新九年级数学下期末一模试题(附答案)

合集下载

初三数学下期末一模试卷带答案

初三数学下期末一模试卷带答案

一、选择题1.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm 2.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是( )A .主视图B .俯视图C .左视图D .俯视图和左视图 3.如图所示,该几何体的主视图为( )A .B .C .D . 4.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A .22个B .19个C .16个D .13个5.如图所示的几何体,它的左视图是( )A .B .C .D . 6.如图,为方便行人推车过天桥,市政府在10m 高的天桥两端分别修建了50m 长的斜道.用科学计算器计算这条斜道的倾斜角,下列按键顺序正确的是( )A .sin0.2=B .2ndF sin0.2=C .tan0.2=D .2ndF tan0.2= 7.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .255C .55D .128.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )A .8(31)+mB .8(31)-mC .16(31)+mD .16(31)-m9.如图,在Rt △ABC 中,∠B=90°,AB=5,BC=12,将△ABC 绕点A 逆时针旋转得到△ADE ,使得点D 落在AC 上,则tan ∠ECD 的值为( )A .23B .32C 25D 3510.如图,在平面直角坐标系中,Rt OAB 的斜边OA 在第一象限,并与x 轴的正半轴夹角为30度,C 为OA 的中点,BC=1,则A 点的坐标为( )A .()3,3B .()3,1C .()2,1D .()2,3 11.下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .有一个锐角相等的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似12.如图,过y 轴上一个动点M 作x 轴的平行线,交双曲线y=4x- 于点A ,交双曲线10y x=于点B ,点C 、点D 在x 轴上运动,且始终保持DC =AB ,则平行四边形ABCD 的面积是( )A .7B .10C .14D .28二、填空题13.10个棱长为a cm 的正方体摆放成如图的形状,这个图形的表面积是____________.14.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是____________.15.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高______米.(结果精确到1米.3≈1.732,2≈1.414)16.如果在某建筑物的A 处测得目标B 的俯角为37°,那么从目标B 可以测得这个建筑物的A 处的仰角为_____.17.如图,长方形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C’处,BC’交AD 于点E ,则线段DE 的长为____.18.3cosA <sin70°,则锐角A 的取值范围是_________ 19.如图,在Rt ACB 中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF 为直角三角形时,线段AE 的长为________.20.已知点(1,),(3,)A a B b 都在反比例函数4y x的图像上,则,a b 的大小关系为____.(用“<”连接) 三、解答题21.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 为边CB 上的一个动点(点D 不与点B 重合),过D 作DO ⊥AB ,垂足为O ,点B′在边AB 上,且与点B 关于直线DO 对称,连接DB′,AD .(1)求证:△DOB ∽△ACB ;(2)若AD 平分∠CAB ,求线段BD 的长;(3)当△AB′D 为等腰三角形时,求线段BD 的长.22.如图各图是棱长为1cm 的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm 2;如图②中,从正面看有3个正方形,表面积为18cm 2;如图③,从正面看有6个正方形,表面积为36cm 2;…(1)第6个图中,从正面看有多少个正方形?表面积是多少?(2)第n 个图形中,从正面看有多少个正方形?表面积是多少?23.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22°,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45°.测角仪的高度为1.6m 求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,2≈1.41).24.计算(1)()218232- (2)12272333+- (3)2sin 45cos30tan60+⋅25.如图,在四边形ABCD 中,90A C ∠=∠=︒,DE ,BF 分别平分ADC ∠,ABC ∠,并交线段AB ,CD 于点E ,F (点E ,B 不重合),在线段BF 上取点M ,N (点M 在BN 之间),使2BM FN =.当点P 从点D 匀速运动到点E 时,点Q 恰好从点M 匀速运动到点N ,记QN x =,PD y =,已知5103y x =-+,当Q 为BF 中点时,53y =.(1)判断DE 与BF 的位置关系,并说明理由:(2)求DE ,BF 的长;(3)若30AED ∠=︒①当DP DF =时,通过计算比较BE 与BQ 的大小关系;②连接PQ ,当PQ 所在直线经过四边形ABCD 的一个项点时,求所有满足条件的x 的值. 26.已知直线l 分别与x 轴、y 轴交于A 、B 两点,与双曲线y =m x(m≠0,x >0)分别交于D 、E 两点,若点D 的坐标为(4,1),点E 的坐标为(1,n)(1)分别求出直线l 与双曲线的解析式;(2)求△EOD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先确定几何体的主视图,得到边长分别为3cm、6cm,再根据面积公式计算得出答案.【详解】如图,所得几何体的主视图是一个长方形,边长分别为3cm、6cm,∴所得几何体的主视图的面积是36 =218cm,故选:D.【点睛】此题考查几何体的三视图,平面图形的面积计算公式,正确理解几何体的三视图是解题的关键.2.C解析:C【分析】利用结合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:主视图由原来的三列变为两列;俯视图由原来的三列变为两列;左视图不变,依然是两列,左起第一列是两个小正方形,第二列底层是一个小正方形.故选:C.【点睛】本题考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题的关键.3.B解析:B【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.4.D解析:D【分析】先根据俯视图判断出这个几何体的行列数,然后根据正视图推算每列小正方体的最少个数,最后将各列的小正方体个数求和即可得.【详解】由俯视图可得,这个几何体共有3行3列,其中左边一列有2行,中间一列有2行,右边一列有3行由正视图可得,左边一列2行中的最高层数为2,则这列小正方体最少有213+=个中间一列2行中的最高层数为3,则这列小正方体最少有314+=个右边一列3行中的最高层数为4,则这列小正方体最少有4116++=个因此,这个几何体的一种可能的摆放为2,3,41,1,10,0,1(数字表示所在位置小正方体的个数),小正方体最少有34613++=个故选:D.【点睛】本题考查了三视图(俯视图、正视图)的定义,根据俯视图和正视图得出几何体的实际可能摆放是解题关键.另一个重要概念是左视图,这是常考知识点,需掌握.5.D解析:D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.B解析:B【分析】先利用正弦的定义得到10sin 0.250A ==,然后利用计算器求锐角∠A . 【详解】∵ 10sin 0.250A ==, ∴ 用计算器求值的顺序为20.2ndFsin =,故选:B .【点睛】本题考查了锐角三角函数及计算器的应用,掌握科学计算器的应用是解决本题的关键. 7.D解析:D 【分析】连接AC ,根据网格图不难得出=90CAB ∠︒,求出AC 、BC 的长度即可求出ABC ∠的正切值.【详解】连接AC ,由网格图可得:=90CAB ∠︒,由勾股定理可得:AC 2AB =2∴tan ABC ∠=21222AC AB ==. 故选:D .【点睛】本题主要考查网格图中锐角三角函数值的求解,根据网格图构造直角三角形是解题关键. 8.A解析:A【解析】设MN=xm ,在Rt △BMN 中,∵∠MBN=45∘,∴BN=MN=x ,在Rt △AMN 中,tan ∠MAN=MN AN , ∴tan30∘=16x x+ =3√3,解得:x=8(3 +1), 则建筑物MN 的高度等于8(3 +1)m ;故选A.点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的夹角,并与三角函数相结合求边的长.9.B解析:B【分析】在Rt ABC ∆中,由勾股定理可得13AC =.根据旋转性质可得13AE =,5AD =,12DE =,所以8CD =.在Rt CED ∆中根据tan DE ECD DC ∠=,可求解. 【详解】解:∵在Rt ABC ∆中,AB=5,BC=12,∴由勾股定理可得222251213AC AB BC =+=+=,根据旋转性质可得13AE =,5AD =,12DE =,8CD ∴=,在Rt CED ∆中,123tan 82DE ECD DC ∠===, 故选:B .【点睛】本题主要考查了旋转的性质以及解直角三角形,利用勾股定理求出所求三角函数值的直角三角形的对应边长度,根据线段比就可解决问题. 10.B解析:B【分析】根据题画出图形,再根据直角三角形斜边上的中线等于斜边的一半可得AB 的值,再根据勾股定理可得OB 的值,进而可得点A 的坐标.【详解】解:如图,过A 点作AD x ⊥轴于D 点,Rt OAB ∆的斜边OA 在第一象限,并与x 轴的正半轴夹角为30.30AOD ∴∠=︒,12AD OA ∴=, C 为OA 的中点,1AD AC OC BC ∴====,2OA ∴=,OD ∴=,则点A 的坐标为:1).故选:B .【点睛】本题考查了解直角三角形、坐标与图形性质、直角三角形斜边上的中线,解决本题的关键是综合运用以上知识.11.B解析:B【分析】由相似三角形的判定依次判断可求解.【详解】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、有一个锐角相等的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则它们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意;故选:B .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.12.C解析:C【分析】设出M 点的坐标,可得出过M 与x 轴平行的直线方程为y=m ,将y=m 代入反比例函数y=4x-中,求出对应的x 的值,即为A 的横坐标,将y=m 代入反比例函数10y x =中,求出对应的x 的值,即为B 的横坐标,用B 的横坐标减去A 的横坐标求出AB 的长,根据DC=AB ,且DC 与AB 平行,得到四边形ABCD 是平行四边形,过B 作BN 垂直于x 轴,平行四边形底边为DC ,DC 边上的高为BN ,由B 的纵坐标为m得到BN=m ,再由求出的AB 的长,得到DC 的长,利用平行四边形的面积等于底乘以高可得出平行四边形ABCD 的面积.【详解】解:设M 的坐标为(0,m )(m >0)则直线AB 的方程为:y=m ,将y=m 代入y=4x-中得:4x m =-,∴A (4m -,m )将y=m 代入10y x =中得:10x m =,∴B (10m ,m ) ∴DC=AB=10m -(4m -)=14m过B 作BN ⊥x 轴,则有BN=m ,则平行四边形ABCD 的面积S=DC·BN=14m×m=14. 故选C .【点睛】本题考查反比例函数综合题. 二、填空题13.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的 解析:2236a cm【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a a cm ⨯+⨯+⨯=, 故答案为:2236a cm .【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.14.36cm2【分析】从上面看到6个正方形从正面和右面可看到6个正方形从两个侧后面可看到6个正方形从底面可到到6个正方形面积相加即为所求【详解】从上面看到的面积为6从正面和右面看到的面积为从两个侧后面看 解析:36cm 2【分析】从上面看到6个正方形,从正面和右面可看到62⨯个正方形,从两个侧后面可看到62⨯个正方形,从底面可到到6个正方形,面积相加即为所求.