1蒽醌法生产过氧化氢的原理
蒽醌法生产双氧水工艺安全分析与防控措施
![蒽醌法生产双氧水工艺安全分析与防控措施](https://img.taocdn.com/s3/m/affffe3c59fb770bf78a6529647d27284b733798.png)
蒽醌法生产双氧水工艺安全分析与防控措施摘要:双氧水的用量一直都是比较大的,在化工生产方面对于双氧水的生产工艺需要不断的创新。
蒽醌法在双氧水的生产方面取得了不错的效果,但是在安全分析、安全防控方面不能放松,任何化工产物、化工生产流程都有可能造成安全隐患,所以在安全防控的体系上要不断的创新,确保双氧水的生产、安全得到共同的提升。
关键词:蒽醌法;双氧水工艺;安全防控现阶段的双氧水在化工生产中是重要的产物,对于医疗应用、化工应用都会产生较大的影响。
蒽醌法在双氧水生产方面的确具有不错的效果,但是该项方法的应用难度并不低,而且在很多危险因素的控制、处理方面都要给出足够的依据,确保在双氧水的生产、加工体系上不断的创新,在蒽醌法的改良技术上不断的加强。
一、蒽醌法生产双氧水工艺原理目前,蒽醌法在双氧水的生产过程中,主要是将2--乙基蒽醌作为工作的载体,利用重芳烃和磷酸三辛酯作为生产的溶剂,将这些原料配比成工作液。
工作液会与氢气一同进入到装有催化剂的氢化床当中,2--乙基蒽醌的应用过程中会在一定的温度下、压力下与氢气发生氢化反应,由此生成相对应的氢蒽醌溶液,也就是氢化液。
氢化液当中的氢蒽醌物质会与空气当中的氧气在一定的条件下发生氧化反应,此时,氢蒽醌主要是恢复成原有的蒽醌,同时会产生过氧化氢,氢化液的反应经过氧化反应的作用以后,溶液转变成氧化液。
利用过氧化氢在水中、在工作液当中的不容溶解度,同时利用过氧化氢在工作液中的密度差、水中的密度差,对氧化液进行萃取以后会与纯水实现逆流接触的操作,由此来对氧化液当中的过氧化氢进行萃取,最终得到了过氧化氢的水溶液,接下来还需要经过净化处理以后,才能加工成成品来进入到包装工序当中。
蒽醌法生产双氧水的过程并不繁杂,同时在工作液方面能够循环的利用,但是化工产品对于生产人员造成的危险性是非常高的,此时在双氧水的加工过程中必须采取多元化的安全防护手段,否则一旦出现喷溅的情况,必定会对生产人员的人身安全造成较大的影响,一定要在安全防护体系上不断的优化,并且在蒽醌法的流程上更好的创新。
蒽醌法生产过氧化氢安全技术
![蒽醌法生产过氧化氢安全技术](https://img.taocdn.com/s3/m/1523b070a417866fb84a8e11.png)
摘
要: 蒽醌法生 产过 氧化 氢是 危险的化 工生产过 程。介绍 了蒽醌法生产过氧化氢工 艺 ( 包括 氢化工序 , 氧化
工序 , 萃取 和净化工序 , 后处理工序 , 配制 工序 , 浓缩工序 , 包装 、 贮存 和运 输等) 以及原料 ( 重芳烃 、 氢气 、 催化剂 ) 和 产品 ( 过氧化氢 ) 的危 险性 , 剖析 了易发事故 的原 因。例举 了中国 17 9 0年第一 套蒽醌法 生产过 氧化氢 装置开 车以
来 自石 油工 业铂 重 整 装 置 , 主要 为 c 或 c 馏 m 分, 即三 甲苯 、 甲苯 异构 体 混 合 物 , 外还 含 有 少 四 另 量 二 甲苯 、 及胶 质物 。重芳 烃 为可燃性 液体 , 萘 当周 围环境 达到燃 烧条 件 ( 如火 源 、 燃剂 等 ) 即可燃 助 时
3 2 氧化 工序 .
分数为 7 %。压力降低时 , 4 爆炸极 限值提 高, 因此
负压操 作和贮 存 是 比较 安全 的 。过氧 化氢 系一强 氧
化剂 , 可氧化许多有机物和无机物 , 容易引起易燃物 质如棉花、 木屑、 羊毛、 纸片等燃烧 。
2 2 重 芳烃 .
在 氧 化塔 中存在 有 机溶 剂 、 氧 化氢 和 助燃 的 过 氧气, 如果 进 入 了使 过 氧 化 氢 分 解 的杂 质 ( 性 物 碱 质、 重金属 、 化 剂 粉末 等 ) 即 可 能 发 生 因 过 氧 化 催 , 氢 的剧 烈分 解 而燃 烧 、 炸 。 由于 氢 化液 本 身 为 弱 爆 碱性 , 必须 向氧化塔 中加入磷 酸 , 反 应介质 转呈 弱 使
来 的部分安全事故及未遂事故 , 归纳 总结 了事故 的原 因及防范措施 。 关键词 : 过氧化氢 ; 安全事故 ; 防范措施 中图分 类号 :Q 2 . T 13 6 文献标识码 : A 文章编号 :0 6— 90 20 )5— 07— 5 10 4 9 (0 7 0 0 4 0
蒽醌法生产双氧水的研究进展
![蒽醌法生产双氧水的研究进展](https://img.taocdn.com/s3/m/8db7526b2e60ddccda38376baf1ffc4fff47e27f.png)
三、蒽醌法生产双氧水的工艺流 程
1、氢化物和氧化物的制备
1、氢化物和氧化物的制备
氢化物和氧化物的制备是蒽醌法生产双氧水的第一步。氢化物和氧化物的制 备方法包括:电解水、天然气重整、甲醇裂解等。其中,电解水是最常用的方法 之一,其制备的氢气纯度较高,但成本也较高。天然气重整是一种较为经济的方 法,但制备的氢气纯度较低。甲醇裂解也是一种经济的方法,但需要消耗大量的 能量。
四、蒽醌法生产双氧水的优势
1、生产效率高:通过合理的工艺流程和高效的催化剂,蒽醌法可以大规模地 生产双氧水,且产量较高。
四、蒽醌法生产双氧水的优势
2、原材料成本低:蒽醌法使用的原材料主要是氢气和氧气,来源广泛且成本 较低。
3、工艺流程短:与其他制备方法相比,蒽醌法工艺流程较短,操作简单,能 够实现连续生产。
蒽醌法生产双氧水的研究进 展
目录
01 一、引言
03
三、蒽醌法生产双氧 水的工艺流程
02
二、蒽醌法生产双氧 水的原理04源自四、蒽醌法生产双氧 水的优势
目录
05 五、蒽醌法生产双氧 水的现状和发展趋势
07 参考内容
06 六、结论
内容摘要
双氧水是一种重要的化学物质,具有广泛的用途,如纺织、造纸、化工、环 保等行业。在蒽醌法生产双氧水方面,国内外研究者对双氧水制备的工艺、催化 剂、蒽醌原料等方面进行了深入研究。本次演示介绍了蒽醌法生产双氧水的研究 进展。
谢谢观看
四、蒽醌法生产双氧水的优势
4、环保性能好:蒽醌法生产双氧水过程中产生的废气和废水较少,对环境影 响较小。
蒽醌法生产过氧化氢技术浅谈
