北师大版七年级下册数学期中测试

合集下载

北师大版七年级下册数学《期中》考试题(含答案)

北师大版七年级下册数学《期中》考试题(含答案)

北师大版七年级下册数学《期中》考试题(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°4.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3 B .M =﹣1,N =3 C .M =2,N =4 D .M =1,N =47.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°10.如果,长方形ABCD 中有6个形状、大小相同的小长方形,且3EF =,12CD =,则图中阴影部分的面积为( ).A .108B .72C .60D .48二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.如图,阴影部分的面积用整式表示为_________.5.若25.36=5.036,253.6=15.906,则253600=__________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y>0,求m的取值范围.3.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?5.6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB 型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m= ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?6.已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车载满货物一次分别可运货物多少吨?(2)请帮助物流公司设计租车方案(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案,并求出最少的租车费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、A4、B5、D6、B7、A8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、ab3、724、x2+3x+65、503.66、54°三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x2、m>﹣23、24°.4、(1)略(2)成立5、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.6、(1)1辆A型车载满货物每次可运货物3吨,1辆B型车载满货物一次可运货物4吨;(2) 有三种租车方案:方案一,租用A型车9辆,B型车1辆,方案二,租用A型车5辆,B型车4辆,方案三,租用A型车1辆,B型车7辆.(3)选择方案三最省钱,最少的租车费为940元.。

北师大版数学七年级下册《期中考试卷》含答案

北师大版数学七年级下册《期中考试卷》含答案

北 师 大 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分) 1.下列各式中计算结果为5x 的是( ) A .32x x + B .32x xC .3x xD .72x x -2.计算()2019201821.53⎛⎫-⨯ ⎪⎝⎭的结果是( ) A .32-B .32C .23-D .233.计算63a a ÷,正确的结果是( ) A .2B .3aC .2aD .3a4.计算23(3)2x x -的结果是( ) A .65x -B .66x -C .55x -D .56x -5.下列多项式相乘,不能用平方差公式计算的是( ) A .(23)(32)x y y x -- B .(23)(23)x y x y -+--C .(2)(2)x y y x -+D .(3)(3)x y x y +-6.下列等式成立的是( ) A .22(1)(1)x x --=- B .22(1)(1)x x --=+ C .22(1)(1)x x -+=+D .22(1)(1)x x +=-7.计算3(42)2x x x -+÷的结果正确的是( ) A .221x -+B .221x +C .321x -+D .482x x -+8.下列各图中,1∠与2∠是对顶角的是( ) A .B .C .D .9.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角10.如图,//AB EF ,设90C ∠=︒,那么x 、y 和z 的关系是( )A .y x z =+B .90x y z +-=︒C .180x y z ++=︒D .90y z x +-=︒二.填空题(共7小题,满分28分,每小题4分) 11.已知(1)(1)80m n m n +-++=,则m n += .12.在关系式31y x =-中,当x 由1变化到5时,y 由 变化到 .13.已知,梯形的高为8cm ,下底是上底的3倍,设这个梯形的上底为xcm ,面积为2Scm ,这个问题中,常量是 ,变量是 .14.若2249x kxy y ++是一个完全平方式,则k 的值为 .15.如图,在ABC ∆中,以点C 为顶点,在ABC ∆外画ACD A ∠=∠,且点A 与D 在直线BC 的同一侧,再延长BC 至点E ,在作的图形中,A ∠与 是内错角;B ∠与 是同位角;ACB ∠与 是同旁内角.16.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为 .17.已知,在同一平面内,50ABC ∠=︒,//AD BC ,BAD ∠的平分线交直线BC 于点E ,那么AEB ∠的度数为 . 三.解答题(共3小题,每小题6分,满分18分)18011(2(2)()|3-+-+--19.化简:222(23)(23)(3)x x y x y x y +-+----,其中2x =-,1y =-.20.(1)如图,以B 为顶点,射线BC 为一边,用直尺和圆规作CBE ∠,使CBE CAD ∠=∠; (2)在所作图中,BE 与AD 平行吗?为什么?四.解答题(共3小题,每小题8分,满分24分)21.如图,在四边形ABCD 中,连接BD ,点E 、F 分别在AB 和CD 上,连接CE 、AF ,CE 与AF 分别交BD 于点N 、M .已知AMD BNC ∠=∠.(1)若110AFC ∠=︒,求ECD ∠的度数;(2)若ABD BDC ∠=∠,试判断ECD ∠与BAF ∠之间的数量关系,并说明理由.22.已知24a =,26b =,212c = (1)求证:1a b c +-=; (2)求22a b c +-的值.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?五.解答题(共2小题,每小题10分,满分18分) 24.观察下列关于自然数的等式: (1)223415-⨯= (1) (2)225429-⨯= (2) (3)2274313-⨯= (3) ⋯根据上述规律解决下列问题: (1)完成第五个等式:2114-⨯2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性. 25.感知与填空:如图①,直线//AB CD .求证:B D BED ∠+∠=∠.阅读下面的解答过程,井填上适当的理由. 解:过点E 作直线//EF CD 2(D ∴∠=∠ )//AB CD (已知),//EF CD ,//(AB EF ∴ ) 1(B ∴∠=∠ ) 12BED ∠+∠=∠,(B D BED ∴∠+∠=∠ )应用与拓展:如图②,直线//AB CD .若22B ∠=︒,35G ∠=︒,25D ∠=︒,则E F ∠+∠= 度. 方法与实践:如图③,直线//AB CD .若60E B ∠=∠=︒,80F ∠=︒,则D ∠= 度.答案与解析一.选择题(共10小题,满分30分,每小题3分) 1.下列各式中计算结果为5x 的是( ) A .32x x +B .32x xC .3x xD .72x x -[解析]A .不是同类项不能合并,所以A 选项不符合题意; B .325x x x =.符合题意;C .34x x x =,不符合题意;D .不是同类项不能会并,不符合题意.故选:B .2.计算201820192( 1.5)()3-⨯的结果是( ) A .32-B .32C .23-D .23[解析]201820192( 1.5)()3-⨯2018201822(1.5)()33=⨯⨯2018322()233=⨯⨯ 2018213=⨯213=⨯23=. 故选:D .3.计算63a a ÷,正确的结果是( ) A .2B .3aC .2aD .3a[解析]由同底数幂除法法则:底数不变,指数相减知,63633a a a a -÷==.故选:D . 4.计算23(3)2x x -的结果是( ) A .65x -B .66x -C .55x -D .56x -[解析]23(3)2x x -56x =-,故选:D .5.下列多项式相乘,不能用平方差公式计算的是( ) A .(23)(32)x y y x --B .(23)(23)x y x y -+--C .(2)(2)x y y x -+D .(3)(3)x y x y +-[解析](23)(32)x y y x --不能利用平方差公式计算,故选:A . 6.下列等式成立的是( ) A .22(1)(1)x x --=- B .22(1)(1)x x --=+C .22(1)(1)x x -+=+D .22(1)(1)x x +=-[解析]A .22(1)(1)x x --=+,故本选项不合题意; B .22(1)(1)x x --=+,正确;C .22(1)(1)x x -+=-,故本选项不合题意;D .22(1)(1)x x +=+,故本选项不合题意.故选:B .7.计算3(42)2x x x -+÷的结果正确的是( ) A .221x -+B .221x +C .321x -+D .482x x -+[解析]3(42)2x x x -+÷3(4)222x x x x =-÷+÷221x =-+故选:A .8.下列各图中,1∠与2∠是对顶角的是( ) A .B .C .D .[解析]A 、1∠与2∠不是对顶角,故A 选项不符合题意; B 、1∠与2∠不是对顶角,故B 选项不符合题意;C 、1∠与2∠是对顶角,故C 选项符合题意;D 、1∠与2∠不是对顶角,故D 选项不符合题意.故选:C .9.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角[解析]A 、1∠与2∠是同旁内角,正确,不合题意;B 、1∠与6∠是内错角,正确,不合题意; C 、2∠与5∠是内错角,错误,符合题意;D 、3∠与5∠是同位角,正确,不合题意;故选:C .10.如图,//AB EF ,设90C ∠=︒,那么x 、y 和z 的关系是( )A .y x z =+B .90x y z +-=︒C .180x y z ++=︒D .90y z x +-=︒[解析]过C 作//CM AB ,延长CD 交EF 于N ,则CDE E CNE ∠=∠+∠,即CNE y z ∠=-//CM AB ,//AB EF ,////CM AB EF ∴,1ABC x ∴∠==∠,2CNE ∠=∠,90BCD ∠=︒,1290∴∠+∠=︒,90x y z ∴+-=︒.故选:B .二.填空题(共7小题,满分28分,每小题4分) 11.已知(1)(1)80m n m n +-++=,则m n += . [解析](1)(1)80m n m n +-++=,22()180m n +-=, 2()81m n +=,9m n +=±,故答案为:9±.12.在关系式31y x =-中,当x 由1变化到5时,y 由 变化到 . [解析]当1x =时,代入关系式31y x =-中,得312y =-=;当5x =时,代入关系式31y x =-中,得15114y =-=. 故答案为:2,14.13.已知,梯形的高为8cm ,下底是上底的3倍,设这个梯形的上底为xcm ,面积为2Scm ,这个问题中,常量是 ,变量是 .[解析]常量是梯形的高,变量是梯形的上下底和面积, 故答案为:梯形的高,梯形的上下底和面积.14.若2249x kxy y ++是一个完全平方式,则k 的值为 . [解析]2249x kxy y ++是一个完全平方式,12k ∴=±,故答案为:12±15.如图,在ABC ∆中,以点C 为顶点,在ABC ∆外画ACD A ∠=∠,且点A 与D 在直线BC 的同一侧,再延长BC 至点E ,在作的图形中,A ∠与 是内错角;B ∠与 是同位角;ACB ∠与 是同旁内角.[解析]如图所示,A ∠与ACD ∠、ACE ∠是内错角;B ∠与DCE ∠、ACE ∠是同位角;ACB ∠与A ∠、B ∠是同旁内角.故答案是:ACD ∠、ACE ∠;DCE ∠、ACE ∠;A ∠、B ∠.16.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为 . [解析]数字55000用科学记数法表示为45.510⨯. 故答案为:45.510⨯.17.已知,在同一平面内,50ABC ∠=︒,//AD BC ,BAD ∠的平分线交直线BC 于点E ,那么AEB ∠的度数为 . [解析]分两种情况:①当D 点在A 点左侧时,如图1所示,此时AE 交CB 延长线于E 点,//AD BC ,50DAB ABC ∴∠=∠=︒.AE 平分DAB ∠,1252EAB DAB ∴∠=∠=︒, 502525AEB ∴∠=︒-︒=︒;②当D 点在A 点右侧时,如图2所示,此时AE 交BC 于E 点,//AD BC ,180********DAB ABC ∴∠=︒-∠=︒-︒=︒. AE 平分DAB ∠,1652EAB DAB ∴∠=∠=︒, 180506565AEB ∴∠=︒-︒-︒=︒.综上所述,25AEB ∠=︒或65︒. 故答案为25︒或65︒.三.解答题(共3小题,满分18分,每小题6分)18011(2(2)()|3-+-+--[解析]原式34513=+-+-19.化简:222(23)(23)(3)x x y x y x y +-+----,其中2x =-,1y =-. [解析]原式2222224969x x y x xy y =+--+-225618x xy y =+-当2x =-,1y =-时,原式5462181=⨯+⨯-⨯ 14=.20.(1)如图,以B 为顶点,射线BC 为一边,用直尺和圆规作CBE ∠,使CBE CAD ∠=∠; (2)在所作图中,BE 与AD 平行吗?为什么?[解析](1)如图,CBE ∠即为所求;(2)CBE CAD ∠=∠,//BE AD ∴(同位角相等,两条直线平行).四.解答题(共3小题,满分28分,每小题8分)21.如图,在四边形ABCD 中,连接BD ,点E 、F 分别在AB 和CD 上,连接CE 、AF ,CE 与AF 分别交BD 于点N 、M .已知AMD BNC ∠=∠.(1)若110AFC ∠=︒,求ECD ∠的度数;(2)若ABD BDC ∠=∠,试判断ECD ∠与BAF ∠之间的数量关系,并说明理由.[解析](1)AMD BMF ∠=∠,AMD BNC ∠=∠, BMF BNC ∴∠=∠,//AF CE ∴,180AFC ECD ∴∠+∠=︒, 110AFC ∠=︒, 70ECD ∴∠=︒;(2)ECD ∠与BAF ∠相等,理由是:ABD BDC ∠=∠,//AB CD ∴,180AFC BAF ∴∠+∠=︒,180AFC ECD ∠+∠=︒,ECD BAF ∴∠=∠.22.已知24a =,26b =,212c =(1)求证:1a b c +-=;(2)求22a b c +-的值.[解析](1)证明:24a =,26b =,212c =,222462122a b c ∴⨯÷=⨯÷==,1a b c ∴+-=,即1a b c +-=;(2)解:24a =,26b =,212c =,222(2)22a b c a b c +-∴=⨯÷16612=⨯÷8=.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?[解析]如果//PQ MN ,那么AB 与CD 平行.理由如下:如图,//PQ MN ,EAQ ACN ∴∠=∠.又AB 平分EAQ ∠,CD 平分ACN ∠,112EAQ ∴∠=∠,122ACN ∠=∠, 12∴∠=∠,//AB CD ∴,即AB 与CD 平行.五.解答题(共3小题,满分27分,每小题9分)24.观察下列关于自然数的等式:(1)223415-⨯= (1)(2)225429-⨯= (2)(3)2274313-⨯= (3)⋯根据上述规律解决下列问题:(1)完成第五个等式:2114-⨯ 2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.[解析](1)22114521-⨯=,故答案为:5;21;(2)第n 个等式为:22(21)441n n n +-=+,证明:2222(21)4441441n n n n n n +-=++-=+.25.感知与填空:如图①,直线//AB CD .求证:B D BED ∠+∠=∠.阅读下面的解答过程,井填上适当的理由.解:过点E 作直线//EF CD2(D ∴∠=∠ )//AB CD (已知),//EF CD ,//(AB EF ∴ )1(B ∴∠=∠ )12BED ∠+∠=∠,(B D BED ∴∠+∠=∠ )应用与拓展:如图②,直线//AB CD .若22B ∠=︒,35G ∠=︒,25D ∠=︒,则E F ∠+∠= 度.方法与实践:如图③,直线//AB CD .若60E B ∠=∠=︒,80F ∠=︒,则D ∠=度.[解析]感知与填空:过点E 作直线//EF CD ,2D ∴∠=∠(两直线平行,内错角相等),//AB CD (已知),//EF CD ,//AB EF ∴(两直线都和第三条直线平行,那么这两条直线也互相平行),1B ∴∠=∠(两直线平行,内错角相等),12BED ∠+∠=∠,B D BED ∴∠+∠=∠(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G 作//GN AB ,则//GN CD ,如图②所示:由感知与填空得:E B EGN ∠=∠+∠,F D FGN ∠=∠+∠,22253582E F B EGN D FGN B D EGF ∴∠+∠=∠+∠+∠+∠=∠+∠+∠=︒+︒+︒=︒, 故答案为:82.方法与实践:设AB 交EF 于M ,如图③所示:180180806040AME FMB F B ∠=∠=︒-∠-∠=︒-︒-︒=︒,由感知与填空得:E D AME ∠=∠+∠,604020D E AME ∴∠=∠-∠=︒-︒=︒,故答案为:20.。

北师大版七年级下册数学期中考试卷及答案【完整】

北师大版七年级下册数学期中考试卷及答案【完整】

北师大版七年级下册数学期中考试卷及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.下列图形中,不是轴对称图形的是()A.B .C.D.3.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A.②③B.①②③C.③④D.①②③④4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天5.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.关于x的不等式组314(1){x xx m->-<的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥37.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°10.若x﹣m与x+3的乘积中不含x的一次项,则m的值为()A.3 B.1 C.0 D.﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x-1)=15 (2)21232x x -+-=-2.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.3.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a ,b)是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为P 1(a +6,b -2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、A6、D7、B8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、12、90°3、15°4、(4,2)或(﹣2,2).5、±46、±3三、解答题(本大题共6小题,共72分)1、(1)x 3=;(2)x 5=.2、x =3或-3是原方程的增根;m =6或12.3、(1)(4,-2);(2)作图略,(3)6.4、略.5、(1)40;(2)72;(3)280.6、(1)A 型自行车的单价为260元/辆,B 型自行车的单价为1500元/辆;(2)至多能购进B 型车20辆.。

