二组分气液平衡相图的绘制讲义

合集下载

第6章 二组分液态部分互溶系统及完全不互溶系统气液平衡相图

第6章 二组分液态部分互溶系统及完全不互溶系统气液平衡相图
c 界会溶点。对应于C点的温度tc,
C L1’
称为高临界溶解温度或高会溶
富水
温度。
l
L2’
富酚
温度高于高会溶温度,液 体水与液体苯酚可完全互溶, 温度低于高会溶温度,两液 体只能部分互溶。
l1+ l2
0M A (水)
N 100
wB /%
B(苯酚)
t
p=const.
e
加热
l1+ l2
g
冷却
的相变化,温度和三相组成均 不变,但三相的数量却在改变, 改变量之间的关系符合杠杆规 则。
二组分系统三相平衡的杠杆规则:
设A、B二组分系统成α,β, γ 三相平衡时,三个相的组成分 别为xB(α)、xB(β)、xB(γ) ,且 xB(γ) 介于xB(α)和xB(β)之间 。如 图:
又为另一液层的饱和蒸汽压。即气相与两个液
L2
相均平衡,而这两个液相相互平衡。
根据这三相组成的关系,可将部分互溶系统气-液平衡的温 度 - 组成图分为两类:
3.部分互溶系统的温度 - 组成图
(1)气相组成介于两液相组成之间的系统
t
P
92
L1 0M A
p=101.325kPa
Q
G L2
wB/%
N 100 B
对照相图理解三相平衡的杠 杆规则
Δn(α) xB ( β ) xB (γ ) Δn( β ) xB (γ ) xB (α)
Δn(α) α
Δn(β) γβ
0 xB(α) xB(γ) xB (β) 1
A
B
Δn(α) [xB (γ ) xB (α)] Δn( β ) [xB ( β ) xB (γ )]
P

ch6.3二组分理想液态混合物的气液平衡相图

ch6.3二组分理想液态混合物的气液平衡相图

二组分系统的相律分析
•根据相律 F = C - P + 2 = 4 - P
•F最大= 3 即最多可以有三个独立变量, 这三个变量通常是T,p 和组成 x
•P最大= 4 即最多可以四相平衡共存
•通常研究方法 •固定一个变量,用二维坐标描述使图形简单易用。 ( )T ( )P ( )x
两个纯液体可按任意比例互溶,每个组分都服从拉乌尔定律, 这样组成了理想的完全互溶双液系,或称为理想的液体混合物
pB pB xB
* pB
p
* A
pA pA (1 xB )
A
xB
B
∵T=常数,且系统达到气液平衡时,自由度数F= 1, 表明压力和组成中只有一个为变量,若选液相组成xB 为独立变量,即 p = f(xB),且yB = f(xB)
(2) p-x-y图
这是 p-x 图的一种,把液相组成 x 和气相组成 y 画在同一张图上。 • yA 和 yB的求法如下:
G1
tB pB p* a B ( t ) xB yB p 101.325kPa l * * 若已知t温度下的 pA (t )和pB (t ) A x B B 求得(t, xB , yB ) 以此类推可获得不同温度下的气液相组成,进而画出 气相点和液相点
(2)T-x图分析
在T-x图上,气 相线在上,液相线在 下,上面是气相区, 下面是液相区,梭形 区是气-液两相区。 •两条线 F=1 •三个区域 单相区 F=2 ; 气-液平衡区 F=1。 •两端点 F=0
(1)T-x图可通过计算获得
101.325kPa p (t )(1 x B ) p (t ) x B
* A * B
* * p* ( t ) ( p ( t ) p A B A ( t ))x B

1.双组份理想溶液的气液平衡相图

1.双组份理想溶液的气液平衡相图

2.图中红色线为气相线t-y(露点线):它表
示混合液的沸点和平衡液相组成x之间的关系,此曲
线称为饱和液体线。
两组分溶液的气液平衡相图
1、温度-组成图(t-x-y图)
三个区域:
液相区:蓝线以下区域 过热蒸气区:红线以上区域 气液共存区:红线和蓝线包围的区域
两组分溶液的气液平衡相图
1、温度-组成图(t-x-y图)
两相区特点:
1.当两相温度相同时 y > x 2.当组成相同,t露点>t泡点
两组分溶液的气液平衡相图
1、温度-组成图(t-x-y图)
t/C
气相区
TB
露点
在总压一定的条件下,将组成为 xf
露点线
两相区
的溶液加热至该溶液的泡点 TA ,产 生第一个气泡的组成为 yA1,此时液 相组成为XA1。
TA
泡点
化学单元操作
两组分溶液的气液平衡相图
东明县职业中专
两组分溶液的气液平衡相图
1
Contents
温度-组成图(t-相图(y-x图)
两组分溶液的气液平衡相图
双组分理想溶液的气液平衡关系用相图表示比 较直观、清晰,而且影响蒸馏的因素可在相图上直 接反映出来。蒸馏中常用的相图为恒压下的温度组成( t-x-y )图和气相-液相组成( x-y )图。
两组分溶液的气液平衡相图
1、温度-组成图(t-x-y图)
t-x-y 图代表的是在总压 P 一定的条件 下,相平衡时气(液)相组成与温度 的关系。x、y均指易挥发组分的摩尔 分数。
两组分溶液的气液平衡相图
1、温度-组成图(t-x-y图)
两条线:
1.图中蓝色线为液相线t-x(泡点线):它表
示混合液的沸点和与液相平衡的汽相组成y之间的关 系,此曲线称为饱和蒸气线。

