新版沪教版六年级下册数学第八章-长方体的再认识(2018新教材)
新版沪教版六年级下册数学第八章-长方体的再认识(新教材)
第八章 长方体的再认识 第二课时一、概念1、 长方体的元素:六个面、八个顶点、十二条棱2、 长方体的三元素的特点:(主要是外观特征和数量关系)①长方体的每个面都是长方形;②长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。
③长方体的六个面可以分为三组,每组中的两个面形状大小都相同。
3、 正方体是特殊的长方体。
4、 平面是平的,无边无沿,没有厚度和大小,一般用平行四边形来表示。
记作:平面ABCD 或平面α。
5、 将水平放置的平面画成一边是水平位置,另一边与水平线成45度角的平行四边形。
6、 斜二侧画法画长方体时要注意:宽画成标注尺寸的一半;看不到的线画成虚线;要标字母和尺寸,要写结论。
长方体ABCD-EFGH 、平面ABCD 、棱AB 、顶点A 。
7、 空间中两直线的位置关系有三种:相交、平行、异面① 如果两条直线在同一平面内,有唯一公共点,称这两条直线的位置关系是相交; ② 如果两条直线在同一平面内,没有唯一公共点,称这两条直线的位置关系是平行; ③ 如果两条直线既不平行也不相交,称这两条直线的位置关系是异面。
8、 直线垂直于平面记作:直线PQ ⊥平面ABCD ;直线平行于平面记作:直线PQ ∥平面ABCD 。
9、 计算公式之一:(三条棱长分别是a 、b 、c 的长方体)① 棱长和 = 4()a b c ++ ; ② 体积 = abc ;③ 表面积 = 2()ab bc ac ++ ; ④ 无盖表面积 = S ab -、S bc -、S bc - 10、计算公式之二:(边长是a 正方体)① 棱长和= 12a ;②体积= 3a ;③表面积= 26a ;④无盖表面积 =25a 。
11、长方体不一定是正方体;正方体一定是长方体。
12、长方体中棱与棱的位置关系有3种,分别是平行、相交、异面。
13、长方体中棱与面的位置关系有2种,分别是:平行、垂直。
14、长方体中面与面的位置关系有2种,分别是:平行、垂直。
难点解析沪教版(上海)六年级数学第二学期第八章长方体的再认识难点解析练习题(含详解)
六年级数学第二学期第八章长方体的再认识难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某几何体的三视图如图所示,则该几何体的名称是()A.正方体B.圆柱C.圆锥D.球2、在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有( )A.3个B.4个C.5个D.6个3、下列几何体的俯视图中,其中一个与其他三个不同,该几何体是()A.B.C.D.4、用一个平面去截正方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形5、如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A.B.C.D.6、如图所示的几何体的左视图是()A.B.C.D.7、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数()V、面数()F、棱数()E之间存在的一个有趣的关系式:2+-=,被称为欧拉公式.若某个玻璃饰品的外形是简单多面体,它的外表面是V F E由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表+的值为()三角形的个数为x个,八边形的个数为y个,求x yA.12 B.14 C.16 D.188、如图,该几何体的俯视图是()A.B.C.D.9、下面的几何体的左视图是()A.B.C.D.10、如图是某几何体放置在水平面上,则其俯视图是()A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把一个长方体截成两个长方体后,棱的数量增加了__________条.2、一个五棱柱有__个顶点,__个面,__条棱.3、已知正方体的一个平面展开图如图所示,则在原正方体上“百”的对面是 __.4、在长方体1111ABCD A B C D 中,与平面11AA D D 垂直的棱有________条.5、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“成”字所在面相对面上的汉字是_______.三、解答题(5小题,每小题10分,共计50分)1、将立方体纸盒沿某些棱剪开,且使六个面连在一起,然后铺平,可以得到其表面展开图的平面图形.(1)以下两个方格中的阴影部分,能表示立方体表面展开图的是____;(填“A”或“B”).(2)在以下方格图中,画一个与(1)中呈现的阴影部分不相同的立方体表面展开图;(用阴影表示)(3)如图中实线是立方体纸盒的剪裁线,请将其表面展开图画在右图的方格图中.(用阴影表示)2、已知如图是边长为2cm的小正方形,现小正方形绕其对称轴线旋转一周,可以得到一个几何体,求所得的这个几何体的体积.3、如图是由若干个相同的正方体组成的立体图形从上往下看所得到的平面图形,正方形上标注的数字表示该位置上正方体的个数.请画出这个立体图形从左面看所得到的平面图形.4、如图所示,长方体ABCD EFGH中,从点F出发的三条棱FE、FG、FB的长度比为1:2:3,该长方体的棱长总和为144厘米,求与面ADHE垂直的各个面的面积之和.5、一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数.请你画出从正面和从左面看到的这个几何体的形状图.-参考答案-一、单选题1、C【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】解:根据主视图是三角形,圆柱、正方体、球不符合要求,A、B、D错误,不符合题意;根据几何体的三视图,圆锥符合要求.故选:C.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.2、B【分析】根据立体图形的定义即可解答;【详解】正方体、长方体、圆柱、六棱柱是柱体;圆锥、六棱锥是椎体;球是球体;圆台是台体.故答案为:B【点睛】此题考查立体图形的认识,掌握认识立体图形是解答本题的根本.3、C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:选项A、B、D的俯视图是不带圆心的圆,选项C的俯视图是带圆心的圆,故选:C.【点睛】此题主要考查三视图,解题的关键是熟知俯视图的定义.4、D【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.【详解】解:如图所示:用平面去截正方体时最多与六个面相交得六边形,因此截面的形状可能是:三角形、四边形、五边形、六边形,不可能是七边形.故选:D.【点睛】本题考查正方体的截面,正方体的截面的四种情况应熟记.5、C【分析】根据从左面看得到的视图是左视图,可得答案.【详解】解:从左边看下面是一个长方形,上面是一个三角形,故选:C.【点睛】本题考查了简单几何体的三视图,解题关键是明确从左面看得到的视图是左视图,树立空间观念,准确识图.6、A【分析】找到从几何体的左面看所得到的图形即可作答,注意所有的看到的棱都应表现在左视图中.【详解】解:从几何体的左面看,是一行两个矩形.故选:A.【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.7、B【分析】得到多面体的棱数,求得面数即为x+y的值.【详解】解:∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F−36=2,解得F=14,∴x+y=14.故选B.【点睛】本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.难点是熟练掌握欧拉定理.8、A【分析】找到从几何体的上面看所得到图形即可.【详解】解:从上面看,是一大、一小两个矩形,小矩形在大矩形内部,故选:A.【点睛】此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.9、D【分析】根据几何体的特点即可求解.【详解】从左边看,第一排三个正方形,第二排两个,第三排一个.即故选D.【点睛】此题主要考查三视图的判断,解题的关键是熟知左视图的定义.10、B【分析】根据从上面看得到的图象是俯视图,可得答案.【详解】从上面看得到的图象如下故选:B.【点睛】本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.二、填空题1、12【分析】把一个长方体截成两个长方体之后,棱长个数从一个长方体的棱长个数变成两个长方体的棱长个数.【详解】一个长方体棱长个数是12,截成两个之后棱长个数变成24,所以增加了12条.故答案是:12.【点睛】本题考查长方体棱的性质,解题的关键是熟悉长方体棱的个数.2、10; 7; 15.【分析】根据棱柱的特性:n棱柱有(n+2)个面,3n条棱,2n个顶点.【详解】故五棱柱有7个面,15条棱,10个顶点.故答案为10,7,15.【点睛】本题主要考查n棱柱的构造特点:(n+2)个面,3n条棱,2n个顶点.3、建【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以在原正方体上“百”的对面是“建”.故答案为:建.【点睛】本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是正确判断的前提.4、4【分析】长方体中的棱与面的关系有2种:平行和垂直,结合图形可找到与面AA D D垂直的棱.【详解】解:如图示:根据图形可知与面AA D D垂直的棱有AB,CD,C D'',A B''共4条.故答案是:4.【点睛】主要考查了长方体中的棱与面之间的位置关系.要知道长方体中的棱的关系有2种:平行和垂直.5、非【分析】由正方体展开图的性质,得出“成”字所在面相对面上的汉字即可.【详解】由正方体展开图的性质,可得:“成”与“非”是相对面,“功”与“然”是相对面,“绝”与“偶”是相对面.故答案为:非.【点睛】本题主要考查正方体的展开图的性质,掌握正方体展开图的性质是解题关键.三、解答题1、(1)选“A”;(2)见解析;(3)见解析【分析】(1)有“田”字格的展开图都不能围成正方体,据此可排除B,从而得出答案;(2)可利用“1、4、1”作图(答案不唯一);(3)根据裁剪线裁剪,再展开.【详解】(1)两个方格图中的阴影部分能表示立方体表面展开图的是A,故答案为:A.(2)立方体表面展开图如图所示:(3)将其表面展开图画在方格图中如图所示:【点睛】本题考查了几何体的展开图,熟记正方体的展开图的11结构种形式是解题的关键.2、2πcm 3【分析】由图可知小正方形绕其对称轴线旋转一周得到一个底面半径为1cm ,高为2cm 的圆柱,故可求解.【详解】由旋转体可知小正方形绕其对称轴线旋转一周得到一个底面半径为1cm ,高为2cm 的圆柱, ∴这个几何体的体积为22122r h πππ=⨯⨯= cm 3.【点睛】此题主要考查旋转体的体积,解题的关键是熟知圆柱体的体积公式.3、图见解析.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为2,3.据此可画出图形.【详解】解:如图【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4、360平方厘米【分析】设棱FE 、FG 、FB 的长度为x 厘米、2x 厘米、3x 厘米,根据题意易得棱FE 、FG 、FB 的长度,然后找到与面ADHE 垂直的各个面进行求解即可.【详解】解:设棱FE 、FG 、FB 的长度为x 厘米、2x 厘米、3x 厘米,由题意得:∴()234144x x x ++⨯=,6x =,∴棱FE 、FG 、FB 的长度分别为6厘米、12厘米、18厘米,则与面ADHE 垂直的面为面ABFE 、面ABCD 、面CDHG 、面EFGH ,面积之和为()6186122360⨯+⨯⨯=(平方厘米).【点睛】本题主要考查长方体面与面的位置关键及面积,关键是找到与面ADHE 垂直的面,然后进行求解即可.5、见解析【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,2,3;从左面看有2列,每列小正方形数目分别为3,3.据此可画出图形.【详解】如图所示:.【点睛】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.。
沪教版六年级-长方体的再认识讲义
长方体的再认识知识精要一、长方体的再认识1、长方体的特征。