![蒽醌法生产过氧化氢技术浅谈](https://img.taocdn.com/s3/m/c4270ab3af1ffc4ffe47acf2.png)
蒽醌法生产过氧化氢技术浅谈蒽醌法生产过氧化氢技术浅谈摘要:本文简要总结了过氧化氢蒽醌法生产技术,重点介绍了反应机理、工艺流程、催化剂使用等,并对今后的发展提出建议。
关键词:蒽醌过氧化氢钯加氢过氧化氢又名双氧水,分子式H2O2,是1818年首先由Thenard 利用BaO2与酸反应发现而得[1]。
由于过氧化氢分解后产生水和氧气,对环境无二次污染,属于绿色化学品,使得过氧化氢作为氧化剂受到越来越多的重视。
特别是进入20世纪后半叶,过氧化氢已成为一种重要的无机化工原料和精细化工产品,广泛应用于化学品合成、纸浆、纸和纺织品的漂白、金属矿物处理、环保、电子、军工及航天等多个领域。
随着全球经济的快速发展,过氧化氢向着大规模、高技术、自动化控制方向全方位迅猛发展[2,3]。
目前,世界上过氧化氢的生产方法主要有电解法、蒽醌法、异丙醇法、氧阴极还原法和氢氧直接化合法等。
蒽醌法最初由Riedl和Pfleiderer研制成功[4,5],并取得了一系列专利权,后经过各国公司的大量研究改进,使该法成为当前世界生产H2O2占绝对优势的方法[6]。
蒽醌法技术先进,自动化控制程度高,产品成本和能耗较低,适合大规模生产;缺点是生产工艺比较复杂。
一、反应机理蒽醌法生产过氧化氢主要经历氢化和氧化两个阶段。
氢化阶段:将烷基蒽醌溶解于复合有机溶剂中,在一定温度及压力条件下通入氢气,烷基蒽醌加氢生成氢蒽醌(HEAQ)。
氧化阶段:将含有氢蒽醌(HEAQ)的有机混合溶剂通入氧气,氢蒽醌(HEAQ)被氧化再度生成烷基蒽醌(EAQ),同时生成过氧化氢[7]。
从上述反应历程可知,氢化阶段涉及的影响因素很多,催化剂种类、反应温度、反应压力、氢气通入量等均会直接影响EAQ的加氢历程,容易导致加氢副产物增多,直接影响产品收率。
因此,加大氢化过程中各影响因素的剖析对指导实际生产具有重大意义。
Aksela和Reijo公开的专利中提到一种运用微波照射进行蒽醌法生产过氧化氢的新方法[8],这种方法使得氢可以得到充分的利用,并且有利于催化剂的回收与再生。
1 蒽醌法生产过氧化氢的原理
![1 蒽醌法生产过氧化氢的原理](https://img.taocdn.com/s3/m/74b057e6102de2bd9605888a.png)
蒽醌法生产过氧化氢的安全事故分析及防范措施1 蒽醌法生产过氧化氢的原理本方法制取过氧化氢是以2- 乙基蒽醌( EAQ)为载体, 重芳烃(AR) 及磷酸三辛酯( TOP) 为混合溶剂, 配制成具有一定组成的工作液, 将其与氢气一起通入一装有催化剂的氢化床内, EAQ 于一定压力和温度下与氢进行氢化反应, 生成相应的氢蒽醌(HEAQ) , 所得溶液称氢化液。
氢化液再被空气中的氧氧化, 其中的氢蒽醌恢复成原来的蒽醌, 同时生成过氧化氢, 所得溶液称为氧化液。
利用过氧化氢在水和工作液中溶解度的不同及工作液与水的密度差,用纯水萃取氧化液中的过氧化氢, 得到过氧化氢水溶液( 俗称双氧水) 。
此水溶液经净化处理即可得到过氧化氢产品。
经水萃取后的工作液( 称萃余液) , 经过后处理工序K2CO3溶液干燥脱水分解H2O2 和沉降分离碱, 再经白土床内的活性氧化铝吸附除碱和再生降解物后得到工作液, 然后再循环使用。
2 过氧化氢产品及原料的危险性2.1 过氧化氢纯净的过氧化氢, 在任何浓度下都很稳定, 工业生产的过氧化氢的正常分解速度极慢, 每年损失低于1%, 但与重金属及其盐类、灰尘、碱性物质及粗糙的容器表面接触, 或受光、热作用时, 可加速分解,并放出大量的氧气和热量。
分解反应速度与温度、pH 值及杂质含量有密切关系, 随着温度、pH 值的提高及杂质含量的增加, 分解反应速度加快。
温度每升高10 ℃, 分解速度约提高1.3 倍, 分解时进一步促使温度升高和分解速度加快, 对生产安全构成威胁。
过氧化氢稳定性受pH 值的影响很大, 中性溶液最稳定, 当pH 值低( 呈酸性) 时, 对稳定性影响不大, 但当pH 值高(呈碱性)时, 稳定性急剧恶化, 分解速度明显加快。
当和含碱( 如K2CO3、NaOH 等) 成分的物质及重金属接触时, 则迅速分解。
虽然通常在过氧化氢产品中, 都加有稳定剂, 但当污染严重时, 对上述的分解也无济于事。
蒽醌法生产过氧化氢技术浅谈
![蒽醌法生产过氧化氢技术浅谈](https://img.taocdn.com/s3/m/03f2d313a76e58fafab00312.png)
H: 0:
主反 应的 选择 性强 ,此 外 ,钯 催化 剂不 会 如 同骨架 镍催 化剂 那样 遇 空 气极 易 自燃 ,使 用安 全 [ 1 5 。 因此 目前 国 内外蒽 醌加 氢催 化 剂普遍 应 用 负载型 钯系 催化剂 。 为 了 防止 载体孔 道 中 的液体 滞 留 时间过 长而 导致 生 成的 氢蒽 醌进
钯 加 氢
关键 词 :蒽 醌 过 氧 化 氢
过 氧化 氢又 名 双 氧水 ,分 子 式 H O ,是 1 8 1 8年 首 先 由 T h e n a r d 利用 B a O 。 与 酸 反应 发现 而 得n 1 。由于 过氧 化 氢分 解 后 产生 水 和氧 气 ,
了骨 架 镍催 化 剂的使 用 n 。虽 然 镍系 催化 剂 已经 大部 分被 钯系 催化 剂 取 代 ,但 改 善镍 催化 剂 的研 究工 作 仍在 持 续进 行 。乔 明 华等 人 【 1 1 】 发
对 环 境无 二次 污染 ,属于 绿色 化 学 品 ,使 得过 氧 化氢 作 为氧 化剂 受 到 越 来越 多 的重视 。特别 是进 入 2 0 世纪 后半 叶 ,过 氧化 氢 已成 为 一种 重
蒽醌法生产双氧水原理
![蒽醌法生产双氧水原理](https://img.taocdn.com/s3/m/7b7afbcadc88d0d233d4b14e852458fb770b38a1.png)
蒽醌法生产双氧水原理嘿,咱聊聊蒽醌法生产双氧水那超厉害的事儿呗!这可是个神奇的过程呢。
蒽醌法生产双氧水,就像是一场奇妙的魔法表演。
你想想,那些原料就像一群听话的小精灵,在各种设备里蹦蹦跳跳,最后变出了神奇的双氧水。