物化实验 二组分体系气液平衡相图绘制

物化实验 二组分体系气液平衡相图绘制

实验四二组分体系气液平衡相图一.实验目的1.了解液体沸点的测定方法。

2.掌握温度计的露茎校正方法。

3.掌握阿贝折光仪的原理及使用方法4.测定环己烷——乙醇二元系统气液平衡数据,给出沸点组成图。

二.实验原理常温下两液态物质混合构成的体系称为双液系。

若该双液系能按任意比例混合成为一相则称为完全互溶双液系。

若只能在一定比例范围内混合成为一相,其它比例范围内为两相则称部分互溶双液系。

环己烷——乙醇体系是完全互溶双液系。

液体的沸点是指液体的蒸气压和外压相等时的温度。

在一定外压下纯液体的沸点有确定值。

但是双液系沸点不仅与外压有关还随双液系的组成的改变而改变。

同时,在一般情况下双液系蒸馏时的气相组成和液相组成并不相同,因此原则上可通过反复蒸馏即精馏的方法分离双液系中的两液体。

但是当双液系具有恒沸点时,不能用单纯蒸馏的方法分离两液体。

如图4.1所示,本实验所用体系环己烷——乙醇的温度组成图是一个典型的具有最低恒沸点的相图。

若将组成在恒沸点处的体系蒸馏时气相组成和液相组成完全一样,因此在整个蒸馏过程中沸点也恒定不变,无法通过蒸馏的方法分离两组分。

恒沸点和恒沸混合物的组成还和外压有关,因此在不同外压条件下实验时所得双液系的相图也不尽相同,通常压力变化不大时恒沸点和恒沸混合物的组成的变化也不大,在未注明压力时一般均指外压为101.325kPa。

图4.1 具有最低恒沸点体系相图示意图本实验采用回流冷凝法测定环己烷——乙醇溶液在不同组成时的沸点。

由于液体沸腾时易发生过热现象,同时气相又易出现分馏效应,因此沸点的准确测定不易。

本实验所用的沸点仪如图 4.2所示,称为奥斯默沸点仪,它是一支带有回流冷凝管的长颈圆底烧瓶,加热用的电热丝直接浸在溶液中,这样可以减少溶液的过热现象和防止暴沸。

冷凝管的底部有一个小球泡用以收集冷凝下来的气相样品,由于分馏作用会使获得的气相样品的组成与气液平衡时的气相组成发生偏差,为此须在吹制沸点仪时尽量缩短小球泡与烧瓶间的距离以减少分馏作用。

物理化学课件二组分相图相图解读

物理化学课件二组分相图相图解读

2
压力-组成图(p~ xB图)
设组分A和B形成理想液态混合物(见图). 气-液平衡时蒸气总压p与液相组成xB的关系: 在温度T下两相平衡时, 由拉乌尔定律
* * xB pA pA xA , pB pB
T一定
g p y A yB pA pB xA xB l
•理想液态混合物的 气 - 液平衡
A和B均满足 pB = p*B xB
t 一定 p
p
l (A+B) M
* B
nGxG + nLxL = (nG + nL) xM 得
L 总 nG n n B B B
L
G
nL xG xM MG 推导 nG xM xL LM
B 既是系统点又是相点
A
xL xM xG nL nM nG
xB
7
• 实际混合物中苯(B)和甲苯(A)双液系的性质接近理想 混合物, 在79.7 ℃下实测 压力-组成 数据如下:
液相组成 xB 0 0.1161 0.2271 0.3383 0.4532 0.5451 0.6344 0.7327 0.8243 0.9189 0.9565 1.000
8
相点
系统点
液相线
• 点, 线, 区的含义 及各状态下自由 度数; • 会读系统总组成 g p 与相组成 ; yA yB pA pB 气相线 xA xB 相点 l
T一定
结线 •理想液态混合物的 气 - 液平衡
蒸气压组成相图 A和B均满足 pB = p*B xB
9
2. 温度-组成图(T~ xB图)
在恒压下表示二组分系统气-液平衡时的温度和
组成的关系. 根据实验数据可以作出T~x图(包括气相线和液 相线). 例如:苯~甲苯的T~x图如下:

二组分系统气液平衡相图的绘制(含数据)

二组分系统气液平衡相图的绘制(含数据)