(1)长方体有6个面,8个顶点,12条棱。
(2)长方体的每个面都是长方形。
(3)长方体的12条棱可以分为三组,每组中四条棱的长度都相等。
(4)长方体的6个面可分为3组,每组中相对的两个面的形状和大小均相同。
2、长方体的直观图画法长方体的直观图有多种画法,通常我们采用斜二侧画法: 水平放置的长方体直观图通常的画法的基本步骤:(4)(3)(2)(1)GHFCGHFCGHFCCDDDEEE3、长方体棱与棱的位置关系二、长方体中棱与平面的位置关系1、直线PQ 垂直于平面ABCD ,记作:直线ABCD PQ 平面⊥,读作:直线PQ 垂直于平面ABCD 。
2、检验直线与平面垂直的方法:(1)铅垂线法:只能用于检验直线与水平面是否垂直; (2)三角尺法:可以检验一般的直线与平面是否垂直; (3)合页型法:可以检验一般的直线与平面是否垂直;3、直线PQ 平行于平面ABCD ,记作:直线ABCD PQ 平面//,读作:直线PQ 平行于平面ABCD 。
4、检验直线与平面平行的方法:(1) 铅垂线法:从被测直线的两个不同的点放下铅垂线,使铅垂线的下端刚好接触地面。
如果从这两个不同点到铅垂线的下端的线段的长度相等,那么说明被测直线平行于水平面。
(2) 长方形纸片法:将长方形纸片的一边贴合于已知平面,另一边靠近被测直线,如果另一边能够紧贴被测直线,则说明被测直线平行于已知平面。
三、长方体中平面与平面的位置关系1、平面α垂直于平面β,记作:βα平面平面⊥,读作:平面α垂直于平面β。
2、检验平面与平面垂直的方法:(1)铅垂线法,(2)三角尺法;(3) 合页型折纸法。
3、平面α平行于平面β,记作:βα平面平面//,读作:平面α平行于平面β。
4、检验平面与平面平行的方法:长方形纸片法:将长方形纸片的一边贴合于已知平面,按交叉的方向分两次放在两个平面之中,如果另一边能够紧贴被测平面,则说明被测平面平行于已知平面。
基础强化沪教版(上海)六年级数学第二学期第八章长方体的再认识重点解析试题(含解析)
六年级数学第二学期第八章长方体的再认识重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记6的对面的数字为a,2的对面的数字为b,那么a b的值为()A.3 B.7 C.8 D.112、如图,下列图形中经过折叠不能围成一个直四棱柱的是()A.B.C.D.3、一个圆锥的底面直径是圆柱底面直径的3倍,如果它们的高相等,那么圆锥体积是圆柱体积的()A.3倍B.13C.9倍D.194、如图所示的几何体的左视图是()A.B.C.D.5、如图,该几何体的三视图中面积相等的是()A.主视图与俯视图B.主视图与左视图C.俯视图与左视图D.三个视图都不相等6、如图是由6个完全相同的小正方体组成的立体图形,这个立体图形的三视图中()A.主视图和俯视图相同B.主视图和左视图相同C.俯视图和俯视图相同D.三个视图都相同7、如图所示的几何体的左视图是()A.B.C.D.8、某几何体的三视图如图所示,则该几何体的名称是()A.正方体B.圆柱C.圆锥D.球9、如图摆放的几何体的左视图是()A.B.C.D.10、如图所示的几何体由一个长方体和一个圆锥组成,则该几何体的俯视图是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个9棱柱,所有的侧棱长的和是72厘米,则每条侧棱长是______厘米.2、如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为_____.3、一根80分米长的铁条,剪断后刚好可焊接成一个长8分米、宽5.5分米的长方体框架,那么这个长方体的高是_______分米.4、将图沿线折成一个立方体,它的共顶点的三个面上的数字之积的最大值是__.5、桌面上有一个正六面体骰子,若将骰子沿如图所示的方向顺时针滚动,每滚动90°为1次,则滚动2020次后,骰子朝下一面的点数是___.三、解答题(5小题,每小题10分,共计50分)1、有一个长方体的玻璃缸,长、宽、高分别是12厘米、10厘米和8厘米,里面装满了水,现在有一块正方体铁块,边长为6厘米,把它缓慢地浸没在水缸中后再取出,此时玻璃缸中的水面高度是多少?2、已知图为一几何体从不同方向看的图形:(1)写出这几个几何体的名称;(2)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.3、如图是由若干个相同的小正方体组成的几何体从正面、上面看到的形状图.(1)组成这个物体的小正方体的个数可能是多少?(2)求这个几何体的最大表面积.4、如图所示,是由10个完全相同的棱长为1cm的小正方体组成的几何体.(1)请分别画出从正面、上面、左面三个方向看到的图形;(2)这个几何体的表面积是_______________3cm(包括底部).5、如图是由9个相同的小立方体组成的一个几何体.(1)画出从正面看、左面看、上面看的形状图;(2)现量得小立方体的棱长为2cm,现要给该几何体表面涂色(不含底面),则涂上颜色部分的总面积是.-参考答案-一、单选题1、B【分析】由图一和图二可看出1的对面的数字是5;再由图二和图三可看出3的对面的数字是6,从而2的对面的数字是4.【详解】解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5,同理,立方体面上数字3对6.故立方体面上数字2对4.则a=3,b=4,那么a+b=3+4=7.【点睛】本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.解题的关键是按照相邻和所给图形得到相对面的数字.2、C【分析】利用平面图形的折叠及长方体的展开图解题即可.【详解】A、B、D可以围成直四棱柱,C不能围成一个棱柱,故选:C.【点睛】本题考查了展开图折叠成几何体,熟记常见立体图形的表面展开图的特征是解决此类问题的关键.3、A【分析】设一个圆锥的底面直径为6a,则圆柱底面直径为2a,高为h,根据体积公式分别求出圆锥和圆柱的体积,故可比较求解.【详解】解:设一个圆锥的底面直径为6a,则圆柱底面直径为2a,高为h,∴圆锥的体积为13Sh=22 16332aaππ⎛⎫⨯⨯=⎪⎝⎭圆柱的体积为S’h=2222aa ππ⎛⎫⨯=⎪⎝⎭∴圆锥体积是圆柱体积的3倍【点睛】此题主要考查等底等高的圆锥与圆柱体积之间关系的灵活运用,关键是明确:等底等高的圆锥的体积是圆柱体积的13.4、A【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看,底层是两个小正方形,上层的左边是一个小正方形.故选:A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5、A【分析】作出该几何体的三视图,根据三视图的面积求解即可.【详解】解:该几何体的三视图为:可得出主视图与俯视图的面积相等.故选:A.【点睛】本题考查了简单组合体的三视图,解答本题的关键在于熟练掌握三视图的概念,并能找出正确的三视图.6、B【分析】主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.【详解】解:主视图和左视图相同,均有三列,小正方形的个数分别为1、2、1;俯视图也有三列,但小正方形的个数为1、3、1.故选:B.【点睛】本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提,画三视图时应注意“长对正,宽相等、高平齐”.7、A【分析】找到从几何体的左面看所得到的图形即可作答,注意所有的看到的棱都应表现在左视图中.【详解】解:从几何体的左面看,是一行两个矩形.故选:A.【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.8、C【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】解:根据主视图是三角形,圆柱、正方体、球不符合要求,A、B、D错误,不符合题意;根据几何体的三视图,圆锥符合要求.故选:C.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.9、A【分析】根据左视图是从左面看到的视图判定则可.【详解】解:从左边看,是左右边各一个长方形,大小不同,故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.10、D【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面可以看到一个矩形与和它两条较长边相切的圆,圆有圆心,如图所示:故选:D .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,解题关键是树立空间观念,准确识图.二、填空题1、8【分析】9棱柱共有9条侧棱,已知所有的侧棱长的和是72厘米,计算出每条侧棱长即可.【详解】由题意可知,每条侧棱长是:8972=÷(厘米).故答案为:8.【点睛】本题主要考查立体图形的相关性质,熟记立体图形的性质是解题关键.2、7,12【分析】正方体切一个顶点多一个面,少三条棱,又多三条棱,依此即可求解.【详解】解:如图,一个正方体截去一个角后,剩下的几何体面的个数是6+1=7,棱的条数是12﹣3+3=12 故答案为:7,12【点睛】此题考查了截一个几何体,解决本题的关键是找到在原来几何体的基础上增加的面和棱数.3、6.5【分析】根据长方体棱长和棱长的知识点准确计算即可;【详解】()÷-+=(分米).8048 5.5 6.5故答案是6.5.【点睛】本题主要考查了长方体棱与棱的位置关系和长方体认识,准确分析计算是解题的关键.4、90【分析】由题意可得,共顶点的三个数字的积最大时,为6×3×5,本题得以解决.【详解】由题意可得,6×3×5=90,故答案为:90.【点睛】本题考查展开图折叠成几何体、有理数的乘法,解答本题的关键是明确题意,找出所求问题需要的条件.5、4【分析】观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解:观察图形知道点数三和点数四相对,点数二和点数五相对且滚动四次一循环,÷=∵20204505,∴滚动第2020次后与第1个相同,∴朝下的数字是3的对面4,故答案为:4.【点睛】本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.三、解答题1、6.2厘米【分析】根据长方体的体积计算即可;【详解】()()-⨯⨯÷⨯=(厘米);86661210 6.2答:此时玻璃缸中的水面高度是6.2厘米.【点睛】本题主要考查了长方体的再认识,准确计算是解题的关键.2、(1)正三棱柱(2)120cm2.【分析】(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是正三角形,可得到此几何体为正三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10,4,计算出一个长方形的面积,乘3即可.(1)∵主视图和左视图是长方形,根据俯视图是正三角形,∴这个几何体为正三棱柱;(2)3×10×4=120(cm2),答:这个几何体的侧面积为120cm2.【点睛】此题主要考查了由三视图判断几何体的形状,用到的知识点为:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.3、(1)4或5(2)22【分析】(1)根据正面、上面看到的形状图可得到从上面看到的形状图中正方体个数,即可求出这个物体的小正方体的个数;(2)根据题意分情况求出表面积即可比较求解.【详解】(1)由正面、上面看到的形状图得从上面看到的形状图中正方体个数如下图:或或故组成这个物体的小正方体的个数为4或5;(2)当从上面看到的形状图中正方体个数如下图时则从左面看为故表面积为2×3+2×3+4×2=20;当从上面看到的形状图中正方体个数如下图时则从左面看为故表面积为2×3+2×3+4×2=20;当从上面看到的形状图中正方体个数如下图时则从左面看为故表面积为2×3+2×3+5×2=22;故这个几何体的最大表面积为22.【点睛】此题主要考查立体图形的三视图,解题的关键是根据三视图的定义分情况讨论.4、(1)图形见解析;(2)38【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1.据此可画出图形;(2)分别得到各个方向看的正方形面数,相加后乘1个面的面积即可求解.【详解】解:(1)如图所示:(2)(1×1)×(6×2+6×2+6×2+2)=1×38=38(cm2).故该几何体的表面积是 38cm2,故答案为:38.【点睛】本题考查几何体的三视图画法.由立体图形可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.5、 (1) 见解析;(2) 120cm2【分析】(1) 根据三视图的概念作图可得;(2)数出每个小正方体所需要涂色的面的个数,再求和即需要涂颜色的面的总数,然后计算出总面积即可.【详解】解:(1)该几何体的三视图如下从正面看从左面看从上面看(2) 涂上颜色部分的总面积:2×2×(6×2+6×2+5+1)=120(cm2).【点睛】此题主要考查了作图,以及求几何体的表面积,关键是在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.。