北师大版七年级下册数学期中考试试卷附答案

北师大版七年级下册数学期中考试试卷附答案

北师大版七年级下册数学期中考试试题一、单选题1.下列计算正确的是A .326a a a ⋅=B .5510x x x +=C .78y y y ⋅=D .222(3)6pq p q -=- 2.(1)(23)x x -+的计算结果是A .223x x +-B .223x x --C .223x x -+D .223x x -- 3.某植物的花朵质量为0.00 000 0076 克,用科学记数法表示是A .7.6×108克B .7.6×10-7克C .7.6×10-8克D .7.6×10-9克4.如果()219x a x --+是一个完全平方式,则a 的值为A .7B .-4C .7或-5D .7或-4 5.如图,与∠B 是同旁内角的角有( )A .1个B .2个C .3个D .4个 6.下列能用平方差公式计算的是( )A .()()a b a b -+-B .()()22x x ++C .1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭ D .()()21x x -+ 7.给出下列说法:(1)过平面内一点有且只有一条直线与已知直线平行;(2)相等的两个角是对顶角;(3)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;(4)不相交的两条直线叫做平行线;(5)垂直于同一条直线的两条直线平行.其中正确的有( ) A .0个 B .1个 C .2个 D .3个 8.如图,在下列结论给出的条件中,不能判定AB DF ∥的是( )A .2180A ∠+∠=︒B .3A ∠=∠C .14∠=∠D .1A ∠=∠9.若n 满足关系式22(2020)(2021)3n n -+-=,则代数式()()20202021n n --=( ) A .-1 B .0 C .12 D .110.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是( )A .乙先出发的时间为0.5小时B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早112小时 二、填空题11.计算:()2322xy z -=__________. 12.已知:a+b=1.5,ab=﹣1,则(a ﹣2)(b ﹣2)=_______.13.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .14.ABC 中,若80A ∠=︒,O 为三条内角角平分线的交点,则BOC ∠=__________度. 15.已知2310x x --=,则多项式3275x x x --+的值为_____.16.已知227a ab b ++=,225a ab b -+=,则a b -=__________.17.已知1∠的两边分别平行于2∠的两边,250∠=︒,则1∠的度数为__________. 18.已知ABC 中,30cm AC =,中线AD 把ABC 分成两个三角形,这两个三角形的周长差是12cm ,则AB 的长是__________.三、解答题19.计算:(1)()3235311932a b a b a b ⎛⎫⎛⎫⋅-÷- ⎪ ⎪⎝⎭⎝⎭(2)2020********( 3.14)4(0.25)1433π-⎛⎫-+⨯---÷⨯- ⎪⎝⎭ 20.阅读下列推理过程,在括号中填写理由:已知:如图,12∠=∠.求证:34180∠+∠=︒.证明:∠12∠=∠(已知)∠a b ∥(____________________)∠35180∠+∠=(____________________)又∠45∠=∠(____________________)∠34180∠+∠=︒(____________________)21.先化简,再求值: 已知26910x x y -+++=,求()2222(2)(2)(2)4(2)x y x y x y x y x y +---++的值.22.已知()()322x mx n x x +++-展开式中不含3x 和2x 项,求代数式()22()m n m mn n -++的值.23.如图,已知BC GE ∥,AF DE ∥,150∠=︒.(1)求AFG ∠的度数;(2)若AQ 平分FAC ∠,交BC 于点Q ,且15Q ∠=︒,求ACB ∠的度数.24.若我们规定三角“”表示为:abc ;方框“ ”表示为:()m n x y +.例如:()411193233=⨯⨯÷+=.请根据这个规定解答下列问题:(1)计算:=__________;(2)代数式为完全平方式,则k =__________;(3)当x 为何值时,代数式有最小值,最小值是多少?25.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA 表示货车离甲地的距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米)与时间x (时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)轿车出发多长时间追上货车;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.26.如图,已知直线//AB 射线CD ,0100CEB ∠=.P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连结CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点,,P F G 都在点E 的右侧.∠求PCG ∠的度数;∠若040EGC ECG ∠-∠=,求CPQ ∠的度数.(2)在点P 的运动过程中,是否存在这样的情形,使32EGC EFC ∠=∠,若存在,求出CPQ ∠的度数;若不存在,请说明理由.参考答案1.C【详解】A. 325a a a ⋅=,故A 错B .5552x x x +=,故B 错C. 78y y y ⋅=,故C 对D. 222(3)6pq p q -=,故D 错故选C2.A【详解】原式22232323x x x x x =+--=+-故选A.3.C【详解】解:对于绝对值小于1的数,用科学记数法表示为a×10n 形式,其中1≤a <10,n 是一个负整数,除符号外,数字和原数左边第一个不为0的数前面0的个数相等,根据以上内容得:0.00 000 0076克=7.6×10-8克,故选C .4.C【分析】完全平方公式:a 2±2ab+b 2的特点是首平方,尾平方,首尾底数积的两倍在中央,这里首末两项是x 和3的平方,那么中间项为加上或减去x 和3的乘积的2倍.【详解】∠()219x a x --+=()2213x a x -+-,∠()123a x x -=±⨯,∠a -1=±6,∠a=7或-5.故选C .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a 2±2ab+b 2是解答本题的关键. 5.C【解析】【分析】根据同旁内角的定义求解即可得.【详解】解:与∠B 是同旁内角的角有∠C ,∠BAC ,∠BAE 共3个,故选C .【点睛】题目主要考查相交线中的同旁内角的定义,理解同旁内角的定义是解题关键.6.C【解析】【分析】根据平方差的结构特点()()a b a b -+判断即可.【详解】解:A 、()()()()a b a b a b a b -+-=---,不符合平方差结构特点,不符合题意;B 、(x +2)(2+x ),不符合平方差结构特点,不符合题意;C 、1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭,符合平方差结构特点,符合题意; D 、(x ﹣2)(x +1),不符合平方差结构特点,不符合题意;故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.A【解析】【分析】根据平行线的定义、平行公理、对顶角的概念以及点到直线的距离的概念进行判断即可.【详解】解:(1)过已知直线外一点有且只有一条直线与已知直线平行,说法(1)错误;(2)相等的两个角不一定是对顶角,对顶角是在两直线相交的前提条件下形成的,故说法(2)错误;(3)直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,点到直线的距离是一个长度,而不是一个图形,故说法(3)错误;(4)同一平面内,不相交的两条直线叫做平行线,故说法(4)错误;(5)同一平面内,垂直于同一条直线的两条直线平行,故说法(5)错误.故说法正确的有0个.故选:A .【点睛】本题主要考查了相交线与平行线的一些基本概念,解题时注意:对顶角是相对于两个角而言,是指两个角的一种位置关系;点到直线的距离只能量出或求出,而不能说画出;平行公理中要准确理解“有且只有”的含义.8.D【解析】【分析】利用平行线的判定定理,逐一判断.【详解】解:A、∠∠2+∠A=180°,∠AB∠DF(同旁内角互补,两直线平行);B、∠∠A=∠3,∠AB∠DF(同位角相等,两直线平行);C、∠∠1=∠4,∠AB∠DF(内错角相等,两直线平行).D、∠1A∠=∠,∠//AC ED(同位角相等,两直线平行);故选:D.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.9.A【解析】【分析】利用完全平方公式和整体代入,用多项式乘多项式法则求解即可.【详解】解:令n-2020=a,2021-n=b,根据题意得:a2+b2=3,a+b=1,∠原式=ab=()222 ()2a b a b +-+=13 2 -=-1.故选:A.这道题考查的是完全平方公式和多项式乘多项式,熟记完全平方公式和多项式乘多项式法则是解题的基础.10.D【解析】【详解】解:A .由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B .∠乙先出发,0.5小时,两车相距(100﹣70)km ,∠乙车的速度为:60km/h ,故乙行驶全程所用时间为:10060=213(小时), 由最后时间为1.75小时,可得乙先到到达A 地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h ),故B 选项正确,不合题意; C .由以上所求可得,甲出发0.5小时后行驶距离为:40km ,乙车行驶的距离为:60km ,40+60=100,故两车相遇,故C 选项正确,不合题意;D .由以上所求可得,乙到A 地比甲到B 地早:1.75﹣211312=,(小时),故此选项错误,符合题意.故选:D .11.6424x y z【解析】【分析】根据积的乘方的运算性质计算即可.【详解】解:()2322xy z -=223222264()()(2)4x y z x y z ⋅⋅⋅-=, 故答案为:6424x y z【点睛】此题考查了积的乘方的运算性质:积的乘方,就是把积中的每一个因式分别乘方,再把所得的积相乘.掌握此运算性质是解答此题的关键.12.0【解析】∠a+b=1.5,ab=﹣1,∠(a﹣2)(b﹣2)=ab﹣2a﹣2b+4=ab﹣2(a+b)+4=-1-3+4=0.故答案为:013.125【解析】【分析】首先过点E作EM∠AB,过点F作FN∠AB,由AB∠CD,即可得EM∠AB∠CD∠FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF 平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两只线平行,内错角相等,即可求得∠BFD的度数.【详解】过点E作EM∠AB,过点F作FN∠AB,∠AB∠CD,∠EM∠AB∠CD∠FN,∠∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∠∠ABE+∠BED+∠CDE=360°,∠∠BED=110°,∠∠ABE+∠CDE=250°,∠BF平分∠ABE,DF平分∠CDE,∠∠ABF=12∠ABE,∠CDF=12∠CDE,∠∠ABF+∠CDF=12(∠ABE+∠CDE)=125°,∠∠DFN=∠CDF ,∠BFN=∠ABF ,∠∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故答案为125°【点睛】此题考查了平行线的性质与角平分线的定义.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.14.130【解析】【分析】根据三角形的内角和是180︒,得:18080100ABC ACB ∠+∠=︒-︒=︒;又O 为三条角平分线的交点,得:11110050222∠+∠=∠+∠=⨯︒=︒OBC OCB ABC ACB ;再根据三角形的内角和定理,得:130BOC ∠=︒.【详解】解:如图:在ABC ∆中,80BAC ∠=︒,18080100ABC ACB ∴∠+∠=︒-︒=︒.又O 为三条角平分线的交点11110050222OBC OCB ABC ACB ∴∠+∠=∠+∠=⨯︒=︒. 在三角形OBC 中,180()130BOC OBC OCB ∠=︒-∠+∠=︒,故答案为:130.【点睛】 本题考查了角平分线的概念以及掌握三角形的内角和定理,解题的关键是注意公式的总结:1902BOC A ∠=+∠︒. 15.7【分析】首先将已知2310x x --=转化为x 2-3x=1,再将x 3-x 2-7x+5通过提取公因式转化为含有因式x 2-3x 的形式,将x 2-3x 做为一个整体逐步代入,即实现了降次,又得到了所求值.【详解】∠2310x x --=∠x 2-3x=1x 3-x 2-7x+5=x (x 2-3x )+2x 2-7x+5=2x 2-6x+5=2(x 2-3x )+5=2+5=7故答案为7.【点睛】本题考查因式分解的应用.解决本题的关键是将2310x x --=转化为x 2-3x=1,再将x 2-3x 做为一个整体逐步代入x 3-x 2-7x+5的变形.16.±2【解析】【分析】已知两等式相加减求出a 2+b 2与ab 的值,利用完全平方公式求解即可.【详解】解:∠a 2+ab+b 2=7∠,a 2-ab+b 2=5∠,∠∠+∠得:2(a 2+b 2)=12,即a 2+b 2=6,∠-∠得:2ab=2,即ab=1,∠()22224a b a ab b -=-+=,∠2a b -=±故答案为:±2【点睛】此题考查了完全平方公式的变形求值,熟练掌握完全平方公式是解本题的关键. 17.50°或130°##130°或50°【解析】【分析】作出图形,根据两边互相平行的两个角相等或互补解答.解:如图1,∠∠1与∠2的两边分别平行,∠2=50°,∠∠1=∠2=∠3=50°,如图2,∠∠1与∠2的两边分别平行,∠2=50°,∠∠3=∠2=50°,∠1=180°−∠3=180°−50°=130°,综上所述,∠2的度数等于50°或130°.故答案为:50°或130°【点睛】本题考查的是平行线的性质,即两直线平行,同位角相等;同旁内角互补,掌握平行线的性质,分类讨论是解题的关键.18.42cm或18cm【解析】【分析】先根据三角形中线的定义可得BD=CD,再求出AD把∠ABC周长分为的两部分的差等于|AB -AC|,然后分AB >AC ,AB <AC 两种情况分别列式计算即可得解.【详解】∠AD 是∠ABC 中线,∠BD=CD .∠AD 是两个三角形的公共边,两个三角形的周长差是12cm ,∠如果AB >AC ,那么AB -AC=12cm ,即AB -30=12cm∠AB=42cm ;如果AB <AC ,那么AC -AB=12cm ,即30-AB=12cmAB=18cm .综上所述:AB 的长为42cm 或18cm .故答案为:42cm 或18cm .【点睛】考查了三角形的中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线. 19.(1)6b (2)3794-【解析】【分析】(1)根据单项式的乘除混合运算进行求解即可,(2)根据零次幂、负整数指数幂,有理数的乘方,有理数的混合运算进行计算即可.(1)()3235311932a b a b a b ⎛⎫⎛⎫⋅-÷- ⎪ ⎪⎝⎭⎝⎭3251331923a b +-+-=⨯⨯=6b(2)2020********( 3.14)4(0.25)1433π-⎛⎫-+⨯---÷⨯- ⎪⎝⎭ ()2019140.250.25339=+⨯⨯-⨯⨯11814=+- 3794=- 【点睛】本题考查了单项式的乘除,零次幂、负整数指数幂,有理数的乘方,有理数的混合运算,正确的计算是解题的关键.20.同位角相等,两直线平行;两直线平行,同旁内角互补;对顶角相等;等量代换.【解析】【分析】先判定a∠b ,即可得出∠3+∠5=180°,再根据对顶角相等,即可得到∠4=∠5,进而得出∠3+∠4=180°.【详解】证明:∠∠1=∠2(已知)∠a∠b (同位角相等,两直线平行)∠∠3+∠5=180° (两直线平行,同旁内角互补)又∠∠4=∠5(对顶角相等)∠∠3+∠4=180°(等量代换)故答案为:同位角相等,两直线平行;两直线平行,同旁内角互补;对顶角相等;等量代换.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.224832x y y -+,-36【解析】【分析】 先由26910x x y -+++=推出()2310x y -++=即可求出3x =,1y =-,然后利用分解因式的方法化简,最后代值计算即可.【详解】解:∠26910x x y -+++=,∠()2310x y -++=,∠()230x -≥,10y +≥,∠30x -=,10y +=,∠3x =,1y =-,()2222(2)(2)(2)4(2)x y x y x y x y x y +---++()()()()()2222224x y x y x y x y x y ⎡⎤=+-+--+⎣⎦ ()()222222444x y x y x y =----()22248x y y =--⋅224832x y y =-+, 当3x =,1y =-时,原式()()24283132136=-⨯⨯-+⨯-=-.【点睛】本题主要考查了非负数的性质,整式的混合计算和代数式求值,熟知整式的混合计算法则是解题的关键.22.16【解析】【分析】根据整式的运算法则进行化简,使得3x 项和2x 项的系数为0即可求出,m n 的值,进而代入的算式求解即可【详解】解:()()322x mx n x x +++- 543322222x x x mx mx mx nx nx n =+-+-+++-()()5432222x x m x m n x mx nx n ++=+-+-+-由于展开式中不含3x 项和2x 项,20,0m m n ∴-=+=解得2,2m n ==-∴()22()m n m mn n -++()()22222222⎡⎤=--⨯-⨯+-⎡⎤⎣⎦⎣⎦16=【点睛】本题考查了整式的乘法运算,代数式求值,掌握整式的运算法则是解题的关键. 23.(1)AFG ∠=50°(2)∠ACB =80°【解析】【分析】(1)先根据BC∠EG 得出∠E =∠1=50°,再由AF∠DE 可知∠AFG =∠E =50°; (2)作AM∠BC ,由平行线的传递性可知AM∠EG ,故∠FAM =∠AFG ,再根据AM∠BC 可知∠QAM =∠Q ,故∠FAQ =∠FAM +∠QAM ,再根据AQ 平分∠FAC 可知∠MAC =∠QAC +∠QAM =80°,根据AM∠BC 即可得出结论.(1)∠BC∠EG ,∠∠E =∠1=50°.∠AF∠DE ,∠∠AFG =∠E =50°;(2)作AM∠BC ,∠BC∠EG ,∠AM∠EG ,∠∠FAM =∠AFG =50°.∠AM∠BC ,∠∠QAM =∠Q =15°,∠∠FAQ =∠FAM +∠QAM =65°.∠AQ 平分∠FAC ,∠∠QAC =∠FAQ =65°,∠∠MAC =∠QAC +∠QAM =80°.∠AM∠BC ,∠∠ACB =∠MAC =80°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.熟记平行线的各种性质是解题的关键.24.(1)32- (2)3±(3)当13x =时,题中代数式有最小值329- 【解析】【分析】(1)理解题意,根据题意的运算对式子进行求解即可;(2)理解题意,根据题意的运算对式子进行化简,再根据完全平方公式即可求解; (3)理解题意,根据题意的运算对式子进行化简,利用平方的非负性求解即可.(1)解:由题意得()()41323113642⎡⎤=⨯-⨯÷-+=-÷=-⎣⎦, 故答案为:32-; (2)解:由题意得()2232x y kxy =++, ∠()2232x y kxy ++是一个完全平方式,∠223kxy y x =±⨯⋅,∠3k =±,故答案为:3±;(3) 解:由题意得()()()()2323212323x x x x ⎡⎤=-+⋅-+-+⎣⎦ ()229436249x x x x =--+--+2294345x x x =----2649x x =--221269393x x ⎛⎫=-+-- ⎪⎝⎭ 2129633x ⎛⎫=-- ⎪⎝⎭, ∠2103x ⎛⎫-≥ ⎪⎝⎭, ∠2129296333x ⎛⎫--≥- ⎪⎝⎭, ∠当13x =时,代数式 的最小值为329-. 【点睛】本题主要考查了完全平方式,含乘方的有理数混合计算,整式的混合计算,熟知完全平方公式是解题的关键.25.(1)轿车到达乙地时,货车与甲地的距离为270千米(2)轿车出发2.4追上货车(3)在轿车行进过程中,轿车行驶2.1小时或2.7小时时,两车相距15千米【解析】【分析】(1)根据函数图象中的数据,可以得到货车的速度和轿车到达乙地的时间,然后即可计算出轿车到达乙地时,货车与甲地的距离;(2)根据函数图象中的数据,可以得到线段CD和线段OA对应的函数表达式,根据相遇时路程相等列方程即可;(3)根据题意和函数图象中的数据,可以判断两车相距15千米时,在CD段,则|60x−(110x−195)|=15,解方程即可.(1)解:根据图象可知,货车的速度为:300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是:60×4.5=270(千米),答:轿车到达乙地时,货车与甲地的距离为270千米(2)设线段CD对应的函数表达式是y=kx+b,∠点C(2.5,80),点D(4.5,300),∠2.580 4.5300k bk b+=⎧⎨+=⎩,解得:110195kb=⎧⎨=-⎩,∠线段CD对应的函数表达式是y=110x−195,由图象可得:线段OA对应的函数表达式是y=60x,则60x=110x−195,解得:x=3.9.3.9−1.5=2.4,答:轿车出发2.4追上货车(3)当轿车行驶到点C 时,两车相距60×2.5−80=150−80=70(千米),∠两车相距15千米时,在CD 段,则|60x−(110x−195)|=15,解得x =3.6或x =4.2,∠轿车比货车晚出发1.5小时,∠3.6−1.5=2.1(小时),4.2−1.5=2.7(小时),答:在轿车行进过程中,轿车行驶2.1小时或2.7小时时,两车相距15千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.26.(1)∠40°;∠60°;(2)60°或15°.【解析】【分析】(1)∠根据平行线的性质可知080ECQ ∠=,再结合角平分线的性质可求得1122PCG PCF FCG QCF FCE ∠=∠+∠=∠+∠,进而求解即可. ∠根据平行线性质可得QCG EGC ∠=∠,结合已知条件040EGC ECG ∠-∠=且QCG ECG ECQ ∠+∠=∠可求得020EGC GCF FCP ∠=∠=∠=,根据平行线性质进而可求得060CPQ ECP EGC GCF FCP ∠=∠=∠+∠+∠=.(2)根据已知条件设3,2EGC x EFC x ∠=∠=,则GCF x ∠=,分∠当点G F 、在点E 的右侧时∠当点G F 、在点E 的左侧时两种情况,结合已知条件进行求解即可.【详解】(1)∠∠0100CEB ∠=,//AB CD ,∠080ECQ ∠=,∠PCF PCQ ∠=∠,CG 平分ECF ∠, ∠1122PCG PCF FCG QCF FCE ∠=∠+∠=∠+∠ 01402ECQ =∠=∠∠//AB CD∠QCG EGC ∠=∠,080QCG ECG ECQ ∠+∠=∠=,∠080EGC ECG ∠+∠=又∠040EGC ECG ∠-∠=,∠0060,20EGC ECG ∠=∠=∠020ECG GCF ∠=∠=()00018040202PCF PCQ ∠=∠=-=∠//PQ CE∠060CPQ ECP ∠=∠=(2)设3,2EGC x EFC x ∠=∠=,则GCF x ∠=,∠当点G F 、在点E 的右侧时,则ECG PCF PCD x ∠=∠=∠=,∠080ECD ∠=,∠0480x =,解得020x =,∠0360CPQ x ∠==∠当点G F 、在点E 的左侧时,则ECG GCF x ∠=∠=,∠01803CGF x ∠=-,080GCQ x ∠=+,∠00180380x x -=+,解得025x =,∠0005080130FCQ ECF ECQ ∠=∠+∠=+= ∠01652PCQ FCQ ∠=∠= ∠000655015CPQ ECP ∠=∠=-=【点睛】此题主要考查平行线的性质和角平分线的性质,解题在于熟练掌握平行线和角平分线的性质运用以及分情况讨论问题.。