二组分系统气液平衡相图的绘制一实验目的1.确定不同组成的环己烷——乙醇溶液的沸点及气、液两相的平衡浓度,由此绘制其沸点组成图。

2.掌握阿贝折射仪的原理及使用方法。

二实验原理本实验用回流冷凝法测定不同浓度的环己烷——乙醇溶液的沸点和气、液两相的组成,从而绘制T----x图。

下图为环己烷——乙醇的沸点组成图的大致形状,ADC和BEC为气相线,AD´C和BE´C 为液相线。

体系总组成为x的溶液开始沸腾时,气象组成为y ,继续蒸馏,气相量增加,液相量减少(总量不变),溶液温度上升,回流作用,控制了两相的量一定,沸点一定。

此时,气相组成为y´,与其平衡的液相组成为x´,体系的平衡沸点为t沸,此时气液两相服从杠杆原理。

当压力一定时,对两相共存区进行相律分析:独立组分K=2,相数P=2,则自由度f=K-P+1=2-2+1=1即有,体系温度一定,则气液两相成分确定。

总量一定时,亮相的量也一定。

在一实验装置中,控制气液两相的相对量一定,使体系温度一定,则气液组成一定。

用精密温度计可以测出平衡温度,取出气液两相样品测定其折射率可以求出其组成。

折射率和组成有一一对应关系,可以通过测定仪系列已知组成的样品折射率,绘出工作曲线。

测出样品就可以从工作曲线上找到未知样品的组成。

三仪器与药品仪器:阿贝折射仪、超级恒温槽、蒸馏瓶、调压变压器、1/10℃刻度温度计、25ml移液管一支、5ml、10ml移液管各两支、锥形瓶四个、滴管若干支药品:环己烷、乙醇、丙酮四实验步骤1.工作曲线的测定把超级恒温槽调至25℃,连接好恒温槽与阿贝折射仪,使恒温水流经折射仪。

准确配制下列溶液,测定纯环己烷,乙醇和下列溶液的折射率,并测定溶液温度。

环己烷 1 2 3 4ml乙醇 4 3 2 1ml2.测定环己烷的沸点按图装好仪器,调压变压器调至最小,将25ml苯加入蒸馏瓶,打开冷凝水,接通电源,缓慢增加电压,加压至12~16V,加压至液体沸腾使,记下温度稳定值。

3.2 二组分系统气液平衡相图

3.2 二组分系统气液平衡相图

LG
定温连结线
80
t
* B
xl,B
l(A+B)
60
0.0
0.0 0.2 0.4 0.6 0.8 1.0
C6H5CH3(A)
xB
C6H6 (B)
图3-10 C6H5CH3(A) - C6H6 (B)系统的 沸点-组成图
15
0.0 t/℃
120
t
* A
100
80
60
yB 0.2 0.4 0.6 0.8 1.0
p/102kPa
(2) 蒸气压‐组成曲线有极值
0.0 0.2 1. 0
t=60℃ 0.8
0.6
0.4
pA*
0.2
xB 0.4 0.6
l(A+B) lg
0.8 1.0 xB=0.92
蒸气压有极大值,
yB=xB,气相线与液相 线相切
左半支:yB > xB pB* 右半支:yB < xB
g(A+B)
0.0 0.0 0.2
若pB* > p > pA*, 则 yB > xB, yA < xA. 可知:
饱和蒸气压不同的两种液体形成理想液态混合物成气液平衡时, 两相的组成并不相同, 易挥发组分在气相中的相 对含量大于它在液相中的相对含量.
气-液平衡时蒸气总压p与气相组成yB的关系: 结合式 p = pA* + (pB* - pA* ) xB 和式 yB = pB*xB /p 可得
• 从相图分析恒温降压变化过程.
• 与纯物质在恒温下有一定的饱和蒸气压不同, 由于液相在 气化过程中组成不断变化(剩余难挥发性组分愈来愈多), 使得其平衡蒸气压不断下降, 因而存在相变压力区间. 5

材料物化实验讲义-第二学期-实验5

材料物化实验讲义-第二学期-实验5

实验五 二组分完全互溶系统气一液平衡相图的绘制Ⅰ、目的要求1. 绘制环己烷-乙醇双液系的T—x图,确定其恒沸物组成和恒沸温度。

2. 掌握回流冷凝法测定溶液沸点的方法。

 3. 掌握阿贝(Abbe)折射仪的使用方法。

Ⅱ、仪器与试剂沸点测定仪1套阿贝折光仪(包括恒温装置) 1套长、短吸管各9支温度计(50~100 ︒C, 0.1 ︒C) 1支移液管(胖肚,25 mL) 2支移液管(刻度,1 mL ,10 mL) 各1支量筒(100 mL) 1个烧杯 (250 mL) 1 个环己烷(分析纯)乙醇(分析纯)环己烷-乙醇标准溶液9种(w (乙醇)/% = 10~90)Ⅲ、实验原理常温下,两种液态物质相互混合而形成的液态混合物,称为双液系。