沪教版(五四制)六年级下册数学第八章 长方体的再认识同步讲义
-------------长方体的再认识(★★★)1.了解构成长方体的元素;2.会用斜二测画法画长方体的直观图;3.掌握长方体中棱与棱、棱与面、面与面的位置关系;4.掌握棱与面、面与面的垂直及平行的验证方法;知识结构棱、面的三个特点:(1)长方体的每个面都是长方形构成长方体的三要素:点、棱、面(2)长方体的十二条棱可分为三组,每组中的四条棱相等(3)长方体的六个面可分为三组,每组中两个面的形状大小相同面与面的位置关系(1)平行.检验方法:棱与棱的位置关系:棱与平面的位置关系:长方形纸片(1)相交 (1)平行(2)垂直检验方法:(2)垂直.检验方法:(3)异面⑴铅垂线法⑵长方形纸片法(1)铅垂线(2)三角板法(3)合页型折纸(2)垂直检验方法:⑴铅垂线法⑵三角板法⑶合页型折纸1.本部分建议时长5分钟.2.请学生先试着自行补全上图,发现学生有遗忘时教师帮助学生完成.1.本部分建议时长20分钟.2.进行例题讲解时,教师宜先请学生试着自行解答.若学生能正确解答,则不必做过多的讲解;若学生不能正确解答,教师应对相关概念、公式进行进一步辨析后再讲解例题.3.在每一道例题之后设置了变式训练题,应在例题讲解后鼓励学生独立完成,以判断学生是否真正掌握了相关考点和题型.4.教师应正确处理好例题与变式训练题之间的关系,宜采用讲练结合的方式,切不可将所有例题都讲完后再让学生做变式训练题.例题1一个长方体中,有公共点的三条棱的长度的比为2:3:4,最小的一个面的面积为2162cm , (1)求这个长方体的所有棱长的总和;“典例精讲”这一部分的教学,可采用下面的策略:“知识结构”这一部分的教学,可采用下面的策略:(2)求这个长方体的表面积; (3)求这个长方体的体积。
(★★)答案:(1)216cm ;(2)18722cm ;(3)51843cm两条较短的棱为长和宽的长方形的面积,是最小的面积,又知三棱长之比,故可求得三棱长,进而可得其他所求。
沪教版 六年级数学下册 第八章 8.3 长方体中棱与棱位置关系的认识
沪教版 六年级数学下册 8.3 长方体中棱与棱位置关系的认识一、判断(1)两条不重合的直线若不相交,那么一定平行。
( )(2)不在同一平面上的两条直线一定是异面直线。
( )(3)在一个长方体中与一条棱平行的棱共有4条。
( )(4)在一个长方体中与一条棱相交的棱共有4条. ( )(5)在一个长方体中与一条棱异面的棱共有4条. ( )2.如图,折叠长方形纸片ABCD 后展开所成的图形。
(1)与直线EH 平行的直线是(2)与直线GH 平行的直线有与直线GH 相交的直线有(3)与直线FG 异面的直线有与直线BC 异面的直线有3.一般地,如果直线AB 与CD 在同一个平面内,且有唯一公共点,那么称这两条直线的位置关系为4.如果直线AB 与直线CD 在同一个平面内,且没有公共点,那么称这两条直线的位置关系为5.如果不重合的两直线AB 与CD 既不平行也不相交,那么称这两条直线的位置关系为6.在如图所示的长方体ABCD -EFGH 中。
(1)哪些棱与棱CG 平行?(2)哪些棱与棱CG 相交?(3)哪些棱与棱CG 异面?7.在长方体 ABCD -EFGH 中,已知AB =9,BC5,BF =4,求与棱AB 相交的棱的总长?8.在长方体中,互相异面的棱有()A.6对B.12对C.18对D.24对9.在长方体中,相交的棱有()A.6对B.12对C.18对D.24对10.在长方体中,互相平行的棱有()A.6对B.12对C.18对D.24对11.在长方体中,若两条棱没有公共点,则这两条棱的位置关系是()A.相交或者异面B.异面或者平行C.相交或者平行D.异面或者相交或者平行12.在长方体中,若两条棱异面,则与这两条棱都相交的棱()A.有且只有一条B.不一定存在C.可能有一条,也可能有两条D.有超过两条13.垂直于同一条直线的两条直线的位置关系是14.如果两条直线在同一平面上的射影是两条平行线,那么这两条直线的位置关系是15.长方体相邻的三个面的面积分别为6平方厘米、8平方厘米、12平方厘米,求这个长方体的体积。
最新沪教版(上海)六年级数学第二学期第八章长方体的再认识章节测试练习题(无超纲)
六年级数学第二学期第八章长方体的再认识章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图摆放的几何体的左视图是()A.B.C.D.2、如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.3、一个儿何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是()A.B.C.D.4、如图所示的几何体的左视图是()A.B. C.D.5、如图是一个由5个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6、下图是由5个大小相同的正方体组成的立体图形,其俯视图...是()A.B.C.D.7、将一个等腰三角形绕它的底边旋转一周得到的几何体为()A.B.C.D.8、下列几何体的俯视图中,其中一个与其他三个不同,该几何体是()A.B.C.D.9、如图所示的几何体由一个长方体和一个圆锥组成,则该几何体的俯视图是()A.B.C.D.10、如图是由7个相同的小正方体搭成的几何体,在标号为①的小正方体上方添加一个小正方体后,所得几何体的三视图与原几何体的三视图相比没有发生变化的是()A.主视图和俯视图B.主视图和左视图C.左视图和俯视图D.主视图和左视图第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用一个平面去截下列几何体A球体B圆锥C圆柱D正三棱柱E长方体,得到的截面形状可能是三角形的有 ___(写出正确序号).2、将一个棱长为a的正方体任意截成两个长方体,这两个长方体表面积的和是_______.3、将一个长、宽、高分别是2cm、2.5cm、3cm的长方体切割成一个体积最大的正方体,则切除部分的体积是_______3cm.4、正方体的表面展开图如图所示,“遇”的相对面上的字为___________.5、在长方体中,已知它的宽为8cm,长是宽的2倍少6cm,高是宽的35,则这个长方体的体积是_______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平整的地面上,用8个完全相同的小正方体堆成一个几何体,请画出从三个方向看到的几何体的形状图.2、如图是由7个棱长为1的小正方体搭成的几何体.(1)请分别画出这个几何体的主视图、左视图和俯视图;(2)这个几何体的表面积为(包括底面积);(3)若使得该几何体的俯视图和左视图不变,则最多还可以放个相同的小正方体.3、如图是正方体的两种表面展开图,用字母C,D分别表示与A、B相对的面,请分别在图1、图2上标出C、D.4、用一根长为28米的木条截开后刚好能搭成一个长方体架子,且长、宽、高的长度均为整数米,试求这个长方体的体积5、如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)-参考答案-一、单选题1、A【分析】根据左视图是从左面看到的视图判定则可.【详解】解:从左边看,是左右边各一个长方形,大小不同,故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.2、C【分析】俯视图是从上面看,注意所有的看到的棱都应表现在俯视图中.解:如图所示:它的俯视图是:.故选:C.【点睛】此题主要考查了三视图的知识,关键是树立空间观念,掌握三视图的几种看法.3、B【分析】主视图的列数与俯视图的列数相同,且每列小正方形的数目为俯视图中该列小正方数字中最大数字,从而可得出结论.【详解】由已知条件可知:主视图有3列,每列小正方形的数目分别为4,2,3,根据此可画出图形如下:故选:B.【点睛】本题考查了从不同方向观察物体和几何图像,是培养学生观察能力.4、A【分析】根据从左边看得到的图形是左视图,可得答案.该几何体的左视图有两层,第一层有1个正方形,第二层有1个正方形,故选:A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,属于基础题型.5、D【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】该几何体的左视图如图所示,故选:D.【点睛】本题考查了简单组合体的三视图,属于基础题,解答本题的关键是掌握左视图的定义.6、A【分析】俯视图是从上往下看到的图形,注意能看到的棱都要体现出来,根据定义可得答案.【详解】解:从上往下看上层看到一个正方形,下层四个个正方形,所以看到的四个正方形,故选A.本题考查的是简单组合体的三视图,掌握三视图的含义是解题的关键.7、B【分析】根据面动成体的原理:将一个等腰三角形绕它的底边旋转一周得到的几何体为两个底面相等的圆锥.【详解】解:将一个等腰三角形绕它的底边旋转一周得到的几何体为两个底面相等的圆锥故选:B.【点睛】此题主要考查几何体的形成,解决本题的关键是掌握各种面动成体的体的特征.8、C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:选项A、B、D的俯视图是不带圆心的圆,选项C的俯视图是带圆心的圆,故选:C.【点睛】此题主要考查三视图,解题的关键是熟知俯视图的定义.9、D【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面可以看到一个矩形与和它两条较长边相切的圆,圆有圆心,如图所示:故选:D.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,解题关键是树立空间观念,准确识图.10、A【分析】主视图是从正面观察得到的图形,左视图是从左面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.【详解】解:若在正方体①的正上方放上一个同样的正方体,则主视图与原来相同,都是3层,底层3个正方形,中间是2个正方形,上层左边是1个正方形,左齐;俯视图与原来相同,都是两层,上层3个正方形,下层1个正方形,左齐;左视图发生变化,原来是左视图的右边1列只有1个正方形,后来变为2个正方形.所以主视图不变,俯视图不变.故选:A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从左面观察得到的图形,俯视图是从物体的上面看得到的视图.二、填空题1、B,D【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【详解】解:A球体不能截出三角形;B圆锥沿着母线截几何体可以截出三角形;C圆柱不能截出三角形;D正三棱柱能截出三角形.故截面可能是三角形的有2个.故答案为:B,D.【点睛】本题考查几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.2、28a【分析】将一个棱长为a的正方体任意截成两个长方体,对比原棱长为a的正方体的面积,找到多出来的部分,通过计算即可得到答案.【详解】将一个棱长为a的正方体任意截成两个长方体,则:任意截成两个长方体表面积之和=原正方体表面积之和+原正方体的两个面的面积;∵原棱长为a的正方体总共有6个面又∵一个棱长为a的正方体,每个面的面积为:2a∴任意截成两个长方体表面积之和=222a a a+=628故答案为:28a.【点睛】本题考查了正方体和长方体表面积的知识;解题的关键是熟练掌握长方体和正方体中平面和平面的位置关系性质、正方形面积计算的方法,从而完成求解.3、7【分析】根据长方体的性质计算即可;【详解】切除部分的体积为3⨯⨯-⨯⨯=.2 2.532227cm故答案是7.【点睛】本题主要考查了长方体棱与面的位置关系,准确计算是解题的关键.4、中【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“遇”与“中”是对面,“见”与“纷”是对面,“缤”与“附”是对面,故答案为:中.