北师大版七年级下册数学《期中考试试题》及答案

北师大版七年级下册数学《期中考试试题》及答案
因为∠AED=∠C(已知)
所以DE∥BC()
所以∠B+∠BDE=180°()
因为∠DEF=∠B(已知)
所以∠DEF+∠BDE=180°()
所以___∥___()
所以∠1=∠2().
23.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.
(1)如图1,连接CE,
A. y=8.2xB. y=100-8.2xC. y=8.2x-100D. y=100+8.2x
8.如图,由∠1=∠2,则可得出()
A.AB∥CDB.AD∥BCC.A D∥BC且AB∥CDD.∠3=∠4
9.已知一个长方形的长为a,宽为b,它的面积为6,周长为10,则a2+b2的值为( )
A 37B. 30C. 25D. 13
10.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()
A B. C. D.
11.如图,AD是△ABC的中线,△ABC的面积为10cm2,则△ABD的面积是()cm2.
A.5B.6C.7D.8
12.如图①,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图像如图②所示,则当x=9时,点R应运动到( )
[详解]解:∵骆驼的体此题考查常量和变量问题,函数的定义:设x和y是两个变量,若对于每个值x的每个值,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,x是自变量.
3.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()
6.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()

北师大版七年级第二学期期中测试数学试卷-带参考答案

北师大版七年级第二学期期中测试数学试卷-带参考答案

北师大版七年级第二学期期中测试数学试卷-带参考答案一、选择题(每题3分,共30分 ) 1.下列各式不是方程的是( )A .x 2+x =0B .x +y =0C.1x +xD .x =02.若a >b >0,则下列不等式一定成立的是( )A .a -1<b -1B .-a >-bC .a +b >2bD .|a |<|b |3.解一元一次方程12(x +1)=-13x 时,去分母正确的是( )A .3(x +1)=2xB .3(x +1)=xC .x +1=2xD .3(x +1)=-2x4.一个不等式的解集在数轴上表示如图,则这个不等式可以是( )(第4题)A .x +3>0B .x -3<0C .2x ≥6D .3-x <05.利用代入法解方程组⎩⎨⎧y =2x +1①,x -y =-1②,将①代入②得( )A .x -2x +1=-1B .x +2x -1=-1C .x -2x -1=-1D .x +2x +1=-16.关于x 的方程3x +5=0与3x =1-3m 的解相同,则m 等于( )A .-2B .2C .-43D.437.在等式y =kx +b 中,当x =1时,y =-2;当x =-1时,y =-4.则2k +b 的值为( ) A .1B .-1C .-2D .-38.8个一样大小的小长方形恰好可以拼成一个大的长方形,如图甲所示,若拼成如图乙所示的正方形,中间还留下一个洞,恰好是边长为2厘米的小正方形.设一个小长方形的长为x 厘米,宽为y 厘米,则所列二元一次方程组正确的是( )(第8题)A.⎩⎨⎧3x =5y 2y =x +2B.⎩⎨⎧5x =3y 2x =y +2C.⎩⎨⎧3x =5y 2x =y +2D.⎩⎨⎧5x =3y 2y =x +29.甲、乙两车从A 地出发到B 地,甲比乙早行驶1 h ,比乙晚到2 h ,甲全程用时6 h ,则从乙出发到甲、乙两车相遇用时( ) A .1 hB .1.5 hC .2 hD .2.5 h10.已知关于x 的不等式组⎩⎨⎧x -a ≥2,2-3x >-7的整数解有5个,则a 的取值范围是( )A .-5≤a ≤-4B .-5<a ≤-4C .-5<a <-4D .-5≤a <-4二、填空题(每题3分,共15分)11.x 的平方与y 的平方的和一定是非负数,用不等式表示为________. 12.若(m +1)x |m |>2是关于x 的一元一次不等式,则m =______.13.若x ,y 满足二元一次方程组⎩⎨⎧x +2y =3,2x +y =3,则x 与y 的关系是________(写出一种关系即可).14.若方程x +y =3,x -y =1和x +2my =0有公共解,则m 的值为________. 15.已知5只碗摞起来的高度是13 cm ,9只碗摞起来的高度是20 cm ,若一摞碗的高度不超过30 cm ,最多能摞______只碗. 三、解答题(共75分)16.(8分)(1)解方程:x +2x +16=1-2x -13;(2)解方程组:⎩⎨⎧8x +5y =2,①4x -3y =-10.②第 3 页 共 9 页17.(9分)阅读下面解题过程,再解题.已知a >b ,试比较-2 024a +1与-2 024b +1的大小. 解:因为a >b ①所以-2 024a >-2 024b ② 故-2 024a +1>-2 024b +1③.(1)上述解题过程中,从第________步开始出现错误; (2)错误的原因是什么? (3)请写出正确的解题过程.18.(8分)解下列不等式(组): (1)3(4x +2)>4(2x -1);(2)⎩⎪⎨⎪⎧3x +6≥5(x -2),①x -52-4x -33<1.②19.(9分)某食品厂元宵节前要生产一批元宵礼袋,每袋中装4颗大元宵和8颗小元宵.生产一颗大元宵要用肉馅15 g,一颗小元宵要用肉馅10 g.现共有肉馅2 100 kg.(1)假设肉馅全部用完,生产两种元宵应各用多少肉馅,才能使生产出的元宵刚好配套装袋?(2)最多能生产多少袋元宵?20.(9分)一个两位数,个位上的数字与十位上的数字之和为6,把这个两位数加上18后,比十位数字大56,请利用二元一次方程组求这个两位数.21.(10分)如图,直线l上有A,B两点,AB=18 cm,O是线段AB上的一点,OA=2OB.(1)OA=________cm,OB=________cm.(2)若动点P,Q分别从点A,B同时出发,向右运动,点P的速度为2 cm/s,点Q的速度为1 cm/s.设运动时间为t s.当t为何值时,2OP-OQ=3 cm?(第21题)22.(10分)读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.某校为提高学生的阅读品味,现决定购买获得茅盾文学奖的甲,乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元;购买3本甲种书和2本乙种书共需165元.(1)求甲,乙两种书的单价分别为多少元;(2)若学校决定购买以上两种书的总费用不超过3 200元,那么该校最多可以购买甲种书多少本?23.(12分)阅读材料:第 5 页共9 页我们把关于x ,y 的两个二元一次方程x +ky =b 与kx +y =b (k ≠1)叫做互为共轭二元一次方程,像x +4y =5与4x +y =5这样的方程是互为共轭二元一次方程;像二元一次方程组⎩⎨⎧x +4y =5,4x +y =5这样由互为共轭二元一次方程组成的方程组叫做共轭二元一次方程组.(1)若关于x ,y 的方程组⎩⎨⎧x +2y =b +2,()1-a x +y =3为共轭二元一次方程组,则a =________,b =________.(2)解共轭二元一次方程组:⎩⎨⎧x +4y =5①,4x +y =5②.解:①+②,得x +y =2③.①-③,得y =1.②-③,得x =1. 所以⎩⎨⎧x =1,y =1是方程组的解.仿照上面方程组的解法解方程组:⎩⎨⎧y -3x =6①,x -3y =6②;(3)发现:若共轭二元一次方程组⎩⎨⎧x +ky =b ,kx +y =b 的解是⎩⎨⎧x =m ,y =n ,则m ,n 之间的数量关系是________.第 7 页 共 9 页答案一、1.C 2.C 3.D 4.B 5.C 6.B 7.B 8.A 9.A 10.B二、11.x 2+y 2≥012.1 易错点睛:易忽略x 的系数不为0而致错. 13.x +y =2(答案不唯一)14.-1 点拨:根据题意,得⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.将⎩⎨⎧x =2,y =1代入x +2my =0,解得m =-1. 15.14 点拨:设一只碗的高度是x cm ,每摞起来一只碗增加y cm ,则⎩⎨⎧x +(5-1)y =13,x +(9-1)y =20,解得⎩⎪⎨⎪⎧x =6,y =74.设能摞m 只碗,所以6+74(m -1)≤30,m ≤1457,所以最多能摞14只碗.三、16.解:(1)去分母,得6x +(2x +1)=6-2(2x -1) 去括号,得6x +2x +1=6-4x +2 移项,得6x +2x +4x =6+2-1 合并同类项,得12x =7 系数化为1,得x =712.(2)①-②×2,得11y =22,解得y =2 把y =2代入①,得8x +10=2,解得x =-1 故方程组的解为⎩⎨⎧x =-1,y =2.17.解:(1)②(2)错误的原因是不等式的两边都乘以-2 024,不等号的方向没有改变. (3)因为a >b ,所以-2 024a <-2 024b 所以-2 024a +1<-2 024b +1. 18.解:(1)3(4x +2)>4(2x -1)12x +6>8x -4,12x -8x >-4-6,4x >-10. x >-2.5.(2)解不等式①,得x ≤8,解不等式②,得x >-3 所以不等式组的解集是-3<x ≤8.19.解:(1)设生产大元宵要用肉馅x kg ,根据题意,得8×1 000x15=4×1 000(2 100-x )10.解得x =900.所以小元宵要用肉馅2 100-900=1 200(kg).答:大元宵和小元宵分别用900 kg ,1 200 kg 肉馅,才能使生产出的元宵刚好配套装袋.(2)设能生产m 袋元宵,根据题意,得(4×15+8×10)m ≤2 100×1 000,解得m ≤15 000 所以m 可取的最大值为15 000. 答:最多能生产15 000袋元宵.20.解:设这个两位数的十位数字为x ,个位数字为y 依题意得⎩⎨⎧x +y =6,10x +y +18=x +56.解得⎩⎨⎧x =4,y =2.答:这个两位数为42. 21.解:(1)12;6(2)当点P 在点O 左侧时,2OP -OQ =3 cm 即2(12-2t )-(6+t )=3,解得t =3. 当点P 在点O 右侧时,2OP -OQ =3 cm 即2(2t -12)-(6+t )=3,解得t =11. 所以当t 为3或11时,2OP -OQ =3 cm.22.解:(1)设甲种书的单价是x 元,乙种书的单价是y 元,根据题意,得⎩⎨⎧2x +y =100,3x +2y =165,解得⎩⎨⎧x =35,y =30.答:甲种书的单价是35元,乙种书的单价是30元.(2)设该校购买甲种书m 本,则购买乙种书(100-m )本,根据题意,得35m +30(100-m )≤3 200第 9 页 共 9 页 解得m ≤40,所以m 的最大值为40. 答:该校最多可以购买甲种书40本. 23.解:(1)-1;1(2)①+②,得-x -y =6③.①+③,得-4x =12,所以x =-3.②+③,得-4y =12 所以y =-3,所以方程组的解为⎩⎨⎧x =-3,y =-3.(3)m =n。

北师大版七年级下册数学期中考试卷(加答案)

北师大版七年级下册数学期中考试卷(加答案)

北师大版七年级下册数学期中考试卷(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5 4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.绝对值不大于4.5的所有整数的和为________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4+x x -有意义,+1x =___________.5.若264a =,则3a =________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩2.解不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩并在数轴上表示出不等式组的解集.3.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.4.如图,已知∠1,∠2互为补角,且∠3=∠B ,(1)求证:∠AFE=∠ACB(2)若CE 平分∠ACB ,且∠1=80°,∠3=45°,求∠AFE 的度数.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、A4、C5、C6、C7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、03、15°4、15、±26、±3三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、-1≤x<23、(1)证明见解析;(2)75.4、(1)详略;(2)70°.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、安排25人加工甲部件,则安排60人加工乙部件,共加工200套.。