根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。

液体的沸点是指液体的饱和蒸气压和外压相等时的温度。

在一定的外压下,纯液体的沸点是恒定的。

但对于双液系,沸点不仅与外压有关,而且还与其组成有关,并且在沸点时,平衡的气—液两相组成往往不同。

在一定的外压下,表示溶液的沸点与平衡时气—液两相组成关系的相图,称为沸点—组成图(T—x图)。

完全互溶双液系的T —x 图可分为下列三类:1. 混合物的沸点介于两种纯组分之间(如图1.1 (a)); 2. 混合物存在着最高沸点(图1.1 (b)) ;3. 混合物存在着最低沸点(图1.1 (c))。

对于后两类,它们在最低或最高沸点时达平衡的气相和液相的组成相同。

若将此系统蒸馏,只能够使气相总量增加,而气—液两相的组成和沸点都保持不变。

因此,称此混合物为恒沸混合物。

其对应的最高温度或最低温度称为最高恒沸点或最低恒沸点,相应的组成称为恒沸物组成。

为了测定双液系的T -x 图,需在气液平衡后,分别测定双液系的沸点和液相、气相的平衡组成。

实验中达平衡的气相和液相的分离是通过沸点仪实现的,而各相组成的准确测定是通过阿贝折光仪测量折射率进行的。

二组分气液平衡相图

二组分气液平衡相图

实验三二组份气液平衡相图一、目的1、用沸点仪测定和绘制乙醇和环己烷的二组份气液平衡相图;2、用阿贝折射仪测定液体的组成,了解液体折射率的测量原理及方法。

二、基本原理两种液态物质混合而成的二组份系统称为双液系。

二液体若能按任意比例互相溶解,称完全互溶双液系;若只能在一定比例范围内互相溶解,则称部分互溶双液系。

例如水-乙醇双液系、苯-甲苯双液系都是完全互溶双液系,苯-水双液系则是部分互溶双液系。

液体的沸点是指液体的蒸汽压和外压相等时的温度。

在一定的外压下,纯液体的沸点有确定的值,但对于双液系,沸点不仅与外压有关,而且还与双液系的组成有关,即和双液系中两种液体的相对含量有关。

通常用几何作图的方法将双液系的沸点对其气相、液相的组成作图,即得二组份气液平衡相图,它表明溶液在各种沸点的液相组成和与之成平衡的气相组成的关系。

在恒压下,二组份完全互溶双液系的沸点组成图可分为三类:(1)溶液的沸点介于两纯组份沸点之间,如苯和甲苯、水和甲醇等。

(2)溶液有最高沸点,如氯化氢与水、硝酸和水、丙酮与氯仿等。

(3)溶液有最低沸点,如水和乙醇、苯和乙醇、乙醇和环已烷等。

这三种类型的相图如下图所示图4-1 二组份气液平衡相图的三种类型图中、T 分别表示纯A 纯B 的沸点。

图中两曲线包围的区域为气-液两相平衡共存区。

它的上方G 代表气相区,下方L 为液相区。

C 和C'分别表示最高和最低恒沸物的沸点和组成。

T A *B *测绘这类相图时,要求同时测定溶液的沸点及气液平衡时两相的组成。

本实验用回流冷凝法测定环己烷-乙醇溶液在不同组成时的沸点。

所用沸点仪如图4-2所示,是一只带有回流冷凝管的长颈园底烧瓶,冷凝管底部有一球形小室D ,用以收集冷凝下来的气相样品,液相样品则通过烧瓶上的支管L 抽取,图中E是一根电热丝,直接浸在溶液中加热溶液。

溶液的组成用测定其折射率确定。

折射率是物质的一个特征数值。

溶液的折射率与组成有关,因此测得一系列已知浓度的溶液折射率,作出该溶液的折射率-浓度工作曲线,就可按内插法求得具有某折射率的溶液组成。

二、双组分理想溶液的汽液平衡相图.

二、双组分理想溶液的汽液平衡相图.

二、双组分理想溶液的汽液平衡相图1.温度——组成图(t-x-y 图) t-x-y 图的绘制(苯—甲苯) 已知条件:操作总压、平衡数据 步骤:(1)建立坐标系, 确定纯组分沸点t A 、t B(2)确定t-x 对应关系。

描点连线得x t -曲线(3)确定t- y 对应关系。

描点连线得y t -曲线 t-x-y 图的构成:两条线:气相线(露点线)y t -曲线; 液相线(泡点线)x t -曲线 三个区域:液相区、气—液共存区、气相区。

t-x-y 图的讨论:(1)互成平衡的汽液组成点在同一条等温线上;(2)在某一温度下,汽液达到平衡时,y>x ,汽相线始终在液相线之上; (3)混合液沸点介于t A 和t B 之间;(4)在两相区内,温度升高液相中A 组分浓度减小,温度降低汽相中A 组分浓度提高;(5)平衡的汽液两相的量满足杠杆规则; (6)只有在两相区才能对混合液实行有效的分离。