【点睛】本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是正确判断的前提.5、3384cm【分析】先根据题意得到长方体的长和高,然后根据体积计算公式直接求解即可.【详解】解:由题意得:长为82610cm⨯-=,高为3248=55cm⨯,则有长方体的体积为324810384cm5⨯⨯=.故答案为3384cm.【点睛】本题主要考查长方体的体积,熟练掌握计算公式是解题的关键.三、解答题1、画图见解析【分析】根据三视图的定义画出图形即可.【详解】解:三视图如图所示:【点睛】本题考查作图-三视图,解题的关键是建立空间观念,正确画出图形.2、(1)见解析;(2)30;(3)3【分析】(1)根据三视图的画法画出相应的图形即可;(2)三视图面积的2倍加被挡住的面积即可;(3)根据俯视图和左视图的特点即可求解.【详解】(1)这个几何体的主视图、左视图和俯视图如下:(2)(6+4+4)×2+2=30,故答案为:30;(3)保持这个几何体的俯视图和左视图不变,可往第一列和第二列分别添加1个、2个小正方体,故答案为:3.【点睛】此题主要考查了三视图,正确掌握不同视图的观察角度是解题关键.3、见解析【分析】利用正方体及其表面展开图的特点解题.【详解】解:如图所示:【点睛】此题主要考查正方体及其表面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.4、8立方米或12立方米或5立方米或9立方米;见详解.【分析】根据题意易得把长为28米的木条截开后搭成一个长方体的架子有四种情况,然后根据长方体的体积公式求解即可.【详解】⨯⨯时,体积为5立方米;解:情况一:当长方体为115情况二:当长方体为124⨯⨯时,体积为8立方米;⨯⨯时,体积为9立方米;情况三:当长方体为133⨯⨯时,体积为12立方米.情况四:当长方体为223答:这个长方体的体积为8立方米或12立方米或5立方米或9立方米.【点睛】本题主要考查长方体的体积,关键是根据题意得到搭成长方体的四种情况,然后根据公式计算即可.5、(1)360平方厘米;(2)花费1.8元钱.【分析】(1)根据长方体表面积公式计算即可;(2)根据题意列式计算即可.【详解】解:(1)由题意得,()()2⨯⨯+⨯+⨯=;212612666360cm答:制作这样的包装盒需要360平方厘米的硬纸板;=平方厘米,(2)1平方米10000÷⨯⨯=(元),36010000510 1.8答:制作10个这的包装盒需花费1.8元钱.【点睛】本题考查了几何体的表面积,正确的计算长方体的表面积是解题的关键.。
沪教版数学六年级下册第八章《长方体的再认识》复习教学设计
沪教版数学六年级下册第八章《长方体的再认识》复习教学设计一. 教材分析沪教版数学六年级下册第八章《长方体的再认识》复习教学内容主要包括长方体的特征、表面积和体积的计算方法以及长方体在实际生活中的应用。
本章内容是对长方体知识的系统复习和巩固,旨在帮助学生深化对长方体的认识,提高空间想象能力和解决问题的能力。
二. 学情分析六年级的学生已经学习过长方体的相关知识,对长方体的特征、表面积和体积的计算方法有一定的了解。
但在实际应用中,部分学生可能会遇到困难和问题。
因此,在复习教学中,需要关注学生的学习情况,针对性地进行指导和帮助。
三. 教学目标1.知识与技能:通过对长方体的再认识,使学生掌握长方体的特征、表面积和体积的计算方法,提高空间想象能力和解决问题的能力。
2.过程与方法:通过复习教学,培养学生自主学习、合作学习的能力,提高学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和团队协作精神,使学生在数学学习中获得成就感。
四. 教学重难点1.教学重点:长方体的特征、表面积和体积的计算方法。
2.教学难点:长方体在实际生活中的应用,空间想象能力的培养。
五. 教学方法1.引导发现法:教师引导学生通过观察、操作、思考,发现长方体的特征和计算方法。
2.案例分析法:教师提供实际生活中的案例,引导学生运用长方体的知识解决问题。
3.小组合作学习法:学生分组讨论,共同完成任务,提高团队协作能力。
六. 教学准备1.教学课件:制作长方体的特征、表面积和体积的计算方法的教学课件。
2.教学案例:收集实际生活中的长方体应用案例。
3.学习任务单:设计学习任务单,引导学生进行自主学习和合作学习。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾长方体的特征、表面积和体积的计算方法,激发学生的学习兴趣。
2.呈现(10分钟)教师利用课件展示长方体的特征和计算方法,让学生直观地感受长方体的结构。
沪教版六年级数学长方体的再认识讲义家教
添加标题
添加标题
添加标题
添加标题
容积的计算公式为:容积=长×宽× 高。
容积的单位是立方米,常用于描述 物体的体积大小。
长方体容积的计算公式
定义:长方体容积是指长方体内部所占的空间大小 计算公式:容积 = 长 × 宽 × 高 单位:容积的单位是立方单位,如立方米、立方厘米等
应用:长方体容积的计算是日常生活中常见的需求,如计算容器能容纳多少液体等
解题思路:根据长方 体体积的计算公式, 体积=长×宽×高,代 入题目中给出的数值 进行计算。
计算过程:体积=8 厘米×6厘米×4厘 米=192立方厘米。
答案:这个长方体 的体积是192即长、宽、高的乘积。
长方体容积的定义
需要注意的是,长方体的容积是指 其内部所能容纳的空间,不包括其 外部的表面积。
计算长方体容积的实例
题目:一个长方体水槽,长5分米,宽4分米,高3分米,求这个水槽的容积是多少升? 题目:一个长方体纸盒,长10厘米,宽6厘米,高5厘米,这个纸盒的容积是多少立方厘米? 题目:一个长方体鱼缸,长40厘米,宽30厘米,高20厘米,这个鱼缸最多能装多少升水? 题目:一个长方体冰箱,长5分米,宽4分米,高3分米,这个冰箱的容积是多少升?
长方体应用题的实例解析
体积计算:求长方体的体积,可以通过长、宽、高的乘积得出。 表面积计算:求长方体的表面积,可以通过计算六个面的面积之和得出。 截面形状:通过截取长方体的不同位置,可以得到不同的截面形状。 实际应用:长方体在现实生活中有着广泛的应用,如包装箱、建筑材料等。
汇报人:XX
长方体应用题的类型
计算长方体的表面积 计算长方体的体积 长方体在生活中的应用 长方体的组合与切割问题
长方体应用题的解题思路
08沪教版六年级下长方体的再认识
教师学生上课时间学科数学年级课题名称长方体的再认识综合复习教学目标1.了解构成长方体的元素;2.会用斜二测画法画长方体的直观图;3.掌握长方体中棱与棱的位置关系;4.理解长方体中棱与面、面与面的位置关系;5.知道检验直线、平面与平面是否垂直、平行的常用方法;重点难点熟练的掌握长方体中位置关系.长方体的再认识综合复习一.上节回顾二、本节内容(一)知识点讲解1.长方体有个顶点,条棱,个面.2.长方体所有的棱可分为组,每组中的条棱的.3.斜二测画法画长方体的直观图4.长方体中棱与棱的位置关系5.检验直线与平面垂直的方法(1)铅垂线法:只能用于检验直线与水平面是否垂直;(2)三角尺法:可以检验一般的直线与平面是否垂直;(3)合页型法:可以检验一般的直线与平面是否垂直.6. 检验直线与平面平行的方法:(1)铅垂线;(2)长方形纸片.7. 检验平面与平面垂直的方法:(1)铅垂线:检验平面与地面(水平面)是否垂直;(2)合页型折纸;(3)三角尺.8. 检验平面与平面平行的方法:(1)长方形纸片:按交叉的方向检验两次,两边都于被检验的面紧贴;(2)水准仪:(用于检验平面与水平面的平行)按交叉的方向检验两次,水泡都要在中间.【典型例题】例题1:已知一个长方体的宽是6cm,长比宽的3倍多2cm,高是宽的一半,求这个长方体的所有棱长之和.参考答案:长:6×3+2=20cm高:6×12=3cm4×(6+20+3)=116cm答:这个长方体的所有棱长之和是116cm。
试一试:一个长方体的长、宽、高之比为4:3:2,已知这个长方体的棱长之和是108厘米,求这个长方体的表面积和体积.参考答案:设这个长方体的长、宽、高分别为4x厘米,3x厘米,2x厘米则4×(4x+3x+2x)=108 x=3长:4x=12 宽:3x=9 高:2x=6表面积:S=2(12×9+12×6+9×6)=468平方厘米体积:V=12×9×6=648立方厘米答:这个长方体的表面积是468平方厘米,体积是648立方厘米。
上海市松江区六年级数学下册8长方体的再认识复习ppt课件沪教版五四制
H E
D A
G
F
小结:在长方体中,
与1条棱垂直或平行的平面各有_2__个,
C
与1个面垂直或平行的棱各有_4__条。
B
长方体中的位置关 三、面与系面的位置关系: 垂直、平行
33、发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志,并把研究继续下去。——贝弗里奇 34、生活的道路一旦选定,就要勇敢地走到底,决不回头。——左拉 35、一个有决心的人,将会找到他的道路。——佚名 36、意志坚强,就会战胜恶运。——佚名
37、钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。——奥斯特洛夫斯基 38、事业常成于坚忍,毁于急躁。我在沙漠中曾亲眼看见,匆忙的旅人落在从容的后边;疾驰的骏马落在后头,缓步的骆驼继续向前。——萨迪 39、天行健,君子以自强不息。——文天祥 40、生命里最重要的事情是要有个远大的目标,并借助才能与坚持来完成它——歌德 41、即使在把眼睛盯着大地的时候,那超群的目光仍然保持着凝视太阳的能力。——雨果 42、卓越的人的一大优点是:在不利和艰难的遭遇里百折不挠。——贝多芬 43、成大事不在于力量的大小,而在于能坚持多久。——约翰逊 44、告诉你使我达到目标的奥秘吧,我唯一的力量就是我的坚持精神。——巴斯德 45、即使遇到了不幸的灾难,已经开始了的事情决不放弃。——佚名
问题2:“斜二侧”画法的关键是
(1)长与宽的夹角应画成__4_5__°
H E
D
沪教版数学六年级下册第八章《长方体的再认识》教学设计
沪教版数学六年级下册第八章《长方体的再认识》教学设计一. 教材分析《长方体的再认识》是沪教版数学六年级下册第八章的内容,本节内容是在学生已经掌握了长方体的特征的基础上进行教学的。
教材通过丰富的图片和实际例子,帮助学生进一步理解和掌握长方体的特征,提高学生的空间想象能力和抽象思维能力。
二. 学情分析六年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对长方体已经有了一定的了解。
但是在具体操作和解决问题时,部分学生可能会存在一些困难。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的教学。
三. 教学目标1.知识与技能:学生能够进一步理解和掌握长方体的特征,提高空间想象能力和抽象思维能力。
2.过程与方法:通过观察、操作、思考、交流等过程,学生能够深化对长方体的认识,培养解决问题的能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验数学学习的乐趣,增强对数学的兴趣。
四. 教学重难点1.教学重点:学生能够进一步理解和掌握长方体的特征。
2.教学难点:学生能够在实际问题中灵活运用长方体的特征,解决问题的能力。
五. 教学方法1.情境教学法:通过丰富的图片和实际例子,激发学生的学习兴趣,提高学生的空间想象能力。
2.引导发现法:教师引导学生观察、操作、思考,发现长方体的特征,培养学生的抽象思维能力。
3.合作交流法:学生通过小组合作、交流,共同解决问题,提高学生的合作能力和沟通能力。
六. 教学准备1.教具准备:长方体模型、图片、实物等。
2.学具准备:学生每人准备一个长方体模型。
七. 教学过程1.导入(5分钟)教师通过展示长方体的图片和生活实例,引导学生回顾长方体的特征,激发学生的学习兴趣。
2.呈现(10分钟)教师通过长方体模型和实物,引导学生观察和操作,让学生直观地感受长方体的特征。
同时,教师引导学生思考:长方体有哪些特征?这些特征是如何体现在实际物体中的?3.操练(10分钟)教师提出一些有关长方体的问题,让学生分组讨论和操作,共同解决问题。
沪教版六年级数学长方体的再认识讲义+家教
学科教师辅导讲义课题长方体的再认识教学目的1、认识长方体的面、棱、顶点以及长宽高(棱长)的含义。
2、掌握长方体直观图的画法。
3、掌握长方体中棱、面的位置关系,以及空间性质。
教学内容一、作业检查二.长方体知识梳理1.长方体的元素:8个顶点、12条棱,6个面长方体的表面积(6个面的面积之和)、体积(长×宽×高)长方体的每个面都是长方形.长方体的十二条棱可以分成三组:每组中的四条棱的长度相等长方体的六个面可以分成三组,每组中的两个面的形状和大小都相同.2.长方体直观图的画法:斜二侧画法.注意:①12条棱分三组,注意每组4条是互相平行、相等的;其中看不见的三条棱画成虚线,②把水平放置的两个面画成含45°角的平行四边形,③画长方体直观图时,宽要减半画。