首先呢,这过程里有蒽醌这种神秘的东西。
蒽醌就像是一个厉害的指挥官,指挥着整个生产过程。
它在特定的条件下,和氢气发生反应。
这就像一场奇妙的约会,两者相遇后,就产生了新的变化。
接着,反应后的产物再进入到另一个环节。
这就好比小精灵们从一个舞台跳到了另一个舞台。
在这个舞台上,它们又和氧气相遇了。
哇,这一相遇可不得了,就像火星撞地球一样,发生了神奇的变化,双氧水就这么诞生了。
整个过程中,各种设备就像一个个神奇的魔法盒子。
原料在里面经过一系列的变化,就像变魔术一样。
那些管道呢,就像是魔法通道,把小精灵们从一个地方运送到另一个地方。
而且啊,这个生产过程还特别精细。
每一个步骤都得把握得恰到好处,不然就变不出双氧水来。
这就像做一道超级复杂的菜,调料放多了或者放少了都不行。
你说神奇不神奇?从普普通通的原料,经过这么一番奇妙的变化,就变成了用处多多的双氧水。
双氧水可是个好东西呢!它可以用来消毒、漂白,还能在很多工业领域发挥大作用。
就像一个万能的小助手,哪里需要就去哪里。
这个蒽醌法生产双氧水的过程,就像是大自然给我们的一份礼物。
让我们能够用这种神奇的方法制造出这么有用的东西。
总之,蒽醌法生产双氧水是一个充满神奇和惊喜的过程。
它用独特的方式为我们的生活和工业生产带来了便利。
我的观点是,蒽醌法生产双氧水是一项了不起的技术,它让我们的世界变得更加美好。
蒽醌法生产工艺
![蒽醌法生产工艺](https://img.taocdn.com/s3/m/815ad0deb9f3f90f76c61b60.png)
蒽醌法过氧化氢技术基础知识前言为便于公司职工及新来员工系统地学习东方宏业有限公司葸醌法过氧化氢生产技术的基础知识和系统化操作,我们将《操作规程》及过氧化氢生产相关知识进行了汇总,整编成了这本《蒽醌法过氧化氢技术基础知识》,基础知识以过氧化氢稀品主装置及公用工程、配制、污水、包装等辅助装置的基本生产知识为主要内容,对装置的生产原料性能、工艺原理、流程及按指令操作知识进行了系统、简洁地介绍。
通过对基础知识的学习,大家可以对过氧化氢生产装置有一个系统地了解,《操作规程》、《岗位操作法》及开、停车操作步骤的学习更加了解掌握。
学习要求:了解并掌握产品及主要生产原料的性能,熟练掌握过氧化氢稀品、生产工艺原理、工艺流程;牢记安全操作相关知识。
第一章过氧化氢产品规格、性能及应用领域一、产品规格及理化性质采用本工艺方法制得的工业级过氧化氢应符合国标GB1616 2003,详见下表:工业过氧化氢GBl616 —2003项目指标27.50%30% 35% 50% 70% 优等品合格品过氧化氧的质量分数/%≥27.5 27.5 30 35 50 70 游离酸(以H$0,计)的质量分数/%≤0.04 0.05 0.04 0.04 0.04 0.05 不挥发物的质量分数/%≤0.08 0.1 0.08 0.08 0.08 0.12 稳定度/%≥97 90 97 97 97 97总碳(以c计)的质量分数^≤0.03 0.040.0250.0250.035 0.05硝酸盐(以N0计)的质量分数/%≤0.02 0.02 0.02 0.02 0.025 0.03 注:过氧化氧的质量分数、游离酸、不挥发物、稳定度为强制性要求过氧化氢,俗名双氧水(hydrogen peroxlde),无色(或浅黄色)透明液体,有强烈的刺激性臭味,无毒,对皮肤有一定的侵蚀作用,产生灼烧感和针刺般疼痛,属于无机过氧化物,已列入国家安监局发布的危险化学品名录(2002版)。
蒽醌法生产双氧水反应方程式
![蒽醌法生产双氧水反应方程式](https://img.taocdn.com/s3/m/51d35819a4e9856a561252d380eb6294dc88227b.png)
蒽醌法生产双氧水反应方程式1. 介绍在化学工业中,生产双氧水的方法有很多种,其中蒽醌法是一种常见的方法。
这种方法的反应原理是将蒽醌与过氧化氢反应生成双氧水。
本文将详细介绍蒽醌法生产双氧水的反应方程式及其相关知识。
2. 蒽醌法的原理蒽醌法是一种通过蒽醌与过氧化氢反应制备双氧水的方法。
蒽醌(anthraquinone)是一种有机化合物,其分子式为C14H8O2。
过氧化氢(hydrogen peroxide)则是一种常用的氧化剂,化学式为H2O2。
蒽醌法生产双氧水的原理如下:1.首先,将蒽醌溶解在醋酸中,形成蒽醌醋酸溶液。
2.然后,向蒽醌醋酸溶液中加入过氧化氢。
3.过氧化氢与蒽醌发生氧化还原反应,生成双氧水和蒽醌醋酸盐。
4.最后,将反应混合物经过一系列的处理和提纯,得到纯度较高的双氧水产物。
3. 反应方程式蒽醌法生产双氧水的反应方程式如下:C14H8O2 + H2O2 → 2H2O + C14H8O2醋酸盐通过观察反应方程式,我们可以看到,蒽醌和过氧化氢反应生成了双氧水和蒽醌醋酸盐。
这个反应是一个氧化还原反应,其中蒽醌被还原,过氧化氢被氧化。
4. 实验条件和注意事项在进行蒽醌法生产双氧水的实验时,需要注意以下几点:1.反应溶液的浓度和温度对反应速率有影响,需要根据实际情况进行调整。
2.反应容器与溶液中的物质应选择耐腐蚀性能较好的材料,以防反应过程中产生腐蚀或污染。
3.在操作过程中,应注意安全,避免接触皮肤和眼睛,避免摄入。
5. 蒽醌法与其他方法的比较蒽醌法是生产双氧水的常用方法之一,与其他方法相比具有以下特点:1.蒽醌法相对简单,原料易得,工艺较为成熟,投资成本相对较低。
2.反应条件温和,无需过高的温度和压力。
3.产物纯度较高,产品质量较稳定。
6. 应用领域双氧水是一种重要的化学品,在生活和工业中有广泛的应用。
蒽醌法生产的双氧水也在多个领域得到应用,例如:1.医疗领域:双氧水在医疗和卫生领域中用作消毒剂、漂白剂等。
蒽醌法生产双氧水
![蒽醌法生产双氧水](https://img.taocdn.com/s3/m/133e2607b52acfc788ebc904.png)
一、蒽醌法双氧水工艺技术简介定义:蒽醌法生产双氧水,即利用醌类物质可以被氢化还原再重新回复成醌的性质,以烷基蒽醌衍生物为载体,在催化剂催化下被氢化,而后氧化合成过氧化氢(俗称双氧水)。
蒽醌法生产双氧水是目前世界上该行业最为成熟的生产方法之一,国外大型的生产厂家都采用蒽醌法生产双氧水,在国内目前双氧水的制备也几乎都是蒽醌法。