(7)压力对t —x —y 图的影响:压力增大,温度升高,曲线上移,且两相区变窄。

pxp y AAA0=BA BA p p p p x --=t-x-y 图的应用:(1)确定温度—组成间的关系;(2)分析蒸馏及精馏原理 课堂练习:习题7-32.汽-液相组成图(y —x 图) y —x 图的绘制:已知条件:操作总压、平衡数据。

步骤:(1)建立坐标系,作出y=x 的对角线。

(2)由 将x 和y 对应点描点连线。

y —x 图的讨论(1)y>x ,故y —x 曲线在对角线之上。

(2)互成平衡的气液组成点落在y —x 曲线上。

(3)操作压力越大,y —x 曲线越靠近对角线,分离越难进行。

(4)x-y 曲线上各点具有不同的温度;右上方温度低,左下方温度高。

y —x 图的应用:图解理论塔板数目。

练习:苯—甲苯、正庚烷—正辛烷、甲醇—水 y —x 图(10×10)各两张。

三、相对挥发度挥发度:表示溶液挥发的难易程度。

二组分体系气-液平衡相图

二组分体系气-液平衡相图
2.与此同时另一同学练习折射仪的用法并测定折射仪标尺零点,钠黄光D线(波长589.26nm)
通过25℃的无水乙醇,折射率应为 n D =1.3594(文献值),如果25℃实测值为1.3600,则1.3600-
1.3594=0.0006 表 明 标 尺 零 点 有 正 误 差,应 予 校 正,校 正 值 △ = - 0.0006,实 验 中 每 次 测 定 应 加 上
△,此例为减去0.0006。用环己烷(
n
D 25
=1.4326)校正零点也是同样。
3.测定乙醇-环己烷溶液不同组成时的沸点及此时(气液平衡)气、液相的组成。待上述无水 乙醇冷却至近于室温或不烫手时,加1.5ml环己烷至无水乙醇中,测定沸点并测沸腾时气、液组成。 再 依 次 加 入 环 己 烷 2.0、2.0、8.0、10.0、10.0、10.0ml 至 无 水 乙 醇 中,分 别 测 其 沸 点 和 气、液 相 组 成。
file://E:\whsy\whsy05.htm
2008-4-22
二组分体系气-液平衡相图
页码,3/3
五.数据处理
1.根据沸点数据以及从折射率-组成曲线内插得到气液组成;
乙醇-环己烷溶液不同组成的沸点及气、液组成
加入量
T
n液
n气
液相组成
气相组成
20ml乙醇 加1。5环己烷 加2.0环己烷 加2.0环己烷 加8.0环己烷 加10.0环己烷 加10.0环己烷 加10.0环己烷
4.同法测定环己烷-乙醇不同组成的沸点及其相应的气、液组成。在沸点仪先加入25ml环己 烷,测定沸点,然后依次加入无水乙醇0.5、0.5、0.5、1.0、1.0、2.0、5.0ml,分别测定沸点和气、 液组成。
判断沸点的准则:温度计汞柱上升明显变缓;液体发生大量气泡;蒸汽冷凝得到的液体很快充 满支管。此时一手握住台架,一手扶好台架底座,倾斜沸点仪,将支管中冷凝液倒回液体中(此步 骤简称“回流”),,立即读温度计示值,反复回流数次待温度计示值稳定,就是沸点。

第二节两组分理想物系气液平衡

第二节两组分理想物系气液平衡

第二节 两组分理想物系气液平衡5-2-1 两组分理想物系的气液平衡关系所谓理想物系是指液相和气相应符合以下条件:(1)液相为理想溶液,遵循拉乌尔定律。

根据溶液中同分子间与异分子间作用力的差异,可将溶液分为理想溶液和非理想溶液。

严格地说,理想溶液是不存在的,但对于性质极相近、分子结构相似的组分所组成的溶液,例如苯—甲苯、甲醇—乙醇、烃类同系物等都可视为理想溶液。

(2)气相为理想气体,遵循道尔顿分压定律。

当总压不太高(一般不高于104kPa )时气相可视为理想气体。

一、两组分理想物系的相律相律是研究相平衡的基本规律。

相律表示平衡物系中的自由度数、相数及独立组分 数间的关系,即F=C -φ+2 (5-1) 式中 F ——自由度数;C ——独立组分数;φ——相数。

式5-1中的数字2表示外界只有温度和压强这两个条件可以影响物系的平衡状态。

对两组分的气液平衡,其中组分数为2,相数为2,故由相律可知该平衡物系的自由度数为2。

由于气液平衡中可以变化的参数有四个,即温度t 、压强P 、一组分在液相和气相中的组成x 和y (另一组分的组成不独立),因此在t 、P 、x 和y 四个变量中,任意规定其中二个变量,此平衡物系的状态也就被唯一地确定了。