【详解】从上面看到的面积为62116cm ⨯⨯=,从正面和右面看到的面积为2621112cm ⨯⨯⨯=,从两个侧后面看到的面积为2621112cm ⨯⨯⨯=,从底面看到的面积为62116cm ⨯⨯=, 那么这个几何体的表面积为6+12+12+6=362cm .【点睛】本题考查了几何体的表面积,解决问题的关键是分别从各个视角求出面积,然后相加即可. 15.24【解析】【分析】过点C 作CE ⊥BD 与点E 可得四边形CABE 是矩形知CE=AB=40AC=BE=1在Rt △CDE 中DE=tan30°•CE 求出DE 的长由DB=DE+EB 可得答案【详解】如图过点C 作解析:24【解析】【分析】过点C 作CE ⊥BD 与点E ,可得四边形CABE 是矩形,知CE =AB =40,AC =BE =1.在Rt △CDE 中DE =tan30°•CE 求出DE 的长,由DB =DE +EB 可得答案.【详解】如图,过点C 作CE ⊥BD 与点E .在Rt △CDE 中,∠DCE =30°,CE =AB =40,则DE =tan30°•CE 3=⨯40≈23,而EB =AC =1,∴BD =DE +EB =23+1=24(米).【点睛】本题考查了解直角三角形的应用.注意能根据题意构造直角三角形,并能借助于解直角三角形的知识求解是解答此题的关键.16.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B 可以测得这个建筑物的A处的仰角为37°【详解】如图∵某建筑物的A处测得目标B的俯角为37°∴目标B可以测得这个建筑物的A处的仰角为37°故解析:37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°.【详解】如图,∵某建筑物的A处测得目标B的俯角为37°,∴目标B可以测得这个建筑物的A处的仰角为37°,故答案为:37°.【点睛】考查了解直角三角形,解题关键是理解向下看,视线与水平线的夹角叫俯角;向上看,视线与水平线的夹角叫仰角.17.375【分析】首先根据题意得到BE=DE然后根据勾股定理得到关于线段ABAEBE的方程解方程即可解决问题【详解】设ED=x则AE=6﹣x∵四边形ABCD 为矩形∴AD∥BC∴∠EDB=∠DBC由题意得解析:3.75【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【详解】设ED=x,则AE=6﹣x.∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC.由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x.由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75.故答案为3.75.【点睛】本题考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.18.20°<∠A<30°【详解】∵<cosA<sin70°sin70°=cos20°∴cos30°<cosA<cos20°∴20°<∠A<30°解析:20°<∠A <30°.【详解】 ∵3<cosA <sin70°,sin70°=cos20°, ∴cos30°<cosA <cos20°,∴20°<∠A <30°.19.或【分析】(1)分别在中应用含角的直角三角形的性质以及勾股定理求得再根据垂直平分线的性质等边三角形的判定和性质等腰三角形的判定求得最后利用线段的和差即可求得答案;根据垂直平分线的性质全等三角形的判定 解析:6或285 【分析】(1)分别在Rt ACB ∆、Rt BDF ∆、Rt DEF ∆中应用含30角的直角三角形的性质以及勾股定理求得1EF =,2DE =,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得2BE =,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得//DM CN ,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得125BE =,最后利用线段的和差即可求得答案.【详解】解:①当90AFN ∠=︒时,如图1:∵在Rt ACB ∆中,90C ∠=︒,4AC =,30ABC ∠=︒∴28AB AC ==∴2243BC AB AC∵90AFN DFB ∠=∠=︒,30ABC ∠=︒∴60FDB ∠=︒∵3==CD DB ∴132DF BD ==∴ 在Rt DEF △中,设EF x =,则22DE EF x == ∵222EF DF DE +=∴()()22223x x -= ∴1x =∴1EF =,2DE =∵DM 垂直平分线段BN∴DBDN ∵60FDB ∠=︒ ∴BDN 是等边三角形∴30FDM EDB EBD ∠=∠=∠=︒∴2BE DE ==∴826=-=-=AE AB BE ;②当90ANF ∠=︒时,连接AD 、CN 交于点O ,过点E 作⊥EH DB 于H ,如图2:设EH x =,则3BH x =,233DH x = ∵DM 垂直平分线段BN ,点D 是BC 的中点∴CD DN BD ==∵AD AD = ∴()Rt ACD Rt AND HL ≌∵AC AN =∵CD DN =∴AD 垂直平分线段CN∴90AON ∠=︒∵CD DB =,MN BM =∴//DM CN∴90ADM AON ∠=∠=︒∵90ACD EHD ∠=∠=︒∴90ADC EDH ∠+∠=︒,90EDH DEH ∠+∠=︒∴∠=∠ADC DEH∴ACD DHE ∽ ∴AC CD DH EH=∴=x ∴65x =∴1225==BE x ∴1228855=-=-=AE AB BE . ∴综上所述,满足条件的AE 的值为6或285. 故答案是:6或285【点睛】 本题考查了垂直平分线的性质和判定、含30角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.20.【分析】根据题意把所给点的横纵坐标代入反比例函数的解析式求出a 与b 的值比较大小即可【详解】解:点A (1a )在反比例函数的图像上则有点B (3b )在反比例函数的图像上则有所以故答案为:【点睛】本题主要考 解析:b a <【分析】根据题意把所给点的横纵坐标代入反比例函数的解析式,求出a 与b 的值,比较大小即可.【详解】解:点A (1,a )在反比例函数4y x =的图像上,则有441a ==, 点B (3,b )在反比例函数4y x=的图像上,则有43b =, 所以b a <.故答案为:b a <.【点睛】本题主要考查反比例函数图象上点的坐标特征,注意掌握所有在反比例函数上的点的横纵坐标的积等于比例系数. 三、解答题21.(1)证明见试题解析;(2)5;(3)5013. 【解析】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD =x ,CD ,BD ,BO 用x 表示出来,所以可得BD 长.(3)同(2)原理,BD =B′D =x , AB′,B′O ,BO 用x 表示,利用等腰三角形求BD 长.试题(1)证明:∵DO ⊥AB ,∴∠DOB =90°,∴∠ACB =∠DOB =90°,又∵∠B =∠B .∴△DOB ∽△ACB .(2)∵AD 平分∠CAB ,DC ⊥AC,DO ⊥AB,∴DO =DC ,在 Rt △ABC 中,AC =6,BC =,8,∴AB =10,∵△DOB ∽△ACB,∴DO ∶BO ∶BD =AC ∶BC ∶AB =3∶4∶5,设BD =x ,则DO =DC =35x ,BO =45x , ∵CD +BD =8,∴35x +x =8,解得x =,5,即:BD =5. (3)∵点B 与点B′关于直线DO 对称,∴∠B =∠OB′D ,BO =B′O =45x ,BD =B′D =x , ∵∠B 为锐角,∴∠OB′D 也为锐角,∴∠AB′D 为钝角,∴当△AB′D 是等腰三角形时,AB′=DB′,∵AB′+B′O +BO =10,∴x +45x +45x =10,解得x =5013,即BD =5013, ∴当△AB′D 为等腰三角形时,BD =5013. 点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知BP 平分ABC ∠,过点P 作PA AB ⊥,PC BC ⊥,则PA PC =.②截两边:如图(2),已知BP 平分MBN ∠,点A BM 上,在BN 上截取BC BA =,则ABP ∆≌CBP ∆.③角平分线+平行线→等腰三角形:如图(3),已知BP 平分ABC ∠,//PA AC ,则AB AP =;如图(4),已知BP 平分ABC ∠,//EF PB ,则BE BF =.(1) (2) (3) (4)④三线合一(利用角平分线+垂线→等腰三角形):如图(5),已知AD 平分BAC ∠,且AD BC ⊥,则AB AC =,BD CD =.(5)22.(1)126cm 2;(2)3n (n +1)cm 2.【分析】(1)由题意知,第4个图共有1+3+6+10=20个,从正面看有10个正方形,第5个图共有1+3+6+10+15=35个,从正面看有15个正方形,即可推出第6个图形的正方体和正面看到的正方形个数;(2)由题意知,从正面看有(1+2+3+4+…+n )个正方形,即可得出其表面积.【详解】(1)由题意可知,第6个图中,从正面看有1+2+3+4+5+6=21个正方形,表面积为:21×6=126cm 2;(2)由题意知,从正面看到的正方形个数有(1+2+3+4+…+n )=(1)2n n +个, 表面积为:(1)2n n +×6=3n (n +1)cm 2. 【点睛】本题主要考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.23.约为12.3m【分析】过A 作AD ⊥PM 于D ,延长BC 交AD 于E ,则四边形BMNC ,四边形BMDE 是矩形,于是得到BC=MN=16m ,DE=CN=BM=1.6m ,求得CE=AE ,设AE=CE=x ,得到BE=16+x ,解直角三角形即可得到答案.【详解】过A 作AD ⊥PM 于D ,延长BC 交AD 于E ,则四边形BMNC ,四边形BMDE 是矩形,∴BC =MN =16m ,DE =CN =BM =1.6m ,∵∠AEC =90°,∠ACE =45°,∴△ACE 是等腰直角三角形,∴CE =AE ,设AE =CE =x ,∴BE =16+x ,∵∠ABE =22°,∴tan22°=AE BE =16x x+≈0.40, 解得:x ≈10.7(m ),经检验x ≈10.7是原分式方程的解∴AD≈10.7+1.6=12.3(m ), 答:观星台最高点A 距离地面的高度约为12.3m .【点睛】本题考查了解直角三角形的应用-仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.24.(1)-10;(2)56-3)2.【分析】(1)先按照乘法分配律计算,再把二次根式化简,即可得出结果;(2)先按照除法法则进行计算,再把各二次根式化简,即可得出结果;(3)先把三角函数值代入,然后进行二次根式的计算即可.【详解】解:(1)原式36264;(2)原式2349333⨯⨯=2+36-6- (3)原式= 22331322+=2. 【点睛】本题考查了二次根式的混合运算及特殊角三角函数值的运算,合理安排运算顺序,可达到简便计算的目的.25.(1)DE ∥BF ,见解析;(2)DE=10;BF=18;(3)①BQ <BE ;②x=6或x=1116或x=21 8【分析】(1)推出∠AED=∠ABF,即可得出DE∥BF;(2)求出DE=10,MN=6,把53y=代入5103y x=-+,解得x=5,即NQ=5,得出QM=1,由FQ=QB,BM=2FN,得出FN=4,BM=8,即可得出结果;(3)①连接EM并延长交BC于点H,易证四边形DFME是平行四边形,得出DF=EM,求出∠DEA=∠FBE=∠FBC=30°,∠ADE=∠CDE=∠FME=60°,∠MEB=∠FBE=30°,得出∠EHB=90°,DF=EM=BM=8,MH=4,EH=12,由勾股定理得HB=43,BE=83,当DP=DF时,求出BQ=645,即可得出BQ<BE;②(Ⅰ)当PQ经过点D时,y=0,则x=6;(Ⅱ)当PQ经过点C时,由FQ∥DP,得出△CFQ∽△CDP,则FQ CFDP CD=,即可求出x=1116;(Ⅲ)当PQ经过点A时,由PE∥BQ,得出△APE∽△AQB,则PE AEBQ AB=,求出AE=53,AB=133,即可得出x=218,由图可知,PQ不可能过点B.