目前,世界上双氧水的生产方法主要有电解法、蒽醌法、异丙醇法、氧阴极还原法和氢氧直接化合法5种,在全球范围内蒽醌法生产占有绝对优势。
蒽醌法又分为钯催化生产工艺和镍催化剂氢化生产工艺。
国内20世纪80年代中期以前,过氧化氢的生产主要以镍催化剂搅拌釜氢化蒽醌工艺为主,随着生产能力得不断扩大,与搅拌釜工艺相比,以钯为催化剂的固定床组件显示出氢化设备结构简单、装置生产能力大、生产过程中不需经常补加催化剂、安全性能好和操作方便等优点,借助于DCS集散控制技术,可大大提高装置得安全性能,该工艺已成为过氧化氢生产发展的方向。
目前国内工业上蒽醌法生产过氧化氢的方法有悬浮釜镍催化剂工艺、固定床钯催化剂工艺、流化床工艺等,其中蒽醌法固定床钯催化剂工艺因其投资少、产量高、操作简单以及其使用的钯催化剂具有用量少、活性高、易再生和使用安全等优点,而成为国内过氧化氢生产工艺的主流,蒽醌法固定床钯催化剂工艺:是以2-乙基蒽醌为载体,以芳烃和磷酸三辛酯为溶剂配制成混合液体工作液。
工作液在固定床内于一定的温度、压力和钯催化剂的催化作用下,与氢气进行氢化反应,氢化完成液再与空气中的氧气进行氧化反应,得到的氧化液经纯水萃取、净化得到双氧水。
工作液经处理后循环使用。
其中氢化工序为整个生产工艺的核心,而氢化工序运行的效果,直接取决于钯催化剂的性能。
钯催化剂作为蒽醌法过氧化氢生产中的一种昂贵的关键原料,在生产应用时必须结合其特点进行有效的控制,使钯催化剂安全平稳地使用,否则,会影响钯催化剂效能正常发挥,造成浪费,影响产品产量质量,甚至造成难以弥补的损失。
蒽醌法双氧水生产中的安全性分析与防范措施
![蒽醌法双氧水生产中的安全性分析与防范措施](https://img.taocdn.com/s3/m/71342112bb1aa8114431b90d6c85ec3a87c28bae.png)
蒽醌法双氧水生产中的安全性分析与防范措施摘要:本文从双氧水的基本性质、蒽醌法生产双氧水的基本理论入手,重点对蒽醌法双氧水的主要危害和安全防范措施进行分析,以期对蒽醌法双氧水生产中的安全性防范提供借鉴作用。
关键词:蒽醌法;双氧水;生产;安全性;防范措施1 引言本文根据蒽醌法生产双氧水的危害,通过强调生产过程中的主要安全控制要点,通过科学、合理的工艺措施和严格的管理,有效地控制加氢塔的氧含量、氧化塔的酸碱度,确保生产过程中的安全运行,进而为促进生产系统的长期稳定运行奠定良好基础。
2原理及过程蒽醌法生产过氧化氢,主要是通过氢气将醌类化合物还原,再将其氧化为醌,从而制备出不同浓度的双氧水。
采用2-乙基蒽醌(EAQ)为载体,以重芳烃(AR)、磷酸三辛酯(TOP)、2-甲基环己基醋酸(2-MTA)为工作液,在一定的压力、温度下,将工作液与氢经过钯触媒床层进行加氢,获得氢蒽醌(HEAQ)溶液。
将氢蒽醌溶液氧化为双氧水,使氢蒽醌还原为最初的蒽醌。
以纯水为原料,从工作液中提取过氧化氢,获得理想的水溶液。
氢化反应、氧化反应如图1、图2。
图1氢化反应图2氧化反应3 蒽醌法双氧水生产安全性分析3.1 原料与产品的安全性分析在蒽醌法生产双氧水时,原料氢气、双氧水、工作液等均为易燃、易爆的物质。
特别是双氧水,它的氧化反应很容易引起火灾和爆炸,危害系数很大。
双氧水是一种很强的氧化剂,它可以与可燃性物质发生反应,产生大量的热量和O2,从而引发火灾。
1m335℃的双氧水在分解的时候可以释放出132m3的氧,从而使其产生大量的热量,并且也有利于加快反应的速度。
在20~100℃的条件下,其降解速度随10℃的升高而增大2.2。
一旦超过100℃就会发生剧烈的分解,甚至有可能发生爆炸问题。
氢气是一种闪点在-50℃以下,在4-75℃范围内的可燃气体,其具有较高的爆炸性和易燃性,其也是国家重点监控的危险化学品。
工作液中含有大量的三甲苯,三甲苯是一种易燃的乙类液体,在遇到火源时就会爆炸。
蒽醌法生产双氧水
![蒽醌法生产双氧水](https://img.taocdn.com/s3/m/133e2607b52acfc788ebc904.png)
一、蒽醌法双氧水工艺技术简介定义:蒽醌法生产双氧水,即利用醌类物质可以被氢化还原再重新回复成醌的性质,以烷基蒽醌衍生物为载体,在催化剂催化下被氢化,而后氧化合成过氧化氢(俗称双氧水)。
蒽醌法生产双氧水是目前世界上该行业最为成熟的生产方法之一,国外大型的生产厂家都采用蒽醌法生产双氧水,在国内目前双氧水的制备也几乎都是蒽醌法。
目前,世界上双氧水的生产方法主要有电解法、蒽醌法、异丙醇法、氧阴极还原法和氢氧直接化合法5种,在全球范围内蒽醌法生产占有绝对优势。
蒽醌法又分为钯催化生产工艺和镍催化剂氢化生产工艺。
国内20世纪80年代中期以前,过氧化氢的生产主要以镍催化剂搅拌釜氢化蒽醌工艺为主,随着生产能力得不断扩大,与搅拌釜工艺相比,以钯为催化剂的固定床组件显示出氢化设备结构简单、装置生产能力大、生产过程中不需经常补加催化剂、安全性能好和操作方便等优点,借助于DCS集散控制技术,可大大提高装置得安全性能,该工艺已成为过氧化氢生产发展的方向。
目前国内工业上蒽醌法生产过氧化氢的方法有悬浮釜镍催化剂工艺、固定床钯催化剂工艺、流化床工艺等,其中蒽醌法固定床钯催化剂工艺因其投资少、产量高、操作简单以及其使用的钯催化剂具有用量少、活性高、易再生和使用安全等优点,而成为国内过氧化氢生产工艺的主流,蒽醌法固定床钯催化剂工艺:是以2-乙基蒽醌为载体,以芳烃和磷酸三辛酯为溶剂配制成混合液体工作液。
工作液在固定床内于一定的温度、压力和钯催化剂的催化作用下,与氢气进行氢化反应,氢化完成液再与空气中的氧气进行氧化反应,得到的氧化液经纯水萃取、净化得到双氧水。
工作液经处理后循环使用。
其中氢化工序为整个生产工艺的核心,而氢化工序运行的效果,直接取决于钯催化剂的性能。
钯催化剂作为蒽醌法过氧化氢生产中的一种昂贵的关键原料,在生产应用时必须结合其特点进行有效的控制,使钯催化剂安全平稳地使用,否则,会影响钯催化剂效能正常发挥,造成浪费,影响产品产量质量,甚至造成难以弥补的损失。
蒽醌法生产双氧水氧化尾气的节能处理研究
![蒽醌法生产双氧水氧化尾气的节能处理研究](https://img.taocdn.com/s3/m/02718b418762caaedc33d4c5.png)