又若再固定某个变量(例如压强,通常蒸馏可视为恒压下操作),则该物系仅有一个独立变量,其它变量都是它的函数。

所以两组分的气液平衡可以用一定压强下的t —x (或y )及x —y 的函数关系或相图表示。

气液平衡数据可由实验室测定,也可由热力学公式计算得到。

二、用饱和蒸汽压和相平衡常数表示气液平衡关系根据拉乌尔定律,理想溶液上方的平衡分压为p A =p A ° x A (5-2) p B =p B °x B =(1-x A ) (5-2a ) 式中 p ——溶液上方组分的平衡分压,Pa ;p °——在溶液温度下纯组成的饱合蒸气压,Pa ;x ——溶液中组成的摩尔分率。

二组分理想混合物的气液平衡相图

二组分理想混合物的气液平衡相图

22二组分理想混合物的气液平衡相图鉴于理想液体混合物中的组分都遵守Raoult 定律,这种混合物的气液平衡相图是可以通过计算得到的,它是各种实际气液平衡相图研究的基础。

本专题便来介绍这种模型混合物的气液平衡相图,并从中引出杠杆规则等重要的概念。

1. 相律分析对于一个二组分气液平衡系统,若两个组分间没有化学反应,也没有其他独立的限制条件,则由相律可得系统的自由度为:πππ−=−−+−=′−−+−=400222R R K F (22-1)由于系统至少有一个相,自由度最多等于3。

这就是说,要构作二组分气液平衡相图需要三个坐标,是一个T 、p 、B x 或B y 的三维立体图。

然而,为了简单和易读,人们常常使其中一个强度性质保持不变,而去表示其它两者的关系,从而将立体相图变成两个平面相图。

例如,在T 保持不变的条件下,构作B x 或B y 与p 的关系图,此图称为恒温相图。

或者,也可在保持p 不变的条件下,构作B x 或B y 与T 的关系图,此图称为恒压相图。

因此,所有二组分气液平衡系统,都可有两个平面相图。

2. 恒温相图专题17已述,理想混合物中的所有组分,在任意温度和压力下,都遵守Raoult 定律。

如果气液平衡时气相压力较低,则可得总压B *B B *A B A )1(x p x p p p p +−=+= (22-2)AB *A B p p p p x −−= (22-3) 式(22-3)便是液相组成B x 与压力p 的关系式。

式中*A p 、*B p 分别为两个纯组分的饱和蒸气压,对于确定的系统,在指定的温度下是两个常数。

不难看出,式(22-2)是一个线性关系,在图22-1所示的恒温相图中,是一条直线(如实线所示),它称为液相线。

又因气相中组分B 的平衡分压可由下式表示B *B B B x pp p p y == (22-4) 故将式(22-3)代入式(22-4),可得)()(*A *B *A *B B p p p p p p y −−= (22-5)式(22-5)便是气相组成B y 与压力p 的关系式。

二组分液液平衡系统相图讲义

二组分液液平衡系统相图讲义
W醇 7.81% W醇100.0
W醇8.4( 7g)
水-正丁醇溶解度图
二组分液液平衡系统相图
(2)当正丁醇的加入量为 25.0g时,系统的总组成为:
W 醇 %2.5 02.1 500.002% 0
此时系统的物系点为d,在液液两相平衡共存区内,共轭两 液相的相点为a和b,它们的组 成是水层中W醇%=7.81%;醇层 中W醇% =79.9%,由杠杆规则:
不断加入,l1 相会减少,l2 相的量
会增加。当总组成为 X 时 :
• 当体系的总组成为 X2 时,l1 相恰好消失。
• 如果继续加酚至组成为 b 时,则体系中只有一个水在酚 中的不饱和溶液相了。
二组分液液平衡系统相图
2.若某温度时有一组成为 d 的溶液,其状态点在ACB曲 线的外面,故此时只有一 个液相存在。
An
A"
T1
两相
313 D
C
E
0 0 .2 0 .4 0 .6 0 .8 1 .0
H 2 O 质量分数
C6H5NH2
H 2O -C 6H 5N H 2 的 溶 解 度 图
帽形区内两相共存
二组分液液平衡系统相图
一、部分互溶液体的相互溶解度 2.具有最低临界溶解温度
水-三乙基胺的溶解
度图如图所示。
343
二组分液液平衡系统相图
一、部分互溶液体的相互溶解度
1.具有最高临界溶解温度
D点:苯胺在水中的饱和溶解度 E点:水在苯胺中的饱和溶解度
温度升高,互溶程度增加
B点:水与苯胺完全互溶
T B 是最高临界溶解温度
DB线是苯胺在水中的溶解度曲线 EB线是水在苯胺中的溶解度曲线
T/K
453

