一元一次不等式、一元一次方程和一次函数的关系课件

合集下载

一次函数与一元一次方程、一元一次不等式的关系

一次函数与一元一次方程、一元一次不等式的关系

13.3一次函数与一次方程、一次不等式安徽省利辛县巩店学区王店中学丁保付教学目标:1.使学生领会一次函数与一元一次方程、一元一次不等式之间的联系。

2.引导学生经历探究一次函数与一元一次方程、一元一次不等式之间的联系的过程,体会数形结合、分类、类比、归纳等数学思想方法的运用,积累数学活动经验。

通过自主探究、小组合作等活动,锻炼学生的自学能力、归纳概括的能力,增强学生间的合作意识。

3.通过对一次函数、一次方程与一元一次不等式内在关系的探究,引导学生认识事物部分与整体的辩证统一关系,培养学生用联系的观点看待数学问题的意识。

教材分析:函数、方程、不等式都是人们刻画现实世界的重要数学模型。

之前,学生已经从数的角度认识一次方程和一次不等式,从形的角度认识了一次函数和数轴表示不等式的解集。

而本节课通过函数图像动态的变化和点的对应来探究一次函数、一元一次方程、一元一次不等式之间的关系。

通过本节课的探究,学生不仅能加深对函数、方程(组)、不等式的理解,而且能在函数的观点下将三者统一起来,感受数学的统一美,加强知识间横向与纵向的融会贯通。

一次函数、一元一次方程、一元一次不等式之间的关系属于事实性知识;学生在探究三个一次之间关系的过程中,需要在函数运动变化的观点下,经历运用分类、类比,数形结合的思想方法,归纳出解一次方程和不等式的问题,其实是求函数的零点和非零点的问题,这些认知策略能有效地帮助学生积累数学活动经验,掌握学习方法,提高学习效率,因此,这些数学思想方法是元认知知识。

本节课将“三个一次”问题在函数的观点下来集中认识,这种用整体的观点处理问题的方法为今后学习二次函数与一元二次方程的关系,以及高中二次函数、一元二次方程与一元二次不等式的知识做好知识和认知方法上的准备。

教学重点:探究一次函数与一元一次方程、一元一次不等式之间内在关系。

教学难点:对一次函数与一元一次方程、一元一次不等式之间关系的揭示。

学情分析:1.之前,学生已经会解一次方程和一次不等式,从形的角度认识了一次函数的图像和在数轴上表示不等式的解集,学生具备了接受这节课的知识基础。

最新人教版八年级数学下册课件:19.2.3一次函数与方程、不等式

最新人教版八年级数学下册课件:19.2.3一次函数与方程、不等式
第十九章 一次函数
19.2.3一次函数与方程、不等式
1.解方程:2x+20=0
3x+y=8 2.解方程组:
2x-y=2
3.对于方程3x+5y =8,如何用x表示y?
对于函数中的两个变量x和y,我们可以从 哪些方面理解它们的含义呢?函数的表示方法 有哪些?
变量名称 平面直角坐标系 坐标系中的点
函数解析式
一次函数 y =x+5,y =0.5x+15 的函
数值相等,并求出函数值.
气球1 海拔高度:y =x+5
气球2 海拔高度:y =0.5x+15
拓展问题
从形的角度看,二元一次方程组与一次函数有什么 关系?
y 30
二元一次方程 组的解就是相应的 两个一次函数图象 的交点坐标.
25 y =0.5x+15
y
20
y=2x+20
直线y=2x+20与x轴的交点 坐标为(-10,0)
-10 0
x
小练习
2
练习1:根据函数y=2x+20的图象,说出它与x轴 的交点坐标;说出方程2x+20=0的解.
y y=2x+20
X = - 10

20

直线y=2x+20与x轴的交点坐标为
和 方
(-10,0)


-10 0
x





X=3
练 习
探究一
1
一次函数 与一元一 次方程的 关系
求ax+b=c(a≠0)的解
(从“数”的角度)
x为何值时,y=ax+b的值为k

一元一次不等式、一元一次方程和一次函数的关系优质课件PPT

一元一次不等式、一元一次方程和一次函数的关系优质课件PPT
(2)直线y=ax+b上使函数值y>0(x轴上方的 图像)的x的取值范围是ax+b >0的解集;使 函数值y<0(x轴下方的图像)的x的取值范围是 ax+b < 0的解集.
2021/02/01
4
例1 如图一个一次函数的图像,请根据图像回
答问题:
(1)求出直线对应的一次函数的表达式

(2)当x=0时,y= ,当y=0时,x= ;
(3)、能否用不等式求解问题(2)?
2021/02/01
2
1、一元一次方程于一元一次不等式的关系: 当 函数值确定 时,求 与之对应的自变量 的值,就是解一元一次方程。从图象上看,这 相当于已知 横坐标 ,确定 纵坐标 的值。
2021/02/01
3
2、一次函数与一元一次不等式的关系: (1)一元一次不等式ax+b>0或ax+b<0(a≠0) 是一次函数y=ax+b(a≠0) 的函数值 y 不等于0 的情形.
感谢您的观看!本教学内容具有更强的时代性和丰富性,更适合学习需要和特点。为了 方便学习和使用,本文档的下载后可以随意修改,调整和打印。欢迎下载!
2021/02/01
11
(1)x取何值时,2x-4>0? (2)x取何值时,-2x+8>0? (3)x取何值时,2x-4>0与-2x+8>0同时成立? (4)你能求出函数y1 = 2 x – 4与y2 = - 2 x + 8的
图象与X轴所围成的三角形的面积吗?
2021/02/01
10
Thank you
感谢聆听 批评指导
汇报人:XXX 汇报日期:20XX年XX月XX日