蒽醌法生产双氧水氧化尾气的节能处理研究摘要:本文以杭州某双氧水公司为例,探讨了其蒽醌法生产双氧水氧化尾气处理问题,研究了其氧化尾气节能处理工艺改造,结果显示,其节能效果和环保效果良好。
关键词:蒽醌法;生产双氧水;氧化尾气;节能处理前言:采用蒽醌法生产双氧水的原理如下:醌类物质可以经过氢化还原重新生成醌,借助烷基蒽醌衍生物,在催化剂作用下进行氢化,之后经过氧化合成则可以生成双氧水。
杭州某双氧水有限公司存在27.5%双氧水生产装置,主要工序包括配制、氢化、过氧化、萃取、后处理及相关辅助工序等。
下面以杭州某双氧水公司的蒽醌法生产双氧水工艺为例,研究其氧化尾气的节能处理问题。
1氧化尾气处理问题分析在采用蒽醌法生产双氧水的过程中,在氧化塔中,进行压缩空气与氢化液的氧化,此过程只消耗氧气,大部分气体经过气液分离之后由氧化塔顶部排除,这就涉及到氧化为其的处理问题。
蒽醌法生产双氧水氧化尾气排放温度为45-48摄氏度,压力在0200-0.25兆帕之间[1],以27.5%双氧水氧化尾气为例,每吨产品氧化尾气排放量约1220立方米,在氧化尾气中存在芳烃类物质,其有着沸点低、挥发性强等特点,很容易由液相转为气体排除,如果不对氧化尾气加以处理,则很容易增加能耗,且产生环境污染问题,蒽醌法生产双氧水氧化尾气成分如表1所示:表1氧化尾气成分杭州某双氧水公司蒽醌法生产双氧水装置于2013年5月投产,采用涡轮膨胀法来回收处理尾气中的芳烃,通过降温冷凝氧化尾气中的芳烃。
经过三级冷凝流程,氧化尾气温度能够降低到2-5摄氏度,回收的芳烃能够进入到生产系统中,这种处理方式下,虽然能够保证氧化尾气达到环保排放标准要求,但尾气中仍含有0.5%-0.6%的芳烃,节能效果和环保效果还有待进一步提升,因此,公司于2015年6月进行蒽醌法生产双氧水氧化尾气处理的节能改造。
2氧化尾气处理节能改造探讨2.1改造工艺分析公司采用图1所示的尾气处理节能改造工艺,采用活性炭纤维作为吸附材料,回收氧化尾气中的芳烃。
蒽醌法生产过氧化氢中降解物的生成和再生
![蒽醌法生产过氧化氢中降解物的生成和再生](https://img.taocdn.com/s3/m/bdf1a7fb998fcc22bcd10de1.png)
综述与专论蒽醌法生产过氧化氢中降解物的生成和再生陈群来(黎明化工研究院,洛阳471001)摘要:综述了以2-乙基蒽醌(E AQ)和四氢-2-乙基蒽醌(H4EAQ)为工作载体的蒽醌法生产过氧化氢过程中生成的各种降解物的化学组成和分子结构的分析确定。
介绍了一些降解反应机理,提出将工作液中有效蒽醌的降解分为氢化降解和氧化降解两种,氢化降解又可分为有效蒽醌中芳环的氢化和羰基的氢解。
使用碱性氧化铝、酸、碱、过氧化物和有机胺等再生剂再生工业生产中长期使用工作液中的降解物,取得了良好的再生效果,再生后工作液中的有效蒽醌均有明显增加。
关键词:蒽醌法;过氧化氢;有效蒽醌;降解;降解物;再生中图分类号:TQ123.4文献标识码:A文章编号:1006-4990(2002)05-0015-04Formation and regeneration of degradation productsin the production of hydrogen peroxide by anthraquinone methodC HEN Qunlai(Liming Research I nstitute of Chemical I ndustry,Luoyan g471001)Abstract:The chemical compositions and determination of molecular structures of various degradation products formed in an-thraquinone process usi ng EAQ and H4EAQ as working carriers are reviewed.The mechanism of some degradation reactions is in-troduced.The degradations of anthraquinones are divided into two types,i.e.hydrogenation degradati on and oxidation degradation. Hydrogenation degradation contains hydrogenation of aromatic ring and hydrogenolysis of carbonyl group of anthraquinones.Regen-eration of degradation products contained in working solution by alkaline alumina,acids,alkalis,peroxides and organic amines has obtained good effects.In all cases,effective anthraquinones in working solution were increased after regeneration.Key words:anthraquinone method;hydrogen peroxide;effective anthraquinone;degradation;degradation products;regeneration1原理工业化生产过氧化氢的主要方法是蒽醌法,其原理是将烷基蒽醌(主要是2-乙基蒽醌,2-特丁基蒽醌和2-戊基蒽醌)溶解在适当的混合溶剂中,配制成工作液。
蒽醌法生产双氧水
![蒽醌法生产双氧水](https://img.taocdn.com/s3/m/44b39e28a76e58fafab00384.png)
一、蒽醌法双氧水工艺技术简介定义:蒽醌法生产双氧水,即利用醌类物质可以被氢化还原再重新回复成醌的性质,以烷基蒽醌衍生物为载体,在催化剂催化下被氢化,而后氧化合成过氧化氢(俗称双氧水)。
蒽醌法生产双氧水是目前世界上该行业最为成熟的生产方法之一,国外大型的生产厂家都采用蒽醌法生产双氧水,在国内目前双氧水的制备也几乎都是蒽醌法。
目前,世界上双氧水的生产方法主要有电解法、蒽醌法、异丙醇法、氧阴极还原法和氢氧直接化合法5种,在全球范围内蒽醌法生产占有绝对优势。