二组分完全互溶系统的气液平衡相图

二组分完全互溶系统的气液平衡相图

二组分完全互溶系统的气——液平衡相图周韬摘要:测定了乙醇--环己烷完全互溶系统的气--液平衡相图。

在相图上,以环己烷占互溶系统的摩尔含量作为横坐标,以混合物的沸点为纵坐标,分别从分析纯的乙醇出发和分析纯的环己烷出发,制作出完整的混合溶液相图。

实验中通过控制压力相等的条件测定相图需要的各项数据,混合物溶液各组分的含量利用折光率不同来确定。

实验结果与理论值能够很好的符合。

关键词:相律;折射率;沸点。

1 前言许新华,王晓岗,刘梅川等人的“双液系气液平衡相图实验的新方法研究”①中讨论了自制工作曲线和引用文献数据的优良,由于实验环境等因素的影响,文献值之间也会有差别,所以文献数据并不能很好地反映真实情况,而自制工作曲线由于溶液配制时会挥发,准确浓度的溶液配制又有难度。

另一方面气相测折光率确定组分是,由于气相冷凝液非常少,难以进行平行测定,偶然误差比较大。

他们在文献中提到的解决办法是,用气相色谱法是进行微量样品分析。

借鉴气相色谱实验定量配制混合样品的方法,比较精确地配制出乙醇-环己烷标准组成溶液。

对最后得出的实验数据用Origin 处理得到如下的工作曲线(图1):进行实验时,由于器材和时间的限制,我们采用直接引用文献数据和测定折光率的方式。

最后的数据进行温度校正之后作图,得到的工作曲线依然可以很好地和文献相吻合。

2实验部分 2.1原理两种液态物质若能以任意比例混合,则称为二组分完全互溶混合物系统。

当其蒸气压与外压相当时,溶液就会沸腾,此时的温度称为沸点,沸腾的溶液也产图 1 文献的工作曲线生了气相和液相两种相数。

在一定压力下,二组分完全互溶混合物系统的沸点可能有三种情况:①混合物的沸点介于两种纯液体的沸点之间,这种混合物,气液两项的组成不同,可以通过精馏使系统的两个组分完全分离开;②混合物有沸点极大值;③混合物有沸点极小值。

②、③两种由于实际系统严重偏离了拉乌尔定律,②项负偏差很大,在相图上有沸点极大值,③项的正偏差很大,会产生沸点极小值,后面两种混合物情况,难以用精馏的方式将两种液体分离开②。

二组分理想液态混合物的气液平衡相图(共6张PPT)

二组分理想液态混合物的气液平衡相图(共6张PPT)
的含量
• 6.2 精馏操作过程分析
精馏是多次蒸馏过程
x1>x2>x3 ---→纯A y1< y2/<y3 / --→纯B • 6.3 精馏操作的条件
蒸气总压介于两纯组分饱和蒸气压之 间
液相线—泡点,泡点线
(2)对比T-x图与p-x图
① p-x图中液相区在上,气相区在
下; T-x图则相反
② p-x图中液相线为直线,气相线
为曲线;T-x图中液相线和气相
线都为曲线
(3)a→b系统加热过程状态变化分析
易挥发组分在气相中的含量大于液相中的 含量
§6.5 二组分真实液态混合物的气-液平 衡相图
§6.4 二组分理想液态混合物的气-液
平衡相图
复习
• 4.1 二组分系统相律分析
温度-组成图:恒定压力下研究T、
• 4.2 压力-组成图
x、y之间关系
• 4.3 温度-组成图
气相线:表示液相蒸气总压与蒸气组 成关系的曲线
(1)气相线、液相线
液相线:表示液相蒸气总压与液相组
气相线—露点,露点线
成关系的曲线
一般正、负偏差的蒸气压-组成图中蒸气
总压仍然介于两纯组分饱和蒸气压之间,
而另一种情况则不然
§6.5 二组分真实液态混合物的气液平衡相图
• 5.1 真实液态混合物与理想
液态混合物的差别
• 5.2 蒸气压-组成图
• 5.3 压力-组成图
§6.5 二组分真实液态混合物的气-液 液态混合物的差别 • 5.2 蒸气压-组成图
• 5.3 压力-组成图
• 5.4 温度-组成图
恒沸点:沸腾时温度不变
特点—该点气相组成始终等于液相 组成
相律解释—C=S-R-R/=2-0-1=1,F=12+1=0

4.4 两组分气液液相图

4.4 两组分气液液相图
上部会溶点 上部会溶温度
系线(联结线)
CK 线 , C’K 线 : 溶解度随 温度的变化曲线称为 溶 解度曲线(雾点线)。
H2O(A)--i-C4H9OH(B)的液液平衡相图
返回章首
具有下部会溶点的 液液平衡相图
具有上部会溶点和下部 会溶点的液液平衡相图
水(A)--三乙胺(B)的液液相图
水(A)--烟碱(B)的液液相图
温度对溶解度影响的原因:Smix 0; 组分间存在氢键。
返回章首
2.气液液平衡 部分互溶系统的气液液平衡相图(类型1)
二元系的气液液相图
不同压力的二元系气液液相图
(2异丁醇(B)的气液液平衡相图
返回章首
wO
w L1
w
V
水(A)--异丁醇(B)的气液液平衡相图
D D O L D H V 11 2 W W WLL w w w w wO O D O D L H V 2 W W W w O w wLL11 W w
返回章首
部分互溶系统的精馏
wO
w L1
w
V
水(A)--异丁醇(B)的气液液平衡相图
两塔流程分离醇与水
返回章首
部分互溶系统的气液液 平衡相图(类型2)
完全不互溶系统的 二元气液液相图
H2O(A)--SO2(B)气液液相图
完全不互溶系统的二元气液液相图
返回章首
温度降至c点,开始凝结出纯B。 温度继续下降,纯 B 液体的量
4-4 两组分系统的气液液平衡相图
1.液液平衡 p 一定, T~wB 部分互溶实验
水(A) - 异丁醇(B)
t/℃
20
50
6.6
80
7.2
110
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双液系气-液平衡相图的绘制
一、实验目的、要求
1. 测定常压下环己烷-乙醇二元系统的汽液平衡数据,绘制101325Pa下的沸点-组成的相图。