14.3.1 一次函数与一元一次方程 课件

14.3.1 一次函数与一元一次方程 课件
问题①:解方程2x+20=0
x = -10
问题②:当x为何值时,函数y=2x+20的值0?
即y=0时,求对应的自变量x的值 只需解方程2x+20=0 当x =-10时,函数y=2x+20的值0.
思考:问题① ②有何关系? 问题①与问题②可以看作是同一个问题两 种形式.
问题①:解方程2x+20=0 问题②:当x为何值时,函数y=2x+20的值0? 问题③:画出函数y=2x+20的图象,并确定 它与x轴的交点坐标; y 直线y=2x+20与x轴的 交点坐标为(-10,0)
求直线y=ax+b与 x轴 的交点的 横 坐标 .
图象的角度
练习 1. 以下的一元一次方程与一次函数
问题是同一问题
序号
1
一元一次方程问题
一次函数问题 当x为何值时, y=3x-2的值为0 当x为何值时, y=8x+3的值为0 当x为何值时, y=-7x+2的值为0 当x为何值时, y=-5x-5的值为0
一、今天学习了什么? 一次函数和一元一次方程的关系 解方程ax+b=0 当一次函数y=ax+b的值为 0 时, 求相应的自变量x的值 .
y
y=ax+b
O
x
求直线y=ax+b与 x 轴的交点的 横 坐标 .
二、有什么疑问的地方?
小结
三、有什么和老师、 同学探讨的吗?
解方程 3x-2=0
2
3
解方程 8x+3=0
解方程 -7x+2=0
4
解方程 3x-2=8x+3
2.根据图象你能写出哪些一元一次方程的解?

第3节 一次函数与方程(组)及一元一次不等式

第3节 一次函数与方程(组)及一元一次不等式

第三节一次函数与方程(组)及一元一次不等式二、核心纲要直线:y = kx+b(k≠0)与x轴交点的横坐标,就是一元一次方程kx+b = 0 (k≠0)的解.求直线y = kx+b与x轴交点时,可令y = 0,得到方程k + B = 0,解方程得x=bk-,直线y=kx+b交x轴于点(bk-,0),bk-就是直线y =kx+b与x轴交点的横坐标,可令y轴交点的横坐标.注:(1)从“数”看:kx+b=0(k≠0)的解⇔在一次函数y=kx+b(k≠0)中,令y=0时,x的值.(2)从“形”看:kx+b=0(k≠0)的解⇔一次函数y=kx+b(k≠0)的图像与x轴交点的横坐标.2.—次函数与一元一次不等式的关系(1) 任何一次一次不等式都可以转化为ax+b>0或ax + b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.(2) 函数图像的位置决定两个函数值的大小关系①函数y1的图像在函数y2的图像的上方⇔y1>y2,如下图所示;②函数y1的图像在函数y2的下方⇔y1<y2,如下图所示;③特别说明:函数y 的图像在x 轴上方⇔y >0;函数y 的图像在X 轴下方y <0.3.一次函数与二元一次方程(组)的关系(1)一次函数的解析式:y =kx +b (k ≠0)本身就是一个二元一次方程,直线y =kx +b (k ≠0)上有无数个点,每个点的横纵坐标都满足二元一次方程y =kx +b (k ≠0),因此二元一次方程的解也就有无数个. (2) —次函数:y = kx +b (k ≠0)① 从“数”看,它是一个二元一次方程; ② 从“形”看,它是一条直线。

4.两条直线的位置关系与二元一次方程组的解 (1) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有唯一的解⇔直线y =k 1x +b 1不平行于直线y =k 2x +b 2⇔k 1≠k 2.(2) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩无解⇔直线y =k 1x +b 1平行于直线y =k 2x +b 2⇔k 1=k 2,b 1≠b 2. (3) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有无数多个解⇔直线y =k 1x +b 1与y =k 2x +b 2重合⇔k 1=k 2,b 1=b 2.5.比较两个函数值大小的方法 (1) 画图像,求交点.(2) 过交点作平行于y 轴的直线. (3) 谁高谁大.6.数学思想数形结合和转化思想.本节重点讲解:一个定理,一个证明,两个思想.三、全能突破1.若直线y =(m -3)x +6与x 轴交于点(3,0),则m 的值为( ) A. 1 B. 2 C. 3 D. 42.如图19-3-1所示,一次函数y =kx +b 的图像经过A 、B 两点,则kx +b ≥0的解集是( ) A. x >0 B. x ≥—3 C. x >2 D. -3≤x ≤23.已知ax +b =0的解是2,则直线y =ax +b 与x 轴的交点坐标是______。