【详解】解:(1)DE与BF的位置关系为:DE∥BF,理由如下:如图1所示:∵∠A=∠C=90°,∴∠ADC+∠ABC=360°-(∠A+∠C)=180°,∵DE、BF分别平分∠ADC、∠ABC,∴∠ADE=12∠ADC,∠ABF=12∠ABC,∴∠ADE+∠ABF=12×180°=90°,∵∠ADE+∠AED=90°,∴∠AED=∠ABF,∴DE∥BF;(2)令x=0,得y=10,∴DE=10,令y=0,得x=6,∴MN=6,把y=53代入5103y x=-+,解得:x=5,即NQ=5,∴QM=6-5=1,∵Q是BF中点,∴FQ=QB,∵BM=2FN,∴FN+5=1+2FN,解得:FN=4,∴BM=8,∴BF=FN+MN+MB=18;(3)①连接EM并延长交BC于点H,如图2所示:∵FM=4+6=10=DE,DE∥BF,∴四边形DFME是平行四边形,∴DF=EM,EH∥CD,∴∠MHB=∠C=90°,∵∠A=90°,∠AED=30°∴AD=12DE=5,∴∠DEA=∠FBE=∠FBC=30°,∴∠ADE=60°,∴∠ADE=∠CDE=∠FME=60°,∴∠DFM=∠DEM=120°,∴∠MEB=180°-120°-30°=30°,∴∠MEB=∠FBE=30°,∴DF=EM=BM=8,∴MH=12BM=4,∴EH=8+4=12,由勾股定理得:2243BM MH-=∴BE=2283EH HB+=,当DP=DF时,5108 3x-+=,解得:x=65,∴BQ=14-x=645,∵645<83,∴BQ<BE;②(Ⅰ)当PQ经过点D时,如图3所示:y=0,则x=6;(Ⅱ)当PQ经过点C时,如图4所示:∵BF=18,∠FCB=90°,∠CBF=30°,∴CF=12BF=9,∴CD=9+8=17,∵FQ∥DP,∴△CFQ∽△CDP,∴FQ CFDP CD=,49517103xx+=-+,解得:x=1116;(Ⅲ)当PQ经过点A时,如图5所示:∵PE∥BQ,∴△APE∽△AQB,∴PE AE BQ AB=,由勾股定理得:2253DE AD-=∴AB=8353133=∴510(10)53314133xx--+=-x=218,由图可知,PQ不可能过点B;综上所述,当x=6或x=1116或x=218时,PQ所在的直线经过四边形ABCD的一个顶点.【点睛】本题是四边形综合题,主要考查了平行四边形的判定与性质、勾股定理、角平分线的性质、平行线的判定与性质、相似三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,难度较大,熟练掌握平行四边形的判定与性质是解题的关键.26.(1)y=﹣x+5;y=4 x(2)15 2【分析】(1)只需运用待定系数法就可求出反比例函数的解析式,把点E的坐标代入反比例函数的解析式,就可求出点E的坐标,然后运用待定系数法就可求出直线l的解析式;(2)连接OD、OE,过点D作DM⊥OA于M,作EN⊥OA于N,如图,只需运用割补法,就可求出△EOD的面积.【详解】(1)把D(4,1)代入反比例函数的解析式得,m=4×1=4,∴反比例函数的解析式为y=4x.把点E(1,n)的坐标代入y=4x得n=4,∴点E的坐标为(1,4).设直线l的解析式为y=kx+b,则有144k bk b=+⎧⎨=+⎩,解得15kb=-⎧⎨=⎩,∴直线l的解析式为y=﹣x+5;(2)连接OD、OE,过点D作DM⊥OA于M,作EN⊥OA于N,如图.∵点A是直线y=﹣x+5与x轴的交点,∴点A的坐标为(5,0),OA=5,∴S△DOE=S△AOE﹣S△ADO,=12×5×4﹣12×5×1=152.【点睛】本题考查求直线和反比例函数解析式及三角形面积,掌握待定系数法求解析式,需待定的字母,有几个待定需要找到图像上几个点,求面积多采取平行x轴的线段为底,平行y轴线段为高,掌握面积公式,也可用割补法求面积.。

2021-2022年九年级数学下期末第一次模拟试卷(及答案)

2021-2022年九年级数学下期末第一次模拟试卷(及答案)

一、选择题1.已知一个扇形的半径长为3,圆心角为60°,则这个扇形的面积为( )A .12πB .πC .3π2D .3π 2.О的半径为5,cm 点Р到圆心O 的距离为7,cm 则点P 与О的位置关系是( ) A .在圆上B .在圆内C .在圆外D .不确定 3.如图,AB 是O 的直径,CD 是弦,四边形OBCD 是菱形,AC 与OD 相交于点P ,则下列结论错误的是( )A .OD AC ⊥B .AC 平分OD C .2CB DP = D .2AP OP = 4.如图,AB 为⊙0的直径,点C 在⊙0上,且CO ⊥AB 于点O ,弦CD 与AB 相交于点E ,若∠BEC= 68°,则∠ABD 的度数为( )A .20°B .23°C .25°D .34°5.如图,抛物线2y ax bx c =++的顶点坐标为(1,4)a -,点()14,A y 是该抛物线上一点,若点()22,B x y 是该抛物线上任意一点.有下列结论:①420a b c -+>;②抛物线2y ax bx c =++与x 轴交于点(1,0)-,(3,0);③若21y y >,则24x >;④若204x ≤≤,则235a y a -≤≤.其中,正确结论的个数是( )A .0B .1C .2D .36.已知抛物线2y x bx c =-++的顶点在直线y=3x+1上,且该抛物线与y 轴的交点的纵坐标为n ,则n 的最大值为( )A .134B .154C .238D .2587.如图,二次函数2y ax bx c =++的图象经过点(1,0),则下列结论正确的是( )A .0c >B .0ab >C .0a b c ++>D .0a b +> 8.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点()4,0,其对称轴为直线1x =,结合图像给出下列结论:①0b <;②420a b c -+>;③当2x >时,y 随x 的增大而增大;④所以正确关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根.其中正确的结论有( )A .1个B .2个C .3个D .4个9.如图,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AEF 是等边三角形,连接AC 交EF 于点G ,有下列结论:①15BAE DAF ∠=∠=︒;②AC EF ⊥;③BE DF EF +=;④3AG GC =.其中正确的个数为( )A .1B .2C .3D .410.如图,传送带和地面所成斜坡AB 的坡度为1∶2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A .5米B .5米C .25米D .45米 11.如图,CD 是Rt ABC 斜边上的高,43AC BC ==,.则tan BCD ∠的值是( )A .34B .35C .45D .4312.如图,推动个小球沿倾斜角为α的斜坡向上行驶,若5sin 13α=,小球移动的水平距离12AC =米,那么小球上升的高度BC 是( )A .5米B .6米C .6.5米D .7米二、填空题13.圆内接四边形ABCD 中,∠A :∠B :∠C =1:2:3,则∠C 的度数等于_____. 14.在数学课上,老师提出如下问题:如图,AB 是⊙O 的直径,点C 在⊙O 外,AC ,BC 分别与⊙O 交于点D ,E ,请你作出ABC 中BC 边上的高.小文说:连结AE ,则线段AE 就是BC 边上的高.老师说:“小文的作法正确”请回答:小文的作图依据是__________.15.如图,在平面直角坐标系中,点A 从点(0,5)M 出发向原点O 匀速运动,与此同时点B 从点(3,0)N 出发,在x 轴正半轴上以相同的速度向右运动,当点A 到达终点O 时,两点同时停止运动.连接AB ,以线段AB 为边在第一象限内作正方形ABCD ,则正方形ABCD 面积的最小值为____________.16.二次函数224y x x =-++的最大值是______.17.如图,在正方形ABCD 中,点E 是BC 边上的动点,过点E 作AE 的垂线交CD 边于点F ,设BE x =,FD y =,y 关于x 的函数关系图像如图所示,则m =________.18.如图,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC =1200m ,求此时飞机到目标B 的距离AB 为_______m .19.如图,ABC 的顶点都是正方形网格中的格点,则tan ACB ∠等于________.20.如图所示,在四边形ABCD 中,233AD AB =,30A ∠=︒,将线段CD 绕点C 逆时针旋转90°,并延长至其3倍(即3CE CD =),过点E 作EF AB ⊥于点F ,当63AD =,3BF =,74EF =时,边BC 的长是______.21.2cos302sin303tan45︒-+︒=______.22.直角三角形ABC 中,∠B =90°,若cosA =35,AB =12,则直角边BC 长为___. 三、解答题23.如图,已知AB .(1)试用尺规作图确定AB 所在圆的圆心O (保留作图痕迹,不写作法);(2)若AB 的度数为120°,AB 的长是8π,求AB 所在圆的半径的长.24.如图,AB 是⊙O 的直径,AC 、DC 为弦,∠ACD =60°,P 为AB 延长线上的点,∠APD =30°.(1)求证:DP 是⊙O 的切线;(2)若⊙O 的半径为5,求图中阴影部分的面积.25.已知:抛物线y 1=﹣x 2﹣2x +3的图象交x 轴于点A ,B (点A 在点B 的左侧). (1)请在平面直角坐标系内画出二次函数y 1=﹣x 2﹣2x +3的草图,并标出点A 的位置; (2)点C 是直线y 2=﹣x +1与抛物线y 1=﹣x 2﹣2x +3异于B 的另一交点,则点C 的坐标为 ;当y 1≥y 2时x 的取值范围是 .26.在平面直角坐标系中,已知抛物线y =x 2﹣2x .(1)它的顶点坐标是 ,当x 时,y 随x 的增大而减小;(2)将抛物线y =x 2﹣2x 向左平移2个单位长度,再向下平移3个单位长度,设所得新抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,写出新抛物线的解析式并求△ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据计算公式直接套用求解即可.【详解】根据题意,得260333602S ππ⨯⨯==, 故选C .【点睛】本题考查了扇形的面积计算问题,熟记扇形面积计算公式,准确判断计算条件是解题的关键.2.C解析:C【分析】根据点与圆的位置关系的判定方法进行判断;【详解】∵O 的半径为5cm ,点P 到圆心O 的距离为7cm ,∴OP >O 的半径, ∴点P 在O 外;故答案选C .【点睛】本题主要考查了点与圆的位置关系,准确判断是解题的关键.3.D解析:D【分析】根据菱形的性质可以得出四条边平行并且都相等,又根据AB 是直径,即可知道∠ACB=90°,即可判断A ,因为三角形ABC 为直角三角形,根据求∠A 的正弦值即可判断∠A=30°,即可判断D ,根据中位线的性质即可B 、C 选项;【详解】∵ 四边形OBCD 是菱形,∴ OB ∥CD ,OD ∥BC ,OB=OD=CD=BC ,∵ AB 是直径,∴ ∠ACB=90°,∵OD ∥BC ,∴ ∠APO=90°,∴OD ⊥AC ,故A 正确; ∵12BC OD A AB AB ===sin ∠ , ∴∠A=30°,∴2OA OP = ,故D 错误,∵2OA OP =,∴2OD OP = ,∴DP=OP ,∴AC 平分OD ,故C 正确;∴BC=2DP ,故B 正确;故选:D .【点睛】本题考查了菱形的性质,锐角三角函数、三角形的中位线的性质,圆周角的性质,熟练掌握知识点是解题的关键;4.B解析:B【分析】连接OD ,可得∠ODC=∠OCD=22°,从而可求得∠AOD=46°,结合圆周角定理,即可求解.【详解】连接OD ,∵CO ⊥AB ,∠BEC= 68°,∴∠OCD=90°-68°=22°,∵CO=CD ,∴∠ODC=∠OCD=22°,∴∠COD=180°-22°-22°=136°,∴∠AOD=136°-90°=46°,∴∠ABD=12∠AOD=23°, 故选B .【点睛】本题主要考查圆周角定理以及等腰三角形的性质,掌握“同弧或等弧所对的圆周角等于圆心角的一半”,是解题的关键. 5.C解析:C【分析】利用对称轴公式和顶点坐标得出4a a b c -=++,2b a =-,3c a =-,则可对①进行判断;抛物线解析式为223y ax ax a =--,配成交点式得()()31y a x x =-+,可对②进行判断;根据二次函数对称性和二次函数的性质可对③进行判断;计算4x =时5y a =,根据二次函数的性质可对④进行判断【详解】①根据抛物线()20y ax bx c a =++≠的图像可知 抛物线的对称轴12b x a=-= 2b a ∴=-顶点坐标为(1、4a -)4a a b c ∴-=++3c a ∴=-424435a b c a a a a ∴-+=+-=抛物线开口向上,则0a >420a b c ∴-+>故结论①正确②2b a =-,3c a =-()()22331y ax ax a a x x ∴=--=-+∴抛物线()20y ax bx c a =++≠与x 轴交于(1-、0),(3、0)故结论②正确③A (4、1y )关于直线1x =的对称点为(2-、1y )∴当21y y >时,则24x >或22x <-故结论③错误④当4x =时,116416835y a b c a a a a =++=--=∴当204x ≤≤时,245a y a -≤≤故结论④错误故选:C .【点睛】本题考查了抛物线与x 轴的交点,也考查了二次函数的性质,解题关键是把求二次函数与x 轴交点问题转化为解关于x 一元二次方程,并熟练掌握二次函数的性质.6.A解析:A【分析】将抛物线顶点坐标代入一次函数解析式,求出b 与c 的关系,再根据抛物线与y 轴交点的纵坐标为c ,即n c =,再利用二次函数的性质即可解答.【详解】抛物线2y x bx c =-++的顶点在3+1y x =上,抛物线2y x bx c =-++的顶点标为(2b 、24b c +) ∴23142b bc +=+23124b bc ∴=+- 抛物线与y 轴交点的纵坐标为cn c ∴=23124b b n ∴=+- ()21136944n b b ∴=--++ ()2113344n b ∴=--+ n ∴的最大值为134 故选:A .