3.长方体中棱与棱的位置关系:(1)如图所示的长方体AG中,棱EH与棱EF所在的直线在同一个面内,它们有唯一的公共点,我们称这两条棱相交.(2)棱EF与棱AB所在的直线在同一个面内,但它们没有公共点,我们称这两条棱平行.(3)棱EH与棱AB所在的直线既不平行,也不相交,我们称这两条棱异面.定义:空间两条直线有三种位置关系:相交、平行、异面.(1)一般地,如果直线AB与直线CD在同一平面内,具有唯一公共点,那么称这两条直线的位置关系为相交,读作:直线AB与直线CD相交.(2)如果直线AB与直线CD在同一平面内,但没有公共点,那么称这两条直线的位置关系为平行,记作:AB∥CD,读作:直线AB与直线CD平行.(3)如果直线AB与直线CD既不平行,也不相交,那么称这两条直线的位置关系为异面,读作:直线AB与直线CD异面.4、长方体中棱与面的位置关系:(1)如图所示的长方体AG中,棱(直线)EA垂直于面ABCD。
读作:棱(直线)EA垂直于平面ABCD(2) 如图所示的长方体AG中,棱(直线)EF平行于面ABCD。
读作:棱(直线)EF平行于平面ABCD5、长方体中面与面的位置关系:(1)如图所示的长方体AG中,平面EFBA垂直于面ABCD。
最新沪教版(上海)六年级数学第二学期第八章长方体的再认识重点解析试题(含详细解析)
六年级数学第二学期第八章长方体的再认识重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,下面每一组图形都由四个等边三角形组成,其中是正三棱锥展开图的是()A.仅图①B.图①和图②C.图②和图③D.图①和图③2、如图是一个圆台状灯罩,则它的俯视图是()A.B.C.D.3、一个几何体如图所示,它的左视图是()A.B.C.D.4、在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有( )A.3个B.4个C.5个D.6个5、某学习小组送给医务工作者的正方体的六个面上都有一个汉字,如图所示的是它的一种展开图,那么在原正方体中,与“美”字所在面相对的面上的汉字是()A.最B.逆C.行D.人6、四棱柱中,棱的条数有()A.4条B.8条C.12条D.16条7、如图,该几何体的俯视图是()A.B.C.D.8、如图是正方体的一个平面展开图,如果原正方体上前面的字为“友”,则后面的字为()A.爱B.国C.诚D.善9、分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.B.C.D.10、一个圆锥的底面直径是圆柱底面直径的3倍,如果它们的高相等,那么圆锥体积是圆柱体积的()A.3倍B.13C.9倍D.19第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示是一个正方体的展开图,在原正方体中与平面1平行的面是______,与平面5垂直的平面是_______.++的值为2、若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a b c______.3、小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),若在图中只添加一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,这样的拼接方式有_____种.4、铅笔在纸上划过会留下痕迹,这种现象说明点动成线;一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是______.5、一块长方体的木块,从左面和右面分别裁去长为2厘米和5厘米的长方体,成为一个正方体后,表面积减少了84平方厘米,那么原来长方体的体积为_______.三、解答题(5小题,每小题10分,共计50分)1、面积为296cm,形状不同,长和宽都为整厘米的长方形有多少种?2、如图是由几个小立方块所搭几何体从上面看到的图形,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体从正面、从左面看到的图形.3、利用如图点子图,设计一个由长方体组成的图.4、如图所示的平面图形绕轴旋转一周,可以得出下面相对应的立体图形,把有对应关系的平面图形与立体图形连接起来.5、一个长是30dm、宽是20dm的长方形纸板,在它的四个角上各剪去一个边长为5dm的正方形,做成一个无盖的纸盒,这个纸盒的容积是多少?-参考答案-一、单选题1、B由平面图形的折叠及三棱锥的展开图解题.【详解】解:只有图①、图②能够折叠围成一个三棱锥.故选:B.【点睛】本题考查了展开图折叠成几何体的问题,熟练掌握三棱锥展开图的形状是解题关键.2、C【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.【详解】解:本题的几何体是一个圆台,它的俯视图是没画圆心的两个同心圆.故选:C.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3、B【分析】根据左视图的定义即可求解.【详解】由图可知左视图是【点睛】此题主要考查三视图的判断,解题的关键是熟知左视图的定义.4、B【分析】根据立体图形的定义即可解答;【详解】正方体、长方体、圆柱、六棱柱是柱体;圆锥、六棱锥是椎体;球是球体;圆台是台体.故答案为:B【点睛】此题考查立体图形的认识,掌握认识立体图形是解答本题的根本.5、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点即可作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“逆”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6、C【分析】根据棱柱的概念和特性即可解.【详解】解:四棱柱有4×3=12条棱.故选C.【点睛】本题主要考查四棱柱的棱的条数,解题的关键是熟知n棱柱共有3n条棱.7、A【分析】找到从几何体的上面看所得到图形即可.【详解】解:从上面看,是一大、一小两个矩形,小矩形在大矩形内部,故选:A.【点睛】此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.8、C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”与“善”是相对面,“国”与“信”是相对面,“诚”与“友”是相对面.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9、D【分析】根据正方体、三棱柱、圆锥、圆柱的三视图的形状进行判断即可.【详解】解:根据三视图的定义可知,选项A主视图和左视图都是三角形,但俯视图是有圆心的圆;选项B主视图和左视图都是矩形,但俯视图是圆;选项C主视图是一个矩形,中间有一条线段,左视图是矩形,俯视图是三角形;选项D的主视图、左视图和俯视图都是正方形,完全相同.故选D.【点睛】本题考查简单几何体的三视图,掌握简单几何体三视图的形状是正确判断的前提.10、A【分析】设一个圆锥的底面直径为6a,则圆柱底面直径为2a,高为h,根据体积公式分别求出圆锥和圆柱的体积,故可比较求解.【详解】解:设一个圆锥的底面直径为6a,则圆柱底面直径为2a,高为h,∴圆锥的体积为13Sh=22 16332aaππ⎛⎫⨯⨯=⎪⎝⎭圆柱的体积为S’h=2222aa ππ⎛⎫⨯=⎪⎝⎭∴圆锥体积是圆柱体积的3倍故选:A.【点睛】此题主要考查等底等高的圆锥与圆柱体积之间关系的灵活运用,关键是明确:等底等高的圆锥的体积是圆柱体积的13.二、填空题1、平面3 平面1、2、3、4【分析】根据正方体中与平面1平行的面是与平面1相对的面,和平面5相交的面与平面5垂直.根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与平面1平行的面是与平面1相对的面,所以与平面1平行的面是:平面3在正方体中和平面5相交的面与平面5垂直所以与平面5垂直的平面是:平面1、2、3、4故答案为:平面3,平面1、2、3、4,【点睛】本题主要考查了正方体的展开图认识立体图形的知识,属于基础题,解答本题的关键是掌握长方体的特点,从相对面和邻面入手,分析及解答问题.2、12【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数之和相等,列出方程求出a、b、c的值,从而得到a+b+c的值.【详解】解:这是一个正方体的平面展开图,共有六个面,可知a与b相对,c与一2相对,3与2相对,∵相对面上两个数之和相等,∴a+b=c-2=3+2,∴a+b=5,c=7,∴a+b+c=12.故答案为:12.【点睛】本题考查了正方体相对两个面.注意正方体的空间图形,从相对面入手,分析及解答问题.3、3【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【详解】解:根据正方体的表面展开图可得共有3种,如图:【点睛】此题主要考查了正方体的平面展开图,应灵活掌握,不能死记硬背.4、面动成体【分析】根据点、线、面、体的关系解答即可.【详解】解:铅笔在纸上划过会留下痕迹,这种现象说明点动成线;一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是面动成体.故答案为:面动成体.【点睛】本题考查了点、线、面、体的关系.解题的关键是明确点动成线,线动成面,面动成体. 5、90立方厘米【分析】设正方体棱长为x 厘米,根据题意列方程可求得x 的值,进而得到原长方体的长、宽、高的值,再计算体积即可.【详解】设正方体棱长为x 厘米,依题意得245484x x ⋅⋅+⋅⋅=,解得3x =,则原长方体的宽为3厘米,高为3厘米,长为32510++=厘米,则331090V =⨯⨯=立方厘米.【点睛】此题主要考查长方体的表面积公式、体积公式的灵活运用,解题的关键是熟记公式.三、解答题【分析】根据长方形的面积S=ab,即ab=72,由此分别求出a与b的整数情况即可.【详解】①96196=⨯,②96248=⨯,③96332=⨯,④96424=⨯,⑤96616=⨯,⑥96812=⨯,共计有6种.【点睛】考查了长方形面积的计算,解题关键利用长方形的面积公式解决问题.2、见解析【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,2,2;从左面看有2列,每列小正方形数目分别为3,2.据此可画出图形.【详解】解:如图所示:.本题考查了三视图,解题关键是明确从不同方向看到的小正方体个数及位置.3、见解析【分析】根据题意作图即可.【详解】【点睛】本题主要考查长方体的作图,根据作图方法是解题的关键.4、见解析【分析】根据“面动成体”的原理,结合图形特征进行旋转,判断出旋转后的立体图形即可.【详解】解:连线如下:本题考查了“面动成体”的原理,注意培养自己的空间想象能力.5、31000dm【分析】根据题意可知,从它的四个角各剪去一个边长为3cm 的正方形后的图形的长为()305520dm --=,宽为()205510dm --=,高为5dm ,然后根据长方形的体积公式进行计算即可,【详解】∵长方形的长是30dm 、宽是20dm ,在它的四个角上各剪去一个边长为5dm 的正方形,∴纸盒的长:()305520dm --=,纸盒的宽:()205510dm --=,纸盒的高为5dm ,∴纸盒的容积为()32010520051000dm ⨯⨯=⨯= . 答:这个纸盒的容积是31000dm .【点睛】本题考查长方形的体积,解题的关键是熟知图形变化前后的关系,分别求出长方体的长、宽和高.。
最新精品解析沪教版(上海)六年级数学第二学期第八章长方体的再认识章节练习试卷(无超纲带解析)