第1讲-用一次函数看方程、不等式

第1讲-用一次函数看方程、不等式

y2 1 1 O -2 -1x第1讲-用一次函数看方程、不等式序号知识点典型练习1从函数的角度看解一元一次方程:以x 为未知数的一元一次方程可以变形为ax +b =0(a ≠0)的形式,解一元一次方程相当于在一次函数y =ax +b 的函数值为0时,求自变量x 的值.1.若关于x 的方程kx +b =0的解是x =2,则一次函数y =kx +b 与x 轴的交点坐标是 .2从函数的角度看解一元一次不等式:以x 为未知数的一元一次不等式可以变形为ax +b >0或ax +b <0(a ≠0)的形式,解一元一次不等式相当于在一次函数y =ax+b 的值大于0或小于0时,求自变量x 的取值范围.一般地,已知函数值范围求自变量x 的范围或者已知自变量范围求函数值范围时,可以通过观察图象得到(数形结合). 2.如图,一次函数y =kx +b 的图象与x 轴交于点A (-1,0)则关于x 的不等式kx +b >0的解集是 .3从函数的角度看解二元一次方程组: 由含有未知数x 和y 的两个二元一次方程组成的二元一次方程组对应两个一次函数,也对应两条直线.从“数”的角度看,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,相当于确定两条相应的直线的交点坐标. 3.已知直线y =k 1x +b 1与y =k 2x +b 2的交点坐标为(1,4),则方程组⎩⎨⎧y =k 1x +b 1,y =k 2x +b 2的解为 .4.(1)直线y =x +3与x 轴的交点坐标 ,所以相应的方程x +3=0的解是 .(2)如图,直线y =kx +b :①关于x 的方程kx +b =0的解是 , ②关于x 的不等式kx +b <0的解集是 ; ③当x <0时,函数值y 的取值范围是 .5.若关于x 的方程kx +b =0的解是x =-4,则一次函数y =kx +b 的图象与x 轴的交点坐标为 .-21O yx-3Oxy -6 y 1=kx yy 2=ax+bx -2O -4 P6.已知一次函数y =kx +b 的图象,如图所示,当x <0时,y 的取值范围是( ).A .y >0B .y <0C .-2<y <0D .y <-27.如图,已知一次函数图象y =-2x -6,利用图象回答: (1)不等式-2x -6>0解集是 ,不等式-2x -6<0解集是 ;(2)函数图象与坐标轴围成的三角形的面积为 ; (3)当y =-4时,则x = ,当y =2时,则x = ;(4)如果y 的取值范围-4<y ≤2,则x 的取值范围 ;(5)如果x 的取值范围-3≤x ≤3,则y 的最大值是 ,最小值是 ; (6)若直线y =3x +4和直线y =-2x -6交于点A ,则点A 的坐标 .8.如图所示,已知直线y 2=ax +b 和直线y 1=kx 的图象交于点P ,利用图象回答:(1)关于二元一次方程组⎩⎨⎧y =ax+b ,y =kx的解是 ,则两直线的交点坐标是 ;(2)当y 2<y 1时,则x 的取值范围是 ; (3)当ax +b ≥kx 时,则x 的取值范围是 ; (4)当ax ≤kx -b 时,则x 的取值范围是 .9.(15海珠期末)直线y =x +1与直线y =-2x +a 的交点在第一象限,则a 的取值可以是( ). A .2B .1C .0D .-110.(15一中期末)如图,已知函数y1=3x+b和y2=ax-3的图象交于点P(-2,-5),则不等式3x+b>ax-3的解集为.11.(13太原期末改编)如图,直线l1:y1=x+1与直线l2:y2=mx+n相交于点P(1,b),直线y2与x轴交于点A(4,0).(1)求b的值并直接写出关于x,y的方程组1y xy mx n=+⎧⎨=+⎩的解;(2)求直线l2的表达式;(3)判断直线l3:y3=nx+m是否也经过点P?请说明理由.(4)若y3>y2>0,则x的取值范围是________________.12.已知一次函数y =kx+b的图象,如图所示,当y<0时,x的取值范围是().A.x>0B.x<0C.0<x<1D.x<113.(11广州)当实数x的取值使得x-2有意义时,函数y=4x+1中y的取值范围是().A.y≥-7B.y≥9 C.y>9D.y≤9 14.(15海珠期末)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是().A.B.C.D.15.如图,1l反映了某公司的销售收入与销售量的关系,2l反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量().A.小于3t B.大于3t C.小于4t D.大于4t第14题第15题16.(16天河期末)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<4时,y1<y2;④b<0.其中正确的结论的个是().A.4个B.3个C.2个D.1个-2yO1x17.(16南充)小朱和爸爸从家步行去公园,爸爸先出发一直匀速前行,小朱后出发.家到公园的距离为2500m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.(1)直接写出小朱所走路程s与时间t的函数关系式;(2)小朱出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小朱希望比爸爸早20min到达公园,则小朱在步行过程中停留的时间需作怎样的调整?18.(15衢州)高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,小卓卓和小越越相约到杭州市的某游乐园游玩,小卓卓乘私家车从衢州出发1小时后,小越越乘坐高铁从衢州出发,先到杭州火车站,然后再转出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当小越越达到杭州火车东站时,小卓卓距离游乐园还有多少千米?(3)若小卓卓要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?y (千米)游乐园t(小时)19.(14海珠期末)今年龙舟赛甲乙两队同时出发,其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在出发2.5小时到达终点.(假设乙队速度不变)(1)写出比赛全程多少千米?谁先到达终点?乙队花多少时间到达终点? (2)求乙队何时追上甲队?(3)求在比赛过程中,甲乙两队何时相距最远?20.(1)(12恩施州)如图,直线y =kx +b 经过A (3,1)和B (6,0)两点,则不等式组0<kx +b<13x 的解集为 .(1) (2)(2)如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式组12x >kx +b >-2的解集为 .21.(15广雅期末)若直线y =-2x +m 与直线y =2x -1的交点在第四象限,则m 的取值范围是( ). A .m >-1 B .m <1C .-1<m <1D .-1≤m ≤1yA 2 1 xB 0 -1 -2 -3 -2-1 1 2 322.依照题意,解答下列问题:(1)如图①,已知直线y =2x +4与x 轴,y 轴分别交于A ,B 两点,请在图①中画出直线y =-12x +4,并探究两函数的图象与x 轴围成的三角形的特点;(2)如图②,已知点M 和点N 的坐标分别为(3,4)和(-2,-1),问在y 轴上是否存在一点P ,使△MNP 是以点M 或点N 为直角顶点的直角三角形?若存在,请求出P 的坐标;若不存在,请说明理由.y xB AO(图①))yx MN O(图②))第一讲-参考答案1.(2,0) 2.x >-13.⎩⎨⎧x =1,y =44.(1)(-3,0),x =-3; (2)①x =-2;②x <-2;③y <1. 5.(-4,0)6.D 7.(1)x <-3,x >-3; (2)9;(3)-1,-4; (4)-4≤x <-1;(5)0,-12;(6)(-2,-2).8.(1)⎩⎨⎧x =-4,y =-2,(-4,-2);(2)x >-4;(3)x ≤-4;(4)x ≥-4.9.A10.x >-211.(1)b =2,12x y =⎧⎨=⎩; (2)2833y x =-+;(3)由(2)可知m =23-,n =83,∴ y =83x -23,当x =1时,y =2.∴直线l 3:y =nx +m 也经过点P . (4)1<x <4.12.D 13.B 14.A 15.D 16.D17.解:(1)s =50(020)1000(2030)50500(3060)t t t t t ⎧⎪⎨⎪-⎩≤≤<≤<≤;(2)设小朱的爸爸所走的路程s 与步行时间t 的函数关系式为:s =kt +b ,则251000250k b b +=⎧⎨=⎩,解得30250k b =⎧⎨=⎩,则小朱的爸爸所走的路程与步行时间的关系式为:s =30t +250, 当50t -500=30t +250,即t =37.5min 时,小朱与爸爸第三次相遇; (3)30t +250=2500,解得,t =75,则小朱的爸爸到达公园需要75min , ∵小朱到达公园需要的时间是60min ,∴小朱希望比爸爸早20min 到达公园,则小朱在步行过程中停留的时间需减少5min .18.解:(1)v =2402-1=240(km/h ).答:高铁的平均速度是每小时240千米; (2)设乘坐高铁时路程与时间的关系式为y =kt +b ,当t =1时,y =0,当t =2时,y =240,得:⎩⎨⎧0=k +b 240=2k +b ,解得:⎩⎨⎧k =240b =-240,故把t =1.5代入y =240t -240,得y =120, 设乘坐私家车时路程与时间的关系式为y =at , 当t =1.5,y =120,得a =80,∴y =80t , 当t =2,y =160,216-160=56(千米), ∴小卓卓距离游乐园还有56千米; (3)把y =216代入y =80t ,得t =2.7,2.7-1860=2.4(小时),216 2.4=90(千米/时).∴小卓卓要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.19.解:(1)35千米;乙;3516小时; (2)对于乙队,x =1时,y =16,所以y =16x ,对于甲队,出发1小时后,设y 与x 关系为y =kx +b ,把x =1,y =20和x =2.5,y =35代入,得⎩⎨⎧20=k +b35=2.5k +b,则y =10x +10.联立方程组,⎩⎨⎧y =16x y =10x +10,得x =53,即:出发1小时40分钟后,乙队追上甲队; (3)1小时之内,两队相距最远距离是4千米,即当x =3516时,y 甲=10×3516+10=31.875,y 乙=35,y 甲-y 乙=35-31.875=3.125; 当x =1时,y 甲-y 乙=20-16=4;∵3.125<4,所以比赛过程中,甲、乙两队在出发后1小时相距最远.20.(1)3<x <6;(2)-1<x <2. 21.C22.(1)图略;用勾股定理的逆定理可以证明两函数与x 轴围成的三角形是一个直角三角形; (2)设P (0,y ),①当PM为斜边时,PN2+MN2=PM2,即(-2)2+(-1-y)2+25+25=32+(4-y)2,解得:y=-3,即P为(0,-3);②当PN为斜边时,PM2+MN2=PN2,即32+(4-y)2+25+25=(-2)2+(-1-y)2,解得:y=7,即P为(0,7);综上所述,在y轴上存在一点P,使△MNP是直角三角形,P为(0,-3)或(0,7).。

