C. 3D. 22. 计算\( 2^5 \times 2^3 \)的结果是()A. \( 2^8 \)B. \( 2^6 \)C. \( 2^{10} \)D. \( 2^{15} \)3. 已知\( x^2 \times x^3 = x^5 \),则\( x \)的值是()A. 5B. 2C. 3D. 无法确定二、填空题1. 计算\( 3^4 \times 3^2 = \underline{\quad}\)。

2. 若\( 5^m \times 5^n = 5^{10} \),则\( m + n =\underline{\quad}\)。

3. 已知\( a^x \times a^y = a^6 \),且\( x + y = 4 \),则\( x = \underline{\quad}\),\( y = \underline{\quad}\)。

三、解答题1. 计算\( 4^3 \times 4^5 \)。

2. 已知\( 2^a \times 2^b = 2^{10} \),求\( a \)和\( b \)的值。

3. 计算\( 10^2 \times 10^3 \times 10^4 \)。

4. 若\( x^5 \times x^y = x^{10} \),求\( y \)的值。

5. 已知\( a^7 \times a^x = a^{13} \),求\( x \)的值。

6. 计算\( 3^4 \times 3^2 \times 3^3 \)。

7. 已知\( 5^m \times 5^n = 5^{12} \),且\( m > n \),求\( m \)和\( n \)的值。

8. 若\( 2^a \times 2^b \times 2^c = 2^{15} \),且\( a >b >c \),求\( a \)、\( b \)和\( c \)的值。

七年级数学下册《同底数幂的乘法》典型例题(含答案)

七年级数学下册《同底数幂的乘法》典型例题(含答案)

《同底数幂的乘法》典型例题例1 计算:(1)32a a a ⋅⋅;(2)32)()(y x y x +⋅+;(3))()(232x x x -⋅⋅-;(4)212)2()2()2(+--⋅-⋅-m m y x y x y x例2 计算题:(1));21()21()21(65-⋅-⋅- (2)101010103158⨯⨯⨯; (3)865)()()(x x x -⋅-⋅--。

例3 计算:(1)333343)()(x x x x x x x x ⋅-⋅-+⋅⋅+⋅;(2)76254)3(33333-⋅+⋅-⋅;(3)423211)()(--+--⋅-+⋅+⋅n n n n n x x x x x x 。

例4 计算题:(1))()()(43x y y x y x ---; (2)323)()(a a a ---;(3)32)2()2(x y y x -⋅-。

例5 化简:2212122)()()()(-+---⋅-++--⋅-+n n n n b a c c b a b a c c b a例6 (1)已知m x =+22,用含m 的代数式表示x 2;(2)已知32=a ,62=b ,122=c ,求a 、b 、c 之间的关系。

参考答案例1 分析: 在幂的运算法则中的底数,可以是数字、字母,也可以是单项式或多项式。

例如(1)中的a ,(3)中的x ,(2)中的)(y x +,(4)中的)2(y x -。

指数可以是自然数,也可以是代表自然数的字母。

解:(1)632132a a a a a ==⋅⋅++(2)53232)()()()(y x y x y x y x +=+=+⋅++(3)7232232232)()()(x x x x x x x x -=-=-⋅⋅=-⋅⋅-++(4)212)29)2()2(+--⋅-⋅-m m y x y x y x32)2()1(2)2()2(+++-+-=-=m m m y x y x说明:(1)中a 的指数是1,不是0;(2)要注意区别2)(x -与)(2x -的不同,222)(x x x =⋅-,而221x x ⋅-=-;(4)指数中含有自然数和字母,相加时要合并同类项化简。

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案

同底數冪の乘法-練習一、填空題1.同底數冪相乘,底數 , 指數 。

2.A ( )·a 4=a 20.(在括號內填數) 3.若102·10m =102003,則m= . 4.23·83=2n ,則n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,則m=________;若416a x x x =,則a=__________; 12. 若2,5m n a a ==,則m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9 二、選擇題1. 下面計算正確の是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可記為( )A.39 B.73 C.63 D.1233. 若x y ≠,則下面多項式不成立の是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+ 4.下列各式正確の是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 8 5.設a m =8,a n =16,則a n m +=( )A .24 B.32 C.64 D.128 6.若x 2·x 4·( )=x 16,則括號內應填x の代數式為( )A .x 10B. x 8C. x 4D. x 2 7.若a m =2,a n =3,則a m+n =( ).A.5 B.6 C.8 D.9 8.下列計算題正確の是( )A.a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y a+1·y a-1=y 2a 9.在等式a 3·a 2( )=a 11中,括號裏面の代數式應當是( )A.a 7B.a 8 C.a 6D.a 5 10.x 3m+3可寫成( ).A.3x m+1 B.x 3m +x 3 C.x 3·x m+1 D.x 3m ·x 3 11:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.其中正確の算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一塊長方形草坪の長是x a+1米,寬是x b-1米(a 、b 為大於1の正整數),則此長方形草坪の面積是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+2 13.計算a -2·a 4の結果是( )A .a -2B .a 2C .a -8D .a 814.若x ≠y ,則下面各式不能成立の是( ) A .(x -y )2=(y -x )2B .(x -y )3=-(y -x )3C .(x +y )(x -y )=(x +y )(y -x )D .(x +y )2=(-x -y )2 15.a 16可以寫成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8D .a 4·a 416.下列計算中正確の是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 7 17.下列題中不能用同底數冪の乘法法則化簡の是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 計算2009200822-等於( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科學記數法表示(4×102)×(15×105)の計算結果應是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判斷下面の計算是否正確(正確打“√”,錯誤打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答題1.計算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1 2、計算題(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅- (3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《同底数幂的乘法》典型例题
例1 计算:
(1)32a a a ⋅⋅;
(2)32)()(y x y x +⋅+;
(3))()(232x x x -⋅⋅-;
(4)212)2()2()2(+--⋅-⋅-m m y x y x y x
例2 计算题:
(1));2
1()21()21(65-⋅-⋅- (2)101010103158⨯⨯⨯; (3)865)()()(x x x -⋅-⋅--。