【点睛】本题考查了二次函数的性质,函数图像上点坐标的特征,熟练掌握二次函数性质是解题关键.7.A解析:A【分析】根据二次函数的图象与解析式中字母系数之间关系解答即可.【详解】解:A 、图像与y 轴交于正半轴,则0c >,A 正确;B 、图象的开口向下,则0a <;对称轴在y 轴右边且0a <,根据对称轴=0b a->,得 0b >; a 、b 异号,B 错误;C 、将(1,0)代入函数表达式,得0a b c ++=,C 错误;D 、A 中结论0c >,C 中结论0a b c ++=,所以 0a b +<,D 错误;故选A .【点睛】本题考查二次函数的图象与各项系数间的关系,熟知二次函数的图象与各项字母系数之间关系是解答的关键. 8.C解析:C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及与x 轴y 轴的交点,综合判断即可.【详解】解:抛物线开口向上,因此a >0,抛物线的对称轴为x=-2b a=1,所以0b <,所以①正确; 抛物线的对称轴为x=1,与x 轴的一个交点为(4,0),则另一个交点(-2,0),于是4a-2b+c=0,所以②不正确;x >1时,y 随x 的增大而增大,所以③正确;抛物线与x 轴有两个不同的交点,因此一元二次方程20ax bx c ++=有两个不相等的实数根,所以④正确;综上所述,正确的结论有①③④.故答案为:C .【点睛】本题考查二次函数的图形和性质,掌握二次函数的图形和系数之间的关系是正确判断的前提.9.C解析:C【分析】通过HL 证明ABE ADF ≌,从而得到,BAE DAF BE DF ∠=∠=由正方形的性质可以得出EC FC =,从而得出AC 垂直平分EF 可得结论①②正确,设EC x =,根据勾股定理,表示出等边三角形边长EF =,分别计算出AG ,CG ,再计算BE 、EF 的长,可比较BE DF +的长与EF 的长,即可判断结论③错误,结论④正确.【详解】四边形ABCD 是正方形, ,90AB AD B D ∴=∠=∠=︒ AEF 是等边三角形,60AE AF EAF ∴=∠=︒30BAE DAF ∴∠+∠=︒在Rt ABE △和Rt ADF 中AE AF AB AD =⎧⎨=⎩∴Rt ABE △≌Rt ADFBE DF ∴=BC CD =BC BE CD DF -=-∴,即CE CF =∴AC 是EF 的垂直平分线AC EF ∴⊥∴AC 平分EAF ∠160302EAC FAC ∴∠=∠=⨯︒=︒45BAC DAC ∠=∠=︒15BAE DAF ∠∠∴==︒故结论①②正确;sin 60sin 602sin 602AG AE EF CG =︒⋅=︒⋅=⨯⋅︒=AG ∴=故结论④正确;设EC x =,则FC x =由勾股定理得EF =12CG EF x ==,则2xAC CG AG CG =+=+=(12AB x +∴==()1122x x BE AB CE x +∴=-=-=))1212x BE DF x ∴+=⨯=≠ 故结论③错误综上所述结论①②④正确,结论③错误故选:C .【点睛】 本题考查了正方形的性质,全等三角形的判定以性质,勾股定理,等边三角形的性质,解题关键是熟练运用这些性质,利用勾股定理计算边的长度.10.C解析:C【分析】作BC ⊥底面于点C ,根据坡度的概念、勾股定理列式计算即可;【详解】作BC ⊥底面于点C ,设BC x =,∵传送带和底面所成斜坡AB 的坡度为1∶2,∴2AC x =,由勾股定理得:222AC BC AB +=,即()222210x x +=,解得:25x =, 即25BC =.故答案选C .【点睛】本题主要考查了解直角三角形的应用-坡度坡角问题,准确计算是解题的关键. 11.A解析:A【分析】易证∠BCD=∠A ,则求tan ∠BCD 的值就可以转化为求tan ∠A ,而tan ∠A 可由△ABC 边长比求得,所以得解.【详解】解:由勾股定理得,AB=2222435AC BC +=+=, ∵∠BCD+∠ACD=∠A+∠ACD=90°, ∴∠BCD=∠A ,∴tan ∠BCD=tan ∠A=34BC AC =, 故选:A .【点睛】本题考查锐角三角函数的综合应用,熟练掌握勾股定理的应用、锐角三角函数的定义及余角的性质和直角三角形的性质是解题关键. 12.A解析:A【分析】在Rt △ABC 中,先根据三角函数求出5tan 12α=,再通过解直角三角形求出BC 即可. 【详解】解:如图,在Rt △ABC 中,∵5sin 13α=,∴5tan 12α=, ∴5tan 12BC AC α==, ∵12AC =米, ∴55×12=51212BC AC ==米. 故选:A .【点睛】 此题主要考查解直角三角形,锐角三角函数等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.二、填空题13.【分析】根据圆内接四边形对角互补计算即可;【详解】∵圆内接四边形ABCD 中∠A :∠B :∠C =1:2:3设根据圆内接四边形对角互补∴∴∴;故答案是【点睛】本题主要考查了圆内接四边形的性质准确计算是解题解析:135︒【分析】根据圆内接四边形对角互补计算即可;【详解】∵圆内接四边形ABCD 中,∠A :∠B :∠C =1:2:3,设A x ∠=,2B x ∠=,3C x ∠=,根据圆内接四边形对角互补,∴3180A C x x ∠+∠=+=︒,∴45x =︒,∴3135C x ∠==︒;故答案是135︒.【点睛】本题主要考查了圆内接四边形的性质,准确计算是解题的关键. 14.半圆(或直径)所对的圆周角是直角【分析】根据直径所对的圆周角是直角即可得出结论【详解】解:∵半圆(或直径)所对的圆周角是直角∴连结AE 则线段AE 就是BC 边上的高故答案为:半圆(或直径)所对的圆周角是 解析:半圆(或直径)所对的圆周角是直角【分析】根据直径所对的圆周角是直角即可得出结论.【详解】解:∵半圆(或直径)所对的圆周角是直角,∴连结AE ,则线段AE 就是BC 边上的高.故答案为:半圆(或直径)所对的圆周角是直角.【点睛】本题考查了作图-基本作图,掌握圆周角定理是解答此题的关键.15.32【分析】根据题意可以得到OA+OB的关系再根据勾股定理和二次函数的性质即可得到正方形ABCD面积的最小值【详解】解:由题意可得NB=MA则AO+OB=8设AO=x则OB=8-x∵S正方形ABCD解析:32【分析】根据题意,可以得到OA+OB的关系,再根据勾股定理和二次函数的性质,即可得到正方形ABCD面积的最小值.【详解】解:由题意可得,NB=MA,则AO+OB=8,设AO=x,则OB=8-x,∵S正方形ABCD=AB2=AO2+OB2=x2+(8-x)2=2(x-4)2+32,∴当x=4时,正方形ABCD的面积取得最小值32,故答案为:32.【点睛】本题考查了正方形的性质、坐标与图形的性质、二次函数的性质,解答本题的关键是明确题意,利用数形结合的思想解答.16.【分析】利用二次函数的配方法确定最值即可【详解】∵∵a=-1<0∴二次函数有最大值且最大值为5;故答案为:5【点睛】本题考查了二次函数的最值问题熟练运用配方法确定二次函数的最值是解题的关键解析:【分析】利用二次函数的配方法确定最值即可.【详解】∵224=-++y x x2x x=---(24)2=----x[(1)14]2=--+,(1)5x∵a= -1<0,∴二次函数224=-++有最大值,y x x且最大值为5;故答案为:5.【点睛】本题考查了二次函数的最值问题,熟练运用配方法确定二次函数的最值是解题的关键. 17.2【分析】设正方形的边长为a则CFEC均可用a表示证明△ABE∽△ECF写出比例式找到y与x之间的函数式根据二次函数的最值求法结合所给函数图象求出a 值而后可求m 值【详解】设正方形的边长为a 则CF=a解析:2【分析】设正方形的边长为a ,则CF 、EC 均可用a 表示,证明△ABE ∽△ECF ,写出比例式找到y 与x 之间的函数式,根据二次函数的最值求法,结合所给函数图象,求出a 值,而后可求m 值.【详解】设正方形的边长为a ,则CF=a-y .∵∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF .又∠B=∠C ,∴△ABE ∽ECF , ∴BE FC AB EC =,x a y a a x-=-, 整理得:21y x x a a =-+, 当2a x =时,y 有最小值34a , 从所给函数图象上看,当x m =时,y 有最小值3, ∴334a =, 解得:4a =, ∴22a x m ===. 故答案为:2.【点睛】 本题主要考查了动点问题产生的函数图象、相似三角形的判定和性质,解题的关键是动中找静,会阅读图象信息.18.2400【分析】根据题意得:根据含角的直角三角形的性质计算即可得到答案【详解】∵俯角α=30°∴∵AC=1200m ∴m 故答案为:2400【点睛】本题考查了直角三角形的知识;解题的关键是熟练掌握含角的解析:2400【分析】根据题意得:30ABC ∠=,根据含30角的直角三角形的性质计算,即可得到答案.【详解】∵俯角α=30°∴30ABC ∠=∵AC =1200m∴22400AB AC ==m故答案为:2400.【点睛】本题考查了直角三角形的知识;解题的关键是熟练掌握含30角的直角三角形的性质,从而完成求解.19.3【分析】根据勾股定理以及网格结构可以求得ACABBCCD 的长然后根据等积法求得AE 的长再根据勾股定理可得到CE 的长然后根据正切函数的定义即可得到的值【详解】解:如图作CD ⊥AB 于点D 作AE ⊥BC 于解析:3【分析】根据勾股定理以及网格结构,可以求得AC 、AB 、BC 、CD 的长,然后根据等积法求得AE 的长,再根据勾股定理可得到CE 的长,然后根据正切函数的定义即可得到tan ACB ∠的值.【详解】解:如图,作CD ⊥AB 于点D ,作AE ⊥BC 于点E ,由已知可得,AC=223+1=10,AB=5,BC=223+4=5,CD=3,∵S △ABC =12AB•CD=12BC•AE , ∴AE=5335AB CD BC ⨯== ∴CE=2222(10)31AC AE -=-=∴tan ∠ACB=3AE CE=, 故答案为:3.【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答. 20.【分析】由锐角三角函数可求∠DEC=30°通过证明△ADE ∽△BDC 可得由勾股定理可求AE 的长即可求解【详解】解:如图连接BDAEDE ∵将线段CD 绕点C 逆时针旋转90°并延长至其倍∴∠DCE=90°解析:258【分析】 由锐角三角函数可求∠DEC=30°,通过证明△ADE ∽△BDC ,可得12BC DC AE DE ==,由勾股定理可求AE 的长,即可求解.【详解】解:如图,连接BD ,AE ,DE ,∵将线段CD 绕点C 逆时针旋转90°3∴∠DCE=90°,CE 3CD , ∴3.tan DC DEC EC ∠==, ∴∠DEC=30°, ∴3cos EC DEC DE ∠==1sin 2DC DEC DE ∠==, ∵23AD AB =, ∴3AB AD = ∴EC AB DE AD=, 又∵∠DEC=∠DAB=30°,∴△DEC ∽△DAB ,∴∠ADB=∠EDC ,DC DE DB AD =, ∴∠ADE=∠BDC ,∴△ADE ∽△BDC , ∴12BC DC AE DE ==, ∵233AD AB =,3 ∴AB=9,又∵BF=3,∴AF=6, ∴22492536164AE AF EF =+=+=,∴12528BC AE ==, 故答案为:258. 【点睛】 本题考查了旋转的性质,勾股定理,锐角三角函数等知识,证明△DEC ∽△DAB 是本题的关键.21.【分析】将特殊角的三角函数值代入求解【详解】解:故答案为:【点睛】本题考查特殊角的三角函数值的混合运算熟记特殊角的三角函数值是解题关键解析:32+【分析】将特殊角的三角函数值代入求解.【详解】解:312cos302sin 303tan 452231313322︒-+︒=⨯-⨯+⨯=-+=+, 故答案为:32+.【点睛】本题考查特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题关键. 22.16【分析】先利用三角函数解直角三角形求得AC =20再根据勾股定理即可求解【详解】解:∵在直角三角形ABC 中∠B =90°cosA =AB =12∴cosA ===∴AC =20∴BC ===16故答案是:16解析:16【分析】先利用三角函数解直角三角形,求得AC =20,再根据勾股定理即可求解.【详解】解:∵在直角三角形ABC 中,∠B =90°,cosA =35,AB =12, ∴cosA =AB AC =12AC =35, ∴AC =20, ∴BC =22AC AB -=222012-=16.故答案是:16.【点睛】此题主要考查勾股定理、锐角三角函数的定义,正确理解锐角三角函数的定义是解题关键.三、解答题23.(1)作图见解析;(2)12【分析】(1)在弧上任取一点C ,连接AC ,BC ,作弦AC 、弦BC 的垂直平分线即可(2)根据弧长公式计算即可;【详解】(1)在弧上任取一点C ,连接AC ,BC ,作弦AC 、弦BC 的垂直平分线即可,点O 即为所求;(2)如图,连接AO ,BO ,∵弧AB 的度数为120︒,∴120AOB ∠=︒,又∵弧AB 的长是8π, ∴1208180r ππ=, 解得:12r =, ∴AB 所在圆的半径的长是12.【点睛】本题主要考查了弧长公式的应用,结合垂直平分线作图求解是解题的关键.24.(1)见解析;(2)32526π-. 【分析】(1)连接OD ,由圆周角定理可得∠AOD=120°,所以∠DOP=60°,再根据∠APD=30°可得OD ⊥DP ,从而根据切线的判定可得解答;(2)由⊙O 的半径为5可以算得△ODP 与扇形DOB 的面积,求出两者之差即可得到解答.