北师大版七年级下册数学期中测试测试卷及答案共6套

北师大版七年级下册数学期中测试测试卷及答案共6套

七年级数学期中考试试题一、精心选一选,请把唯一正确的答案填在下面表格内.(每小题3分,共30分)1、若∠1=30°,则∠1的余角等于()A、160°B、150°C、70°D、60°2、计算2x2·(-3x2)的结果是()A、-6x5B、6x5C、-2x5D、2x63、下列各式计算正确的是()A. (xy2)3=xy6B.(3ab)2=6a2b2C.(-2x2)2=-4x4D.(a2b3)m=a2m b3m4、当一个圆锥的底面半径变为原来的2倍,高变为原来的时,它的体积变为原来的()A.B.C.D.5、如图,不能推出a∥b的条件是()A、∠1=∠3B、∠2=∠4C、∠2=∠3D、∠2+∠3=180°第5题图第6题图6、如图,已知B、C、E在同一直线上,且CD‖AB,若∠A=105°,∠B=40°,则∠ACE=()A、145°B、105°C、40°D、35°7、下列说法错误的共有()个.①内错角相等,两直线平行.②两直线平行,同旁内角互补.③相等的角是对顶角.④两条直线被第三条直线所截,同位角相等.⑤等角的补角相等.A、0B、1C、2D、38、下列能用平方差公式计算的是()A、(a+1)(1+a )B、(a+b)(b-a)C、(-x+y)(x-y)D、(x2-y)(x+y2)9、小明家有一本200页的故事书,已知他每小时能看50页,星期天上午小明先看了故事书的一半后又做了一个小时的作业,然后他才继续看完这本书.下列能体现这本书剩下的页数y(页)与时间t(时)之间关系的是()A、B、C、D、10、对于任意正整数n,按下列程序计算下去,得到的结果是()A、随n的变化而变化B、不变,总是0C、不变,定值为1D、不变,定值为2二、细心填一填.(每小题3分,共15分)11、若4x2+axy+y2是一个完全平方式,则a=12、“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,_____随______变化而变化,其中自变量是______,因变量是______.13、如图,已知直角形线a∥b,c∥d,∠1=115°,则∠2=,∠3=14、如图,DE∥BC,BE平分∠ABC,若∠ADE=80°,∠1=15、△ABC的底边BC长为l2cm,它的面积随BC边上的高度变化而变化,则面积S(cm2)与BC边上高度x(cm)的关系式是_________,当x=20时,S= _________.第13题图第14题图三、用心做一做.(每小题6分,共24分)16、|-3|+2-1-2008°17、(0.2x-0.3)(0.2x+0.3)18、(7ab+2)219、(x-2)(x+2)-(x+1)(x-3)四、沉着冷静、缜密思考.(每小题7分,共14分)20、先化简,再求值:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1.21、如图,以点B为顶点,射线BC为一边,利用尺规作∠EBC,使得∠EBC=∠A.五、满怀信心,再接再厉.(第22,23,24每小题9分,第25题10分共37分)22、已知a+b=5,ab=6,求下列各式的值.(1)a2+b2(2)a2-ab+b223、如图,∠1=∠ABC,∠2+∠D=180°,EF与CD平行吗?AB与CD平行吗?说明理由.24、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车在凌晨12点同时出发,相遇后快车继续行驶,中午12点到达丙地,两车之间的距离为y(km),图中的折线表示两车之间的距离y(km)与时间x(时)之间的关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为_________km;(2)两车之间的最大距离是多少?是在什么时候?(3)从一开始两车相距900km到两车再次相距900km,共用了多长时间?(4)你能不能再找到一个实际情况,大致符合上图所刻画的关系?(去掉数字和单位)25、一个梯形,它的下底比上底长2cm,它的高为3cm,设它的上底长为xcm,它的面积为y cm2.(1)写出y与x之间的关系式,并指出哪个变量是自变量,哪个变量是因变量.(2)当x由5cm变到7cm时,y如何变化?(3)用表格表示当x从3cm变到10cm时(每次增加1cm),y的相应值.(4)当x每增加1cm时,y如何变化?说明理由.(5)这个梯形的面积能等于9cm2吗?能等于2cm2吗?为什么?七年级数学期中考试试题参考答案一、1-5: D A D C C 6-10: A B B B C二、11.±412.16或1713.115°65°14.40°15.BD=DB三、16. 2.517.0.04x2-0.0918. 49a2b2+14ab+4 19. 2x-1四、20. 4a2-2ab,1221. 略五、22.(1)13(2)723.解(1)EF∥CD,理由:∵∠2+∠D=180°∴EF‖CD(同旁内角互补,两直线平行)(2)AB∥CD,理由:∵∠1=∠ABC∴AB‖CD(同位角相等,两直线平行)24.解:(1)甲乙两地相距900km;(2)相遇后快车继续行驶,两车之间的距离越来越大,由D点坐标可确定两车之间的最大距离为1200km,时间是中午12点;(3)由于点A、点C对应的两车间的距离都是900km,从一开始两车相距900km到在此相距900km,共用了8小时;(4)比如一辆汽车刹车时逐渐停止,然后又开始行驶.25.解:(1)y=3x+3,x是自变量,y是因变量;(2)当x由5cm变到7cm时,y由18到24;(3)如图:(4)每增加1cm时,y增加3cm,理由3(x+1)+3﹣[3x+3]=3(5)面积能等于9cm2面积不能等于2cm2北师版七年级下学期期中模拟卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(2019秋•连江县期中)若(a﹣1)0=1,则()A.a=1B.a≠1C.a=0D.a≥12.(2019秋•覃塘区期中)下列式子中计算结果与(﹣m)2相同的是()A.(m﹣1)2B.m2×m﹣4C.m2÷m4D.m﹣2÷m﹣4 3.(2019春•西湖区校级期中)如图,∠B的内错角是()A.∠1B.∠2C.∠3D.∠44.(2019春•思明区校级期中)如图,下列条件能判定AD∥BC的是()A.∠C=∠CBE B.∠FDC=∠CC.∠FDC=∠A D.∠C+∠ABC=180°5.(2019秋•卧龙区期中)小明做题一向比较粗心,下面四个题他只做对了一道,他做对的那道题是()A.x4+x4=x8B.a2•a4=a8C.﹣a7•a5=﹣a12D.(2x2y3)2=﹣2x5y66.(2019秋•忻城县期中)如图,直线AB∥CD,∠D=75°,∠B=30°,则∠E的度数是()A.30°B.45°C.55°D.70°7.(2019秋•历下区期中)下列选项中与所给的函数表格对应的函数图象是()x…﹣2﹣101…y…﹣3﹣2﹣10…A.B.C.D.8.(2019秋•卧龙区期中)一个长方体的长为(a+2)cm,宽为(a+l)cm,高为(a﹣1)cm,则它的表面积为()cm2.A.3a2+4a﹣1B.6a2+8a﹣2C.6a+4D.3a+29.(2019春•高新区校级期中)健走活动中先以均匀的速度走完了规定路程,休息了一段时间后加快速度走完剩余的路程.设“佩奇小组”健走的时间为x,健走的路程为y,如图所示的能反映y与x的函数关系的大致图象是()A.B.C.D.10.(2019春•太原期中)为了给居民创造舒适的居住环境,某物业请绿化队对小区的部分场所进行绿化,在绿化的过程中体息了一段时间,已知绿化面积S(m2)与工作时间t(h)的关系图象如图所示,则绿化队平均每小时绿化的面积为()A.100m2B.80m2C.50m2D.40m2第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(2019春•黄石港区校级期中)如图,把小河里的水引到田地C处,作CD垂直于河岸,沿CD挖水沟,则水沟最短,其理论依据是12.(2019秋•新野县期中)计算的结果是.13.(2019秋•覃塘区期中)计算:(﹣2)﹣2+(﹣2)﹣1﹣(﹣)0=.14.(2019秋•长宁区期中)如果二次三项式x2+mx+1是完全平方式,那么常数m=.15.(2019春•武汉期中)已知∠A的两边与∠B的两边分别平行,且∠A的度数比∠B度数的2倍少18°,则∠A的度数为.16.(2019春•武汉期中)如图,AB∥CD,∠B=48°,∠D=29°,则∠BED=°.17.(2019春•海淀区校级期中)某复印社的收费y元)与复印页数x(页)的关系如下表,则y 与x的关系式为.x1002004001000…y4080160400…18.(2019春•张掖期中)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的关系图象,则小明回家的速度是每分钟步行米.评卷人得分三.解答题(共5小题,满分46分)19.(12分)(2019秋•眉山期中)计算:(1)(9x2﹣12x3)÷(﹣3x)2(2)(3x+1)(2x﹣1)﹣2x(x﹣1)(3)(﹣a)2•a+a4÷(﹣a)(4)()1999×42010﹣(﹣0.125)2010×(22010)320.(8分)(2019秋•兰考县期中)先化简,再求值(1)(3x4﹣2x3)÷(﹣x)﹣(x﹣x2)•3x,其中x=﹣.(2)(x+y)(x﹣y)﹣(4x3y﹣8xy3)÷2xy,其中x=1,y=﹣3.21.(5分)(2019秋•庐江县期中)如图,已知AB∥CD,∠C=125°,A=45°,求∠E的度数,22.(9分)(2019春•武汉期中)如图已知AB∥CD,P为直线AB,CD外一点,BF平分∠ABP,DE平分∠CDP,BF的反向延长线交DE于点E.(1)∠ABP,∠P和∠PDC的数量关系为;(2)若∠BPD=80°,求∠BED的度数;(3)∠P与∠E的数量关系为.23.(12分)(2019春•永登县期中)张华上午8点骑自行车外出办事,如图表示他离家的距离S (千米)与所用时间(小时)之间的函数图象.根据这个图象回答下列问题:(1)在这个过程中自变量、因变量各指什么?(2)张华何时体息?休息了多少时间?这时离家多远?(3)他何时到达目的地?在那里逗留了多长时间?目的地离家多远?(4)他何时返回?何时到家?返回的平均速度是多少?七年级下学期数学期中试题第I卷一、选择题(每题3分,共36分)1. 下列运算正确的是()A.aaa=-23B.632aaa=⋅C.326()a a D.()3393aa= 2.已知,5,3==ba xx则=-bax23()A.2725B.910C.35D.153.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.–3B.3C.0D.14.已知9242++kxx是完全平方式,则k的值为()A.6 B.6±C.-6 D.9±5.下列说法中正确的有()①等角的余角相等;②两直线平行,同旁内角相等;③相等的角是对顶角;④同位角相等;⑤直角三角形中两锐角互余.A.1个B.2个C.3个D.4个6.如图,点E在BC的延长线上,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠2C.∠B=∠DCE D.∠D+∠DAB=180°7. 如图,已知AB∥CD,∠A=70°,则∠1的度数是()A.70° B.100° C.110° D.130°8.生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm.这个数量用科学记数法可表示为()A.2×10-6B.2×10-7 C.2×10-8D.2×10-99.下列语句:错误的个数是()①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相等的两三角形全等A.4个B.3个C.2个D.1个10.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且AP为∠BAC的角平分线,则△APD与△APE全等的理由是()A.SAS B.AAS C.SSS D.ASA第10题图第11题图第12题图11.如图,△ABD≌△CDB,且AB和CD是对应边,下列结论不正确的是( ) A.△ABD和△CDB面积相等B.△ABD和△CDB周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC且AD=BC12.如图,已知AC=DB,AO=DO,CD=100m,则A,B两点的距离是()A.大于100m B.等于100m C.小于100m D.无法确定第II卷二、填空题(每题2,共20分)11.若16×32=2n,则n=________.12. 2012201253()(2)135-⨯-=_______.13.若622=-nm,且3=-nm,则=+nm.14.若如果一个三角形三条高的交点在三角形的一个顶点上,那么这个三角形是________三角形.15.等腰三角形两条边长为5cm和7cm,则周长为__________.16.已知:如图,OC⊥AB,OD⊥OE,则与∠AOD互余的角是____________.第16题图第17题图EDCO BA17. 如图,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,只要加上∠__ =∠____ 或 ____∥_____ ,就可证明ΔABC ≌ΔDEF.18. 如图,计划把河水引到水池A 中,可以先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是________________.第 18图 第19图 第20题图19.如图,AC =BD ,要使△ABC ≌△DCB 还需知道的一个条件是______.(填一个) 20..如图,若∠1=∠2,∠C =∠D ,则△ADB ≌__________,理由_____________. 三、计算题(每题3分,共18分)(1)1201()(2)(2015)3π--+-+- (2)2201520142016-⨯(3)322(462)(2)x y x y xy xy -+÷- (4) 23243(2)(7)14a b ab a b ⋅-÷(5) 2(2)(1)(1)x x x +-+- (6) ()()x y z x y z +++-四、先化简后求值( 共4分)22(2)(2)24,xy xy x y xy ⎡⎤+--+÷⎣⎦ 其中10,25.x y ==-五、解答题(4分)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE. 证明:∵∠B+∠BCD=180°(已知),∴AB ∥CD ( ).∴∠B=∠DCE ( ). 又∵∠B=∠D (已知 ), ∴___________ ( 等量代换 ). ∴AD ∥BE(内错角相等,两直线平行) ∴∠E=∠DFE ( ).六、证明题(共3题18分)1.(6分)如图,CD ⊥AB 于D ,点F 是BC 上任意一点,FE ⊥AB 于E ,且∠1=∠2,∠3=80°.(10分)(1)试证明∠B=∠ADG(2)求∠BCA的度数.2.(6分)如图,AB=AD ,∠BAD=∠CAE,AC=AE ,求证:BC=DE3.(6分)如图,点E在AC上,∠1=∠2,∠3=∠4.BE与DE相等吗?为什么?期中考试答案一、选择题1-5 CAABB 6-10ACBBB 11-12 CB二、填空题11、9 12、1 13、2 14、直角15、17或1916、∠COD和∠EOB17、∠B ∠DEF AB DE 18、垂线段最短19、AB=CD 20、△ACB AAS三、计算题1、22、13、-2x2+3xy-14、4x+55、3x2 +5xy6、x2+y2+2xy-z2四、-xy 250五、同旁内角互补,两直线平行.两直线平行,同位角相等.∠DCE=∠D两直线平行,内错角相等.六、证明题1. (1)解:∵CD⊥AB,FE⊥AB∴∠CDE=∠DEF=90°∵∠CDE+∠DEF=180°∴DC∥EF∴∠2=∠BCD 又∵∠1=∠2∴∠1=∠BCD∴DG∥BC∴∠B=∠ADG(2) ∵DG∥BC∴∠BCA=∠3=80°2. 解:∵∠BAD=∠CAE, ∠BAC=∠BAD+∠CAD, ∠DAE=∠CAE+∠CAD ∴∠BAC=∠DAE在△ABC和△ADE中∠BAC=∠DAEAB=ADAC=AE∴△ABC≌△ADE(SAS) ∴BC=DE3. 解:在△ABC和△ADC中∠1=∠2∠3=∠4AC=AC∴△ABC≌△ADC(ASA) ∴AB=AD在△ABE和△ADE中AB=AD∠1=∠2AE=AE∴△ABE≌△ADE(SAS)∴BE=DE七年级下数学期中测试21F EDCBAG一、选择题(每小题3分,共30分) 1、下列计算正确的是( )A .B .C .D .2、下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是( ) A .5, 1, 3 B .2, 3, 4 C .3, 3, 7 D .2, 4, 23、如果两个不相等的角互为补角,那么这两个角( )A .都是锐角B .都是钝角C .一个锐角,一个钝角D .以上答案都不对4、用科学计数法表示0.0000907的结果正确的是( ) A . B . C .D .5、如图,已知:∠1=∠2,那么下列结论正确的是( ) A .∠C=∠D B .AD ∥BC C .AB ∥CD D .∠3=∠46、下列各式中不能用平方差公式计算的是( ) A .B .C .D .7、给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交; (3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;其中正确的有( )A . 0个B . 1个C .2个D .3个 8、下列关系式中,正确的是( )A .B .C .D .9、一定在△ABC 内部的线段是( )A .任意三角形的一条中线、二条角平分线、三条高B .钝角三角形的三条高、三条中线、一条角平分线C .锐角三角形的三条高、三条角平分线、三条中线D .直角三角形的三条高、三条角平分线、三条中线10、等腰三角形的一边长为5cm ,另一边长为6cm ,那么它的周长为( ) A .16cm B .17cm C .16cm ,17cm , D .11cm 二、填空题(每小题3分,共30分)11、计算: .12、若4a +ka +9是一个完全平方式,则k = . 13、 .14、一个角与它的补角之差是20º,则这个角的大小是 . 15、如图,∠EAD=∠DCF ,要得到AB//CD ,则需要的条件 . (填一个你认为正确的条件即可)5322a b a =+a a a =÷44632aa a =⋅()632aa -=-4101.9-⨯5101.9-⨯5100.9-⨯51007.9-⨯))((y x y x +--))((y x y x --+-))((y x y x ---))((y x y x +-+()222b a b a -=-()()22b a b a b a +=-+()222b a b a +=+()222b 2ab a b a ++=+=⨯99810022()=-425y x16、如图, AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,则∠2=________度.17、如图,已知∠B=∠DEF ,AB=DE ,请添加一个条件使△ABC ≌△DEF ,则需添加的条件是 ___________.18、五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形.19、一个三角形的三个内角的度数的比是2:2:1,这个三角形是___三角形. 20、在三角形ABC 中,∠A=400,O 是∠ABC 和∠ACB 的角平分线的交点, 则∠BOC=__________. 三、解答题(共32分)21、计算(每小题4分,共12分) (1)(-1)+(-12 )-2 -(3.14-π)0(2)(3)(4)22、(6分)已知一个角的补角等于这个角的余角的4倍, 求这个角的度数.23、(8分)化简再求值:,其中,. 24、(6分)已知:∠.请你用直尺和圆规画一个∠BAC ,使∠BAC=∠. (要求:要保留作图痕迹.)四、推理说明题(共18分)25、(8分)已知:如图,AB ∥CD ,∠A = ∠D ,试说明 AC ∥DE 成立的理由.26、(10分)如图,已知:AD ∥BC ,AD=CB ,AE=CF ,(1)请问∠B=∠D 吗?为什么? (2)不改变其他条件,提出一个你认为正确的结论,并说明理由?20042)3()32)(32(b a b a b a -+-+()()xy xy y x y x 2862432-÷-+-2003200720052⨯-()()x x y x x 2122++-+251=x 25-=y ααFECBA D BADFEDC B A五、探索题(大题10分)27、图a 是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形. (1)、你认为图b 中的阴影部分的正方形的边长等于________(2)、请用两种不同的方法 求图b 中阴影部分的面积.方法1:方法2:(3)、观察图b ,你能写出下列三个 代数式之间的等量关系吗?代数式:(4)、根据(3)题中的等量关系,解决如下问题:若,则= .()()., ,22mn n m n m -+5,7==+ab b a 2)(b a - mmn n图annnn mmmm图b参考答案一、选择题1、D;2、B;3、C;4、D;5、C;6、A;7、C;8、D;9、C;10、C;二、填空题11、999996;12、±12;13、x20y8;14、1000 15、∠B=∠EAD; 16、54;17、∠A=∠D;(或其他都行)18、3 ;19、锐角;20、110°;三、解答题21、(1)4;(2)5a 2 – 6ab;(3)、x – 3x2y3+ 4;(4)422、解:设这个角的度数为x,则180-x=4(90-x),解得x=6023、解:原式=2xy – 1 代人得-3.24、(略)四、推理说明题25、解:∵AB∥CD;∴∠B=∠DCE;又∵∠A=∠D; ∴∠ACB=∠E;∴AC∥DE26、(1)∠B=∠D, ∵AD∥BC,∴∠A=∠C, 又∵AE=CF,∴AE+EF=CF+EF ,∴AF=CE,又∵AD=BC ,∴△ADF≌△CBE(SAS) , ∴∠B=∠D.(2) 不唯一(略)五、探索题(1) m – n ;(2) (m- n)2 ; (m + n)2 – 4mn ;(3) (m - n)2 = (m + n)2 – 4mn ;(4) 29.七年级数学下册期中检测卷说明:本卷共六大题,全卷共24题,满分120分,考试时间为120分钟一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.结果为a2的式子是()A. a6÷a3B.a • aC.(a--1)2D.a4-a2=a22.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是( )A.40°B.50°C.60°D.140°3.已知三角形的两边长分别为4和9,则下列长度的四条线段中能作为第三边的是()A.13B.6C.5D.44.如果(x―5)(2x+m)的积中不含x的一次项,则m的值是()A.5B.-10C.-5D.105.若m+n =3,则2m2+4mn+2n2-6的值为()A.12B.6C.3D.06.如图,过∠AOB边OB上一点C作OA的平行线,以C为顶点的角与∠AOB的关系是()A.相等B.互补C.相等或互补D.不能确定二、填空题(本大题共8个小题,每小题3分,共24分)7.已知∠α的余角的3倍等于它的补角,则∠α=_________;8.计算:=_______________;9.如果多项式x2+mx+9是一个完全平方式,则m =_________;10.把一块含30°角的直角三角板放在两平行直线上,如图,则∠1+∠2=_______°;B●OAC1210题ABDCO12题2201321)3()1(-⎪⎭⎫⎝⎛--π⨯-11.三角形的三边长为3、a 、7,且三角形的周长能被5整除,则a =__________; 12.如图,AB 与CD 相交于点O ,OA =OC ,还需增加一个条件:_______________,可得△AOD ≌△COB (AAS) ;13..AD 是△ABC 的边BC 上的中线, AB =12,AC =8, 那么中线AD 的取值范围___________.14.观察烟花燃放图形,找规律:依此规律,第9个图形中共有_________个★. 三、解答题(本大题共4小题,每小题6分,共24分)15.计 算:()2432a a a +÷解:16.计 算:)5)(14()32)(32(+--+-y y y y 解:17.如图,∠ABC =∠BCD ,∠1=∠2,请问图中有几对平行线?并说明理由. 解:18.如图,C 、F 在BE 上,∠A =∠D ,AB ∥DE ,BF =EC .求证:AB =DE . 解:四、(本大题共2小题,每小题8分,共16分)19.先化简,再求值: , 其中2=x ,2-=y .解:20.如图,直线CD 与直线AB 相交于点C ,()()[]x xy x y y y x 28422÷-+-+AFCBED根据下列语句画图(注:可利用三角尺画图,但要保持图形清晰) (1)过点P 作PQ ∥AB ,交CD 于点Q ;过点P 作PR ⊥CD ,垂足为R ; (2)若∠DCB =120°,则∠QPR 是多少度?并说明理由. 解:五、(本大题共2小题,每小题9分,共18分) 21.如图,已知AB =AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足, 求证:(1)AC =AD ; (2)CF =DF . 解:22.如图,在边长为1的方格纸中,△PQR 的三个顶点及A 、B 、C 、D 、E 五个点都在小方格的格点上,现以A 、B 、C 、D 、E 中的三个点为顶点画三角形.(1)请在图1中画出与△PQR 全等的三角形;(2)请在图2中画出与△PQR 面积相等但不全等的三角形;(3)顺次连结A 、B 、C 、D 、E 形成一个封闭的图形,求此图形的面积.解:六、(本大题共2个小题,每小题10分,共20分)23.如图①是一个长为2a ,宽为2b 的长方形纸片,其长方形的面积显然为4ab ,现将此长方形纸片沿图中虚线剪开,分成4个小长方形,然后拼成如图②的一个正方形. (1)图②中阴影正方形EFGH 的边长为: _________________;CDBA·P(2)观察图②,代数式(a -b)2表示哪个图形的面积?代数式(a+b)2呢?(3)用两种不同方法表示图②中的阴影正方形EFGH的面积,并写出关于代数式(a+b)2、(a -b)2和4ab之间的等量关系;(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,求:(a -b)2的值.解: 24.如图(1)线段AB、CD相交于点O,连接AD、CB.如图(2),在图(1)的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图(1)中,请直接写出∠A、∠B、∠C、∠D之间的等量关系;(2)在图(2)中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图(2)中,∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间数量关系.(直接写出结论即可)解:参考答案四、(本大题共2个小题,每小题各8分,共16分) 19.解:原式=[4x 2+4xy +y 2-y 2-4xy -8xy ]÷2x =[4x 2-8xy ]÷2x =2x -4y 当x =2,y =-2时,原式=4+8=12 20.解: (1)见图(2)∠QPR =300五、(本大题共2小题,每小题9分,共18分)21.解: (1) ∵AB =AE ,BC =ED ,∠B =∠E ∴△ABC ≌△AED ∴ AC =AD24.解: (1) ∠A +∠D =∠B +∠C(2) 由(1)可知,∠1+∠D =∠3+∠P , ∠2+∠P =∠4+∠B ∴∠1-∠3=∠P -∠D , ∠2-∠4=∠B -∠P 又∵AP 、CP 分别平分∠DAB 和∠BCD∴∠1=∠2, ∠3=∠4 ∴∠P -∠D =∠B -∠P 即2∠P =∠B +∠D ∴∠P =(40°+30°)÷2=35°.(3) 2∠P =∠B +∠D .期中测试卷一、选择题1.计算4-(-4)0的结果是( ) A.0 B.2 C.3 D.4 答案:C2.计算(-5a 3)2的结果是( )A.-10a 5B.10a 5C.-25a 6D.25a 6 答案:DC D B A ·PQ R3.PM2.5是指大气中直径小于等于0.000 0025 m的颗粒物,将0.000 0025用科学记数法表示为()A.2.5×10-7B.2.5×10-6C.25×10-7D.0.25×10-8答案:B4.下列计算正确的是()A.a3+a2=a5B.(3a-b)2=9a2-b2C.a6b÷a2=a3bD.(-ab3)2=a2b6答案:D5.如图,下列条件中能判定l1∥l2的是()A.∠1=∠2B.∠1=∠5C.∠1+∠3=180°D.∠3=∠5答案:C6.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形后,剩余部分可剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边长为3,则与其相邻的另一边长为()A.m+3B.m+6C.2m+3D.2m+6答案:C7.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是()答案:B8.已知(x+m)(x+n)=x2-3x-4,则m+n的值为()A.1B.-1C.-2D.-3答案:D9.(山东济宁)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°答案:C10.在实验课上,小亮利用同一块木板测得小车从不同高度h下滑的时间t如下表:下列说法错误的是()A.当h=40时,t=2.66B.随高度的增加,下滑时间越来越短C.当h=80时,t一定小于2.56D.高度每增加10 cm,时间就会减少0.24 s 答案:D11.(辽宁营口)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°答案:C解析:因为AB∥OC,∠B=30°,所以∠BOC=∠B=30°,所以∠DEO=∠C+∠BOC=75°.12.已知a=2 005x+2 004,b=2 005x+2 005,c=2 005x+2 006,则多项式a2+b2+c2-ab-bc-ac 的值为()A.0B.1C.2D.3答案:D解析:由题意可知a-b=-1,b-c=-1,a-c=-2,所求式=12(2a2+2b2+2c2-2ab-2bc-2ac)=12[(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)]=12[(a-b)2+(b-c)2+(a-c)2]=12[(-1)2+(-1)2+(-2)2]=3.二、填空题13.计算:(3x2y-xy2+12xy)÷(-12xy)= .答案:-6x+2y-114.当a+b=3,x-y=1时,代数式a2+2ab+b2-x+y= .答案:815.一个正方形的边长增加了3,面积相应增加了39,则这个正方形原来的边长为 .答案:516.如图反映的是一个壁球的运动路线,直击壁球到达地面,反弹后碰到壁球,图中∠1+∠2=90°,∠2=∠3,若∠3=55°,则∠1= .答案:35°17.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= .答案:120°解析:因为∠CDE=150°,所以∠CDB=30°.因为AB∥CD,所以∠CDB=∠DBA=30°.因为BE平分∠ABC,所以∠CBD=∠DBA=30°,所以∠C=120°.18.声音在空气中传播的速度y m/s与气温x ℃之间的关系如下表.在气温为20 ℃的一天召开运动会,某人看到发令枪的烟0.2 s后,听到了枪声,则由此可知这个人距发令枪的距离为 m.答案:68.6解析:由表可知当x=20时,y=343,所以这个人距发令枪的距离为343×0.2=68.6(m).三、解答题19.计算.(1)(-3ab2)3÷(12a3b3)(-2ab3c);(2)(2a3b2-4a4b3+6a5b4)÷(-2a3b2).答案:解:(1)原式=108ab6c.(2)原式=-1+2ab-3a2b2.20.化简求值.(1)3(a+5)2-2(3-a)2+(9-a)(9+a),其中a=-3;(2)(2a+b)2-(2a-b)(a+b)-2(a-2b)(a+2b),其中a=12,b=-2.答案:解:(1)原式=3a2+30a+75-18+12a-2a2+81-a2=42a+138. 当a=-3时,原式=12.(2)原式=4a2+4ab+b2-(2a2+ab-b2)-(2a2-8b2)=3ab+10b2.当a=12,b=-2时,原式=37.21.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y L与时间x min之间的关系如图所示.根据图象解答下列问题:(1)如图反映的是哪两个变量之间的关系?(2)洗衣机的进水时间是多少?清洗时洗衣机中的水量是多少?(3)时间是10 min时,洗衣机处于哪个过程?答案:解:(1)图象反映的是水量y L与时间x min之间的关系.(2)洗衣机的进水时间是4 min,清洗时洗衣机中的水量是40 L.(3)时间是10 min时,洗衣机处于清洗过程.22.如图,在△ABC中,∠B+∠C=110°,AD平分∠BAC,交BC于点D,DE∥AB,交AC 于点E,求∠ADE的度数.答案:解:因为在△ABC中,∠B+∠C=110°,所以∠BAC=180°-∠B-∠C=70°.因为AD是△ABC的角平分线,所以∠BAD=12∠BAC=35°.因为DE∥AB,所以∠ADE=∠BAD=35°23.在某地,人们发现某种蟋蟀每分钟叫的次数C与温度T ℃之间有近似关系:T=7C +3.(1)若蟋蟀每分钟叫50次,求T的值;(2)若温度为25 ℃,求C 的值;(3)当温度升高时,蟋蟀每分钟叫的次数会 .(填“增加”或“减少”) 答案:解:(1)当C=50时,T=(507+3)℃. (2)当T=25 ℃时,即25=7C+3,解得C=154.(3)增加24.如图,已知∠ABD 和∠BDC 的平分线交于点E ,BE 交CD 于点F ,∠1+∠2=90°. (1)求证:AB ∥CD ;(2)试探究∠2与∠3的数量关系.答案:(1)证明:因为BE ,DE 平分∠ABD ,∠BDC ,所以∠1=12∠ABD ,∠2=12∠BDC.因为∠1+∠2=90°,所以∠ABD+∠BDC=180°, 所以AB ∥CD.(2)解:因为DE 平分∠BDC ,所以∠2=∠FDE. 因为∠1+∠2=90°,所以∠BED=∠DEF=90°, 所以∠3+∠FDE=90°,所以∠2+∠3=90° 25.(1)如图1,求阴影部分的面积;(2)若将阴影部分裁剪下来重新拼成一个梯形,如图2,求它的高及面积; (3)利用两个图形的面积写出可以得到的乘法公式; (4)利用得到的乘法公式计算(-2x+y )(2x+y ).答案:)解:(1)a 2-b 2. (2)高为a-b ,面积为12(2a+2b )(a-b )=(a+b )(a-b ).(3)(a+b )(a-b )=a 2-b 2. (4)原式=y 2-4x 2.。