蒽醌法又分为钯催化生产工艺和镍催化剂氢化生产工艺。
国内20世纪80年代中期以前,过氧化氢的生产主要以镍催化剂搅拌釜氢化蒽醌工艺为主,随着生产能力得不断扩大,与搅拌釜工艺相比,以钯为催化剂的固定床组件显示出氢化设备结构简单、装置生产能力大、生产过程中不需经常补加催化剂、安全性能好和操作方便等优点,借助于DCS集散控制技术,可大大提高装置得安全性能,该工艺已成为过氧化氢生产发展的方向。
目前国内工业上蒽醌法生产过氧化氢的方法有悬浮釜镍催化剂工艺、固定床钯催化剂工艺、流化床工艺等,其中蒽醌法固定床钯催化剂工艺因其投资少、产量高、操作简单以及其使用的钯催化剂具有用量少、活性高、易再生和使用安全等优点,而成为国内过氧化氢生产工艺的主流,蒽醌法固定床钯催化剂工艺:是以2-乙基蒽醌为载体,以芳烃和磷酸三辛酯为溶剂配制成混合液体工作液。
工作液在固定床内于一定的温度、压力和钯催化剂的催化作用下,与氢气进行氢化反应,氢化完成液再与空气中的氧气进行氧化反应,得到的氧化液经纯水萃取、净化得到双氧水。
工作液经处理后循环使用。
其中氢化工序为整个生产工艺的核心,而氢化工序运行的效果,直接取决于钯催化剂的性能。
钯催化剂作为蒽醌法过氧化氢生产中的一种昂贵的关键原料,在生产应用时必须结合其特点进行有效的控制,使钯催化剂安全平稳地使用,否则,会影响钯催化剂效能正常发挥,造成浪费,影响产品产量质量,甚至造成难以弥补的损失。
1蒽醌法生产过氧化氢的原理
![1蒽醌法生产过氧化氢的原理](https://img.taocdn.com/s3/m/1db422050640be1e650e52ea551810a6f524c8ed.png)
1蒽醌法生产过氧化氢的原理本方法制取过氧化氢是以2-乙基蒽醌(EAQ)为载体,重芳烃(AR)及磷酸三辛酯(TOP)为混合溶剂,配制成具有一定组成的工作液,将其与氢气一起通入一装有催化剂的氢化床内,EAQ于一定压力和温度下与氢进行氢化反应,生成相应的氢蒽醌(HEAQ),所得溶液称氢化液。
氢化液再被空气中的氧氧化,其中的氢蒽醌恢复成原来的蒽醌,同时生成过氧化氢,所得溶液称为氧化液。
利用过氧化氢在水和工作液中溶解度的不同及工作液与水的密度差,用纯水萃取氧化液中的过氧化氢,得到过氧化氢水溶液(俗称双氧水)此水溶液经净化处理即可得到过氧化氢产品。
经水萃取后的工作液(称萃余液),经过后处理工序K2CO3溶液干燥脱水分解H2O2和沉降分离碱,再经白土床内的活性氧化铝吸附除碱和再生降解物后得到工作液,然后再循环使用。
2过氧化氢产品及原料的危险性2.1过氧化氢纯净的过氧化氢,在任何浓度下都很稳定,工业生产的过氧化氢的正常分解速度极慢,每年损失低于1%,但与重金属及其盐类、灰尘、碱性物质及粗糙的容器表面接触,或受光、热作用时,可加速分解,并放出大量的氧气和热量。
分解反应速度与温度、pH值及杂质含量有密切关系,随着温度、pH值的提高及杂质含量的增加,分解反应速度加快。
温度每升高10℃,分解速度约提高1.3倍,分解时进一步促使温度升高和分解速度加快,对生产安全构成威胁。
过氧化氢稳定性受pH值的影响很大,中性溶液最稳定,当pH值低(呈酸性)时,对稳定性影响不大,但当pH值高(呈碱性)时,稳定性急剧恶化,分解速度明显加快。
当和含碱(如K2CO3、NaOH等)成分的物质及重金属接触时,则迅速分解。
虽然通常在过氧化氢产品中,都加有稳定剂,但当污染严重时,对上述的分解也无济于事。
当H2O2与可燃性液体、蒸气或气体接触时,如果此时的H2O2浓度过高,可导致燃烧,甚至爆炸。
因此,H2O2贮槽的上部空间存在一定的危险性,因为H2O2上部漂浮的芳烃是可燃性液体和气体的混合,一旦H2O2分解或有明火,就会引起爆炸。
蒽醌法生产双氧水工艺安全分析与防控措施
![蒽醌法生产双氧水工艺安全分析与防控措施](https://img.taocdn.com/s3/m/454254428762caaedc33d48a.png)
蒽醌法生产双氧水工艺安全分析与防控措施作者:韦灯锋何学新来源:《科学与财富》2020年第24期摘要:双氧水的用量一直都是比较大的,在化工生产方面对于双氧水的生产工艺需要不断的创新。
蒽醌法在双氧水的生产方面取得了不错的效果,但是在安全分析、安全防控方面不能放松,任何化工产物、化工生产流程都有可能造成安全隐患,所以在安全防控的体系上要不断的创新,确保双氧水的生产、安全得到共同的提升。
关键词:蒽醌法;双氧水工艺;安全防控现阶段的双氧水在化工生产中是重要的产物,对于医疗应用、化工应用都会产生较大的影响。
蒽醌法在双氧水生产方面的确具有不错的效果,但是该项方法的应用难度并不低,而且在很多危险因素的控制、处理方面都要给出足够的依据,确保在双氧水的生产、加工体系上不断的创新,在蒽醌法的改良技术上不断的加强。
一、蒽醌法生产双氧水工艺原理目前,蒽醌法在双氧水的生产过程中,主要是将2--乙基蒽醌作为工作的载体,利用重芳烃和磷酸三辛酯作为生产的溶剂,将这些原料配比成工作液。
工作液会与氢气一同进入到装有催化剂的氢化床当中,2--乙基蒽醌的应用过程中会在一定的温度下、压力下与氢气发生氢化反应,由此生成相对应的氢蒽醌溶液,也就是氢化液。
氢化液当中的氢蒽醌物质会与空气当中的氧气在一定的条件下发生氧化反应,此时,氢蒽醌主要是恢复成原有的蒽醌,同时会产生过氧化氢,氢化液的反应经过氧化反应的作用以后,溶液转变成氧化液。
利用过氧化氢在水中、在工作液当中的不容溶解度,同时利用过氧化氢在工作液中的密度差、水中的密度差,对氧化液进行萃取以后会与纯水实现逆流接触的操作,由此来对氧化液当中的过氧化氢进行萃取,最终得到了过氧化氢的水溶液,接下来还需要经过净化处理以后,才能加工成成品来进入到包装工序当中。
蒽醌法生产双氧水的过程并不繁杂,同时在工作液方面能够循环的利用,但是化工产品对于生产人员造成的危险性是非常高的,此时在双氧水的加工过程中必须采取多元化的安全防护手段,否则一旦出现喷溅的情况,必定会对生产人员的人身安全造成较大的影响,一定要在安全防护体系上不断的优化,并且在蒽醌法的流程上更好的创新。
蒽醌法过氧化氢生产原理讲座提纲
![蒽醌法过氧化氢生产原理讲座提纲](https://img.taocdn.com/s3/m/dcae9b2c915f804d2b16c174.png)