六年级数学第二学期第八章长方体的再认识章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面图形是由4个完全相同的小立方体组成的,它的左视图是()A.B.C.D.2、图中所示几何体从上面看,得到的平面图形为()A.B.C.D.3、如图是正方体的一个平面展开图,如果原正方体上前面的字为“友”,则后面的字为()A.爱B.国C.诚D.善4、在下列各组视图中,能正确表示由4个立方体搭成几何体的一组视图为()A.B.C.D.5、一个圆锥的底面直径是圆柱底面直径的3倍,如果它们的高相等,那么圆锥体积是圆柱体积的()A.3倍B.13C.9倍D.196、如图所示的几何体的俯视图是()A.B.C.D.7、下列几何体中,面的个数最少的为()A.B.C.D.8、某几何体的三视图如图所示,则该几何体的名称是()A.正方体B.圆柱C.圆锥D.球9、如图是一个由6个相同的正立方块搭成的几何体,其三视图中面积最大的是()A.主视图B.左视图C.俯视图D.左视图与俯视图10、在“爱国、爱党”主题班会上,小颖特别制作了一个正方体玩具,其表面展开图如图所示,则原正方体中与“有”字相对的字是( )A .少B .年C .强D .国第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、长方体的总棱长是64cm ,长:宽:高5:1:2=,则高等于_______cm .2、如图所示是某种型号的正六角螺母毛坯的三视图,则它的侧面积为 2cm .3、在长方体1111ABCD A B C D -中,与平面11AA D D 垂直的棱有________条.4、如果长方体的长、宽、高之和为12cm ,则它的棱长总和为_______cm .5、等边三角形绕其对称轴旋转一周形成的几何体是______.三、解答题(5小题,每小题10分,共计50分)1、画一个长宽高分别为4厘米、3厘米、2厘米的长方体.2、用若干个小立方块搭一几何体,使它从正面看和从上面看得到的图形如图所示.从上面看得到的图形中小正方形里的字母表示在该位置小立方块的个数.请问:(1)x表示几?这个几何体由几个小立方块搭成?(2)画出该几何体从左面看得到的图形.3、如图是由若干个相同的小正方体组成的几何体从正面、上面看到的形状图.(1)组成这个物体的小正方体的个数可能是多少?(2)求这个几何体的最大表面积.4、已知长方体无盖纸盒的长、宽、高分别为9cm、7cm、5cm,这个纸盒的外表面积和容积各是多少?5、十九世纪中叶,诞生了一个新的几何学分支⋯“拓扑学(又称‘位置解析’)”.它所研究的是几何图形这样一些最基本的、最深刻的性质:图形经受剧烈的变形,以致所有度量性质和射影性质都失去之后,这些性质仍然存在.数学家们找到若干个令人叹为观止的实例,例如著名的Mobius带、Klein瓶⋯⋯请看如图,你能否将正方形图中上方的小方块与下方的对应的小方块用平面内不相交的实线连起来,且要求连线只能在该正方形内部的空白处.-参考答案-一、单选题1、A【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】解:从左面看得到的图形是:.故选:A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解题关键是明确左视图的意义,树立空间观念,准确识图.2、D【分析】根据从上面可以看到三个矩形判断即可.【详解】解:从上面看,可以看到三个矩形,如图,故选:D.【点睛】本题考查了从不同方向看几何体,解题关键是建立空间想象能力.3、C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”与“善”是相对面,“国”与“信”是相对面,“诚”与“友”是相对面.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4、B【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状,依此即可求解.【详解】解:A、主视图与俯视图的列数不一致,不符合题意;B、能正确表示由4个立方体搭成几何体,符合题意;C、左视图与俯视图的行数不一致,不符合题意;D、主视图与左视图的高度不一致,不符合题意.故选:B.【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,解题关键是树立空间想象能力.5、A【分析】设一个圆锥的底面直径为6a,则圆柱底面直径为2a,高为h,根据体积公式分别求出圆锥和圆柱的体积,故可比较求解.【详解】解:设一个圆锥的底面直径为6a,则圆柱底面直径为2a,高为h,∴圆锥的体积为13Sh=22 16332aaππ⎛⎫⨯⨯=⎪⎝⎭圆柱的体积为S’h=2222aa ππ⎛⎫⨯=⎪⎝⎭∴圆锥体积是圆柱体积的3倍故选:A.【点睛】此题主要考查等底等高的圆锥与圆柱体积之间关系的灵活运用,关键是明确:等底等高的圆锥的体积是圆柱体积的13.6、A【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看,是一个三角形.故选:A.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图是解题关键.7、B【分析】根据长方体、圆锥、三棱柱和圆柱的特点即可得.【详解】解:A、长方体有6个面;B、圆锥有一个曲面和一个底面,共有2个面;C、三棱柱有5个面;D、圆柱有一个侧面和两个底面,共有3个面;故选:B.【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.8、C【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】解:根据主视图是三角形,圆柱、正方体、球不符合要求,A、B、D错误,不符合题意;根据几何体的三视图,圆锥符合要求.故选:C.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.9、C【分析】找到从物体的正面、上面和左面看,所得到的图形里正方形的个数最多的那个视图即可.【详解】解:小立方块的边长为1,那么看到的一个正方形面积为1.从正面看,得到从左往右3列正方形的个数依次为1,2,1,面积为4;从左面看,得到从左往右3列正方形的个数依次为1,2,1,面积为4;从上面看得到从左往右3列正方形的个数依次为1,3,1,面积为5,∴三视图中面积最大的是俯视图.故选:C.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.10、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“有”与“年”相对,“强”与“少”相对,“我”与“国”相对,故选:B .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题1、4【分析】长方体的棱长总和=(长+宽+高)×4,用棱长总和÷4=长、宽、高的和,长、宽、高的比是5:1:2,根据按比例分配的方法,求出高.【详解】解:长、宽、高的和=()64416cm ÷=,()()165122cm ÷++=.则高为:()224cm ⨯=.故答案为:4【点睛】此题考查了长方体的棱,解答关键是利用按比例分配的方法求出高2、36【分析】正六角螺母侧面为6个相同的长方形,求出每个长方形的面积,即可得出它的侧面积.【详解】2×3=6cm 2,6×6=36cm2.故答案为:36.【点睛】本题主要考查正六棱柱的三视图,将三视图上边的长度转化为正六棱柱对应边的长度是解题关键.3、4【分析】长方体中的棱与面的关系有2种:平行和垂直,结合图形可找到与面AA D D垂直的棱.【详解】解:如图示:根据图形可知与面AA D D垂直的棱有AB,CD,C D'',A B''共4条.故答案是:4.【点睛】主要考查了长方体中的棱与面之间的位置关系.要知道长方体中的棱的关系有2种:平行和垂直.4、48【分析】根据长方体的棱长计算公式计算即可;【详解】长方体的棱长和41248cm=⨯=;故答案是48.本题主要考查了长方体的棱长计算,准确计算是解题的关键.5、圆锥【分析】根据简单几何体的形成分式即可求解.【详解】等边三角形绕其对称轴旋转一周形成的几何体是圆锥故答案为:圆锥.【点睛】此题主要考查几何体的形成方式,解题的关键是熟知简单几何体的特点.三、解答题1、见解析【分析】根据题意直接作图即可.【详解】作图如下:【点睛】本题主要考查长方体的概念,根据定义作图是解题的关键.2、(1)x=1,由7个小立方块搭成(2)见解析(1)根据主视图和俯视图之间的关系,可得到x的值,故可求出几何体的小立方块的个数;(2)根据左视图的特点即可作图.【详解】解:(1)由主视图和俯视图之间的关系,可得x=1∴小立方块的个数为6+1=7个;(2)从左面看得到的图形如下:【点睛】本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等,高平齐”.3、(1)4或5(2)22【分析】(1)根据正面、上面看到的形状图可得到从上面看到的形状图中正方体个数,即可求出这个物体的小正方体的个数;(2)根据题意分情况求出表面积即可比较求解.【详解】(1)由正面、上面看到的形状图得从上面看到的形状图中正方体个数如下图:或或故组成这个物体的小正方体的个数为4或5;(2)当从上面看到的形状图中正方体个数如下图时则从左面看为故表面积为2×3+2×3+4×2=20;当从上面看到的形状图中正方体个数如下图时则从左面看为故表面积为2×3+2×3+4×2=20;当从上面看到的形状图中正方体个数如下图时则从左面看为故表面积为2×3+2×3+5×2=22;故这个几何体的最大表面积为22.【点睛】此题主要考查立体图形的三视图,解题的关键是根据三视图的定义分情况讨论.4、外表面积为2223cm ,容积为2315cm【分析】根据长方体的表面积和容积的计算公式计算即可;【详解】纸盒的外表面积为()29795752223cm ⨯+⨯+⨯⨯=;容积为3975315cm ⨯⨯=. 答:这个纸盒的外表面积为2223cm ,容积为2315cm .【点睛】本题主要考查了长方体的棱与棱的关系及面积、体积公式应用,准确分析是解题的关键.5、见解析【分析】根据题意用平面内不相交的实线连起来,且要求连线只能在该正方形内部的空白处即可求解.【详解】解:如图所示:或【点睛】本题考查了数学常识,关键是根据题意要求连线.。
沪教版数学六年级下册第八章《长方体的再认识》教学设计
沪教版数学六年级下册第八章《长方体的再认识》教学设计一. 教材分析《长方体的再认识》是沪教版数学六年级下册第八章的内容,本节内容是在学生已经掌握了长方体的特征的基础上进行教学的。
教材通过大量的图片和生活实例,让学生进一步理解长方体的特征,提高学生的空间想象能力,并能运用长方体的特征解决实际问题。
二. 学情分析六年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于长方体的特征已经有了一定的了解。
但是,学生在应用长方体的特征解决实际问题时,还存在着一定的困难。
因此,在教学过程中,教师需要结合学生的实际情况,引导学生通过观察、操作、思考、交流等途径,进一步理解和掌握长方体的特征。
三. 教学目标1.让学生通过观察和操作,进一步理解长方体的特征。
2.培养学生空间想象能力和运用长方体的特征解决实际问题的能力。
3.培养学生合作学习的能力和语言表达能力。
四. 教学重难点1.长方体的特征。
2.如何运用长方体的特征解决实际问题。
五. 教学方法1.情境教学法:通过生活实例和图片,引发学生的学习兴趣,提高学生的学习积极性。
2.操作教学法:通过学生的动手操作,培养学生的空间想象能力。
3.问题驱动法:通过提出问题,引导学生思考和交流,进一步理解和掌握长方体的特征。
4.合作学习法:通过小组合作,培养学生的合作意识和团队精神。
六. 教学准备1.教具:长方体模型、正方体模型、多媒体教学设备。
2.学具:每个学生准备一个长方体模型。
七. 教学过程导入(5分钟)教师通过展示一些生活中的长方体物体,如牙膏盒、鞋盒等,引导学生回顾长方体的特征。
同时,教师提出问题:“你们认为长方体有哪些特征呢?”让学生进行思考和交流。
呈现(10分钟)教师通过多媒体展示长方体的三维图像,让学生直观地感受长方体的特征。
同时,教师引导学生观察长方体的六个面、十二条棱和八个顶点,并讲解长方体的名称和定义。
操练(10分钟)教师分发长方体模型给每个学生,让学生亲自操作长方体模型,观察和体验长方体的特征。
精品试题沪教版(上海)六年级数学第二学期第八章长方体的再认识重点解析试卷(含答案详解)