一次函数与一元一次方程、不等式

一次函数与一元一次方程、不等式
5、一个人在科学探索的道路上,走过弯 路,犯 过错误 ,并不 是坏事 ,更不 是什么 耻辱, 要在实 践中勇 于承认 和改正 错误。 ——爱 因斯坦 6、瓜是长大在营养肥料里的最甜,天才 是长在 恶性土 壤中的 最好。 ——培 根 7、发光并非太阳的专利,你也可以发光 。
8、人们常用“心有余而力不足”来为自 己不愿 努力而 开脱, 其实, 世上无 难事, 只怕有 心人, 积极的 思想几 乎能够 战胜世 间的一 切障碍 。 9、如果你希望成功,当以恒心为良友, 以经验 为参谋 ,以当 心为兄 弟,以 希望为 哨兵。 ——爱 迪生
1 知识小结
任何一元一次方程都可以转化为ax+b=0(a,b为常 数,a≠0)的形式,所以解一元一次方程可以转化为当某 个一次函数的函数值为0时,求相应的自变量的值.从图 象上看,相当于已知直线y=ax+b,确定它与x轴的交点 的横坐标.即“形”题用“数”解,“数”题用“形”解, 充分体现了数形结合的思想.
1 【2016·桂林】如图,直线y=ax+b过点A(0,2) 和点B(-3,0),则方程ax+b=0的解是( D ) A.x=2 B.x=0 C.x=-1 D.x=-3
2 【中考·合肥】已知方程 1 x+b=0的解是x=
2 -2,下列可能为直线y=
1 2
x+b的图象的是
( C)
3 如图,若一次函数y=-2x+b的图象交y轴于点
因为任何一个以x为未知数的一 元一次方程都可以变形为ax+b=0(a≠0)的形式,所以解 一元一次方程相当于在某个一次函数y=ax+b的函数值为 0时,求自变量x的值.
一次函数与一元一次方程的联系: 任何一个以x为未知数的一元一次方程都可以变
形为ax+b=0(a≠0,a,b为常数)的形式,所以解一 元一次方程可以转化为:求一次函数y=ax+b(a≠0, a,b为常数)的函数值为0时,自变量x的取值;反映 在图象上,就是直线y=ax+b与x轴的交点的横坐标.

一次函数与一元一次方程精选教学PPT课件

一次函数与一元一次方程精选教学PPT课件

肯定不是直线 y=ax+b的是( B )
y
y
x -2 0
-2
x
0
-2
(A)
y
-2 0
x
(B)
y
-2
0
x
(C)
(D)
一个物体现在的速度是5m/s,其速度 每秒增加2m/s,再过几分秒速度为17m/s?
解法1:设再过x秒物体的速度为17 m/s.
由题意得 2x+5=17
解得
x= 6
答:再过 6 秒物体的速度为17m/s.
小结
没有人能忽略这样一张脸孔:泪眼纷纷,呜咽声声,“求求,求求你们。”黑夜在颤抖,墨镜里,必藏着一双红肿、深陷、因其绝望而绝美的眼睛。 她叫苏珊,她说:“这原本是一个温良秋夜,她开车带着3岁和14个月大的两个孩子,行驶在静谧的公路上,忽然一个歹徒窜上车,持枪威逼她下车,带着她的孩子们,扬长而去。
而她,只能无助地站在路边,对瞬间消失的车子挥手,喊道,“再见,宝贝们,妈妈永远爱你们。”而黑暗冰寒无尽。 全美国都为她哭泣祈祷,却有一个女子投书电视台了:苏珊在说谎。
生死教会她锐利果敢。所以她说,那一刻,没有一个母亲,会如苏珊般高贵沉着。 九天九夜的追捕,孩子们找到了。不在暗夜不在森林,而沉在冰冷的湖底。苏珊,终于向警方自首,的确是她,因为一点情欲的贪念,亲手杀了自己的孩子。
1994年的事了。偶尔在一本书里,读到前因后果,和那陌生女子的信。我低一低头,其实并没有泪。我想我懂。 我尚不及为人母,也不曾遭逢死亡,我却曾站在高处林下,看着爱人轻快远去,仿佛有鹳雀在他鞋底翻飞,他是急着赶另一个女子的约会吧?真相凄厉地直逼眼前。不是不知道,在泪落之前应该说再见,我却做不到。因为我爱他。
敞开心胸,便会云蒸霞蔚,快乐将永远伴随着你!