北师大版初中数学七年级下册期中测试卷(标准难度)(含答案解析)

北师大版初中数学七年级下册期中测试卷(标准难度)(含答案解析)

北师大版初中数学七年级下册期中测试卷(标准难度)(含答案解析)考试范围:第一.二.三单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 设a=355,b=444,c=533,则a、b、c的大小关系是( )A. c<a<bB. a<b<cC. b<c<aD. c<b<a2. 如图,长方形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为68cm2,那么长方形ABCD的面积是( )A. 21cm2B. 16cm2C. 24cm2D. 9cm23. 计算(23)2013×1.52012×(−1)2014的结果是( )A. 23B. 32C. −23D. −324. ∠1与∠2是两条直线被第三条直线所截的同位角,若∠1=50°,则∠2的度数是( )A. 50°B. 130°C. 50°或130°D. 不能确定5. 下列说法中,正确的是( )A. 一个锐角的补角大于这个角的余角B. 一对互补的角中,一定有一个角是锐角C. 锐角的余角一定是钝角D. 锐角的补角一定是锐角6. 如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF,则∠GEB的度数为( )A. 10°B. 20°C. 30°D. 40°7. 火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米,其中正确结论的个数有( )A. 1个B. 2个C. 3个D. 4个8. 如图是一组有规律的图案,第 ①个图案由4个基础图形组成,第 ②个图案由7个基础图形组成,⋯,设第ⓝ(n是正整数)个图案是由y个基础图形组成的,则y与n之间的关系式是( )A. y=4nB. y=3nC. y=6nD. y=3n+19. 将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的图象大致为图中的( )A. B.C. D.10. 若M=a2−a,N=a−1,则M、N的大小关系是( )A. M>NB. M<NC. M≥ND. M≤N11. 如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为( )A. 40°B. 50°C. 60°D. 140°12. 在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(ℎ)后,与乙港的距离为y(km),y与x的关系如图所示,则下列说法正确的是( )A. 甲港与丙港的距离是90kmB. 船在中途休息了0.5ℎC. 船的行驶速度是45km/ℎD. 从乙港到达丙港共花了1.5ℎ第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 在计算(x+y)(x−3y)−my(nx−y)(m、n均为常数)的值,在把x、y的值代入计算时,粗心的小明把y的值看错了,其结果等于9,细心的小红把正确的x、y的值代入计算,结果恰好也是9,为了探个究竟,小红又把y的值随机地换成了2018,结果竟然还是9,根据以上情况,探究其中的奥妙,计算mn=______.14. 如图,直线l1//l2,∠α=∠β,∠1=40∘,则∠2=.15. 一棵树高ℎ(m)与生长时间n(年)之间满足一定的关系,请你根据下表中的数写出ℎ(m)与n(年)之间的关系式:ℎ=.n/年246810⋯ℎ/m 2.6 3.2 3.8 4.4 5.0⋯16. 如图,一轮船从离A港10千米的P地出发向B港匀速行驶,30分钟后离A港26千米(未到达B港).设x小时后,轮船离A港y千米(未到达B港),则y与x之间的关系式为________.三、解答题(本大题共9小题,共72.0分。

北师大版数学七年级下册《期中测试卷》及答案

北师大版数学七年级下册《期中测试卷》及答案
[详解]解:A.若 ,则 ,故此选项错误;
B.若 ,则 ,故此选项正确;
C.若 ,则 ,故此选项错误;
D.若 ,则 ,故此选项错误.
故选:B.
[点睛]本题考查平行线的判定与性质.解题时注意内错角与同旁内角的确定,关键是找到哪两条直线被第三条直线所截构造的内错角与同旁内角即可.
6. 弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:
A. B.
C. D.
[答案]D
[解析]
[分析]
由题意根据开车从学校出发行驶一段时间后,途中耽搁后进而加速前行最后匀速开车回到学校,进行分析即可得出答案.
[详解]解:A、出发行驶一段时间后距离学校更近,故不符合条件,排除;
B、最后距离学校没有越来越近,即并没有匀速开车回到学校,故不符合条件,排除;
C、途中耽搁后进而减速前行最后匀速开车回到学校,故不符合条件,排除;
[详解](1)∵AB∥CD,
∴∠1+∠2=180°(两直线平行,同旁内角互补);
(2)过点E作一条直线EF平行于AB,
故选:B.
[点睛]此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5.如图,下列判断中正确的是()
A. 若 ,则 B. 若 ,则
C. 若 ,则 D. 若 ,则
[答案]B
[解析]
[分析]
由题意直接根据平行线的性质与判定,对各选项进行逐一判定即可.
[详解]解:A. ,故此选项错误;
B. ,故此选项错误;
C. ,故此选项正确;
D. ,故此选项错误.
故选:C.