【详解】(1)证明:连接OD ,∵∠ACD =60°,∴∠AOD =2∠ACD =120°,∴∠DOP =180°﹣120°=60°,∵∠APD =30°,∴∠ODP =180°﹣30°﹣60°=90°∴OD ⊥DP ,∵OD 为半径,∴DP 是⊙O 切线;(2)解:∵∠P =30°,∠ODP =90°,OD =5∴OP =10 由勾股定理得:222210553DP OP OD =-=-=∴S 阴=S △ODP ﹣S 扇形DOB =216055532360π⨯⨯⨯ =2532526π-. 【点睛】本题考查圆的综合应用,熟练掌握圆周角定理、切线的判定定理、勾股定理的应用及扇形面积的计算是解题关键.25.(1)见解析;(2)()2,3-,21x -≤≤【分析】(1)利用五点法作出二次函数的图像,然后令x=0求出A 点坐标即可;(2)将两个函数联立形成新的一元二次方程,然后求解C 点坐标,最后利用图像判断x 的取值范围即可.【详解】(1)由题意得: x... -3 -2 -1 0 1 ... y .. 0 3 4 3 0 (1)由上图得A 点坐标为()3,0-;(2)由题意得:2123x x x -+=--+,解得12x =-,21x =,当2x =-时,()213y =--+=,∴C 点坐标为()2,3-,由上图得,当y 1≥y 2时,21x -≤≤.【点睛】本题考查了二次函数的图像和性质,重点是根据五点法作出二次函数的图像,然后利用数形结合思想进行判断.26.(1)(1,-1),x<1;(2)y =x 2+2x -3,6.【分析】(1)先将y =x 2﹣2x 化为顶点式,即可得出顶点坐标,再根据二次函数的性质可求出y 随x 的增大而减小时自变量的取值情况;(2)根据函数图象的平移规律,可求出新抛物线的解析式,再利用新抛物线的函数解析式求出△ABC 的底和高,即可求出面积.【详解】解:(1)∵y =x 2﹣2x =(x -1)2-1,则顶点坐标为(1,-1),∵y =x 2﹣2x 为二次函数,且a =1,∴开口向上,对称轴为x=1,∴在x<1时,y 随x 的增大而减小.故答案为:(1,-1),x<1.(2)将抛物线y =x 2﹣2x =(x -1)2-1向左平移2个单位得y =(x -1+2)2-1=(x +1)2-1,再向下平移三个单位,得y =(x +1)2-1-3=(x +1)2-4,化简得y =x 2+2x -3,即新抛物线的解析式为y =x 2+2x -3,∵抛物线y=x2+2x-3与x轴交于两点A、B两点,∴令y=0,则x2+2x-3=0,解得x1=-3,x2=1,∴AB=4,令x=0,y=-3,∴C点坐标为(0,-3),S△ABC中,底边为AB,三角形的高即为C点到x轴的距离,∴S△ABC=1×4×3=6.2【点睛】此题考查了二次函数的综合问题,熟练掌握二次函数的图象与性质的相关知识并能灵活运用是解题的关键.。

2021-2022九年级数学下期末第一次模拟试卷(带答案)

2021-2022九年级数学下期末第一次模拟试卷(带答案)

一、选择题1.如图,点A 、B 、C 在⊙O 上,点D 是AB 延长线上一点,若∠CBD =65°,则∠AOC 的度数为( )A .115°B .125°C .130°D .135°2.如图,AB 是⊙O 的直径,∠BOD =120°,点C 为弧BD 的中点,AC 交OD 于点E ,DE =1,则AE 的长为( )A .3B .5C .23D .25 3.已知△ABC 是半径为2的圆内接三角形,若BC =23,则∠A 的度数( ) A .30°B .60°C .120°D .60°或120° 4.在ABC ∆中,6,8,10AB BC AC ===,则这个三角形的外接圆和内切圆半径分别是( )A .5,1B .4,3C .5,2D .5,4 5.对称轴为y 轴的二次函数是( ) A .y=(x+1)2 B .y=2(x-1)2 C .y=2x 2+1 D .y=-(x-1)2 6.已知二次函数2y x bx c =-+与x 轴只有一个交点,且图象经过两点A (1,n ),B (m +2,n ),则m 、n 满足的关系为( ) A .24m n = B .22m n = C .()214m n += D .()212m n += 7.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C.D.8.如图为二次函数y=ax2+bx+c的图象,其对称轴为x=1,在下列结论中:①abc>0;②若方程ax2+bx+c=0的根是x1、x2,则x1+x2<0;③4a+2b+c<0;④当x>1时,y随x的增大而增大.正确的有()A.1 B.2 C.3 D.49.尚本步同学家住“3D魔幻城市”——重庆,他决定用所学知识测量自己居住的单元楼的高度.如图,小尚同学从单元楼CD的底端D点出发,沿直线步行42米到达E点,在沿坡度i=1:0.75的斜坡EF行走20米到达F点,最后沿直线步行30米到达隔壁大厦的底端B 点,小尚从 B点乘直行电梯上行到顶端A点,从A点观测到单元顶楼C的仰角为28º,从点A观测到单元楼底端的俯角为37 º,若A、B、C、D、E、F在同一平面内,且D、E和F、B分别在通一水平线上,则单元楼CD的高度约为()(结果精确到0.1米,参考数据:s in28 º≈0.47,cos28 º≈0.88,tan28 º≈0.53,sin37 º≈0.6,cos37 º≈0.8,tan37 º≈0.75)A.79.0米B.107.5米C.112.6米D.123.5米10.在平面直角坐标系xOy中,点A在直线l上,以A为圆心,OA为半径的圆与y轴的另一个交点为E,给出如下定义:若线段OE,A和直线l上分别存在点B,点C和点A B C D顺时针排列),则称矩形ABCD为直线l的D,使得四边形ABCD是矩形(点,,,“理想矩形”.例如,右图中的矩形ABCD 为直线l 的“理想矩形”.若点()3,4A ,则直线()10y kx k =+≠的“理想矩形”的面积为( )A .12B .314C .42D .3211.在ABC 中,90C ∠=︒,tan 2A =,则sin A 的值是( )A .23B .13C .255D .5512.如图,在Rt △ABC 中,∠ACB=90°,若5AC =,BC=2,则sin ∠A 的值为( )A .5B .5C .23D .25 二、填空题13.一个边长为4的正多边形的内角和是其外角和的2倍,则这个正多边形的半径_______.14.点E 在正方形ABCD 的内部,BCE 是以EC 为底边的等腰三角形,1AB =,则DE 的最小值为_________.15.如图,在△ABC 中,∠C =90°,AB =10cm ,BC =8cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为_____cm 216.抛物线()20y ax bx c a =++≠的部分图象如图所示,其与x 轴的一个交点坐标为()4,0-,对称轴为1x =-,则0y >时,x 的取值范围________.17.已知二次函数()20y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②30a c +>;③420a b c ++>;④20a b +=;⑤24b ac >.其中正确的结论的有__________________(填正确的序号)18.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=________.19.如图,在一笔直的海岸线l 上有A B 、两个观测站,4AB km =,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5︒的方向,则船C 离海岸线l 的距离(即CD 的长)为_____km .20.如图,在ABC 中,AD BC ⊥交BC 于点D ,AD BD =,若42AB =4tan 3C =,则BC =________.21.如图,在平面直角坐标系中,点O 为坐标原点,点B 的坐标为(4,0),AB ⊥x 轴,连接AO ,tan ∠AOB =54,动点C 在x 轴上,连接AC ,将△ABC 沿AC 所在直线翻折得到△ACB ',当点B '恰好落在y 轴上时,则点C 的坐标为_____.22.如图,点P (m ,1)是反比例函数3y =图象上的一点,PT ⊥x 轴于点T ,把△PTO 沿直线OP 翻折得到△PT O ',则点T '的坐标为_______________.三、解答题23.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的ABC ∆,且90B ∠=︒.(1)将ABC ∆绕点O 顺时针旋转90°后得到EFG ∆(其中,,A B C 三点旋转后的对应点分别是,,E F G ),画出EFG ∆.(2)设EFG ∆的内切圆的半径为r ,EFG ∆的外接圆的半径为R ,则r R=__________.24.如图,AB 是⊙O 的直径,AC 、DC 为弦,∠ACD =60°,P 为AB 延长线上的点,∠APD =30°.(1)求证:DP 是⊙O 的切线;(2)若⊙O 的半径为5,求图中阴影部分的面积.25.某商店将标价为100元/台的品牌学习机在网上直播间销售,两次降价后,价格为81元/台,并且两次降价的百分率相同.(1)求该品牌学习机每次降价的百分率;(2)从第二次降价后的第1天算起,第x 天的销量及网上直播间销售支出劳务费用的相关信息如表所示: 时间(天)x 销量(台)150﹣x 网上直播间售支出劳务费用(元) 3x 2﹣50x +600x (天)的利润为y (元),求y 与x 之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少? 26.如图,已知一次函数2y kx =-的图象与x 轴交于点A ,与y 轴交于点B ,二次函数2y x bx c =++经过点B ,且与一次函数2y kx =-的图象交于点()6,4C .(1)求一次函数与二次函数的解析式.(2)在y 轴上是否存在点M ,使得以点B ,M ,C 为顶点的三角形与BAO 相似?若存在,请求出点M 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出∠ABC,再求出它所对的弧对的圆心角,即可求∠AOC.【详解】解:∵∠CBD=65°,∴∠ABC=180°-65°=115°,优弧AC所对的圆心角的度数为:115°×2=230°,∠AOC=360°-230°=130°,故选:C.【点睛】本题考查了圆周角的性质,解题关键是求出圆周角,根据同弧所对的圆周角和圆心角的关系求角.2.A解析:A【分析】连接AD,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE是直角三角形,用勾股定理求AE即可.【详解】解:连接AD,∵∠BOD=120°,AB是⊙O的直径,∴∠AOD=60°,∵OA=OD,∴∠OAD=∠ODA =60°,∵点C为弧BD的中点,∴∠CAD=∠BAC=30°,∴∠AED=90°,∵DE=1,∴AD=2DE=2,AE=2222-=-=,AD DE213故选:A.【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.3.D解析:D【分析】首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.【详解】解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=∴BD=4,∴,∴CD=12BD,∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°-∠A=120°,∴∠A的度数为:60°或120°.故选:D.【点睛】此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.4.C解析:C【分析】首先根据勾股定理逆定理判断△ABC是直角三角形,得其斜边是10,即可求得外接圆半径和内切圆半径.【详解】∵AC=6,BC=8,AC=10,2226810+=,∴222AC BC AC+=,∴△ABC是直角三角形,且斜边是AC=10,∴其外接圆的半径为5,三角形的内切圆半径=681022+-=,故选:C.【点睛】本题考查了三角形的外接圆和内切圆,勾股定理的逆定理;解题的关键是灵活运用勾股定理的逆定理判断△ABC是以AC为斜边的直角三角形.第II卷(非选择题)请点击修改第II卷的文字说明5.C解析:C【分析】由已知可知对称轴为x=0,从而确定函数解析式y=ax2+bx+c中,b=0,由选项入手即可.【详解】解:二次函数的对称轴为y轴,则函数对称轴为x =0,即函数解析式y =ax 2+bx +c 中,b =0,故选:C .【点睛】本题考查二次函数的性质;熟练掌握二次函数的图象及性质是解题的关键.6.C解析:C【分析】设解析式为()()12y x x m n =---+,得对称轴为32m x +=,由抛物线与x 轴只有一个交点得顶点为3,02m +⎛⎫ ⎪⎝⎭,代入()()12y x x m n =---+整理后即可得出结论. 