6.6 一次函数、一元一次方程和一元一次不等式 苏科版数学八年级上册课件(共20张PPT)

6.6 一次函数、一元一次方程和一元一次不等式 苏科版数学八年级上册课件(共20张PPT)

示例:如图6.6-2 所示,
方程k1x+b1=k2x+b2 的解为x=a; 不等式k1x+b1>k2x+b2 的解集为x > a; 不等式k1x+b1<k2x+b2 的解集为x < a.
感悟新知
知2-讲
特别提醒 利用图像解法解一元一次不等式的一般步骤: 1. 将不等式转化为kx+b > 0 或kx+b < 0(k ≠ 0)的形式; 2. 画出函数图像,并确定函数图像与x 轴的交点坐标; 3. 根据函数图像确定对应不等式的解集.
y=kx+b 当y=4 时对应的自变量的值.
知1-练
感悟新知
解:把点(4,0)和(3,2)的坐标分别代入y=kx+b,
得 4k+b=0,解得 k=-2,
3k+b=2,
b=8, 即y= - 2x+8.
当y=4 时,- 2x+8=4,解得x=2.
∴方程kx+b=4 的解为x=2.
知1-练
答案:B
感悟新知
感悟新知
知2-练
例 3 [三模·杭州] 如图6.6-3,已知函数y1=3x+b 和y2=ax
-3的图像交于点P(- 2, - 5),则根据图像可得不
等式3x+b > ax-3 的解集是( )
A. x > -2
B. x < -2
C. -2 < x < 0
D. x > 0
感悟新知
知2-练
解题秘方:求不等式3x+b >ax-3 的解集,就是看 当x 在什么范围时, 函数y1=3x+b 的图像在函 数y2=ax - 3 的图像上面.
答案:A

一元一次不等式、一元一次方程与一次函数的关系

一元一次不等式、一元一次方程与一次函数的关系

苏科版数学八年级上册
一元一次不等式与一元一次方程、一次函数
例2:已知:函数y1=2x-4与y2=-3x+1 的图象分别为直线l1、l2
(1)设l1、l2与x轴分别相交于A、B,l1与 l2相交于P,求S△ABP
(2)当x取何值时,y1>y2
苏科版数学八年级上册
一元一次不等式与一元一次方程、一次函数
练习: 1.若y=5-10x,则当x 2.函数y= -x+2 (1)X 时,y =0 (3)X 时,y ≥0
时,y的值大于0
(2)x (4)x
时, y <0 时,y >3
3.已知y1=-x-1,y2=4x+2.当x取何值时,y1 < y2?
苏科版数学八年级上册
一元一次不等式与一元一次方程、一次函数
4
A
3 2
1
-1 O -1
-2 -3 -4
1
2
3
x
苏科版数学八年级上册
一元一次不等式与一元一次方程、一次函数
例1 某人点燃一根长度为25厘米的蜡烛,已知
蜡烛每小时缩短5厘米,设X小时后蜡烛剩下的长 度为y厘米 (1)求y与X之间的函数关系式 (2)几小时后,蜡烛的长度不足10厘米? 解:(1)根据题意,得: y=25-5x 即y与x之间的函数关系式为y=25-5x (2)当y<10时, 25-5x <10 解这个不等式得:x>3 所以3小时后蜡烛的长度不足10厘米. 你能用其他方法解决这个问题吗?
1、X取何值时,函数y=-2(X+1)+4的值是正数? 负数?非负数? 2、声音在空气中传播的速度是y米/秒(简称 音速)与气温X满足关系式:y=0.6X+331. 求:(1)音速为340米/秒时的气温. (2)音速超过340米/秒时的气温范围. 3、如图,若y1≥y2,则x的取值范围是( )

《一元一次不等式与一元一次方程、一次函数》课件(苏科版八年级下)

《一元一次不等式与一元一次方程、一次函数》课件(苏科版八年级下)