2. 掌握阿贝折射仪的原理和使用方法。

二、实验原理
液体混合物中各组分在同一温度下具有不同的挥发能力。

因而,经过汽液见相变达到平衡后,各组分在汽、液两相中的浓度是不相同的。

根据这个特点,使二元混合物在精馏塔中进行反复蒸馏,就可分离得到各纯组分。

为了得到预期的分离效果,设计精馏装置必须掌握精确的汽液平衡数据,也就是平衡时的汽、液两相的组成与温度、压力见的依赖关系。

大量工业上重要的系统的平衡数据,很难由理论计算,必须由实验直接测定,即在恒压(或恒温)下测定平衡的蒸汽与液体的各组分。

其中,恒压数据应用更广,测定方法也较简便。

本实验测定的恒压下环己烷-乙醇二元汽液平衡相图。

图中横坐标表示二元系的组成(以B的摩尔分数表示),纵坐标为温度。

用不同组成的溶液进行测定,可得一系列数据,据此画出一张由液相线与汽相线组成的完整相图。

下图为环己烷——乙醇的沸点组成图的大致形状,ADC和BEC为气相线,AD´C和BE´C 为液相线。

体系总组成为x的溶液开始沸腾时,气象组成为y ,继续蒸馏,气相量增加,液相量减少(总量不变),溶液温度上升,回流作用,控制了两相的量一定,沸点一定。

此时,气相组成为y´,与其平衡的液相组成为x´,体系的平衡沸点为t沸,此时气液两相服从杠杆原理。

当压力一定时,对两相共存区进行相律分析:独立组分C=2,相数P=2,则自由度F=C-P+1=2-2+1=1
即有,体系温度一定,则气液两相成分确定。

总量一定时,两相的量也一定。

在一实验装置中,控制气液两相的相对量一定,使体系温度一定,
则气液组成一定。

用精密温度计可以测出平衡温度,取出
气液两相样品测定其折射率可以求出其组成。

折射率和组
成有一一对应关系,可以通过测定仪系列已知组成的样品
折射率,绘出工作曲线。

测出样品就可以从工作曲线上找
到未知样品的组成。

三、使用仪器、材料
沸点仪1套,阿贝折射仪,移液管,环己烷,无水乙醇
四、实验步骤
1、测定折射率与组成的关系,绘制工作曲线
将9支小试管编号,依次移入0.1 ml, 0.2 ml, …, 0.9 ml的环己烷,然后依次移入0.9 ml, 0.8 ml,…, 0.1 ml的无水乙醇,配成9份已知浓度的溶液,用阿贝折射仪测定每份溶液的折射率及纯环己烷和纯无水乙醇的折射率,以折射率对浓度作图。

2、测定环己烷-乙醇体系的沸点与组成的关系
(1) 右半部沸点-组成关系的测定取20 ml无水乙醇加入沸点仪中,然后依次加入环己烷0.5, 1.0, 1.5, 2.0, 4.0, 14.0 ml,测定溶液沸点,及气、液组分折射率n。

完成后,将溶液倒入回收瓶。

(2) 左半部沸点-组成关系的测定取25 ml环己烷加入沸点仪中,然后依次加入
无水乙醇0.2, 0.4, 0.6, 0.8, 2.0, 5.0 ml,测定溶液沸点,及气、液组分折射率n。

完成后,将溶液倒入回收瓶。

五、实验过程原始记录(数据、图表、计算等)
标准曲线
V环己烷(ml) V乙醇(ml) wt%EtOH wt%环己烷折射率
0 1 1 0
0.1 0.9
0.2 0.8
0.3 0.7
0.4 0.6
0.5 0.5
0.6 0.4
0.7 0.3
0.8 0.2
0.9 0.1
1 0 0 1
温度液相折射率气相折射率液相环己烷含量气相环己烷含量(实测纯乙醇
0 0 沸点)
(实测纯环己烷沸
1 1 点)
六、实验结果及分析
1.绘制工作曲线的目的是什么?
2.每次加入乙醇及环己烷的量是否要求准确?
3.实验测得的沸点与标准大气压的沸点是否一致?。

相关文档
最新文档