【详解】解:设解析式为()()12y x x m n =---+∵A ,B 两点关于对称轴对称∴对称轴为直线12322m m x +++== ∵二次函数与x 轴只有一个交点∴顶点为3,02m +⎛⎫ ⎪⎝⎭把3,02m +⎛⎫ ⎪⎝⎭代入()()12y x x m n =---+ ∴3312022m m m n ++⎛⎫⎛⎫---+= ⎪⎪⎝⎭⎝⎭∴1102222m m n ⎛⎫⎛⎫+--+= ⎪⎪⎝⎭⎝⎭∴()214m n += 故选:C【点睛】本题考查的是抛物线与x 轴的交点问题,根据题意得出抛物线的对称轴方程是解答此题的关键.7.B解析:B【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-, ∴抛物线一定经过原点,∴选项A 排除;∵()222y mx m x =+- , ∴对称轴为直线x=22224m m m m ---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m -<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m ->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合;故选B.【点睛】 本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.8.C解析:C【分析】根据开口方向、对称轴、抛物线与y 轴的交点,确定a 、b 、c 的符号,根据抛物线对称轴确定x 1+x 2的符号,根据当x=2时,判断4a+2b+c 的符号,根据二次函数的增减性对④进行判断.【详解】解:①∵开口向上,∴a >0,∵对称轴在y 轴的右侧,b <0,抛物线与y 轴交于负半轴,c <0,∴abc >0,∴①正确;②从图象可知,抛物线对称轴为直线x=122x x +=1,则x 1+x 2=2>0,∴②错误; ③抛物线对称轴是x=1,根据抛物线得对称性可知当x=2和x=0时函数值相等, ∴y=4a+2b+c <0,∴③正确;④抛物线开口向上,对称轴是x=1,当x >1时,y 随x 的增大而增大,∴④正确; 故选:C【点睛】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.9.B解析:B【分析】作EG ⊥BF 交BF 的延长线于G ,AK ⊥CD 于K .延长DE 交AB 于H ,解直角三角形求出CK 、AH 即可解决问题.【详解】解:作EG ⊥BF 交BF 的延长线于G ,AK ⊥CD 于K .延长DE 交AB 于H ,如图,则四边形AKDH 是矩形,∴AK=DH ,KD=AH , ∵140.753EG GF == ∴设EG=4x ,则FG=3x ,由勾股定理得,222EG FG EF +=∵EF=20m∴22169400x x +=解得,=4x (负值舍去)∴EG=16m ,FG=12m∵DE=42m ,BF=30m∴DH=DE+FG+BF=84m ,∴AK=84m ;在Rt △ADH 中,∠ADH=37°∴tan37°=AH DH, ∴AH=DH×tan37°=84×0.75=63(m )同理,在Rt △AKC 中,∠KAC=28°∴tan28°=CK AK, ∴CK=AK×tan28°=84×0.53=44.52(m )∴CD=CK+DK=63+44.52=107.5≈107.5(m)故选:B【点睛】本题考查解直角三角形-仰角俯角问题,坡度坡角问题,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.10.B解析:B【分析】过点A 作AF y ⊥轴于点F ,连接AO 、AC ,如图,根据点(3,4)A 在直线1y kx =+上可求出k ,设直线1y x =+与y 轴相交于点G ,易求出1OG =,45FGA ∠=︒,根据勾股定理可求出AG 、AB 、BC 的值,从而可求出“理想矩形” ABCD 面积.【详解】解:过点A 作AF y ⊥轴于点F ,连接AO 、AC ,如图.点A 的坐标为(3,4),22345AC AO ∴==+=,3AF =,4OF =.点(3,4)A 在直线1y kx =+上,314k ∴+=,解得1k =.设直线1y x =+与y 轴相交于点G ,当0x =时,1y =,点(0,1)G ,1OG =,413FG AF ∴=-==, 45FGA ∴∠=︒,223332AG +=在Rt GAB ∆中,tan 4532AB AG =︒=在Rt ABC ∆中,22225(32)7BC AC AB --=∴所求“理想矩形” ABCD 面积为327314AB BC =;故选:B .【点睛】本题主要考查了一次函数图象上点的坐标特征,矩形的性质、勾股定理、特殊角的三角函数值等知识,解直角三角形求得矩形的边的关键.11.C解析:C【分析】由tanA=BC AC=2,设BC=2x ,可得AC=x ,Rt △ABC 中利用勾股定理算出,然后利用三角函数在直角三角形中的定义,可算出sinA 的值.【详解】解:由tanA=BC AC=2,设BC=2x ,则AC=x , ∵Rt △ABC 中,∠C=90°,∴根据勾股定理,得==,因此,sinA=5BC AB == 故选:C .【点睛】本题已知正切值,求同角的正弦值.着重考查了勾股定理、三角函数的定义等知识,属于基础题. 12.C解析:C【分析】先利用勾股定理求出AB 的长,然后再求sin ∠A 的大小.【详解】解:∵在Rt △ABC 中,AC =BC=2∴3=∴sin ∠A=23BC AB = 故选:C .【点睛】 本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】先求出正多边形边数为6再根据正六边形性质即可求解【详解】解:设正多边形的边数为n由题意得解得n=6∴正多边形为正六边形∵边长为4的正六边形可以分成六个边长为4的正三角形∴该正多边形的半径等于解析:4【分析】先求出正多边形边数为6,再根据正六边形性质即可求解.【详解】解:设正多边形的边数为n,由题意得()21803602n-︒=︒⨯,解得 n=6∴正多边形为正六边形,∵边长为4的正六边形可以分成六个边长为4的正三角形,∴该正多边形的半径等于4.故答案为:4【点睛】本题考查了正多边形的相关概念,和正六边形的性质,熟知相关概念是解题关键.14.-1【分析】根据△BCE是以CE为底边的等腰三角形推出点E在以B为圆心AB长为半径的圆弧AC上根据圆的基本性质得到DE最小时点E的位置从而利用BD-BE计算出结果【详解】解:如图正方形ABCD中∵△-1【分析】根据△BCE是以CE为底边的等腰三角形推出点E在以B为圆心,AB长为半径的圆弧AC 上,根据圆的基本性质得到DE最小时点E的位置,从而利用BD-BE计算出结果.【详解】解:如图,正方形ABCD中,∵△BCE是以CE为底边的等腰三角形,∴BE=BC,∴点E在以B为圆心,AB长为半径的圆弧AC上,连接BD,与弧AC交于点E,则此时DE最小,∵AB=1,∴BE=1,,∴-1,.【点睛】本题考查了圆的基本性质,正方形的性质,等腰三角形的性质,解题的关键是根据题意得到点E 在弧AC 上.15.15【分析】在Rt △ABC 中利用勾股定理可得出AC=6cm 设运动时间为t (0≤t≤4)则PC=(6-t )cmCQ=2tcm 利用分割图形求面积法可得出S 四边形PABQ=S △ABC-S △CPQS 四边形P解析:15【分析】在Rt △ABC 中,利用勾股定理可得出AC=6cm ,设运动时间为t (0≤t≤4),则PC=(6-t )cm ,CQ=2tcm ,利用分割图形求面积法可得出S 四边形PABQ =S △ABC -S △CPQ ,S 四边形PABQ =(t-3)2+15,则可求出四边形PABQ 的面积最小值,此题得解.【详解】解:在Rt △ABC 中,∠C=90°,AB=10cm ,BC=8cm ,∴22AB BC -=6cm .设运动时间为t (0≤t≤4),则PC=(6-t )cm ,CQ=2tcm ,∴S 四边形PABQ =S △ABC -S △CPQ ,代入得:S 四边形PABQ =12×6×8-12(6-t )×2t 变形得:S 四边形PABQ =(t-3)2+15,∴当t=3时,四边形PABQ 的面积取最小值,最小值为15.故答案为:15.【点睛】本题考查了二次函数的最值以及勾股定理,利用分割图形求面积法,列出二次函数并进行变形求极值是解题的关键.16.或【分析】根据抛物线与x 轴的一个交点坐标和对称轴由抛物线的对称性可求抛物线与x 轴的另一个交点再根据抛物线的增减性可求当y <0时x 的取值范围【详解】解:∵抛物线y=ax2+bx+c (a≠0)与x 轴的一解析:4x <-或2x >【分析】根据抛物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【详解】解:∵抛物线y=ax 2+bx+c (a≠0)与x 轴的一个交点坐标为(-4,0),对称轴为x=-1, ∴抛物线与x 轴的另一个交点为(2,0),由图象可知,当y >0时,x 的取值范围是x <-4或x >2.故答案为:x <-4或x >2.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,关键是得到抛物线与x 轴的另一个交点.17.①③④⑤【分析】根据函数图象开口向下可以得a <0顶点在y 轴右侧得到b >0与y 轴交于正半轴得c >0从而可以判断①是否正确再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确本题得以解 解析:①③④⑤【分析】根据函数图象开口向下可以得a <0,顶点在y 轴右侧得到b >0,与y 轴交于正半轴得c >0,从而可以判断①是否正确,再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确,本题得以解决.【详解】解:由图象可得,a <0,b >0,c >0,∴abc <0,故①正确;∵抛物线的对称轴为1x =,即12b a-=, ∴2b a =-,∴20a b +=,故④正确;当1x =-时,0y a b c =-+<,则30a c +<,故②错误;∵抛物线的对称轴为1x =,则2x =和0x =时的函数值相等,故2x =时,420y a b c =++>,故③正确;∵此抛物线与x 轴有两个交点,∴240b ac ->,∴24b ac >,故⑤正确,故答案为:①③④⑤.【点睛】本题考查了二次函数图象与系数的关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质和数形结合的思想解答. 18.【分析】根据正方形的面积公式可得大正方形的边长为5小正方形的边长为5再根据直角三角形的边角关系列式即可求解【详解】解:∵大正方形的面积是125小正方形面积是25∴大正方形的边长AB=5小正方形的边长解析:1 5【分析】根据正方形的面积公式可得大正方形的边长为55,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【详解】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长AB=55,小正方形的边长CD=5,在Rt△ABC中BC=AD=sinθ×AB=55sinθ,AC=cosθ×AB=55cosθ,∵AC-AD=CD,∴55cosθ-55sinθ=5,∴cosθ-sinθ=5,∴(cosθ-sinθ)2=15∴(sinθ-cosθ)2=15.故答案为:15.【点睛】本题考查了解直角三角形的应用,正方形的面积,难度适中.19.【分析】构造点B的正北方向交AC于点E利用特殊角和已知条件可证AB=BE=EC三角形ACD是等腰直角三角形从而问题得证【详解】构造点B的正北方向交AC于点E如图所示根据题意得∠BAE=∠AEB=∠A解析:(422).【分析】构造点B的正北方向,交AC于点E,利用特殊角和已知条件,可证AB=BE=EC,三角形ACD是等腰直角三角形,从而问题得证.【详解】构造点B的正北方向,交AC于点E,如图所示,根据题意,得∠BAE=∠AEB=∠ACD=45°,∠EBC=∠ECB=22.5°,∴AB=BE=EC=4,AD=CD,∴AE=42, ∴AC=AE+EC=42+4,∴CD=22AC =22+4, 故答案为:22+4.【点睛】本题考查了方位角视角下的解直角三角形,熟记特殊角的函数值,灵活运用方位角知识,规范解直角三角形是解题的关键.20.7【分析】由题意得是等腰直角三角形由求出AD 和BD 的长度再根据求出CD 的长即可求出BC 的长【详解】解:∵∴是等腰直角三角形∴∴∵∴∵∴∵∴故答案是:7【点睛】本题考查解直角三角形解题的关键是掌握利用解析:7【分析】由题意得ABD △是等腰直角三角形,由42AB =AD 和BD 的长度,再根据4tan 3C =,求出CD 的长,即可求出BC 的长. 【详解】解:∵AD BC ⊥,AD BD =, ∴ABD △是等腰直角三角形, ∴45ABD ∠=︒,∴2sin AD ABD AB ∠==, ∵42AB =∴4=AD ,∵4tan 3AD C CD ==, ∴3CD =,∵4BD AD ==,∴437BC BD CD =+=+=.故答案是:7.【点睛】本题考查解直角三角形,解题的关键是掌握利用锐角三角函数解直角三角形的方法. 21.【分析】根据题意先求出AB =5由折叠的性质得出AB =AB =5BC =BC 过点A 作AD ⊥y 轴于点D 由勾股定理求出OB =2得出x2+22=(4﹣x )2解得x =则可得出答案【详解】解:∵tan ∠AOB =B ( 解析:3,02⎛⎫ ⎪⎝⎭【分析】根据题意先求出AB =5,由折叠的性质得出AB =AB'=5,BC =B'C ,过点A 作AD ⊥y 轴于点D ,由勾股定理求出OB'=2,得出x 2+22=(4﹣x )2,解得x =32,则可得出答案. 