1. 下列式子中,哪些是不等式?哪些不是?(1) –2 < 0 ; (2) 2a > 3-a ; (3)3x +5; (4)2(-1)a ≥0;(5) s = vt ; (6)223x x +≠; (7) 3 > 5; (8) 5x ≤4x -1.2. 用“<,>,≤,≥”填空:(1) -0.3___0; (2) 5____8-; (3) 4)6(3___)5(-⨯-⨯;(4)-65___43-; (5) x 20 (6) .0___12+x(7) - x 2 0 (8)x 2 -1 (9)- x 2 23. 用不等式表示:(打星号的可不做,目的是为了现在所学的函数所用)(1)x 小于-6 (2)x +1大于0 (3)x 大于或等于5(4)x 小于或等于-8 (5)x 不大于6 (6)x 不小于-2(7)x 是正数 (8)x 是负数 (9)x 是非负数(10) x 与5的和大于2 (11)x 与a 的差小于2 (12)x 与y 的差是负数(13)x 与y 的和是非负数 (14)x 的2倍与5的和是正数(15)x 与3的差是负数 (16)x 的3倍与y 的2倍的和是非负数*(17)x 大于2且小于5 *(18)x 大于-5且小于-4*(19)x 不小于3且不大于6 *(20)x 不小于-2且不大于0*(21) a 是大于2且不大于9的数 *(22)b 是不小于3且小于5的数(三)用不等式表示下列数量之间的关系(将文字语言转化为不等式):1. 某种客车坐有x 人,它的最大载客量为40人.2. 小明每天跑步x 分钟,学校规定每位学生每天跑步时间不少于30分钟.3. 某校男子跳高记录是1.75 米,小强在今年的运动会上打破了校纪录.4. 我班一位学生的身高为x 米,我班学生最高是1.70米.5. 快车火车时速不超过150 km/h ,某快车的速度为x km/h .6. 某品牌奶粉规定每千克奶粉中蛋白质的含量x 不小于2.9 克.7. 冲藕粉时规定水温x 不低于95℃.8. 选身高高于1.75米的学生组成学生跑步方阵,小明被选上了,他的身高为x 米.9. 如图,天平右盘中每个砝码的重量都是5g ,写出图中显示出某药品A 重量x 的范围.(第9题)10. 矩形周长20cm ,宽x cm ,写出宽x 的取值范围.(四)将不等式转化为文字语言:1. 徐州某天某一时刻的气温为t C ︒,且-2≤t ≤6,则这一天的最高气温为_____C ︒,最低气温为________C ︒.2. 等腰三角形的周长为40 cm ,底长为x cm ,则0<x <20,表示底长要.3. 等腰三角形的周长为40 cm ,腰长为x cm ,则10<x <20,表示腰长要.五、当堂检测1. 用不等式表示:(1)a 与b 的和大于3: ;(2)x 的平方是非负数: ;(3)a 不大于b : ; (4)x 的3倍与-2的差是负数: ;(5)m 是大于-1且不大于2的数:____________________.2. 用不等式表示下列数量之间的关系:(1) 小明某天骑车上学花了x 分钟,他每天骑车上学的时间不少于25分钟:(2) 亮亮每天做作业的时间在2 h 以上,昨天他做作业花了t h :(3) 设有500个座位的礼堂坐了y 人:(4)长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: .(5)某商品原来的价格为6元/件,涨价x %后价格不高于9元/件: .3. 如图,天平右盘中每个砝码的重量都是1g ,图中显示出某药品A 重量的范围是( )A .大于2gB .小于3gC .大于2g 且小于3g ;D .大于2g 或小于3g(一)认识不等式的解、不等式的解集1. 能使不等式成立的未知数的值叫做不等式的解集.x = -1, 0, 1, 2 都是不等式x -3>0的解,不等式x -3>0的解有多少个?2. 一个含有未知数的不等式的解的全体叫做这个不等式的解集.(1)不等式x -1>0解集是 ,不等式x -4<0的解集是 .(2)x <0时,不等式x < 3 一定成立.能说不等式x < 3的解集是x <0吗?为什么?3. 求不等式解集的过程叫做解不等式.(二)将不等式的解集在数轴上表示出来:x - 4≥0的解集是x ≤4.x -3>0的解集是x >3.x -1≤0的解集是x ≤1.x +2>0的解集是x >-2.5. 在数轴上表示下列不等式的解集:(第3题) -2-1321(1)x >2; (2)x ≤2; (3)x <1.5; (4)x ≥- 2.5.(1) (2)(3) (4)(三) 写出下列各数轴所表示的不等式的解集:(1) (2)注意:数轴上的空心圆圈与实心圆点的意义有什么不同?不等式的解集4x <与4x ≤在数轴上表示时,有什么不同?要注意什么?(四)有条件限制的不等式的解1. 已知x 是整数,x =-2,-3,0,1,2,3,4是不等式x ≤4的解,其中正整数的解有4个,负整数的解有2个,非负整数解有5个.2. 已知a 是整数,请写出不等式3a ≤的6个解: ,其中,正整数的解有 个,负整数解有 个,非负整数解有 个.3. 在数轴上表示不等式30x -<的解集,并写出这个不等式的正整数解.4. 在数轴上表示不等式x +3>0的解集,并写出这个不等式的负整数解.5. 在数轴上表示不等式x +4≥0的解集,并写出这个不等式的非负整数解.五、当堂检测1. 在数轴上表示下列不等式的解集:(1)1x <;(2)3x ≤-;(3)1x >-;(4)2x ≥-.解:(1) (2)(3) (4)2. 写出下列各数轴所表示的不等式的解集:(1) (2)1 1 1 1111 1 0 0 0 0 0 0 0 03. 写出不等式30x +≥的负整数解.4. 写出不等式x -5<0的正整数解.5. 请你根据非负数的意义和不等式的解集的意义,讨论以下问题:(1)不等式x 2 > 0 的解集是 ;不等式| x | > 0 的解集是 ;(2)不等式20x ≥的解集是 ;不等式| x | ≥ 0 的解集是 .(二)不等式性质的运用1. 已知a >b ,用不等号填空:(1)a +2 b +2; (2)a -2 b -2; (3)2a 2b ; (4)-2a -2b ;(5)-a -b ;(6)3+2a 3+2b ;(7)3a -1 3b -1;(8)1-2a 1-2b .(9)1-a 1-b ;(10)1+a 1+b ; (11)a -1 b -1;(12)1-a 1-b .2. 将下列各式化成x > a 或 x < a 的形式,并说明理由.(1)x – 2 < – 5. 解:两边同加2,得x < – 3(不等式两边都加上同一个数,不等号的方向不变).(2)112x >-. 解:(3) 26x -> 解:(4) 1124x -<. 解:(5)1124x +<-. 解:(6)124x >-. 解:(7) 35x -> 解:(8) 1144x -<. 解:(9)112x +<-. 解:3. 小明步行到6km 远的学校,从早晨6点出发,要在8点前到达,如果他每小时走x km ,可以得到怎样的不等式?根据这个不等式,判断x 的取值范围.五、当堂检测1.用“>”或“<”填空:(1)若a b >,则a c + b c +; (2)若22m n +<+,则4m - 4n -;(3)若1b >-,则1b + 0; (4)若a b <,则3a - 3b -;(5)若44ab>,则a b ; (6)若a b <,则21a -+ 21b -+.2.下列不等式变形正确的是( )A .由412x ->,得41x >B .由53x >,得53x >C .由02y>,得2y > D .由24x -<,得2x >-3. 请在每步的后面写出变形的根据:已知534x x >+,54344x x x x ->+-,( )3x > . ( 合并同类项 )4. 我班有50个座位,现已有46名学生,这学期要转入x 名学生,可以得到怎样的不等式,并判断x 的取值范围.5. 一辆12个座位的汽车上已有4名乘客,到一个站后又上来x 个人,车上仍有空位,可以得到怎样的不等式?并判断x 的取值范围.4. 解下列不等式,并将不等式的解集在数轴上表示出来.(1)14-2x >6 (2) 2+2x >65. 解下列不等式:(1) 5-x <1 (2) 4x ≤2x +3(3) 1--1>22x (4) 1--2<13x6. 下面是解不等式的部分过程,如果错,说明错误原因并改正,如果对,说明理由.(1) 由2x >-4,得x <-2.(2) 由1683224x x ->-,得2143x x ->-.(3) 由-2x >4,得x <-2.7. 求不等式4125x x-<+的正整数解.8. x取何值时,代数式32x+的值不大于代数式43x+的值.五、当堂检测1. 解下列一元一次不等式,并将解集在数轴上表示出来.:(1)236x+>;(2)734 22x x->-.2. x取何值时,代数式32x+的值不小于代数式43x+的值.3. 求不等式235x-<的最大整数解.解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,不等式两边同除以未知数的系数.1. 解不等式:34212-63x xx-+≤.解去分母,3412-2(21)x x x-≤+. 去括号,3-4x≤12x-4x-2.移项,-4x-12x+4x≤-2-3.合并同类项,-12x≤-5.两边同除以-12,512 x≥.原不等式的解集是512x≥.2. 解下列不等式,并把它的解集在数轴上表示出来:(1) 4 -2(x -3)≥4(x +1) (2)+421-23x x +≥(3) -2>4-32xx (4)214-432x x --+≤体会: 解不等式的过程中,你有什么错误?要注意什么?3. 下面是解一元一次不等式的部分步骤,如果正确,说明理由;如果错误,找出错误原因,并改正.(1)由2x >-2,得x <-1.(2)由-2x >-2,得x >1.(3)由8x +24>32x -16,得 x +3>4x -2.(4)由531132x x +--<,得2(5)3(31)1x x +--<.(5) 由531132x x +--<,得25916x x ++-<.4. 下列不等式的解法是否有错.解不等式:3421263xx x -+≤-.解 去分母,得34122(21)x x x -≤-+ .去括号,得341242x x x -≤--.合并同类项,得3482x x -≤-.移项,得3248x x +≤+.合并同类项,得512x ≤,即125x ≥.系数化为1,得512x ≥.五、当堂检测1. 与不等式2533x-≥-的解集相同的一个不等式是 ( )A .259x -≤B .259x -≤-C .529x -≤D .529x -≤-2. 解不等式:21511 32x x-+-≤.3. 求不等式334642x x--<-, 并将解集在数轴上表示出来,再求出这个不等式的最小整数解.4.a取什么值时,解方程32x a-=得到的x的值.(1)是正数;(2)是负数.解:由方程32x a-=,得23ax+ =.(1) 当x 是正数时,23a+>, 解得a > - 2.(2)(自己做)。