北师大版七年级下册数学期中考试试题带答案

北师大版七年级下册数学期中考试试题带答案

北师大版七年级下册数学期中考试试卷一、单选题1.下列计算结果正确的是()A.2a3+a3=2a6B.﹣a2•a2=a6C.a8÷a4=a2D.(﹣ab2)3=﹣a3a62.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x (kg)间有下面的关系:下列说法一定错误的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5 cmD.所挂物体质量为7kg时,弹簧长度为13.5cm3.在下列多项式乘法运算中,不能运用平方差公式进行运算的是()A.(2x+3y) (-2x+3y) B.(a-2b) (a+2b)C.(-x-2y) (x+2y) D.(-2x-3y) (3y -2x)4.如图所示,将一副三角板的直角顶点重合摆放在桌面上,若∠BCD =46°,则∠ACF等于A.88°B.134°C.135°D.144°5.若4x2-2(k-1)x+9是完全平方式,则k的值为()A.±2 B.±5 C.7或-5 D.-7或56.如图,直线a∥b,∠1 = 30°,∠2 = 45°,则∠3的度数是()A.75°B.95°C.105°D.115°7.若a=﹣0.32,b=(﹣3)﹣2,c=(﹣13)﹣2,d=(﹣13)0,则( )A.a<b<c<d B.a<b<d<cC.a<d<c<b D.c<a<d<b8.某商场存放处每周的存车量为5000辆次,其中自行车存车费是每辆一次1元,电动车存车费为每辆一次2元,若自行车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=﹣x+10000 B.y=﹣2x+5000C.y=x+1000 D.y=x+50009.如图,下列条件中,能判断直线a∥b的有()个.①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°A.1 B.2 C.3 D.410.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.二、填空题11.某种病菌的直径为0.00000471m,把数据0.00000471用科学记数法表示为_____.12.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC 的度数为_____.13.a m=2,a n=3,则a2m﹣n=_____.14.如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE 相等的角有_____个.15.如图所示:图象中所反映的过程是:小冬从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x轴表示时间,y轴表示小冬离家的距离.根据图象提供的信息,下列说法正确的有________.①体育场离小冬家2.5千米②小冬在体育场锻炼了15分钟③体育场离早餐店4千米④小冬从早餐店回家的平均速度是3千米/小时三、解答题16.计算(1)(﹣2009)0﹣2﹣2﹣(﹣12)﹣3×(π﹣3.14)0﹣(﹣3)2(2)[(﹣4a 2b 3)2﹣6a 4b 4×(﹣0.5ab 3)]÷(﹣2ab 2)3(3)(2x +3y +z )(2x ﹣3y ﹣z )(用乘法公式计算)(4)[(a ﹣2b )(a +2b )﹣(2b ﹣a )2]÷(﹣4b )17.化简求值:()()()()3224ab 8a b 4ab 2a b 2a b -÷--+-,其中a=-2,b=118.如图,已知点P 为∠AOB 一边OB 上的一点.(1)请利用尺规在∠AOB 内部作∠BPQ ,使∠BPQ =∠AOB ;(不写作法,保留作图痕迹)(2)根据上面的作图,判断PQ 与OA 是否平行?若平行,请说明理由.19.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,______是自变量,______是因变量;(2)观察表中数据可知,每月乘客量达到_______人以上时,该公交车才不会亏损; (3)请你估计当每月乘车人数为3500人时,每月利润为多少元?20.如图,完成下列推理过程.已知:DE ⊥AO 于E ,BO ⊥AO ,∠CFB =∠EDO ;证明:CF∥DO.证明:∵DE⊥AO,BO⊥AO(已知)∴∠DEA=∠BOA=90°()∴DE∥BO()∴∠EDO=∠DOF()又∵∠CFB=∠EDO()∴∠DOF=∠CFB()∴CF∥DO()21.如图,AB∥CD,OM⊥ON,OM平分∠BOC,∠B=40°,射线ON是∠BOD 的平分线吗?请说明理由.22.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图像如图所示.根据图像解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)23.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图),然后将剩余部分拼成一个长方形(如图).(1)上述操作能验证的等式是 ;(请选择正确的一个)A .a 2-2ab +b 2=(a -b)2B .a 2-b 2=(a +b)(a -b )C .a 2+ab =a(a +b) (2)应用你从(1)选出的等式,完成下列各题: ①已知x 2-4y 2=12,x +2y =4,求x -2y 的值. ②计算:(1-212)(1-213)(1-214)…(1-212018)(1-212019).24.如图1、图2,已知∠1+∠2=180°.(1)若图1中∠AEF =∠HLN ,试找出图中的平行线,并说明理由; (2)如图2,∠PMB =3∠QMB ,∠PND =3∠QND ,试探究∠P 与∠Q 的数量关系?(直接写答案,不写过程).参考答案1.D 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;同底数幂的除法法则:底数不变,指数相减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【详解】解:A、333+=,故原题计算错误;23a a aB、224a a a-=-,故原题计算错误;C、844÷=,故原题计算错误;a a aD、2336-=-,故原题计算正确;()ab a a故选:D.【点睛】此题主要考查了合并同类项、同底数幂的乘法、同底数幂的除法和积的乘方,解题关键是掌握整式运算法则.2.B【分析】根据变量与常量,函数的表示方法,结合表格中数据的变化规律逐项进行判断即可.【详解】解:A.x与y都是变量,且x是自变量,y是因变量,是正确的,因此选项A不符合题意;B.弹簧不挂重物时的长度,即当x=0时y的值,此时y=10cm,因此选项B是错误的,符合题意;C.物体质量x每增加1kg,弹簧长度y增加0.5cm,是正确的,因此选项C不符合题意;D.根据物体质量x每增加1kg,弹簧长度y增加0.5cm,可得出所挂物体质量为7kg时,弹簧长度为13.5cm,是正确的,因此选项D不符合题意;故选:B.【点睛】本题考查常量与变量,函数的表示方法,理解和发现表格中数据的变化规律是解决问题的关键.3.C【详解】解:∵能利用平方差公式计算的多项式的特点是:两个两项式相乘,有一项相同,另一项互为相反数.又∵(-x-2y) (x+2y)中两项均互为相反数,∴(2x-3y)(-2x+3y)不能用平方差公式计算.故选C.考点: 平方差公式.4.B【解析】一副直角三角板的定点重合可求出∠ACD和∠BCF,又已知∠BCD,所以可求出∠ACF【详解】∠ACF=∠ACB+∠BCF,又因为∠BCF=∠DCF-∠BCD=90°-46°=44°,∠ACB=90°,所以∠ACF=90°+44°=134°故本题答案应为:B【点睛】利用直角三角板求角的度数是本题的考点,找出角的关系是解答此题的关键。

北师大版七年级下册数学《期中检测试卷》及答案

北师大版七年级下册数学《期中检测试卷》及答案
[详解]A.∵∠B=∠5,∴AB∥CD,故本选项不符合题意;
B.∵ ,∴AB∥CD,故本选项不符合题意;
C.∵ ,∴AB∥CD,故本选项不符合题意;
D.∵ ∴AD∥BC,故本选项符合题意.
故选D.
[点睛]此题考查平行线的判定,解题关键在于掌握判定定理.
5.点A(3,4)和点B(3,-5),则A、B相距()
A. 1个单位长度B. 6个]C
[解析]
[分析]
根据点A、B的坐标特征即可求出线段AB的长.
[详解]解:∵点A(3,4)和点B(3,-5)的横坐标相同
∴A、B相距4-(-5)=9个单位长度
故选C.
[点睛]此题考查的是求平面直角坐标系中两点之间的距离,掌握横坐标相同的两点之间的距离求法是解决此题的关键.
12.用吸管吸易拉罐内的饮料时,如图,∠1=100°,则2=_____(易拉罐的上下底面互相平行)
13. 的绝对值是_______.
14. 的相反数是______.
15.如图,各个小正方形格子的边长均为1,图中A,B两点的坐标分别为(-3,5),(3,5),则点C在同一坐标系下的坐标为_______.
三、解答题(一)(每题6分,共18分)
18.计算:
[答案]
[解析]
[分析]
根据合并同类二次根式法则计算即可.
[详解]解:
=
=
[点睛]此题考查的是二次根式的加减运算,掌握合并同类二次根式法则是解决此题的关键.
19.计算:
[答案]1
[解析]
分析]
根据绝对值的性质和合并同类二次根式法则计算即可.
[详解]解:
[详解]解:(1)∵数m的两个不等的平方根为a+3和2a-15

北师大版七年级(下)期中数学试卷(含解析)

北师大版七年级(下)期中数学试卷(含解析)

北师大版七年级数学(下)期中试卷一.选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如果一个角是50°,那么它的余角的度数是()A.40°B.50°C.100°D.130°2.(3分)甲型H1N1流感病毒的直径大约为0.00000008米,用科学记数法表示为()A.0.8×10﹣7米B.8×10﹣8米C.8×10﹣9米D.8×10﹣7米3.(3分)下列长度的3条线段,能首尾依次相接组成三角形的是()A.1,3,5B.3,4,6C.5,6,11D.8,5,24.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.a3﹣a2=a C.(2a+1)(2a﹣1)=4a﹣1 D.(﹣2a3)2=4a65.(3分)下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a)B.(x+a)(﹣a+x)C.(﹣x﹣b)(x﹣b)D.(a+b)(﹣a﹣b)6.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A.三角形的稳定性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短7.(3分)请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS8.(3分)某星期天小李步行去图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.9.(3分)下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个10.(3分)如图,△ABC中,∠A=α°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD 的平分线相交于点A2,依此类推,∠A n﹣1BC与∠A n﹣1CD的平分线相交于点A n,则∠A n的度数为()A.B.C.D.二.填空题(本大题共4个小题,每小题4分,共16分)11.(4分)三角形的三个内角的比为1:3:5,那么这个三角形的最大内角的度数为.12.(4分)若a+b=2,a2﹣b2=6,则a﹣b=.13.(4分)将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=.14.(4分)如果4x2+mx+9是一个完全平方式,则m的值为.三.解答题(本大题共6个小题,15题10分,16题8分,17题6分,18题8分,19题10分,20题12分,共54分)15.(10分)计算:①;②(﹣ab2)3•(﹣9a3b)÷(﹣3a3b5).16.(8分)先化简,在求值:[(2x+y)2﹣y(y+4x)﹣8xy]÷(2x),其中x=2,y=﹣1.17.(6分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5,()∠3=∠4()∴∠4=∠5()∴DF平分∠BDE()18.(8分)如图,在Rt△ABE中,∠AEB=90°,C为AE延长线上的一点,D为AB边上的一点,DC交BE于F,若∠ADC=80°,∠B=30°,求∠C的度数.19.(10分)如图所示,小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况.(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他到达离家最远的地方是什么时间?离家多远?(3)10时到12时他行驶了多少千米?(4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?20.(12分)以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.一.填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知a﹣b=4,则a2﹣b2﹣8b的值为.22.(4分)如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠CFC′=150°,则∠AED′=.23.(4分)已知代数式x2+2x+5可以利用完全平方公式变形为(x+1)2+4,进而可知x2+2x+5的最小值是4.依此方法,代数式y2﹣y+5的最小值是.24.(4分)在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,下列结论:①∠FCD=45°;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则△FDC周长等于AB的长.正确结论的序号是.25.(4分)有一系列等式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,……(1)根据你的观察,归纳发现规律,写出9×10×11×12+1的结果是;(2)式子(n﹣1)n(n+1)(n+2)+1=.二.解答题(本大题共3个小题,26题8分,27题10分,28题12分,共30分)26.(8分)已知x2+y2+4x﹣6y+13=0,求代数式[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)的值,要求先化简后求值.27.(10分)(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA =∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.28.(12分)如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图②,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角尺OMN绕点O按每秒15°的速度沿逆时针方向旋转一周,在旋转的过程中,在第秒时,边MN恰好与边CD平行;在第秒时,直线MN恰好与直线CD垂直.(直接写出结果)试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A.2.解:0.00 000 008=8×10﹣8,故选:B.3.解:A、3+1<5,不能构成三角形;B、3+4=7>6,能构成三角形;C、5+6=11,不能构成三角形;D、5+2=7<8,不能构成三角形.故选:B.4.解:A、根据完全平方公式,得(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、两项不是同类项,不能合并,故本选项错误;C、根据平方差公式,得(2a+1)(2a﹣1)=4a2﹣1,故本选项错误;D、(﹣2a3)2=4a6,故本选项正确.故选:D.5.解:A答案(x+a)(x﹣a)=x2﹣a2,能用平方差公式;B答案(x+a)(﹣a+x)=(x+a)(x﹣a)=x2﹣a2,能用平方差公式;C答案(﹣x﹣b)(x﹣b)=﹣(x+b)(x﹣b)=﹣(x2﹣b2)=b2﹣x2,能用平方差公式;D答案(a+b)(﹣a﹣b)=﹣(a+b)2,不能用平方差公式.故选:D.6.解:常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是三角形具有稳定性.故选:A.7.解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,在△ODC和△O′D′C′中,∵,∴△COD≌△C'O'D'(SSS),∴∠D′O′C′=∠DOC.故选:D.8.解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.9.解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”股本选项错误;(5)这是平行公理,故本选项正确;故选:A.10.解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1=α,∴∠A1=α°,同理可得∠A1=2∠A2,即∠A=22∠A2=α°,∴∠A2=α°,∴∠A=2n∠A n,∴∠A n=α°•()n=()°.故选:C.二.填空题(本大题共4个小题,每小题4分,共16分)11.解:设三角形三个角的度数分别为x,3x,5x,所以x+3x+5x=180°,解得x=20°,所以5x=100°.故答案为100°.12.解:∵(a+b)(a﹣b)=a2﹣b2,∴2×(a﹣b)=6,∴a﹣b=3.故答案为:3.13.证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,∴EH∥FG,∴BN∥EH∥FG,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠ABC=90°,即∠1+∠2=90°.故答案为:90°.14.解:如果4x2+mx+9是一个完全平方式,则m的值为±12,故答案为:±12三.解答题(本大题共6个小题,15题10分,16题8分,17题6分,18题8分,19题10分,20题12分,共54分)15.解:①原式=1﹣1+9=9;②原式=(﹣a3b6)•(﹣9a3b)÷(﹣3a3b5)=9a6b7÷(﹣3a3b5)=﹣3a3b2.16.解:[(2x+y)2﹣y(y+4x)﹣8xy]÷(2x)=[4x2+4xy+y2﹣y2﹣4xy﹣8xy]÷(2x)=(4x2﹣8xy)÷(2x)=2x﹣4y,当x=2,y=﹣1时,原式=2×2﹣4×(﹣1)=4+4=8.17.证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.18.解:∵在Rt△ABE中,∠AEB=90°,∠B=30°∴∠A=90°﹣∠B=60°,∵在△ADC中,∠A=60°,∠ADC=80°∴∠C=180°﹣60°﹣80°=40°,答:∠C的度数为40°.19.解:(1)图象表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量;(2)根据图象可知,他到达离家最远的地方是在12时,离家30千米;(3)根据图象可知,30﹣15=15(千米).故:10时到12时他行驶了15千米;(4)根据图象可知,他可能在12时到13时间内休息,并吃午餐;(5)根据图象可知,30÷(15﹣13)=15(千米/时).故:他由离家最远的地方返回时的平均速度是15千米/时.20.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.一.填空题(本大题共5个小题,每小题4分,共20分)21.解:∵a﹣b=4,∴a=b+4,∴a2=(b+4)2=b2+8b+16,∴a2﹣b2﹣8b=b2+8b+16﹣b2﹣8b=16.故答案为16.22.解:∵∠CFC′=150°,∴∠EFC′==105°.∵ED′∥FC′,∴∠D′EF=180°﹣105°=75°,∴∠AED′=180°﹣2×75°=180°﹣150°=30°.故答案为:30°.23.解:y2﹣y+5=y2﹣y++=(y﹣)2+≥,则代数式y2﹣y+5的最小值是.故答案为:.24.解:∵△ABC中,AD,BE分别为BC、AC边上的高,∴AD⊥BC,而△ABF和△ACF有一条公共边,∴S△ABF:S△AFC=BD:CD,∴③正确;∵∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC,∴FD=CD,∴∠FCD=∠CFD=45°,∴①正确;若AE=EC,BE⊥AC,可得AB=BC,无法证得AB=BC,故②错误.若BF=2EC,根据①得BF=AC,∴AC=2EC,即E为AC的中点,∴BE为线段AC的垂直平分线,∴AF=CF,BA=BC,∴AB=BD+CD=AD+CD=AF+DF+CD=CF+DF+CD,即△FDC周长等于AB的长,∴④正确.故答案为①③④.25.解:(1)通过观察分析可得,每列的连续四个做积的自然数中第一个数乘以第四个自然数的积再加上1得到的和,就等于每列中间做平方的底数,所以9×10×11×12+1=(9×12+1)2=(109)2,每列中的最后一组式子括号里的数为四个做乘积的自然中的第一个自然数的平方然后加上3乘以这个自然数再加上1得到和,所以9×10×11×12+1=(109)2=(92+3×9+1)2.(2)根据(1)分析的规律可得,(n﹣1)n(n+1)(n+2)+1=[(n﹣1)(n+2)+1]2=(n2+n﹣1)2.故答案为:(1)9×10×11×12+1=(109)2=(92+3×9+1)2,(2)(n2+n﹣1)2.二.解答题(本大题共3个小题,26题8分,27题10分,28题12分,共30分)26.解:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)=(x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2)÷(2x)=(﹣2x2+2xy)÷(2x)=﹣x+y,∵x2+y2+4x﹣6y+13=0,∴(x2+4x+4)+(y2﹣6y+9)=0,∴(x+2)2+(y﹣3)2=0,∴x+2=0,y﹣3=0,∴x=﹣2,y=3,当x=﹣2,y=3时,原式=﹣(﹣2)+3=2+3=5.27.(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC=BC•h=12,S△ACF=CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.28.解:(1)∵∠BON=∠N=30°,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(2)如图,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷15°=5秒,或t=255°÷15°=17秒;MN⊥CD时,旋转角为90°+(180°﹣60°﹣45°)=165°,或360°﹣(60°﹣45°)=345°,所以,t=165°÷15°=11秒,或t=345°÷15°=23秒.故答案为:5或17;11或23.。

北师大版七年级下册数学期中试卷

北师大版七年级下册数学期中试卷

北师大版七年级下册数学期中试卷北师大版七年级下册数学期中试卷一.选择题(共10小题)1.下列计算中,结果正确的是()A。

a2-a3=a-1B。

2a*3a=6a^2C。

(2a^2)^3=8a^6D。

a^6÷a^2=a^42.下列各式中,计算正确的是()A。

(-5an+1b)*(-2a)=10an-1bB。

(-4a^2b)*(-a^2b^2)=4a^4b^3C。

(-3xy)*(-x^2z)*6xy^2=18x^3y^3zD。

c3.若x^2-2(a-3)x+25是完全平方式,那么a的值是()A。

-2,8B。

2C。

8D。

±24.如果(a^2b^3)^n=a^4b^m,那么m,n的值分别是()A。

m=3,n=2B。

m=6,n=2C。

m=5,n=2D。

m=3,n=15.如图所示,AB,CD,AE和CE均为笔直的公路,已知AB∥CD,AE与AB的夹角∠BAE为32°,若线段CF与EF 的长度相等,则CD与CE的夹角∠DCE为()A。

58°B。

32°C。

16°D。

74°6.如图,AB∥CD,则∠A、∠C、∠E、∠F满足的数量关系是()A。

∠A=∠C+∠E+∠FB。

∠A+∠E-∠C-∠F=180°C。

∠A-∠E+∠C+∠F=90°D。

∠A+∠E+∠C+∠F=360°7.如图,已知AB∥DE,∠ABC=50°,∠CDE=150°,则∠BCD的值为()A。

20°B。

50°C。

40°D。

70°8.当长方形的面积S是常数时,长方形的长a与宽b之间关系的函数图象是()A。

B。

C。

D。

9.XXX在某公园进行绿化,中间休息了一段时间,已知绿化面积S(单位:m^2)与工作时间t(单位:h)的函数关系如图所示,则该园林队休息后与休息前相比较()A。

每小时绿化面积相同B。

每小时绿化面积多40m^2C。

北师大版七年级下学期数学期中考试试卷(含答案)

