新人教版第六章实数知识点归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数知识点总结
一、平方根、算术平方根、立方根
1、概念、定义
(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a的立方根(或a 的三次方根)。如果,那么x叫做a
的立方根。
2、运算名称
(1)求一个正数a的平方根的运算,叫做开平方。平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。开立方和立方互为逆运算。
3、运算符号
(1)正数a的算术平方根,记作“a”。
(2)a(a≥0)的平方根的符号表达为。
(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。
4、运算公式
4、开方规律小结
,a的算术平方根a;正数的平方根有两个,它们互为相反数,其中正的那(1)若a≥0,则a的平方根是a
个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。正数的立方根是正数,负数的立方根是负数,0的立方根是0。(2)若a<0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是。
(3)正数的两个平方根互为相反数,两个互为相反数的实数的立方根也互为相反数。
二、小数点移动规律
平方根(如果被开方数的小数点,向右或向左每移动两位,它的平方根的小数点就相应地向右或向左移动一位)立方根(开立方的小数点移动规律:被开方数的小数点向右或向左每移动三位,则立方根的小数点就向右或向左移动一位)
三、实数的概念及分类
1、实数的分类
2、无理数
在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类
(1)开方开不尽的数,如32,7等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3
π+8等; (3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数,如sin60o等(这类在初三会出现)
判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16π是有理数,而不是无理数。
3、有理数与无理数的区别
(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;
(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
四、实数的性质
有理数的一些概念,如倒数、相反数、绝对值等,在实数范围内仍然不变。
1、相反数
(1)实数a 的相反数是-a;实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零)
(2)从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a =-b,反之亦成立。
2、绝对值
(1)要正确的理解绝对值的几何意义,它表示的是数轴上的点到数轴原点的距离,数轴分为正负两半,那么不管怎样总有两个数字相等的正负两个数到原点的距离相等。|a|≥0。
(2)若|a|=a ,则a ≥0;若|a |=-a ,则a ≤0,零的绝对值是它本身。
(3)⎩⎨⎧<-≥)0()0(a a a a
3、倒数
(1)如果a 与b 互为倒数,则有ab=1,反之亦成立。实数a 的倒数是1/a(a ≠0)
(2)倒数等于本身的数是1和-1。零没有倒数。
五、实数的三个非负性及性质
1、在实数范围内,正数和零统称为非负数。
2、非负数有三种形式
(1)任何一个实数a 的绝对值是非负数,即|a|≥0;
(2)任何一个实数a 的平方是非负数,即
≥0; (3)任何非负数的算术平方根是非负数,即 ()。
3、非负数具有以下性质
(1)非负数有最小值零;
(2)非负数之和仍是非负数;
(3)几个非负数之和等于0,则每个非负数都等于0.
六、实数大小的比较
实数的大小比较的法则跟有理数的大小比较法则相同:
(1)正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;
(2)实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;
(3)两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法。
(4)对于一些带根号的无理数,我们可以通过比较它们的平方或者立方的大小。常用有理数来估计无理数的
大致范围,要想正确估算需记熟0~20之间整数的平方和0~10之间整数的立方.