人教版初中八年级数学下册第19章《一次函数》复习ppt课件

人教版初中八年级数学下册第19章《一次函数》复习ppt课件

(1)李华出发时与张强相距 千米. (2)李华行驶了一段路后,自行车发生1故0 障,进行修理,
所用的时间是 小时.
(3)李华出发后 小时与张强相遇.
1
C
(4)若李华的自行车不发3生故障,保持出发时的速度前
进, 小时与张强相遇,相遇点离李华的出发点
千米.在图中表示出这个相遇1 点C.
15
探究1
重庆市2013年7月1日开始实行电价阶梯收 y
____.
4
5.直线l1: y1 k与1x直 线b l2:
所示,则关于x的不等式
的解集为 x<,-方2 程组

x 2.
y3
在y同2 一平k面2x直角坐标系中,图象如图 k2xk1xb

的kk 12解x b
y1, y2
如图,l1、l2分别表示张强步行与李华骑车在同一路 上行驶的路程s与时间t的关系.
(2)性质:当k>0时,直线y= kx经过第一,三象限,从左向右上升, 即随着x的增大y也增大;当k<0时,直线y= kx经过第二,四象限,从 左向右下降,即随着 x的增大y反而减小.
5.一次函数的图象及性质. (1)一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的 __________.
第十九章 一次函数
本章知识结构图
某些现实问题中相互联系 建立数学模型 的变量之间
函数
应用
一次函数 y=kx+b(k≠0)
再认识
一元一次方程 一元一次不等式 二元一次方程组
图象:一条直线
性质: k>0,y随x的增大而增大; k<0,y随x的增大而减小.
1. 一次函数的概念.

一次函数与一元一次方程、不等式

一次函数与一元一次方程、不等式

(1)X取何值时,2x-5=0
y=0
分析:
1 2 3 4 5
x
(2.5 , 0)

x=2.5, 2x-5=0
观察图象回答下列问题: (2)X取哪些值时,2x-5>0 分析: ∴ x>2.5,
y
4 3 2 1 0 -2 -1 -1 -2 -3 -4 -5
y=2x-5
y>0
2x-5>0
1 2 3 4 5
y =x+3
−3
O
x
解一元一次方程ax+b=0 (a ,b为常数)可以 转化为:当某个一次函数的值为0时,求相应的 自变量的值.从图象上看,这相当于已知直线 y=ax+b,确定它与x轴交点的横坐标的值.
观察图象回答下列问题:
y
4 3 2 1 0 -2 -1 -1 -2 -3 -4 -5
y=2x-5
4 3 2 1 0 -2 -1 -1
y=2x-5
1 2 3 4 5
x
分析: ∴ x>4,
y=3 2x-5>3
-2 -3 -4 -5
名校练习
课堂反思 本节课你学会了什么? 1. 一元一次不等式与一次函数的关系. 2. 运用一次函数图象求解不等式.
(3)从函数图象上看,直线y=2x+20与x轴交 y 点的横坐标是 10
20
10
O
y 2 x 20
x
说明了方程2x+20=0的解是直线 y=2x+20与x轴交点的横坐标。
从“形”上看
由上面两个问题的关系,能进一步得到
“解方程ax+b=0(a,b为常数, a≠0)”与“求自变 量 x 为何值时,一次函数y=ax+b的值为0”有什么 关系?