北师大版七年级下学期数学期中考试试卷(含答案)

七年级下学期数学期中考试试卷(满分150分 时间120分钟)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算中正确的是( )A.(﹣a )3=﹣a 3B.(a 3)4=a 7C.a 3•a 4=a 12D.(ab 2)3=ab 62.三条线段首尾顺次相接能构成三角形的是( )A.3,3,4B.4,9,5C.5,18,8D.9,15,33.如图,直线a 、b 被直线c 所截.若∠1=55°,则∠2的度数是( )时能判定a ∥b .A.35°B.45°C.125°D.145°(第3题图) (第7题图)4. 0.00 000 001用科学记数法表示为( )A.0.1×10﹣7B.1×10﹣8C.1×10﹣7D.0.1×10﹣85.下列计算正确的是( ) A.a 2+a 3=a 5 B.2x 2(﹣13xy )=﹣23x 3yC.(a -b )(﹣a -b )=a 2-b 2D.(﹣2x 2y )3=﹣6x 6y 3 6.在圆的面积计算公式S=πr 2,其中r 为圆的半径,则变量是( )A.SB.RC.π,rD.S ,r7.如图,用不同的代数式表示图中阴影部分的面积,可得等式()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2+2ab-b2C.(a+b)(a-b)=a2-b2D.(a-b)2=a2-2ab+b28.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或-6C.12D.12或-129.如图,AB∥CD∥EF,若∠ABC=130°,∠BCE=55°,则∠CEF的度数为()A.95B.105C.110D.115(第9题图)(第10题图)10.如图,把一张长方形纸片ABCD沿EF折叠后,点C、D分别落在C'、D'的位置上,EC'交AD于点G,已知∠EFG=56°,则∠BEG等于()A.112°B.88°C.68°D.56°二、填空题(本大题共6个小题.每小题4分,共24分.)11.计算(a2)3÷a2的结果等于.12.式子(x+2)0无意义时,x= 。

2020-2021学年北师大版数学七年级下册期中测试题及答案(共3套)

2020-2021学年北师大版数学七年级下册期中测试题及答案(共3套)

北师大版数学七年级下册期中测试题(一)(时间:120分钟分值:120分)一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.如图,已知OA⊥OB,OC⊥OD,∠BOA∶∠AOD=3∶4,则∠BOD的度数为()A.120° B.125° C.150° D.157.5°2.如图,将一副三角板叠放在一起,使直角的顶点重合于点O.若AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85° B.70° C.75° D.60°第2题图第3题图3.一次数学活动中,检验两条完全相同的纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明把纸带①沿AB折叠,量得∠1=∠2=50°;小丽把纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①的边线不平行,纸带②的边线平行C .纸带①、②的边线都平行D .纸带①、②的边线都不平行 4.计算x 3·x 3的结果是( )A .2x 3B .2x 6C .x 6D .x 95.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.00122,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.00122用科学记数法表示应为( )A .1.22×10-5 B .122×10-3C .1.22×10-3 D .1.22×10-26.下列运算正确的是( )A .(-a 5)2=a 10B .2a ·3a 2=6a 2C .a 8÷a 2=a 4D .-6a 6÷2a 2=-3a 3二、填空题(本大题共6小题,每小题3分,满分18分) 7.一个角的度数为20°,则它的补角的度数为________.8.如图是李晓松同学在运动会跳远比赛中最好的一跳,甲、乙、丙三名同学分别测得P A =5.52米,PB =5.37米,MA =5.60米,那么他的跳远成绩应该为________米.第8题图 第9题图9.如图,直线a ,b 与直线c ,d 相交,已知∠1=∠2,∠3=110°,则∠4的度数为________.10.若a =20180,b =2016×2018-20172,c =⎝ ⎛⎭⎪⎫-232016×⎝ ⎛⎭⎪⎫322017,则a ,b ,c 的大小关系是____________.11.用一张包装纸包一本长、宽、厚如图所示的书(单位:cm).若将封面和封底每一边都包进去3cm ,则需长方形的包装纸____________cm 2.12.若(x-1)(x+a)的结果是关于x的二次二项式,则a=________.三、解答题(本大题共5小题,每小题6分,满分30分)13.已知一个角的余角比它的补角的23还小55°,求这个角的度数.14.如图,点D在射线AE上,AB∥CD,∠CDE=140°,求∠A的度数.15.利用乘法公式计算下列各题:(1)10.3×9.7; (2)9982.16.已知某长方形的面积为4a2-6ab+2a,它的一边长为2a,求这个长方形的周长.17.先化简,再求值:(1+a)(1-a)+(a-2)2,其中a=1 2.四、(本大题共3小题,每小题8分,共24分)18.如图,已知DE∥BC,BE平分∠ABC,∠C=65°,∠ABC=50°.(1)求∠BED的度数;(2)判断BE与AC的位置关系,并说明理由.19.如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.20.(1)已知2x+2=a,用含a的代数式表示2x;(2)已知x=3m+2,y=9m+3m,试用含x的代数式表示y.五、(本大题共2小题,每小题9分,共18分)21.王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?22.如图,已知直线l1∥l2,A,B分别是l1,l2上的点,l3和l1,l2分别交于点C,D,P是线段CD上的动点(点P不与C,D重合).(1)若∠1=150°,∠2=45°,则∠3的度数是多少?(2)若∠1=α,∠2=β,用α,β表示∠APC+∠BPD.六、(本大题共12分)23.我们知道,图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,对几何图形做出代数解释和用几何图形的面积表示代数恒等式是互逆的.课本上由拼图用几何图形的面积来验证了乘法公式,一些代数恒等式也能用这种形式表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用图①或图②等图形的面积表示.(1)填一填:请写出图③所表示的代数恒等式:______________________________;(2)画一画:试画出一个几何图形,使它的面积能表示:(a +b )(a +3b )=a 2+4ab +3b 2.参考答案与解析1.C2.C 3.B4.C 5.C 6.A 7.160° 8.5.37 9.70° 10.b <a <c 11.(2a 2+19a -10)12.1或0 解析:原式=x 2+ax -x -a .∵结果是关于x 的二次二项式,∴a -1=0或a =0,解得a =1或a =0.13.解:设这个角的度数为x ,依题意有23(180°-x )-55°=90°-x ,(3分)解得x =75°.故这个角的度数为75°.(6分)14.解:∵∠CDE =140°,∴∠CDA =180°-∠CDE =40°.(3分)∵AB ∥CD ,∴∠A =∠CDA =40°.(6分)15.解:(1)原式=(10+0.3)(10-0.3)=102-0.32=100-0.09=99.91.(3分) (2)原式=(1000-2)2=10002-2×1000×2+22=1000000-4000+4=996004.(6分)16.解:长方形的另一边长为(4a 2-6ab +2a )÷2a =2a -3b +1,(3分)所以这个长方形的周长为2(2a -3b +1+2a )=8a -6b +2.(6分)17.解:原式=1-a 2+a 2-4a +4=-4a +5.(3分)当a =12时,原式=-4×12+5=3.(6分)18.解:(1)∵BE 平分∠ABC ,∠ABC =50°,∴∠EBC = 12∠ABC =25°.∵DE ∥BC ,∴∠BED =∠EBC =25°.(3分)(2)BE ⊥AC .(4分)理由如下:∵DE ∥BC ,∠C =65°,∴∠AED =∠C =65°.(6分)由(1)知∠BED =25°,∴∠AEB =∠AED +∠BED =65°+25°=90°,∴BE ⊥AC .(8分)19.解:∵OE 平分∠BOD ,∴∠DOE =∠EOB .(2分)又∵∠AOD ∶∠DOE =4∶1,∴∠AOD =4∠DOE .∵∠AOD +∠DOE +∠EOB =180°,∴∠DOE =∠EOB =30°,∠AOD =120°,∴∠COB =∠AOD =120°.(5分)∵OF 平分∠COB ,∴∠COF =60°.又∵∠AOC =∠BOD =∠DOE +∠EOB =60°,∴∠AOF =∠COF +∠AOC =60°+60°=120°.(8分)20.解:(1)∵2x +2=2x ·22=a ,∴2x =a 4.(3分)(2)∵x =3m +2,∴x -2=3m ,(5分)∴y =9m +3m =(3m )2+3m =(x -2)2+(x -2)=x 2-3x +2.(8分)21.解:(1)卧室的面积是2b (4a -2a )=4ab (平方米),(2分)厨房、卫生间、客厅的面积和是b (4a -2a -a )+a (4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),即木地板需要4ab 平方米,地砖需要11ab 平方米.(5分)(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.(9分)22.解:(1)过点P 向右作PE ∥l 1.∵l 1∥l 2,∴l 1∥PE ∥l 2,∴∠1+∠APE =180°,∠2=∠BPE .(2分)∵∠1=150°,∠2=45°,∴∠APE =180°-∠1=180°-150°=30°,∠BPE =∠2=45°,(4分)∴∠3=∠APE +∠BPE =30°+45°=75°.(5分)(2)若∠1=α,∠2=β,则∠APB =180°-∠1+∠2=180°-α+β,(7分)∴∠APC +∠BPD =180°-∠APB =180°-(180°-α+β)=α-β.(9分)23.解:(1)(a +2b )(2a +b )=2a 2+5ab +2b 2(5分) (2)画图如下(答案不唯一).(12分)北师大版数学七年级下册期中测试题(二)(时间:120分钟分值:120分)一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.已知∠1与∠2互为补角,∠1=140°,则∠2的度数为()A.30° B.40° C.50° D.100°2.下列计算正确的是()A.a2+a3=a5 B.a2·a3=a6 C.(a2)3=a5 D.a5÷a2=a33.如图,下列条件中能判定AB∥CD的是()A.∠1=∠2 B.∠2=∠4 C.∠1=∠3 D.∠B+∠BCD=180°4.如果m-n=3,mn=1,那么m2+n2的值是()A.5 B.7 C.9 D.115.如图,直线EF分别与直线AB,CD相交于点G,H,已知∠1=∠2=50°,GM平分∠HGB交直线CD于点M,则∠3等于()A.60° B.65° C.70° D.130°6.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点.用s1,s2分别表示乌龟和兔子所行的路程,t表示时间,则下列图象中与故事情节相吻合的是()二、填空题(本大题共6小题,每小题3分,满分18分)7.小华用500元去购买单价为3元的一种商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的关系是____________.8.如图,已知直线a ∥b ,若∠1=40°50′,则∠2=________.第8题图 第9题图9.调皮的弟弟把玲玲的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮她推测出被除式等于______________.10.如图反映的过程是:小刚从家去菜地浇水,又去青稞地锄草,然后回家.如果菜地和青稞地的距离为a 千米,小刚在青稞地锄草比在菜地浇水多用了b 分钟,那么a ,b 的值分别为__________.第10题图 第11题图11.如图,AF ∥CD ,CB 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,有下列结论:①BC 平分∠ABE ;②AC ∥BE ;③∠BCD +∠D =90°;④∠DBF =2∠ABC .其中正确的结论是__________(填序号).12.已知∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=________. 三、解答题(本大题共5小题,每小题6分,满分30分) 13.计算:(1)(-3)0-⎝⎛⎭⎫12-1+(-3)2-23;(2)0.1259×(-8)10+⎝⎛⎭⎫2511×⎝⎛⎭⎫21212.14.计算:(1)5x (2x 2-3x +4);(2)⎝⎛⎭⎫-15a 3x 4+910a 2x 3÷⎝⎛⎭⎫-35ax 2.15.化简并求值:(2a +b )2-(2a -b )(a +b )-2(a -2b )(a +2b ),其中a =12,b =-2.16.如图,点M 在∠AOB 的边OB 上. (1)过点M 作线段MC ⊥AO ,垂足是C ;(2)过点C 作∠ACF =∠O (尺规作图,保留作图痕迹).17.如图,AB ∥CD ,FG ∥HD ,∠B =100°,EF 为∠CEB 的平分线,求∠D 的度数.四、(本大共3小题,每小题8分,共24分)18.下表记录的是某橘农去年橘子的销售额(元)随橘子销量(千克)变化的有关数据,请根据表中数据回答下列问题:销量(千克)123456789销售额(元)24681012141618(1)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当销量是5千克时,销售额是多少?(3)估计当销量是50千克时,销售额是多少?19.如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)图中∠AOC的对顶角为________,∠BOE的补角为________;(2)若∠AOC=75°,且∠BOE∶∠EOD=1∶4,求∠AOE的度数.20.已知(a x)y=a6,(a x)2÷a y=a3.(1)求xy和2x-y的值;(2)求4x2+y2的值.五、(本大题共2小题,每小题9分,共18分)21.如图,AB∥DE,试说明:∠D+∠BCD-∠B=180°.解:过点C作CF∥AB.∵AB∥CF(已知),∴∠B=________().∵AB∥DE,CF∥AB(已知),∴CF∥DE().∴∠2+________=180°().∵∠2=∠BCD-________(已知),∴∠D+∠BCD-∠B=180°(等量代换).22.某中学的小明和朱老师一起到一条笔直的跑道上跑步锻炼身体,来到起点后小明做了一会热身运动,朱老师先跑.当小明出发时,朱老师已经距起点200米了,他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).根据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是__________________,因变量是__________________;(2)求小明和朱老师的速度;(3)小明与朱老师相遇________次,相遇时距起点的距离分别为____________.六、(本大题共12分)23.如图,已知AB ∥CD ,AD ∥BC ,∠DCE =90°,点E 在线段AB 上,∠FCG =90°,点F 在直线AD 上,∠AHG =90°.(1)找出图中与∠D 相等的角,并说明理由; (2)若∠ECF =25°,求∠BCD 的度数;(3)在(2)的条件下,点C (点C 不与B ,H 两点重合)从点B 出发,沿射线BG 的方向运动,其他条件不变,求∠BAF 的度数.参考答案与解析1.B 2.D 3.D 4.D 5.B 6.D 7.y =500-3x 8.139°10′9.5x 3-15x 2+30x 10.0.5,8 11.①②③ 12.130°或50° 解析:应分两种情况讨论:(1)如图①,∵∠α+∠β=360°-90°-90°=180°,∠α=50°,∴∠β=130°;(2)如图②,∵∠α+∠1=∠β+∠2=90°,∠1=∠2,∴∠β=∠α=50°.综上所述,∠β=130°或50°.13.解:(1)原式=1-2+9-8=0.(3分) (2)原式=(0.125×8)9×8+⎝⎛⎭⎫25×5211×52=8+52=1012.(6分)14.解:(1)原式=10x 3-15x 2+20x .(3分) (2)原式=13a 2x 2-32ax .(6分)15.解:原式=4a 2+4ab +b 2-(2a 2+2ab -ab -b 2)-2(a 2-4b 2)=4a 2+4ab +b 2-2a 2-ab +b 2-2a 2+8b 2=3ab +10b 2.(3分)把a =12,b =-2代入上式,原式=3×12×(-2)+10×(-2)2=37.(6分)16.解:(1)如图,MC 即为所作.(3分)(2)如图,∠ACF 即为所作.(6分)17.解:∵AB ∥CD ,∠B =100°,∴∠BEC =180°-∠B =180°-100°=80°.(2分)∵EF 为∠CEB 的平分线,∴∠CEF =12∠BEC =12×80°=40°.(4分)∵FG ∥HD ,∴∠D =∠CEF =40°.(6分)18.解:(1)表格反映了橘子的销量与销售额之间的关系,橘子的销量是自变量,销售额是因变量.(4分)(2)当销量是5千克时,销售额是10元.(6分) (3)当销量是50千克时,销售额是100元.(8分)19.解:∵OE 平分∠BOD ,∴∠DOE =∠EOB .(2分)又∵∠AOD ∶∠DOE =4∶1,∴∠AOD =4∠DOE .∵∠AOD +∠DOE +∠EOB =180°,∴∠DOE =∠EOB =30°,∠AOD =120°,∴∠COB =∠AOD =120°.(5分)∵OF 平分∠COB ,∴∠COF =60°.又∵∠AOC =∠BOD =∠DOE +∠EOB =60°,∴∠AOF =∠COF +∠AOC =60°+60°=120°.(8分)20.解:(1)∵(a x )y =a 6,(a x )2÷a y =a 3,∴a xy =a 6,a 2x ÷a y =a 2x -y =a 3,(2分)∴xy =6,2x -y =3.(4分)(2)4x 2+y 2=(2x -y )2+4xy =32+4×6=9+24=33.(8分)21.解:∠1 两直线平行,内错角相等 平行于同一条直线的两条直线平行 ∠D 两直线平行,同旁内角互补 ∠1(9分)22.解:(1)小明出发的时间t 距起点的距离s (2分) (2)小明的速度为300÷50=6(米/秒),朱老师的速度为(300-200)÷50=2(米/秒).(6分) (3)2 300米和420米(9分)23.解:(1)与∠D 相等的角有∠DCG ,∠ECF ,∠B .(1分)理由如下:∵AD ∥BC ,∴∠DCG =∠D .∵∠FCG =90°,∠DCE =90°,∴∠ECF +∠FCD =∠DCG +∠FCD =90°,∴∠ECF =∠DCG =∠D .∵AB ∥DC ,∴∠B =∠DCG =∠D ,∴与∠D 相等的角有∠DCG ,∠ECF ,∠B .(3分) (2)∵∠ECF =25°,由(1)知∠DCG =∠ECF =25°,∴∠BCD =180°-∠DCG =155°.(6分) (3)分两种情况进行讨论:①如图a ,当点C 在线段BH 上时,点F 在DA 延长线上,由(1)知∠D =∠ECF =25°.∵AB ∥CD ,∴∠BAF =∠D =25°.(9分)②如图b ,当点C 在BH 延长线上时,点F 在线段AD 上.由(1)知∠D =∠ECF =25°.∵AB ∥CD ,∴∠BAF =180°-25°=155°.综上所述,∠BAF 的度数为25°或155°.(12分)北师大版数学七年级下册期中测试题(三)(时间:120分钟分值:120分)一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.如图,直线AB与直线CD相交于点O.若∠AOD=50°,则∠BOC的度数是()A.40° B.50° C.90° D.130°2.在我们常见的英文字母中,存在着同位角、内错角、同旁内角的现象.在下列几个字母中,不含同旁内角现象的字母是()A.E B.F C.N D.H3.下列运算正确的是()A.(-a5)2=a10 B.2a·3a2=6a2 C.a8÷a2=a4 D.-6a6÷2a2=-3a34.若(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.-3 B.3 C.0 D.15.一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶.下面哪一幅图可以近似刻画出该汽车在这段时间内的速度变化情况()6.星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分钟)的关系图象.根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时花的时间少于回家所花的时间D.小王去时走下坡路,回家时走上坡路二、填空题(本大题共6小题,每小题3分,满分18分)7.计算:(π-3.14)0=________.8.某天,马小虎同学发现课堂笔记本的一道题“(12a3b2c3-6a2b+3ab)÷3ab=○-2a +1”中商的第一项被墨水污染了,则“○”表示________.9.如图,图象反映的过程是:小明从家去书店,然后去学校取封信后马上回家,其中x 表示时间,y 表示小明离家的距离,则小明从学校回家的平均速度为________千米/时.10.某梯形上底长、下底长分别是x ,y ,高是6,面积是24,则y 与x 之间的关系式是____________.11.根据如图所示的计算程序,若输入的值x =8,则输出的值y 为________.12.已知OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为__________. 三、解答题(本大题共5小题,每小题6分,满分30分) 13.计算:(1)23×22-⎝⎛⎭⎫120-⎝⎛⎭⎫12-3;(2)-12+(-3)0-⎝⎛⎭⎫-13-2+(-2)3.14.如图,点D 在射线AE 上,AB ∥CD ,∠CDE =140°,求∠A 的度数.15.如图,直线AB与直线CD相交于点O,EO⊥AB,垂足为O,∠EOC=35°,求∠AOD的度数.16.如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,自变量是________,因变量是________;(2)圆柱的体积V与底面半径r的关系式是____________;(3)当圆柱的底面半径由2cm变化到8cm时,圆柱的体积由________cm3变化到________cm3.17.一辆汽车油箱内有油48升,从某地出发,每行驶1km耗油0.6升,如果设剩油量为y(升),行驶路程为x(km).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,求汽车的行驶路程.四、(本大题共3小题,每小题8分,共24分)18.若(x+a)(x+2)=x2-5x+b,求a+b的值.19.如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.20.甲、乙两地相距210千米,一辆货车将货物由甲地运至乙地,卸载后返回甲地.若货车距乙地的距离y(千米)与时间t(时)的关系如图所示,根据所提供的信息,回答下列问题:(1)货车在乙地卸货停留了多长时间?(2)货车往返速度,哪个快?返回速度是多少?五、(本大题共2小题,每小题9分,共18分)21.王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?22.如图,已知直线l1∥l2,A,B分别是l1,l2上的点,l3和l1,l2分别交于点C,D,P是线段CD上的动点(点P不与C,D重合).(1)若∠1=150°,∠2=45°,则∠3的度数是多少?(2)若∠1=α,∠2=β,用α,β表示∠APC+∠BPD.六、(本大题共12分)23.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象填空:①甲、乙中,________先完成一天的生产任务;在生产过程中,________因机器故障停止生产________小时;②当t=________时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.参考答案与解析1.B 2.C 3.A 4.A 5.B 6.B7.18.4a2bc39.610.y=-x+811.312.30°或150°13.解:(1)原式=8×4-1-8=23.(3分)(2)原式=-1+1-9-8=-17.(6分)14.解:∵∠CDE=140°,∴∠CDA=180°-∠CDE=40°.(3分)∵AB∥CD,∴∠A=∠CDA=40°.(6分)15.解:∵EO⊥AB,∴∠EOB=90°.(2分)又∵∠COE=35°,∴∠COB=∠COE+∠BOE=125°.(4分)∵∠AOD=∠COB,∴∠AOD=125°.(6分)16.解:(1)半径r体积V(2分)(2)V=4πr2(4分)(3)16π256π(6分)17.解:(1)y=-0.6x+48.(2分)(2)当x=35时,y=48-0.6×35=27,∴这辆汽车行驶35km时,剩油27升.(4分)当y=12时,48-0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60km.(6分) 18.解:(x+a)(x+2)=x2+ax+2x+2a=x2-5x+b,则a+2=-5,2a=b,(4分)解得a=-7,b=-14.(6分)则a+b=-21.(8分)19.解:(1)利用图象得出上午9时的温度是27℃,这一天的最高温度是37℃.(3分)(2)这一天的温差是37-23=14(℃),从最低温度到最高温度经过了15-3=12(小时).(6分)(3)温度下降的时间范围为0时至3时及15时至24时,图中的A点表示的是21点时的气温.(8分)20.解:(1)∵4.5-3.5=1(小时),∴货车在乙地卸货停留了1小时.(3分)(2)∵7.5-4.5=3<3.5,∴货车返回速度快.(5分)∵210÷3=70(千米/时),∴返回速度是70千米/时.(8分)21.解:(1)卧室的面积是2b (4a -2a )=4ab (平方米),(2分)厨房、卫生间、客厅的面积和是b (4a -2a -a )+a (4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),即木地板需要4ab 平方米,地砖需要11ab 平方米.(5分)(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.(9分) 22.解:(1)过点P 向右作PE ∥l 1.∵l 1∥l 2,∴l 1∥PE ∥l 2,∴∠1+∠APE =180°,∠2=∠BPE .(2分)∵∠1=150°,∠2=45°,∴∠APE =180°-∠1=180°-150°=30°,∠BPE =∠2=45°,(4分)∴∠3=∠APE +∠BPE =30°+45°=75°.(5分) (2)若∠1=α,∠2=β,则∠APB =180°-∠1+∠2=180°-α+β,(7分)∴∠APC +∠BPD =180°-∠APB =180°-(180°-α+β)=α-β.(9分)23.解:(1)①甲 甲 3 (3分)②3和193(6分)(2)甲在5~7时的生产速度最快,(8分)∵40-107-5=15,∴他在这段时间内每小时生产零件15个.(12分)。