一、蒽醌法过氧化氢生产原理讲座4、萃取工序(extraction)原理4、1 工艺原理:多级二元互不溶逆流萃取。
全塔物料衡算:RXf+EY0=RXN+EY1 (1)对第I级衡算:RXf + EYi= RXi+ EY1 (2)式中:Xf:氧化效率,XN:萃余,Y1:萃取液浓度,R:氧化液流量,E:萃取液流量,Y0:萃取剂中过氧化氢浓度浓度由(1)式:Y1=(R/E)(Xf-XN)+Y0对纯水来说,Y0=0 ;对27.5%过氧化氢来说,Y1=320 g/L可见,氧化效率越高,萃余越低。
由(2)式:Yi= (R/E)((Xf-Xi)+ Y0,此式称为操作线方程。
由分配系数定义:Yi= m((Xf-Xi)+ Y0,此式称为平衡线方程。
4、2 工艺流程简述4、2、1 流程简述氧化液贮槽内的氧化液由氧化液泵经流量控制后打入萃取塔底部,与从塔顶部进入的纯水逆流接触,靠二者密度不同,氧化液由下向上漂浮,纯水由上向下连续流动。
萃取塔系不锈钢筛板塔,氧化液经每层筛板分散成细小液滴穿过连续水相后再凝聚,在萃取塔塔头与水沉降分离后溢流入萃余液分离器。
从萃余液分离器出来的分离掉水分的萃余液进入后处理岗位的工作液计量槽。
萃余液分离器分离出来的水分排入地下槽。
从萃取塔底部出来的过氧化氢水溶液,称为萃取液。
萃取液进入净化塔,净化塔是一个填料塔,过氧化氢水溶液从净化塔的顶部进入,与塔内重芳烃充分接触,除去水相中的有机物,达到脱色和脱碳目的后,从塔底部流出,经稀品分离器自动分离出可能含有的少量芳烃后靠位差进入双氧水产品罐区。
分离出的芳烃溢流至废芳烃受槽。
4、2、2 流程示意图4、3 工艺参数1 纯水流量;2 萃取液流量;3 萃取塔相界面;4 净化塔相界面5 纯水酸度;6 萃取液酸度;7 萃取液中过氧化氢含量;8 萃余4、4 萃取塔工作原理示意图*筛板塔应防止返混降低塔效*操作时,严禁关闭进出水阀。
防止带水。
控制萃余。
*操作时,严控纯水酸度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蒽醌法生产过氧化氢的安全事故分析及防范措施1 蒽醌法生产过氧化氢的原理本方法制取过氧化氢是以2- 乙基蒽醌( EAQ)为载体, 重芳烃(AR) 及磷酸三辛酯( TOP) 为混合溶剂, 配制成具有一定组成的工作液, 将其与氢气一起通入一装有催化剂的氢化床内, EAQ 于一定压力和温度下与氢进行氢化反应, 生成相应的氢蒽醌(HEAQ) , 所得溶液称氢化液。
氢化液再被空气中的氧氧化, 其中的氢蒽醌恢复成原来的蒽醌, 同时生成过氧化氢, 所得溶液称为氧化液。
利用过氧化氢在水和工作液中溶解度的不同及工作液与水的密度差,用纯水萃取氧化液中的过氧化氢, 得到过氧化氢水溶液( 俗称双氧水) 。
此水溶液经净化处理即可得到过氧化氢产品。
经水萃取后的工作液( 称萃余液) , 经过后处理工序K2CO3 溶液干燥脱水分解H2O2 和沉降分离碱, 再经白土床内的活性氧化铝吸附除碱和再生降解物后得到工作液, 然后再循环使用。
2 过氧化氢产品及原料的危险性2.1 过氧化氢纯净的过氧化氢, 在任何浓度下都很稳定, 工业生产的过氧化氢的正常分解速度极慢, 每年损失低于1%, 但与重金属及其盐类、灰尘、碱性物质及粗糙的容器表面接触, 或受光、热作用时, 可加速分解,并放出大量的氧气和热量。
分解反应速度与温度、pH 值及杂质含量有密切关系, 随着温度、pH 值的提高及杂质含量的增加, 分解反应速度加快。
温度每升高10 ℃, 分解速度约提高 1.3 倍, 分解时进一步促使温度升高和分解速度加快, 对生产安全构成威胁。
过氧化氢稳定性受pH 值的影响很大, 中性溶液最稳定, 当pH 值低( 呈酸性) 时, 对稳定性影响不大, 但当pH 值高(呈碱性)时, 稳定性急剧恶化, 分解速度明显加快。
当和含碱( 如K2CO3、NaOH 等) 成分的物质及重金属接触时, 则迅速分解。
虽然通常在过氧化氢产品中, 都加有稳定剂, 但当污染严重时, 对上述的分解也无济于事。
当H2O2 与可燃性液体、蒸气或气体接触时, 如果此时的H2O2 浓度过高, 可导致燃烧, 甚至爆炸。
因此, H2O2 贮槽的上部空间存在一定的危险性, 因为H2O2 上部漂浮的芳烃是可燃性液体和气体的混合,一旦H2O2 分解或有明火, 就会引起爆炸。
随着过氧化氢水溶液浓度的提高, 爆炸的危险性也随着增加。
在常压下, 气相中过氧化氢爆炸极限质量分数为40%, 与之对应的溶液中的质量分数为74%, 压力降低时, 爆炸极限值提高, 因此负压操作和贮存是比较安全的。
过氧化氢是一种强氧化剂, 可氧化许多有机物和无机物, 容易引起易燃物质如棉花、木屑、羊毛、纸片等燃烧。
2.2 原料2.2.1 重芳烃重芳烃来自石油工业铂重整装置, 主要为C9 或C10 馏分, 即三甲苯、四甲苯异构体混合物, 另外还含有少量二甲苯、萘及胶质物。
重芳烃为可燃性液体,当周围环境达到燃烧条件( 如有火源、助燃剂等) 时即可燃烧。
其蒸气与氧或空气混合后, 可形成爆炸性混合物, 达到爆炸极限后, 在明火、静电等作用下, 可发生爆炸、燃烧。
2.2.2 氢气氢气是易燃易爆的气体, 当它和空气、氧气等混合时, 易形成爆炸性混合气体, 氢气在空气中的爆炸极限为4%~74%( 体积) ; 在氧气中的爆炸极限为4.7%~94.0%( 按体积计) , 但爆炸极限不是一个固定的数值, 它受诸多因素的影响, 如温度、压力、惰性介质、容器材质及能源等都可使其改变, 明火和高温均可引起爆炸, 在化工生产中, 极易达到上述的爆炸条件, 不能认为只要在爆炸极限外使用就是安全的。
2.2.3 催化剂过氧化氢生产所用的催化剂主要有兰尼镍和钯 2 种, 前者在空气中可自燃, 需经常保存在水或溶剂中, 使用时切忌散落在外与空气接触, 更不能漏入到后面工序中, 导致过氧化氢分解。
钯催化剂本身无危险, 但如漏入氧化系统或萃取系统中, 也将导致过氧化氢剧烈分解, 产生严重后果。
3 生产系统中存在的危险因素3.1 氢化工序氢化工序中, 重芳烃是工作液中的主要成分, 在一定条件下可燃烧和爆炸。
而氢气也为易燃易爆气体, 与空气和氧气混合, 在外界条件( 明火、静电等)引发下, 可导致事故发生。
因此, 应绝对避免氧进入塔内, 包括氢气中带入的氧、过氧化氢分解产生的氧或因负压吸入的空气等。