六年级数学第二学期第八章长方体的再认识重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,这是一个由5个完全相同的小正方体组成的立体图形,它的主视图()A.B.C.D.2、一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“文”相对的面上的汉字是()A.创B.明C.山D.西3、如图为某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.三棱柱D.四棱柱4、下列四个几何体中,主视图是三角形的是()A.B.C.D.5、如图所示,该几何体的俯视图是()A.正方形B.长方形C.三角形D.圆6、一个圆锥的底面直径是圆柱底面直径的3倍,如果它们的高相等,那么圆锥体积是圆柱体积的()A.3倍B.13C.9倍D.197、图1所示的是一个上下两个面都为正方形的长方体,现将图1的一个角切掉,得到图2所示的几何体,则图2的俯视图是()A.B.C.D.8、如图所示的一个六角螺帽毛坯底面正六边形的边长、高和内孔直径都相等,其主视图是()A.B.C.D.9、如图是由五个相同的小正方体组成的几何体,其主视图为()A.B.C.D.10、如图所示的几何体,该几何体的左视图是()A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察一个长方体最多能看到它的________个面.2、如图,是一个正方体的六个面的展开图形,回答下列问题:(1)“力”所对的面是 ;(2)若将其折叠成正方体,如果“努”所在的面在底面,“要”所在的面在后面,则上面是 ;前面是 ;右面是 ;(3)若将其折叠成正方体,“学”所在的面在前面,则上面不可能是 .3、在长方体1111ABCD A B C D 中,与平面11AA D D 垂直的棱有________条.4、将一个长、宽、高分别是2cm 、2.5cm 、3cm 的长方体切割成一个体积最大的正方体,则切除部分的体积是_______3cm .5、如果把骰子看作是一个正方体,点数1的对面是6,点数5的对面是2,点数4的对面是3,则与点数是3的面垂直的所有的面的点数和是_______.三、解答题(5小题,每小题10分,共计50分)1、由6个棱一样长的正方体组成的几何体如图所示.在指定的方格内画出该几何体从三个方向看到的形状图.2、如图所示:(1)与面MNQP 垂直的面有________________个.(2)与面EFGH 平行的面有________________个.(3)与面EFGH 垂直的线段有________________条.(4)与线段EF 平行的面有________________个.3、用两个棱长是2厘米的正方体所拼成的长方体的棱长之和是多少?用四个棱长为2厘米的正方体,所拼成的长方体的棱长之和是多少?4、如图,长方体4cm AB =,3cm BC =,12cm B B =,按规定尺寸画出沿长方体表面从点A 到点1C 的最短路线的示意图.5、已知如图为一几何体的三种形状图:(1)这个几何体的名称为;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.-参考答案-一、单选题1、C【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看有三列,从左到右依次有1、2、1个正方形,图形如下:故选:C.【点睛】本题考查了简单组合体的三视图,解题时注意从正面看得到的图形是主视图.2、D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点可得答案.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,所以可得:“建”与“明”是相对面,“文”与“西”是相对面,“创”与“山”是相对面.故选:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体是空间图形,从相对面入手,分析及解答问题是解题的关键.3、C【分析】根据三视图判断该几何体即可.【详解】解:根据该几何体的主视图与左视图均是矩形,主视图中还有一条棱,俯视图是三角形可以判断该几何体为三棱柱.故选:C.【点睛】本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型.4、C【分析】直接根据三视图中主视图的定义即可判断.【详解】根据几何体三视图中主视图的定义;正方体的主视图是矩形,不符合题意;圆柱体的主视图是矩形,不符合题意;圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;故选:C.【点睛】本题考查了几何体的三视图的主视图,解题的关键是:掌握三视图中主视图的定义,是由正面往后看.5、C【分析】根据俯视图的定义,从上面看该几何体,所得到的图形进行判断即可.【详解】解:从上面看该几何体,所看到的图形是三角形.故选:C.【点睛】本题考查简单几何体的三视图,理解视图的意义,掌握俯视图的概念是正确判断的前提.6、A【分析】设一个圆锥的底面直径为6a,则圆柱底面直径为2a,高为h,根据体积公式分别求出圆锥和圆柱的体积,故可比较求解.解:设一个圆锥的底面直径为6a,则圆柱底面直径为2a,高为h,∴圆锥的体积为13Sh=22 16332aaππ⎛⎫⨯⨯=⎪⎝⎭圆柱的体积为S’h=2222aa ππ⎛⎫⨯=⎪⎝⎭∴圆锥体积是圆柱体积的3倍故选:A.【点睛】此题主要考查等底等高的圆锥与圆柱体积之间关系的灵活运用,关键是明确:等底等高的圆锥的体积是圆柱体积的13.7、C【分析】根据俯视图的意义,从上面看该几何体所得到的图形即可.【详解】解:从上面看该几何体,看到的是一个有一条对角线的正方形,选项C中的图形比较符合题意,故选:C.【点睛】本题考查简单几何体的三视图,理解视图的意义是正确判断的前提.8、C【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从正面看,是一行三个矩形,中间的矩形的长较大,两边的矩形相同.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解题关键是明确主视图的概念,准确识图.9、C【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看,底层是三个小正方形,上层的右边是两个小正方形.故选:C.【点睛】此题考查三视图中主视图:在平面内由前向后观察物体得到的视图叫做主视图.10、B【分析】根据左视图是从左面看到的图形判定即可.【详解】解:从左面看,是一个矩形,矩形的中间有一条横向的虚线.故选:B.【点睛】此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.二、填空题1、3【分析】根据从不同方向看物体进行判断即可;【详解】由分析可知,从一个位置观察长方体最多能看到它3个面;故答案是3.【点睛】本题主要考查了从不同方向观察物体和几何体,准确判断是解题的关键.2、(1)我;(2)学,习,力;(3)努.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答;(2)根据折叠成正方体相对面解答即可;(3)根据“学”和“努”是相对面,即可得出答案.【详解】解:(1)“力”所对的面是我;故答案为:我;(2)如果“努”所在的面在底面,“要”所在的面在后面,则上面是学;前面是习;右面是力;故答案为:学,习,力;(3)将其折叠成正方体,“学”所在的面在前面,则上面不可能是“努”;故答案为:努.【点睛】此题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3、4【分析】长方体中的棱与面的关系有2种:平行和垂直,结合图形可找到与面AA D D垂直的棱.【详解】解:如图示:根据图形可知与面AA D D垂直的棱有AB,CD,C D'',A B''共4条.故答案是:4.【点睛】主要考查了长方体中的棱与面之间的位置关系.要知道长方体中的棱的关系有2种:平行和垂直.4、7【分析】根据长方体的性质计算即可;【详解】切除部分的体积为3⨯⨯-⨯⨯=.2 2.532227cm故答案是7.【点睛】本题主要考查了长方体棱与面的位置关系,准确计算是解题的关键.5、14【分析】根据正方体中面与面的位置关系知道除了点数是4的面,其他的面都与点数是3的面垂直.【详解】+++=.解:与点数是3的面垂直的所有的面的点数和是165214故答案是:14.【点睛】本题考查正方体中面与面的位置关系,解题的关键是搞清楚正方体中各个面的位置关系.三、解答题1、见解析【分析】根据三视图的画法分别画出从正面看、从左面看,从上面看所得到的图形即可.【详解】解:这个组合体的三视图如下:【点睛】本题考查简单组合体的三视图,“长对正,宽相等,高平齐”是画三视图的基本原则.2、(1)5;(2)2;(3)6;(4)4【分析】根据面与面的位置关系和面与线段的位置关系进行判断.【详解】如图所示:(1)与面MNQP 垂直的面有:面MPDA 、面NQGH 、面EFCB 、面MNHA 、面PQGD ,共计5个;(2)与面EFGH 平行的面有:面MNQP 、面ABCD ,共计2个;(3)与面EFGH 垂直的线段有:HN 、QG 、BE 、CF 、AM 、DP ,共计6条;(4)与线段EF 平行的面有:面MNQP 、面ABCD 、面NQGH 、面AMPD ,共计6个.【点睛】考查了面与面的位置关系和面与线段的位置关系,解题关键是理解面与面的平行、面与面垂直、面与线段的平行和面与线段垂直的概念.3、32厘米;40厘米或48厘米【分析】根据长方体中棱长与棱长的关系即可得出答案.【详解】解:两个正方体所拼成的长方体的棱长之和为()2222432⨯++⨯=厘米;四个正方体所拼成的长方体的棱长之和为()22222440⨯+⨯+⨯=厘米或()4222448⨯++⨯=厘米【点睛】此题考查的是求长方体所有棱长之和,掌握长方体的特征是解决此题的关键.4、作图见解析【分析】根据长方体的展开图进行画图即可;【详解】解:分三种情况:①如图所示,根据题意可得:AC==1②如图所示,AC=== 1③如图所示AC===1>所以点A到点1C的最短路线为:【点睛】本题主要考查了长方体的展开图,利用勾股定理进行判断,准确理解是解题的关键.5、(1)三棱柱;(2)作图见解析;(3)120cm2.【解析】试题分析:(1)由展开图分析可得该几何体为三棱柱;(2)画出展开图即可;(3)三棱柱侧面为三个长方形,由题意得,长方形的长为10cm,宽为4cm,根据长方形面积公式计算即可.试题解析:(1)由三视图可知,该几何体为三棱柱,(2)展开图如下:(3)这个几何体的侧面积为3×10×4=120cm2.点睛:(1)会通过几何体的三视图判断该几何体的形状;(2)掌握三视图侧面展开图的画法.。
最新精品解析沪教版(上海)六年级数学第二学期第八章长方体的再认识定向攻克试题(含答案及详细解析)
六年级数学第二学期第八章长方体的再认识定向攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列几何体中,每个面都是由同一种图形组成的是()A.圆柱B.圆锥C.三棱柱D.正方体2、下列图形经过折叠可以围成一个棱柱的是()A.B.C.D.3、某学习小组送给医务工作者的正方体的六个面上都有一个汉字,如图所示的是它的一种展开图,那么在原正方体中,与“美”字所在面相对的面上的汉字是()A.最B.逆C.行D.人4、如图,是由4个相同的小正方体组合而成的几何体,从左面看得到的平面图形是().A.B.C.D.5、如图所示的立体图形,其俯视图正确的是()A.B.C.D.6、下列几何体的俯视图中,其中一个与其他三个不同,该几何体是()A.B.C.D.7、如图是正方体的一个平面展开图,如果原正方体上前面的字为“友”,则后面的字为()A.爱B.国C.诚D.善8、如图所示的立体图形的主视图是()A.B.C.D.9、下面的几何体的左视图是()A.B.C.D.10、如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示是某种型号的正六角螺母毛坯的三视图,则它的侧面积为2cm.2、一根80分米长的铁条,剪断后刚好可焊接成一个长8分米、宽5.5分米的长方体框架,那么这个长方体的高是_______分米.3、已知一个直角三角形的两直角边分别是3和4,将这个直角三角形绕它的直角边所在直线旋转一周,可以得到圆锥,则圆锥的体积是_______.(213π圆锥V r h ,结果保留π) 4、建筑工地上的工人在建造楼房的时候,常用________来检验墙面是否垂直于水平面.5、如图所示,将图沿虚线折起来得到一个正方体,那么“1”的对面是_____,“2”的对面是_____(填编号).三、解答题(5小题,每小题10分,共计50分)1、如图是由若干个相同的正方体组成的立体图形从上往下看所得到的平面图形,正方形上标注的数字表示该位置上正方体的个数.请画出这个立体图形从左面看所得到的平面图形.2、(1)图(a )是长方体木块,把它切掉一块,可以得到如图(b )、(c )、(d )、(e )的木块,请将(a )、(b )、(c )、(d )、(e )中木块的顶点数、棱数、面数填入下表:(2)观察上表,请归纳上述各种木块的顶点数、棱数、面数之间的数量关系:_______.(3)请想象一种与图(b)~(e)不同的切法,把切面用阴影表示出来,该木块的顶点数_______,棱数_______,面数_______.这是否满足你在第(2)题中所归纳的关系?3、由6个棱一样长的正方体组成的几何体如图所示.在指定的方格内画出该几何体从三个方向看到的形状图.4、在长方体ABCD EFGH中,(1)与棱HG平行的平面有哪些?与平面BCGF平行的棱有哪些?(2)与平面ABCD垂直的棱有哪些?(3)与平面ABFE平行的平面有哪些?