北师大版数学七年级下册期中考试试卷含答案

北师大版数学七年级下册期中考试试卷含答案

北师大版数学七年级下册期中考试试卷含答案北师大版数学七年级下册期中考试试题一、单选题(每小题3分,共27分)1.下列运算正确的是()A。

x2+x3=x5B。

x2·x3=x6C。

(3x3)2=6x6D。

x6÷x3=x22.将0.xxxxxxxx用科学记数法表示为()A。

0.573×10^-5B。

5.73×10^-5C。

5.73×10^-6D。

0.573×10^-63.计算(a-b)2的结果是()A。

a2-b2B。

a2-2ab+b2C。

a2+2ab-b2D。

a2+2ab+b24.如果一个角的补角是150∘,那么这个角的余角的度数是()A。

30∘B。

60∘C。

90∘D。

120∘5.两直线被第三条直线所截,则()A。

内错角相等B。

同位角相等C。

同旁内角互补D。

以上结论都不对6.某天,XXX去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)的关系的图象,根据图象信息,下列说法正确的是()A。

XXX去时的速度大于回家的速度B。

XXX在朋友家停留了10分钟C。

XXX去时所花时间少于回家所花时间D。

XXX去时走上坡路,回家时走下坡路7.如图,AB∥CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是()A。

46°B。

23°C。

26°D。

24°8.设(5a+3b)2=(5a-3b)2+A,则A=A。

30abB。

60abC。

15abD。

12ab9.一辆汽车在广场上行驶,两次转弯后要想行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A。

第一次向右拐50°,第二次向左拐130°B。

第一次向左拐30°,第二次向右拐30°C。

第一次向右拐50°,第二次向右拐130°D。

第一次向左拐50°,第二次向左拐130°二、填空题10.若a=-√2,b=(-1)^-1,c=-2/π,则a、b、c从小到大的排列是_____<_____<_____。

北师大版七年级下册数学期中考试试题带答案

北师大版七年级下册数学期中考试试题带答案

北师大版七年级下册数学期中考试试题带答案北师大版七年级下册数学期中考试试卷一、单选题1.下面计算正确的是()A。

b3b2=b6B。

x3+x3=x6C。

a4+a2=a6D。

mm5=m62.计算:(m3n)2的结果是A。

m6nB。

m6n2C。

m5n2D。

m3n23.计算:x5÷x2等于()A。

x2B。

x3C。

2xD。

x34.计算:(5a2b)•(3a)等于()A。

15a3bB。

15a2bC。

8a3bD。

15a35.计算:(m+5)(m-5)等于()A。

m2-25B。

m-25C。

m2-5D。

m2-106.计算:(x-1)2等于()A。

x2-x+1B。

x2-2x+1C。

x2-1D。

x2-2x+1/47.计算:15a3b÷(-5a2b)等于()A。

-3abB。

-3a3bC。

-3aD。

-3ab28.下面四个图形中,∠1与∠2是对顶角的是()A。

B。

C。

D。

9.如图,下列四组角中是内错角的是()A。

∠1与∠7B。

∠3与∠5C。

∠4与∠5D。

∠2与∠510.如图,已知a∥b,∠1=50°,则∠2=()A。

130°B。

50°C。

40°D。

80°二、填空题11.化简(x+y)(x-y)=x2-y2.12.快餐每盒5元,买n盒需付5n元,则其中常量是5.13.若x2+kxy+y2是完全平方式,则k=2x。

14.如图,∠B的同位角是∠D。

15.光在真空中的速度约为3×108米/秒,太阳光照射到地球上大约需要5×102秒,地球与太阳距离约为1.5×1011米。

16.两个角的两边分别平行,且其中一个角比另一个角的2倍少15°,则这两个角为45°和75°。

三、解答题17.1) (-3) + (1/2) + |-2| = -3 + 1/2 + 2 = -4.52) 103×97 = (100+3)(100-3) = -9 = 999118.x-y)2y / ((x+y)-(x-y)2)] = [(x-y)2y / (3y-x+y)] = (x-y)2 = 2020-1 = 201919.如图,先延长AB至点F,连接CF,作CF的中垂线交AB于点E,以E为圆心,EF为半径画圆,交CF于点D,连接DE即可。

北师大版七年级数学下册期中测试卷及期中复习题共5套试题

北师大版七年级数学下册期中测试卷及期中复习题共5套试题

七年级数学下册期中测试题班级: 姓名: 成绩:一、选择题(每题3分,共30分) 1、在代数式2,1,32,,22y x a x ax x ++-中,单项式有( ) A 、1个 B 、2个 C 、3个 D 、4个 2、下列计算正确的是( )A 、623.a a a =B 、4442.b b b =C 、1055x x x =+D 、87.y y y = 3、计算(x-y)3·(y-x)=( )A 、(x-y)4B 、(y-x)4C 、-(x-y)4D 、(x+y)4 4、下列运算中能用平方差公式的是( ) A、(2a-b)(2a+3b) B 、(2a-b )(2a+b ) C、(a-b )(b-a ) D 、(a+b )(a+b ) 5、下列说法中正确的有( )①一个角的余角一定比这个角大 ②同角的余角相等 ③若∠1+∠2+∠3=180°,则∠1,∠2,∠3互补 ④对顶角相等 A 、1个 B 、2个 C 、3个 D 、4个6、如图1,下列条件中,不能判断直线l 1∥l 2的是 ( ) A 、∠1=∠3 B 、∠2=∠3 C 、∠4=∠5 D 、∠2+∠4=180°7、如图2,直线AB 与CD 交于点O,OE ⊥AB 于O,∠1与∠2的关系是 ( ) A.对顶角 B.互余 C.互补 D 相等 8、把0.00000156用科学记数法表示为( )A 、810156⨯ B 、7106.15-⨯ C 、1.56×10-5D 、61056.1-⨯ 9、在用图象表示变量之间的关系时,下列说法中最恰当的是( ). A 、用水平方向的数轴上的点表示因变量 B 、用竖直方向的数轴上的点表示自变量 C .用横轴上的点表示自变量D .用横轴或纵轴上的点表示自变量10、为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所图1C21E D BA图2示:按照上面的规律,摆第(n)图,需用火柴棒的根数为( ).A. 50B. 6nC. 6n-2D.6n+2二、填空(每题3分,共24分) 11、观察:你发现了什么规律?根据你发现的规律,请你用含一个字母的等式将上面各式呈现的规律表示出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级下册数学期中测试
一.选择题
1下列各式中,正确的是(
) A. t 5?t 5=2t 5 B . t 4+t 2=t 6 C . t 3?t 4=t 12
D . tS 3二t 5 2.下列计算中可采用平方差公式的是( )
A. m=1, n=3 B . m=4 n=3
C. m=4 n=2 D . m=3 n=4
4.如果多项式x 2+mx+16是一个完全平方式,贝S m 的值是(
)
A. 士 4 B . 4 C . ± 8 D . 8
引到农田P 处,设计了四条路线 PA PB, PC PD (其中PB 丄l ),你 选择哪条路线挖渠才能使渠道最短( )
ABCD 沿 EF 对折,若2 1=50。

,贝卩2 AEF 的度数为
B . 120°
C . 115°
D . 130°
9.王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与 朋友
A. (x+y ) (x -z ) C. (- 3x - y ) (3x+y ) 3 .若 8x y — 4x y
B. (- x+2y ) D . (2a+3b ) 则m n 的值为( )
(x+2y )
(2b -3a )
5.下列图形/ 1和/2是对顶角的图形是
ABCD 中,点E 在BC 延长线上,贝卩下列条件中不能 判断AB// CD 的是( A.Z 3=2 4 )
B.2 1=2 2 D . 2 1 + 2 3+2 D=180°
A. PA B . PB C . PC D . PD
&如图,把矩形 A. 100° D
6.如图,四边形 C.2 5=2 ABC
7.如图所示,在灌溉农田时,要把河(直线 I 表示一条河)中的水
(第8题
图)
聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时
10.某商店售货时,在进价基础上加一定利润,其数量x与售价y如
数量x(千克)1234・・・
售价y (元)8+0.416+0.8

24+1.232+1.6・・・A. y=8+0.4x B . y=8x+0.4 C . y=8.4x D . y=8.4x+0.4 二.填空题
11. 如图,CD平分/ ACB DE// AC 若/ 仁70°,则/ 2=
12. 如图,给出了过直线外一点作已知直线的平行线的方法,其依据
是_________ .
13. ______________________________ 若2a=3, 2b=5,则23a+2b等于____________________________________ .
14. 已知2x+5y-3=0,则4x• 32 y的值等于_____
15.若x + 2y + 1 +(-y-2f = 0,则(2x-y f -2(2x-y l x + 2y)+(x+ 2yf 的值为___________ c
16. 微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩
小.某种电子元件的面积大约为0.000 000 53平方毫米,用科学记数法表示为_____________ 平方毫米.
17. 要使(ax2-3x)(x 2-2x-1)的展开式中不含x3项,则a= __ .
18. 已知代彳二-沪沪,则x= ______ .
V Ji
y (米)
______ 度.
(第12题
图)
19. 如果a 2 - b 2=8,且a+b=4,那么a - b 的值是 . , 2 2 20. 如果4x — Mxy+9y 是完全平方式,则 M 的值是 __________ 。

三.解答题
21. 计算:
(1) (- 1) 2+ ( 1
) 0+ ( - ■ ) - 3 (2) 2ab 2 (3a 2b- 3ab 2- 4a )
5 2
(5 )化简求值:(x+3y ) 2-( x+3y ) (x - 3y ),其中 x=3, y=- 2.
22. 已知多项式x 2+ax+1与2x+b 的乘积中含x 2的项的系数为3,含x 项的系数为2,求a+b 的值.
二 ______ 二/ 5 (
又T/ 3=2 4
二2 5= ______ ( _______ )
(3) (x+2y - 1) (- x+2y+1)
(4) (2a+b ) (b - 2a ) (a - b )
BC// EF.
23.推理填空:
求证:
••• BCI EF ( _______ )
24. 如图,EF I AD / 仁/ 2,Z BAC=70 .求/ AGD 勺度数.
25. 乐平街上新开张了一家“好又多”超市,这个星期天,张明和妈 妈去这家新开张的超市买东西,如图反映了张明从家到超市的时间 t (分钟)与距离s (米)之间关系的一幅图.
(1) ________________________ 图中反映了两个变量 与 间的关系;超市离家
____ m
(2) ___________________________________ 张明从家出发到达超市所用时间为 ______________________________ ;从超市返回家所 用时间为 _____
(3) 张明从家出发后20分钟到30分钟内可能在 _________________
(4) ________________________________________ 张明从家到超市时的平均速度是 _______________________________ ;返回时的平均 速度是 ____________
26. 小康村正在进行绿地改造,原有一正方形绿地,现将它每边都增 加3米,面积则增加了 63平方米,问原绿地的边长为多少?原绿地 的面积又为多少?
27.如图,在长为3a 2,宽为2b-1的长方形铁片上,挖去长为2a 4 , 宽为b 的小长方形铁片.
(1) 求剩余部分面积。

(2) 求出当a - 3, b = 2时的面积
. 3—2 2b-l
28.已知a+-=3,求a2+2的值
a a。

相关文档
最新文档