循环进入氢化工序的工作液中过氧化氢含量高, 遇到催化剂后分解出氧气, 并在塔中积累, 与进入塔中的氢气混合, 发生爆炸。
为此, 必须严格控制进塔工作液的过氧化氢含量。
还要使部分氢化液循环回入氢化塔, 使其中氢蒽醌与可能存在的氧气发生反应, 消除其积累。
进入塔中的工作液带有大量的碱, 使催化剂中毒, 失去活性, 且把碱或触媒粉随工作液带到氧化塔和萃取塔, 使其中的过氧化氢分解爆炸。
进入塔中的氢气或氮气含有氧气, 能引起催化剂燃烧或氢氧混合爆炸。
在氢化系统运转前, 必须用氮气彻底置换系统中的空气, 再用氢气置换氮气。
停止运转前, 则先用氮气置换氢气, 然后再停止向塔中送工作液, 确保不会造成因氢气和空气的混合而发生爆炸。
3.2 氧化工序氧化工序中, 由于工作液中的重芳烃、含氧空气和过氧化氢存在于同一个系统里, 潜伏着十分危险的燃烧和爆炸因素。
在氧化塔中, 存在有机溶剂、过氧化氢和助燃的氧气, 如果进入了使过氧化氢分解的杂质( 碱性物质、重金属、催化剂粉末等) , 即可能发生因过氧化氢的剧烈分解而燃烧、爆炸。
由于氢化液本身为弱碱性, 向氧化塔中必须加入磷酸, 使反应介质转呈弱酸性, 并保持过氧化氢稳定。
氧化过程中生成的过氧化氢, 极少量地会被由少量过氧化氢分解产生的少量水萃取出来, 形成氧化残液, 其中积聚了大量的杂质和浓度很高的过氧化氢, 稳定度很低( 一般只有40%~50%) , 这部分残液需定时排放, 如果设计或操作失误, 将可能产生爆炸。
因此, 贮存氧化残液的容器应有安全阀, 保证在其分解时泄掉压力, 最好采用常压操作, 在任何操作条件下, 也不会造成压力的升高。
氢化液进入氧化塔前, 应有很好的过滤设备, 避免催化剂粉末或其他固体杂质( 如氧化铝粉末) 带入。
3.3 萃取和净化工序该工序也是生产过氧化氢的主要工序。
该工序的危险来自外界不同物料的串混和杂质的侵入。
在萃取塔和净化塔中贮存大量过氧化氢, 凡是能促使其分解的杂质( 如碱、金属离子、催化剂粉末、氧化铝粉末等) 都将造成过氧化氢的急剧分解, 使温度和压力升高, 工作液从系统的放空口或设备的薄弱处喷出, 发生燃烧、爆炸事故。
这些杂质均由工作液夹带,经过氢化、氧化和后处理工序再进入萃取塔的。
将碱带入工作液, 主要来自后处理的干燥塔, 因为干燥塔中有大量的碱液, 由于设备结构、操作不当或设计流程不合理, 可能使碱和工作液分不开, 也可能因其他误操作, 将碱直接混到工作液中, 进入萃取塔。
其他杂质也容易带入工作液, 如催化剂和氧化铝粉末, 因其质量不合格, 容易破碎; 过滤器未起到应有的作用, 所选择过滤材质规格不当或因操作失误。
净化塔所出的事故主要由重芳烃引起, 如果重芳烃将铁锈或其他可能使过氧化氢分解的杂质带入, 是非常危险的, 因此, 芳烃经过蒸馏再加入系统,是十分必要的, 这样还可提高氢化效率。
3.4 后处理工序该工序是辅助工序, 其主要任务是利用浓碳酸钾溶液( 一般称为碱液) 将萃余液中夹带的过氧化氢和水分除去, 并使酸性转为碱性, 同时利用活性氧化铝( 也称白土) 再生蒽醌降解物使成为有效蒽醌。
如操作不当就会导致酸, 碱物质串岗互混, 系统酸碱度失调则会对生产造成极为不利的影响, 甚至招来危险。
萃余液中的过氧化氢含量高, 在干燥塔内分解,产生气体, 破坏了塔内的流动状态, 使大量的碱带走, 进入固定床, 使触媒严重中毒。
如处理不当, 碱还可能进入氧化塔和萃取塔, 使大量过氧化氢剧烈分解, 造成更严重后果。
3.5 配制工序本工序的任务是用重芳烃、磷酸三辛酯和2- 乙基蒽醌配制工作液; 用氢氧化钠再生工作液中降解物; 将粗芳烃经过蒸馏提纯后用于配制工作液以及废工作液的清洗、回收等。
由于该工序的工作复杂, 又接触过氧化氢、碱液、工作液和重芳烃等危险物料, 在操作中经常变换流程、温度和压力, 因此也是事故频发工序, 且往往是恶性爆炸。
3.6 浓缩工序本工序是将质量分数较低的过氧化氢, 通过蒸发精馏过程, 提高到50%以上, 以满足用户需要, 并节省大量包装、运输费用。
如前述, 随着过氧化氢质量分数的提高, 爆炸的危险性加大, 尤其有杂质存在或接触有机物时更是如此。
由于过氧化氢浓缩过程也是杂质富集的过程, 这些杂质包括无机盐类和有机物( 如溶剂和蒽醌) , 都能促使过氧化氢分解、燃烧或爆炸, 进料过氧化氢稀品中杂质越多,发生事故的危险性越大。
抑制过氧化氢分解过快的最有效办法之一是加入大量纯水稀释, 这样可降低过氧化氢和杂质浓度, 同时降低温度。
因此, 在设计中必须考虑在紧急状况时补加纯水的措施。
3.7 静电静电是由物体与物体之间的相互接触、摩擦、快速分离而产生的。
相互摩擦的物体绝缘程度越高, 摩擦速度越快, 产生的静电电位越高, 如高电阻物质在管道中流动或喷出时都能产生静电, 氢气和工作液在管道中的快速流动和急速喷出时, 都能产生静电并引起燃烧。
4 安全防范措施4.1 装置建设过程中的安全措施4.1.1 设计方面应充分考虑到在操作不当或失误的情况时, 仍能最大限度地避免发生恶性燃烧、爆炸事故。
例如,可在危险部位增加安全阀、防爆膜、自动放空装置或采用常压敞口设备; 尽量分开2 种不能接触的物料,管道之间尽量少用阀门连接, 以免因错开阀门或内漏发生事故; 萃取塔、精馏塔等存有大量过氧化氢的设备, 在发生剧烈分解、温度骤升时可自动注水等。
同时与工艺结合, 尽量提高生产过程的自动联锁调控水平( 包括建立紧急情况下自动联锁停车装置和保护系统等) 。
要根据生产实践经验和实际需要, 不断修改和完善设计, 提高设计的安全技术水平。
对电气系统、压力容器、易燃、有毒物质, 要严格按照有关国家标准进行设计施工。
在设备设计、车间布置时要运用人机工程的原理, 尽可能使机器和环境适合人的工作, 以方便操作, 防止误操作。
4.1.2 安装方面生产双氧水的设备必须由合适的材料制作(一般为304 或316 不锈钢, 铝或铝镁合金也可使用),而且其内表面必须经过钝化处理。
安装过程中要注意阀门的解体检查, 取出其中的铜垫, 确保阀体、阀芯与物料接触部分均为1Cr18Ni9Ti 不锈钢材质。
由于双氧水的氧化性强, 遇到重金属及其他杂质可剧烈分解, 甚至爆炸, 安装时切勿将螺丝、螺帽、钻头等碳钢类材料掉入设备或管线中, 以免开车发生事故。