【详解】解:∵tan ∠AOB =54,B (4,0), ∴54AB OB =, ∴AB =5, ∵将△ABC 沿AC 所在直线翻折得到△ACB′,∴AB =AB'=5,BC =B'C ,过点A 作AD ⊥y 轴于点D ,∴B'D ,22AB AD -2254-3,∴OB'=2,设OC =x ,则BC =B'C =4﹣x ,Rt △OB'C 中,∵OC 2+OB'2=B'C 2,∴x 2+22=(4﹣x )2,解得x =32,∴C (32,0). 故答案为:(32,0). 【点睛】本题考查勾股定理以及翻折问题,熟练掌握勾股定理以及折叠的性质是解题的关键. 22.【分析】连接过点作于点C 先根据反比例函数解析式求出点P 坐标根据的正切值得到它的度数再根据折叠的性质证明是等边三角形再解直角三角形得到OC 和的长即可求出的坐标【详解】解:如图连接过点作于点C ∵点P(m 解析:33,22⎛⎫ ⎪ ⎪⎝⎭ 【分析】连接TT ',过点T '作T C OT '⊥于点C ,先根据反比例函数解析式求出点P 坐标,根据POT ∠的正切值得到它的度数,再根据折叠的性质证明TOT '是等边三角形,再解直角三角形得到OC 和CT '的长,即可求出T '的坐标.【详解】解:如图,连接TT ',过点T '作T C OT '⊥于点C ,∵点P (m ,1)是反比例函数3y x =图象上的一点, ∴31=3m , ∴3OT =,1PT =,∵3tan POT ∠=∴30POT ∠=︒,由折叠的性质得:30,3POT POT OT OT ∠=∠=︒='='∴60TOT '∠=︒,又∵OT OT '=,∴TOT '是等边三角形,∵T C OT '⊥,∴1322OC OT ==, 33sin 322CT OT TOT '''=⋅∠=⨯=, ∴33,22T ⎛⎫' ⎪ ⎪⎝⎭. 故答案为:33,22⎛⎫ ⎪ ⎪⎝⎭.【点睛】本题考查反比例函数与几何,解题的关键是掌握反比例函数的性质,利用锐角三角函数值得到特殊角的度数,然后解直角三角形.三、解答题23.(1)见解析;(2)25【分析】(1)根据旋转的性质,作出点A 、B 、C 的对应点,依次连接即可(2)结合图形,EG 为外接圆的直径,用勾股定理求出EG ,则可求R ,根据三角形内切圆的性质,和切线长定理可求得r ,进而可求得答案【详解】解(1)EFG ∆如图所示,(2)EFG ∆的内切圆的半径为r ,2EF FG EG r +-∴= 4,3EF FG ==,2222435EG EF FG =++= 43512r +-∴== EFG ∆的外接圆的半径为R1522R EG ∴== 25r R ∴= 【点睛】本题考查了旋转图形的画法,勾股定理,三角形内心性质,切线长定理,解题关键是熟练掌握基本知识,是中考常考题.24.(1)见解析;(2)2532526π-. 【分析】(1)连接OD ,由圆周角定理可得∠AOD=120°,所以∠DOP=60°,再根据∠APD=30°可得OD ⊥DP ,从而根据切线的判定可得解答;(2)由⊙O 的半径为5可以算得△ODP 与扇形DOB 的面积,求出两者之差即可得到解答. 【详解】(1)证明:连接OD ,∵∠ACD =60°,∴∠AOD =2∠ACD =120°,∴∠DOP =180°﹣120°=60°,∵∠APD =30°,∴∠ODP =180°﹣30°﹣60°=90°∴OD ⊥DP ,∵OD 为半径,∴DP 是⊙O 切线;(2)解:∵∠P =30°,∠ODP =90°,OD =5∴OP =10由勾股定理得:222210553DP OP OD =-=-=∴S 阴=S △ODP ﹣S 扇形DOB=216055532360π⨯⨯⨯ =2532526π-. 【点睛】本题考查圆的综合应用,熟练掌握圆周角定理、切线的判定定理、勾股定理的应用及扇形面积的计算是解题关键.25.(1)10%;(2)y=2330+2400x x -+,第5天销售利润最大,最大利润是2475元.【分析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y 与x 之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.【详解】解:(1)设该品牌学习机每次降价的百分率为x ,根据题意得2100(1)81x -=解得,10.110%x ==,2 1.9x =(舍去)答:该品牌学习机每次降价的百分率为10%;(2)结合表格数据,根据题意得,()()28115061150350600y x x x x ⎡⎤=---+-+⎣⎦=()2201503+50600x x x --- =23000600330x x --+=2330+2400x x -+=23(5)2475x --+∴当x=5时,y 有最大值,最大值是2475答:第5天销售利润最大,最大利润是2475元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.26.(1)一次函数解析式为2y x =-,二次函数解析式为:252y x x =--;(2)存在,点M 的坐标为(0,4)或(0,10).【分析】(1)由一次函数2y kx =-的图象与y 轴交于点B ,可求B (0,-2),由一次函数2y kx =-的图象过点()6,4C ,可求1k =,一次函数解析式为2y x =-,由2y x bx c =++经过点B ,点()6,4C ,代入得36642b c c ++=⎧⎨=-⎩,解方程组求出52b c =-⎧⎨=-⎩即可; (2)存在,先求出OA=2,OB=2,∠AOB=90°,由勾股定理=M 为直角顶点时,当点C 为直角顶点时,利用相似三角形及其性质,可求BM=6或12,即可求出点M 的坐标.【详解】解:(1)∵一次函数2y kx =-的图象与y 轴交于点B ,∴当x=0时,y=-2,B (0,-2),∵一次函数2y kx =-的图象过点()6,4C ,∴462k =-,∴1k =,∴一次函数解析式为2y x =-,∵2y x bx c =++经过点B ,点()6,4C ,代入得36642b c c ++=⎧⎨=-⎩, 解方程组得52b c =-⎧⎨=-⎩, ∴二次函数解析式为:252y x x =--;(2)存在,理由如下,∵已知一次函数2y x =-的图象与x 轴交于点A ,∴y=0,x=2,∴A(2,0),B(0,-2),∴OA=2,OB=2,∠AOB=90°,在Rt △AOB 中,由勾股定理由勾股定理= ①当点M 为直角顶点时,CM ⊥y 轴,CM ∥OA ,∴∠MCB=∠OAB ,∠MBC=∠OBA , ∴△CMB ∽△AOB ,∴BM BC =BO BA 即BM 2, ∴BM=6,∴OM=MB-OB=6-2=4,∴M (0,4),②当点C 为直角顶点时,∴CM ⊥BC ,∴∠MCB=∠AOB=90°,∠MBC=∠ABO , ∴△MCB ∽△AOB ,∴BC BM =BO BA ∴BM=12,∴OM=MB-OB=12-2=10,∴M(0,10),∴以点B,M,C为顶点的三角形与BAO相似点M的坐标为M(0,4)或(0,10).【点睛】本题考查一次函数解析式与二次函数解析式,等腰直角三角形,勾股定理,相似三角形的性质与判定,掌握一次函数解析式与二次函数解析式,等腰直角三角形,勾股定理,相似三角形的性质与判定,解题关键是分类考虑以点C与点M为直角时的相似三角形.。

【人教版】初三数学下期末一模试题附答案

【人教版】初三数学下期末一模试题附答案

一、选择题1.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是()A.B.C.D.2.从上面看下图能看到的结果是图形()A.B.C.D.3.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)4.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.5.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )A .B .C .D . 6.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E .F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75︒;③BE+DF=EF ;④正方形对角线AC=1+3,其中正确的序号是( )A .①②④B .①②C .②③④D .①③④ 7.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=( )A .15B .5C .35D .958.如图,在矩形ABCD 中,AB =3,做BD 的垂直平分线E ,F ,分别与AD 、BC 交于点E 、F ,连接BE ,DF ,若EF =AE +FC ,则边BC 的长为( )A .3B .33C .63D 9329.在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形 10.如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .tan a b α+B .sin a b α+C .tan b a α+D .sin b a α+ 11.如图,点D 、E 分别在CA 、BA 中的延长线上,若DE ∥BC ,AD =5,AC =10,DE =6,则BC 的值为( )A .10B .11C .12D .1312.如图, O 为坐标原点,点B 在x 轴的正半轴上,四边形OBCA 是平行四边形, 45sin AOB ∠=,反比例函数()0m y m x=>在第一象限内的图像经过点A ,与BC 交于点F ,若点F 为BC 的中点,且AOF 的面积为12,则m 的值为( )A .16B .24C .36D .48二、填空题13.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.14.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.15.如图,将19个棱长为a的正方体按如图摆放,则这个几何体的表面积是_____.16.如图所示,菱形ABCD的边长为8,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为____.17.如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A 角翻折,使得点A落在EF上的点A′处折痕交AE于点G,则∠ADG=____°EG=___cm .18.已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________.19.目前,某市正积极推进“五城联创”,其中扩充改造绿地是推进工作计划之一.现有一块直角三角形绿地,量得两直角边长分别为a=3米和b=4米,现要将此绿地扩充改造为等腰三角形,且扩充部分为含以b为直角边的直角三角形,则扩充后等腰三角形的周长为____________米20.双曲线y=kx经过点A(a,﹣2a),B(﹣2,m),C(﹣3,n),则m_____n(>,=,<).三、解答题21.(1)如右图,已知A、B、C是由边长为1的小正方形组成网格纸上的三个格点,根据要求在网格中画图.①画线段BC;②过点A画BC的平行线AD;③在②的条件下,过点C画直线AD的垂线,垂足为点E.(2)下图是由10个相同的小立方块搭成的几何体,请在下面方格纸中画出它的主视图.22.如图,是由一些大小相同且棱长为1的小正方体组合成的简单几何体.(1)这几个简单几何体的表面积是__________.(2)该几何体的立体图如图所示,请在下面方格纸中分别画出它的左视图和俯视图(请用铅笔涂上阴影).23.如图,河对岸有铁塔AB ,在C 处测得塔顶A 的仰角为30°,向塔前进14米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高.24.如图1,点()8,1A 、(),8B n 都在反比例函数()0m y x x=>的图象上,过点A 作AC x ⊥轴于C ,过点B 作BD y ⊥轴于D .(1)求m 的值和直线AB 的函数关系式;(2)动点P 从O 点出发,以每秒2个单位长度的速度沿线段OD 向点D 运动,同时动点Q 从O 点出发,以每秒1个单位长度的速度沿线段OC 向C 点运动,当动点P 运动到点D 时,点Q 也停止运动,设运动的时间为t 秒.如图2,当点P 运动时,如果作OPQ △关于直线PQ 的对称图形'O PQ △,是否存在某时刻t ,使得点'O 恰好落在反比例函数的图象上?若存在,求'O 的坐标和t 的值﹔若不存在,请说明理由.25.如图,一次函数y=ax+b 的图象与反比例函数y=k x的图象交于M (-3,1),N (1,n )两点.(1)求这两个函数的表达式;(2)过动点C (m ,0)且垂直于x 轴的直线与一次函数及反比例函数的图象分别交于D 、E 两点,当点E 位于点D 上方时,直接写出m 的取值范围.26.如图,在△ABC 中,5AB AC ==,6BC =,将ABC ∆绕点B 逆时针旋转60︒得到△A′BC′,连接A C ',求A C '的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,3,2个正方形.【详解】由俯视图中的数字可得:主视图有3列,从左到右分别是1,3,2个正方形. 故选:C .【点睛】此题考查几何体的三视图,解题关键在于掌握其定义.2.D解析:D【分析】先细心观察原立体图形中的圆锥体和长方体的位置关系,结合四个选项选出答案.【详解】从上面往下看到左边一个长方形,右边一个圆,因此只有D 的图形符合这个条件. 故选:D .【点睛】本题考查了三视图的知识,解题的关键是熟知俯视图是从上面往下的视图.3.B解析:B【解析】【分析】根据三视图的定义即可解答.