(4)与平面ABFE垂直的平面有哪些?5、如图所示,长方体ABCD EFGH中,从点F出发的三条棱FE、FG、FB的长度比为1:2:3,该长方体的棱长总和为144厘米,求与面ADHE垂直的各个面的面积之和.-参考答案-一、单选题1、D【分析】分别找出每个图形的每个面是由什么图形组成的即可.【详解】解:A、圆柱是由长方形和圆组成的,故此选项不符合题意;B、圆锥是由扇形和圆组成,故此选项不符合题意;C、三棱柱是由三角形和长方形组成,故此选项不符合题意;D、正方体是由正方形组成,故此选项符合题意;故选:D.【点睛】此题主要考查了认识立体图形,关键是掌握各立体图形的形状.2、B【分析】根据棱柱展开图的特点进行分析即可.【详解】解:A、不能围成棱柱,底面应该在两侧,故此选项不符合题意;B、能围成三棱柱,侧面有3个,底面是三角形,故此选项符合题意;C、不能围成棱柱,侧面有4个,底面是三角形,应该是四边形才行,故此选项不符合题意;D、不能围成棱柱,底面应该在两侧,故此选项不符合题意;故选:B.【点睛】此题主要考查了展开图折叠成几何体,关键是通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开.3、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点即可作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“逆”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4、D【分析】根据左视图的定义即可求解.从左面看得到的平面图形是故选D.【点睛】此题主要考查三视图,解题的关键是熟知左视图的定义.5、C【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C.【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.6、C【分析】根据从上边看得到的图形是俯视图,可得答案.解:选项A、B、D的俯视图是不带圆心的圆,选项C的俯视图是带圆心的圆,故选:C.【点睛】此题主要考查三视图,解题的关键是熟知俯视图的定义.7、C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”与“善”是相对面,“国”与“信”是相对面,“诚”与“友”是相对面.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8、A【分析】找出此几何体从正面看所得到的视图即可,看不见的棱用虚线.【详解】解:此立体图形从正面看所得到的图形为矩形,中间有两条看不见的棱,故主视图为矩形中有两条竖的虚线.【点睛】此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.9、D【分析】根据几何体的特点即可求解.【详解】从左边看,第一排三个正方形,第二排两个,第三排一个.即故选D.【点睛】此题主要考查三视图的判断,解题的关键是熟知左视图的定义.10、C【分析】俯视图是从上面看,注意所有的看到的棱都应表现在俯视图中.【详解】解:如图所示:它的俯视图是:.【点睛】此题主要考查了三视图的知识,关键是树立空间观念,掌握三视图的几种看法.二、填空题1、36【分析】正六角螺母侧面为6个相同的长方形,求出每个长方形的面积,即可得出它的侧面积.【详解】2×3=6cm2,6×6=36cm2.故答案为:36.【点睛】本题主要考查正六棱柱的三视图,将三视图上边的长度转化为正六棱柱对应边的长度是解题关键.2、6.5【分析】根据长方体棱长和棱长的知识点准确计算即可;【详解】()÷-+=(分米).8048 5.5 6.5故答案是6.5.【点睛】本题主要考查了长方体棱与棱的位置关系和长方体认识,准确分析计算是解题的关键.3、12π或16π或12π分两种情况:①以直角边为3所在直线旋转一周得到一个圆锥,底面半径是4,高是3,然后利用圆锥的体积公式213π圆锥V r h =,计算即可; ②以直角边为4所在直线旋转一周得到一个圆锥,底面半径是3,高是4,然后利用圆锥的体积公式213π圆锥V r h =,计算即可. 【详解】解:一个直角三角形的两直角边分别是3和4,①以直角边为3所在直线旋转一周得到一个圆锥,底面半径是4,高是3,所以213π圆锥V r h ==2π431613π⋅⋅=, ②以直角边为4所在直线旋转一周得到一个圆锥,底面半径是3,高是4, 所以213π圆锥V r h ==2π341213π⋅⋅=, 故答案为:12π或16π.【点睛】此题考查了点、线、面、体中的面动成体,解题关键是:分两种情况①以直角边为3所在直线旋转一周得到一个圆锥,②以直角边为4所在直线旋转一周得到一个圆锥,4、铅垂线【分析】根据铅垂线的定义理解填空解答.【详解】建筑工地上的工人在建造楼房的时候,常用铅垂线来检验墙面是否垂直于水平面.故答案为:铅垂线.本题考查铅垂线的定义,正确理解相关概念是解题关键.5、5 4【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“2”与“4”是相对面,“3”与“6”是相对面.故答案为:5,4.【点睛】本题考查的是正方体的表面展开图,掌握正方体的表面展开图的特点是解题的关键.三、解答题1、图见解析.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为2,3.据此可画出图形.【详解】解:如图【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.2、(1)见解析;(2)顶点数+面数=棱数+2;(3)见解析【分析】(1)只要将图(a)、(b)、(c)、(d)、(e)各个木块的顶点数、棱数、面数数一下就行;数的时候要注意:图中不能直接看到的那一部分不要遗漏,也不要重复,可通过想象计数,正确填入表内;(2)通过观察找出每个图中“顶点数、棱数、面数”之间隐藏着的数量关系,这个数量关系用公式表示出来即可.(3)按要求作出图形,注意是与图(b)~(e)不同的切法,然后数出该木块的顶点数,棱数和面数即可.【详解】解:见表(2)观察上表,即可归纳上述各种木块的顶点数、棱数、面数之间的数的关系是:顶点数+面数=棱数+2.(3)将长方体横着切成两个小长方体,所画图形如下所示:则该木块的顶点数为8,棱数为12,面数为6.因为8+6=12+2,所以第(2)题中的结论“顶点数+面数=棱数+2”仍然相符.故答案为:(2)顶点数+面数=棱数+2;(3)8,12,6.【点睛】本题考查了欧拉公式的知识,在找顶点数,棱数,面数的时候,如何做到不重不漏是难点.3、见解析【分析】根据三视图的画法分别画出从正面看、从左面看,从上面看所得到的图形即可.【详解】解:这个组合体的三视图如下:【点睛】本题考查简单组合体的三视图,“长对正,宽相等,高平齐”是画三视图的基本原则.4、(1)与棱HG平行的平面有平面ABFE、平面ABCD;与平面BCGF平行的棱有EH、AD、AE、DH;(2)AE、DH、BF、CG;(3)平面DCGH ;(4)平面ABCD 、EFGH 、BCGF 、ADHE .【分析】(1)直接根据长方体的棱与平面的位置关系解答即可;(2)根据长方体棱与面的位置关系求解即可;(3)根据长方体面与面的位置关系求解即可;(4)根据长方体面与面的位置关系求解即可.【详解】解:由图可知:(1)与棱HG 平行的平面有:平面ABFE 、平面ABCD ;与平面BCGF 平行的棱有:EH 、AD 、AE 、DH ;(2)与平面ABCD 垂直的棱有:AE 、DH 、BF 、CG ;(3)与平面ABFE 平行的平面有:平面DCGH ;(4)与平面ABFE 垂直的平面有:平面ABCD 、EFGH 、BCGF 、ADHE .【点睛】本题主要考查长方体棱、面之间的位置关系,熟练掌握知识点是解题的关键. 5、360平方厘米【分析】设棱FE 、FG 、FB 的长度为x 厘米、2x 厘米、3x 厘米,根据题意易得棱FE 、FG 、FB 的长度,然后找到与面ADHE 垂直的各个面进行求解即可.【详解】解:设棱FE 、FG 、FB 的长度为x 厘米、2x 厘米、3x 厘米,由题意得: ∴()234144x x x ++⨯=,6x =,∴棱FE、FG、FB的长度分别为6厘米、12厘米、18厘米,则与面ADHE垂直的面为面ABFE、面ABCD、面CDHG、面EFGH,面积之和为()⨯+⨯⨯=(平方厘米).6186122360【点睛】本题主要考查长方体面与面的位置关键及面积,关键是找到与面ADHE垂直的面,然后进行求解即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 长方体的再认识
一、 概念
1、 长方体的元素:六个面、八个顶点、十二条棱
2、 长方体的三元素的特点:(主要是外观特征和数量关系)
①长方体的每个面都是长方形;
②长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。
③长方体的六个面可以分为三组,每组中的两个面形状大小都相同。
3、 正方体是特殊的长方体。
4、 平面是平的,无边无沿,没有厚度和大小,一般用平行四边形来表示。
记作:平面ABCD 或平面α。
5、 将水平放置的平面画成一边是水平位置,另一边与水平线成45度角的平行四边形。
6、 斜二侧画法画长方体时要注意:宽画成标注尺寸的一半;看不到的线画成虚线;要标字
母和尺寸,要写结论。
长方体ABCD-EFGH 、平面ABCD 、棱AB 、顶点A 。
7、 空间中两直线的位置关系有三种:相交、平行、异面
① 如果两条直线在同一平面内,有唯一公共点,称这两条直线的位置关系是相交; ② 如果两条直线在同一平面内,没有唯一公共点,称这两条直线的位置关系是平行; ③ 如果两条直线既不平行也不相交,称这两条直线的位置关系是异面。
8、 直线垂直于平面记作:直线PQ ⊥平面ABCD ;直线平行于平面记作:直线PQ ∥平面ABCD 。
9、 计算公式之一:(三条棱长分别是a 、b 、c 的长方体)
① 棱长和 = 4()a b c ++ ; ② 体积 = abc ;③ 表面积 = 2()ab bc ac ++ ; ④ 无盖表面积 = S ab -、S bc -、S bc -
10、计算公式之二:(边长是a 正方体)
① 棱长和= 12a ;②体积= 3a ;③表面积= 26a ;④无盖表面积 =2
5a 。
11、长方体不一定是正方体;正方体一定是长方体。
12、长方体中棱与棱的位置关系有3种,分别是平行、相交、异面。
13、长方体中棱与面的位置关系有2种,分别是:平行、垂直。
14、长方体中面与面的位置关系有2种,分别是:平行、垂直。
二、检验垂直或平行的方法:
1、检验直线与平面垂直的方法:
①铅垂线法:将铅垂线靠近被测直线,如果铅垂线能够紧贴被测直线,说明直线垂直于水平面。
(可用于检验细棒是否垂直于水平面、黑板的边沿是否垂直于水平面)
②三角尺法:将两把三角尺的一条直角边分别紧贴已知平面并且位置交叉,将两把三角尺的另一条直角边分别靠近被测细棒,如果两条直角边都能够紧贴被测直线,说明直线垂直于已知平面。
(可用于检验细棒是否垂直于墙面)
③合页型折纸法:将一张长方形的硬纸片对折,张开一个角度后直立于已知平面,用折痕靠近被测直线,如果折痕能够紧贴被测直线,说明直线垂直于已知平面。
2、检验平面与平面垂直的方法:①铅垂线法;②三角尺法;③合页型折纸法。
3、检验直线与平面平行的方法:
①铅垂线法:从被测直线的两个不同的点放下铅垂线,使铅垂线的下端刚好接触地面。
如果从这两个不同点到铅垂线的下端的线段的长度相等,那么说明被测直线平行于水平面。
(可用于检验黑板的边沿是否平行于水平面)
②长方形纸片法:将长方形纸片的一边贴合于已知平面,另一边靠近被测直线,如果另一边能够紧贴被测直线,则说明被测直线平行于已知平面。
(可用于检验桌面上的灯管是否平行于桌面)
4、检验平面与平面平行的方法:
①长方形纸片法:将长方形纸片的一边贴合于已知平面,按交叉的方向分两次放在两个平面之中,如果另一边能够紧贴被测平面,则说明被测平面平行于已知平面。
二、长方体中的棱与面的位置关系:(长方体中有现成的合页型折纸、长方形纸片可供检验)
1、长方体中与某条棱平行的棱有3条,长方体中互相平行的棱共有18对;
2、长方体中与某条棱相交的棱有4条,长方体中相交的棱共有24对;
3、长方体中与某条棱异面的棱有4条,长方体中异面的棱共有24对;
4、长方体中与某条棱平行的面有2个;
5、长方体中与某条棱垂直的面有2个;
6、长方体中与某个面平行的棱有4条;
7、长方体中与某个面垂直的棱有4条;
8、长方体中与某个面平行的面有1个,长方体中互相平行的面共有3对;
9、长方体中与某个面垂直的面有4个,长方体中互相垂直的面共有12对。