一次函数与一元一次方程、一元一次不等式PPT

一次函数与一元一次方程、一元一次不等式PPT
函数值与不等式解的范围
通过观察函数值的正负变化,可以确定不等式解的范围。当函数值从负数变为正数时, 对应的x值范围即为不等式的解集。
函数图像与不等式解的关系
函数图像与不等式解的交点
一次函数图像与不等式的交点即为满足不等式条件的x值。在图像上表现为直线上的某些点。
函数图像与不等式解的个数
函数图像与不等式的交点个数即为满足不等式条件的x值的个数。若只有一个交点,则不等式有一个 解;若有多个交点,则不等式有多个解。
详细描述
一元一次方程的标准形式是 ax + b = 0, 其中 a 和 b 是常数,且 a ≠ 0。这个方 程只有一个未知数 x,且 x 的最高次数 为1。
一元一次方程的解法
总结词
求解一元一次方程通常涉及移项、合并同类项和系数化为1等 步骤。
详细描述
解一元一次方程时,首先将方程中的未知数项移到等式的一侧, 常数项移到另一侧。然后合并同类项,最后将方程两边的系数 化为1,即可得到未知数的解。
一次函数与一元一次方程、一元一 次不等式
目录
• 一次函数 • 一元一次方程 • 一元一次不等式 • 一次函数与一元一次方程、一元一次不等
式的关系 • 综合应用
01 一次函数
一次函数的定义
一次函数的一般形式为 $y = kx + b$,其中 $k$ 和 $b$ 是常数,
且 $k neq 0$。
$k$ 称为函数的斜率,$b$ 称为 函数的截距。
一元一次方程与一元一次不等式的综合应用
一元一次方程与一元一次不等式在形式上具有相似性,可 以通过对方程或不等式进行变形,转化为对方的形式,从 而利用对方的形式进行求解。
例如,对于方程 $y = kx + b$ 和不等式 $y < kx + b$,可 以通过将方程变形为 $y - kx - b = 0$,将不等式变形为 $y - kx - b < 0$,从而利用对方的形式进行求解。

19.2.3一次函数与方程不等式课件人教版八年级数学下册

19.2.3一次函数与方程不等式课件人教版八年级数学下册

解:画函数y=5x-3与y=3x+1 的图象。
从图中看出,当x>2时,
·y y=3x+1
7
直线y=5x-3上的点在直线 y=3x+1上相应点的上方,即 5x-3>3x+1,所以不等式的
y=5x-3
o2
x
解集为x>2。
4、已知直线y=2x+k与直线y=kx-2的交点横坐标
为2,求k的值和交点纵坐标。
K=6
(2,10)
y
5. 已知直线y1=k1x+b1与直线y2=k2x+b2
3
相交于点P(-2,3)。如图所示,当
y1>y2时,x的取值范围是 x<-2
。y1
-2 O
y2
x
数(y=ax +b)值为k 时对应的
自变量的值.
2x
2x +1=0 的解 1
+1=-1-2的解-1
O -1
2x +1=3 的解 1 2 3x
归纳总结
一次函数与一元一次方程的关系
求一元一次方程 kx+b=0的解.
从“函数值”看
一次函数y= kx+b
中y=0时x的值.
求一元一次方程 kx+b=0的解. 从“函数图象”看
的取值范围是( D)
A.y>0 B.y<0 C.-2<y<0 D.y<-2
3.已知直线 y 2x k与x轴的交点为(-2,0),则关于x的不等式 2x k 0
C 的解集是( )
A.x 2
B.x 2
C.x 2
D.x 2
4.对于函数y=-x+4,当x>-2时,y的取值范围是( D)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图象与X轴所围成的三角形的面积吗?
收获和体会
2019SUCCESS
POWERPOINT
2019/5/21
2019SUCCESS
THANK YOU
2019/5/21
4、已知函数y=Βιβλιοθήκη 3x+6,当xy>0.当x
时,y≤-2。
时,
5、已知函数y1 = 2 x – 4与y2 = - 2 x + 8的图象, 观察图象并回答问题:
(1)x取何值时,2x-4>0? (2)x取何值时,-2x+8>0? (3)x取何值时,2x-4>0与-2x+8>0同时成立? (4)你能求出函数y1 = 2 x – 4与y2 = - 2 x + 8的
一根长20cm的弹簧,一端固定,另一端 挂物体。在弹簧伸长后的长度不超过 30cm的限度内,每挂1㎏质量的物体,弹 簧伸长0.5cm.如果所挂物体的质量为x㎏, 弹簧的长度是ycm。
(1)、求y与x之间的函数关系式, 并画出函数的图象。
(2)、求弹簧所挂物体的最大质量是 多少? (3)、能否用不等式求解问题(2)?
1、一元一次方程于一元一次不等式的关系: 当 函数值确定 时,求 与之对应的自变量 的值,就是解一元一次方程。从图象上看,这 相当于已知 横坐标 ,确定 纵坐标 的值。
2、一次函数与一元一次不等式的关系: (1)一元一次不等式ax+b>0或ax+b<0(a≠0) 是一次函数y=ax+b(a≠0)•的函数值 y 不等于0 的情形.
当y=4时,x=
.
(3)一元一次方程 1 x 2 0
2
和一次函数 y 1 x 2
2
有什么联系?
例2 画出函数y=-3x+12的图像,利用图像求: (1)不等式-3x+12>0的解集. (2)不等式-3x+12≤0的解集. (3)当2<y<16时,x的取值范围.
例3某用煤单位有煤m吨,每天烧煤n吨,现已 知烧煤三天后余煤102吨,烧煤8天后余煤72吨. (1)求该单位余煤量y吨与烧煤天数x之间的函数 解析式;
(2)直线y=ax+b上使函数值y>0(x轴上方的 图像)的x的取值范围是ax+b >0的解集;使 函数值y<0(x轴下方的图像)的x的取值范围是 ax+b < 0的解集.
例1 如图是一个一次函数的图像,请根据图像回
答问题:
(1)求出直线对应的一次函数的表达式

(2)当x=0时,y= ,当y=0时,x= ;
(2)当烧煤12天后,还余煤多少吨? (3)预计多少天后会把煤烧完?
例4某人点燃一根长度为25㎝的蜡烛,已知蜡烛 每小时缩短5㎝,设xh后蜡烛剩下的长度为y㎝。 (1)、求y与x的函数关系式。 (2)、几个小时以后,蜡烛的长度不足10㎝?
随堂演练
1、p32页练习。
2、在一次函数y=2x-3中,已知x=0 则y= ;若已知y=2则x= ;
相关文档
最新文档