例3 计算:
(1)333343)()(x x x x x x x x ⋅-⋅-+⋅⋅+⋅;
(2)76254)3(33333-⋅+⋅-⋅;
(3)423211)()(--+--⋅-+⋅+⋅n n n n n x x x x x x 。

例4 计算题:
(1))()()(43x y y x y x ---; (2)323)()(a a a ---;
(3)32)2()2(x y y x -⋅-。

例5 化简:2212122)()()()(-+---⋅-++--⋅-+n n n n b a c c b a b a c c b a
例6 (1)已知m x =+22,用含m 的代数式表示x 2;
(2)已知32=a ,62=b ,122=c ,求a 、b 、c 之间的关系。

参考答案
例1 分析: 在幂的运算法则中的底数,可以是数字、字母,也可以是单项式或多项式。

例如(1)中的a ,(3)中的x ,(2)中的)(y x +,(4)中的)2(y x -。

指数可以是自然数,也可以是代表自然数的字母。

解:(1)632132a a a a a ==⋅⋅++
(2)53232)()()()(y x y x y x y x +=+=+⋅++
(3)7232232232)()()(x x x x x x x x -=-=-⋅⋅=-⋅⋅-++
(4)212)29)2()2(+--⋅-⋅-m m y x y x y x
32)
2()1(2)2()2(+++-+-=-=m m m y x y x
说明:(1)中a 的指数是1,不是0;(2)要注意区别2)(x -与)(2x -的不同,222)(x x x =⋅-,而221x x ⋅-=-;(4)指数中含有自然数和字母,相加时要合并同类项化简。

例2 分析:由同底数幂相乘的法则知,能运用它的前题必须是“同底”,注意最后结果中的底数不能带负号,如3)(x -不是最后结果,应写成3x -才是最后结果。

解:(1))21()21()21(65-⋅-⋅-;2
1)21()21(1212165=-=-=++ (2) 101010103158⨯⨯⨯;10102713158==+++
(3)865)()()(x x x -⋅-⋅--.)()(1919865x x x =--=--=++
例3 分析:此题为混合运算,应先根据同底数幂的运算性质进行乘法运算,再进行加减运算。

解:(1)原式 33133143+++++++=x x x
777x x x ++=
73x =
(2)原式716254333+++--=
889333--=
88
8
8833)113(3333=--=--⋅=
(3)原式 )42(3)2()1()1(-+-++-+-+=n n n n n x x x
121
21212----=-+=n n n n x x x x
说明:(2)中用到88193333⋅==+,是逆向使用运算公式。

例4 分析:运用同底数幂相乘的法则要求必须“同底”,注意22-与2)2(-的不同,它们的底不同,必须变成相同的底数之后再运算。

解:(1)原式843)()()()(y x y x y x y x --=----=;
(2)原式8323)(a a a a =--=;
(3)原式532)2()2()2(x y x y x y -=-⋅-=。

说明:分别把x y y x --2,,看作一修整一,第一个是三个同底数幂相乘,但必须把2)2(y x -转化为2)2(x y -,或者把3)2(x y -转化为3)2(y x --,其实质是相同的,因为互为相反数的奇次幂仍是互为相反数。

例5 解:原式12122)()]([)(+--++-+-⋅-+=n n n c b a c b a c b a 22)]([--+-⋅n c b a
)()()()(1414)
22()12()12(2=-++-+-=-++-+-=---++-+n n n n n n c b a c b a c b a c b a
说明:1)1(,1)1(2212=--=---n n
例6 分析:此题可以逆用同底数幂相乘的运算法则,m x x =⨯=+22222,从而达到化简的目的。

解:(1)m x =+22 ,∴ m x =⨯24,∴m x 4
12=。

(2)显然2623122⨯=⨯=,故22222223122+=⨯=⨯==a a c ,
122226122+=⨯=⨯==b b c ,故2+=a c ,1+=b c ,故32++=b a c 。

说明:此题答案并不惟一,如由12222362+=⨯=⨯==a a b 得1+=a b ,又由1+=b c ,故c a b +=2。

相关文档
最新文档