【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.4.A解析:A【解析】分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出右边一列有两个,俯视图中左边的一列有两个,综合起来可得解.详解:从主视图可以看出左边的一列有两个,右边的两列只有一行(第二行);从左视图可以看出右边的一列有两个,左边的一列只有一行(第二行);从俯视图可以看出左边的一列有两个,右边的两列只有一行(第一行).故选A..做这类题时要借助三种视图表示物体的特点,从主点睛:本题考查由三视图想象立体图形视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.5.C解析:C【解析】【分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C .【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键. 6.A解析:A【分析】根据三角形的全等的判定和性质可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,根据三线合一的性质,可判定AC ⊥EF ,然后分别求得AG 与CG 的长,继而求得答案.【详解】∵四边形ABCD 是正方形,∴AB=AD= BC=DC ,∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt △ADF 中,AB AD AE AF=⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,AE=AF ,∵BC=DC ,∴BC-BE=CD-DF ,∴CE=CF ,故①正确;∵CE=CF ,∴△ECF 是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=180°-60°-45°=75°,故②正确;如图,连接AC ,交EF 于G 点,∵AE=AF ,CE=CF ,∴AC ⊥EF ,且AC 平分EF ,∵∠CAF≠∠DAF ,∴DF≠FG ,∴BE+DF≠EF ,故③错误;∵△AEF 是边长为2的等边三角形,∠ACB=∠ACD=45°,AC ⊥EF ,∴EG=FG=1,∴AG=AE•sin60°3232=⨯=CG=112EF =, ∴31;故④正确.综上,①②④正确故选:A .【点睛】本题考查了正方形的性质,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质以及解直角三角形.注意准确作出辅助线是解此题的关键.7.A解析:A【分析】 根据正方形的面积公式可得大正方形的边长为55,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【详解】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为555, ∴55555θθ-=, ∴5cos sin θθ-=, ∴()21sin cos 5θθ-=. 故选A .【点睛】 本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出cos sin 5θθ-=. 8.B解析:B【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF 是菱形,所以可求出BE ,AE ,进而可求出BC 的长.【详解】解:∵四边形ABCD 是矩形,//,DE BF ∴,,DEO BFO EDO FBO ∴∠=∠∠=∠ EF 垂直平分BD ,OB OD ∴=,BOF DOE ∴∆∆≌,,OE OF ∴=∴ 四边形BEDF 是菱形,∵四边形ABCD 是矩形,四边形BEDF 是菱形,∴∠A=90°,AD=BC ,DE=BF ,OE=OF ,EF ⊥BD ,∠EBO=FBO ,∴AE=FC .又EF=AE+FC ,∴EF=2AE=2CF ,又EF=2OE=2OF ,AE=OE ,∴△ABE ≌OBE , ∴∠ABE=∠OBE ,∴∠ABE=∠EBD=∠DBC=30°,∴BE= cos30BO ︒=∴BF=BE=∴∴BC=BF+CF=故选B .【点睛】本题考查了矩形的性质、菱形的性质以及在直角三角形中30°角所对的直角边时斜边的一半,解题的关键是求出∠ABE=∠EBD=∠DBC=30°. 9.A解析:A【解析】试题∵cos A =22,tan B =3, ∴∠A =45°,∠B =60°.∴∠C =180°-45°-60°=75°.∴△ABC 为锐角三角形.故选A .10.A解析:A【分析】延长CE 交AB 于F ,得四边形CDBF 为矩形,故CF=DB=b ,FB=CD=a ,在直角三角形ACF 中,利用CF 的长和已知的角的度数,利用正切函数可求得AF 的长,从而可求出旗杆AB 的长.【详解】延长CE 交AB 于F ,如图,根据题意得,四边形CDBF 为矩形,∴CF=DB=b ,FB=CD=a ,在Rt △ACF 中,∠ACF=α,CF=b ,tan ∠ACF=AF CF∴AF=tan tan CF ACF b α∠=,AB=AF+BF=tan a b α+,故选:A .【点睛】主要考查了利用了直角三角形的边角关系来解题,通过构造直角三角形,将实际问题转化为数学问题是解答此类题目的关键所在.11.C解析:C【分析】根据平行线的性质得出∠E=∠B ,∠D=∠C ,根据相似三角形的判定定理得出△EAD ∽△BCA ,根据相似三角形的性质求出即可【详解】解:∵DE ∥BC ,∴∠E=∠B ,∠D=∠C ,∴△EAD ∽△CAB ,∴AC :AD=BC :DE ,∵AD =5,AC =10,DE =6,∴10:5=BC :6.∴BC=12.故选:C .【点睛】本题考查了平行线的性质,相似三角形的性质和判定的应用,能推出△EAD ∽△BAC 是解此题的关键.12.A解析:A【分析】过点A 作AM ⊥OB 于M ,FN ⊥OB 于N ,,设OA=5k ,通过解直角三角形得出AM=4k,OM=3k,m=12k 2,,再根据S 四边形OAFN =S 梯形AMNF +S △AOM =S △AOF +S △OFN 得到S 梯形AMNF =S △AOF =12,得出12(4k+2k)⋅3k=12,得到k 2的值,再求m 得值即可. 【详解】解:过点A 作AM ⊥OB 于M ,FN ⊥OB 于N ,设OA=5k ,∵45sin AOB ∠= ∴AM=4k,OM=3k,m=12k 2,∵四边形OACB 是平行四边形,F 为BC 的中点,∴FN=2k ,ON=6k ,∵S △AOM =S △OFN ,S 四边形OAFN =S 梯形AMNF +S △AOM =S △AOF +S △OFN ,∴S 梯形AMNF =S △AOF =12,∴12(4k+2k)⋅3k=12, ∴k 2=43, ∴m=12k 2=16.故选A.【点睛】本题考查反比例函数的性质、平行四边形的性质、三角形的面积、梯形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.二、填空题13.20cm【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF 的对称点A′连接A′B则A′B即为最短距离根据勾股定理解析:20 cm.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得2222'='+=+=(cm).A B A D BD121620故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.14.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则解析:183+【分析】先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可.【详解】解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 183+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键. 15.54a2【分析】求这个几何体的表面积就要数出这个几何体中小正方体漏在外面的面的个数从前后左右上下方向上来数然后用一个面的面积乘面的个数即可【详解】解:从前后左右上下方向看到的面数分别为:101088解析:54a 2【分析】求这个几何体的表面积,就要数出这个几何体中小正方体漏在外面的面的个数,从前、后、左、右、上、下方向上来数,然后用一个面的面积乘面的个数即可.【详解】解:从前、后、左、右、上、下方向看到的面数分别为:10,10,8,8,9,9所以表面积为(10+10+8+8+9+9 )a 2=54a 2,故答案为:54a 2.【点睛】本题主要考查组合体的表面积,分析图形,掌握表面积的计算公式是解题的关键. 16.【分析】根据已知条件解直角三角形ABE 可求出AE 的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD 的边长为8∴AB=BC=8∵AE ⊥BC 于E ∠B=60°∴sinB=即∴AE ∴菱形的面积故答案解析:323【分析】根据已知条件解直角三角形ABE 可求出AE 的长,再由菱形的面积等于底×高计算即可.【详解】∵菱形ABCD 的边长为8,∴AB=BC=8,∵AE ⊥BC 于E ,∠B=60°,∴sinB=AE AB 8AE =, ∴AE=,∴菱形的面积8=⨯=故答案为:【点睛】本题考查了菱形的性质以及特殊角的三角函数值,菱形面积公式的运用.关键是掌握菱形的性质.17.15【分析】由ABCD 是一张边长为4cm 的正方形纸片EF 分别为ABCD 的中点可得AE=DF=2cmEF=AD=4cm 由翻折可得AG=A′GAD=A′D 在Rt △DF 中利用勾股定理可求得答案求得在Rt △解析:15︒ 6【分析】由ABCD 是一张边长为4cm 的正方形纸片,E ,F 分别为AB ,CD 的中点,可得AE=DF=2cm ,EF=AD=4cm ,由翻折可得AG=A′G ,AD=A′D ,在Rt △DF 'A 中,利用勾股定理可求得答案.求得'A F ,在Rt △DF 'A 中利用正切值即可求得'FDA ∠度数,进而求得∠ADG 度数;在Rt △'A EG 中,设EG=x ,则'A G=AG=2−x ,利用勾股定理即可求得x 值.【详解】∵ABCD 是一张边长为4cm 的正方形纸片,E 、F 分别为AB ,CD 的中点,∴AE=DF=2cm ,EF=AD=4cm ,DG 为折痕,∴AG='A G ,AD='A D ,Rt △DF 'A 中,'AF ==='tan 'A F FDA DF ∠===∴'60FDA ∠=︒∴∠ADG =∠'A DG =11(90')301522FDA ⨯︒-∠=⨯︒=︒ ∴'4A E =-Rt △'A EG 中,设EG=x ,则'A G=AG=2−x ,∴=解得x=6故答案为:15°,6【点睛】本题考查了图形的翻折问题,翻折后找到相等的边和相等的角,作为解题依据,考查了正方形的性质,在直角三角形中可利用锐角三角函数值求得角度和边长,勾股定理也是解直角三角形常用方法.18.【分析】由直角三角形中30°角所对的直角边等于斜边的一半可求出30°角对应的直角边再由勾股定理可知求出另一直角边进而求出斜边上的高【详解】解:如下图所示BC=4∠B=30°∠C=60°由直角三角形中解析:3【分析】由直角三角形中30°角所对的直角边等于斜边的一半,可求出30°角对应的直角边,再由勾股定理可知求出另一直角边,进而求出斜边上的高.【详解】解:如下图所示,BC=4,∠B=30°,∠C=60°由直角三角形中,30°角所对的直角边等于斜边的一半知:AC=12BC=2由勾股定理知:2222=422 3.-=-=AB BC AC在Rt△ABH中,AH=123.3【点睛】本题考查了直角三角形中30°角所对的直角边等于斜边的一半、勾股定理等相关知识,熟练掌握直角三角形的性质是解题的关键.19.16或10+2或【分析】分三种情形讨论即可①AB=BE1②AB=AE3③E2A=E2B分别计算即可【详解】解:如图在Rt△ABC中∵∠ACB=BC=3AC=4∴①当BA=BE1=5时CE1=2∴∴△解析:16或5或40 3【分析】分三种情形讨论即可,①AB=BE1,②AB=AE3,③E2A=E2B,分别计算即可.【详解】解:如图在Rt △ABC 中,∵∠ACB=90,BC=3,AC=4 ∴225AB BC AC =+=①当BA=BE 1=5时,CE 1=2, ∴221125AE AC CE =+=∴△ABE 1周长为(5②当AB=AE 3=5时,CE 3=BC=3,BE 3=6,∴△ABE 3周长为16米.③当E 2A=E 2B 时,作E 2H ⊥AB ,则BH=AH=2.5,∵∠B=∠B ,∠ACB=∠BHE 2=90∘,∴△BAC ∽△BE 2H , ∴2BE BH BC AB= ∴BE 2=256, ∴△ABE 2周长为25402563⨯+=米. 综上所述扩充后等腰三角形的周长为16或5403米 故答案为:16或5403【点睛】 本题考查等腰三角形的定义、勾股定理、相似三角形的性质与判定、三角形周长等知识,正确理解题意是解题的关键,运用了分类讨论的数学思想,注意漏解.20.>【分析】先求出反比例函数解析式判断函数的增减性﹣2>﹣3即可判断mn 的大小【详解】∵双曲线y =经过点A (a ﹣2a )∴k =﹣2a2<0∴双曲线在二四象限在每个象限内y 随x 的增大而增大∵B (﹣2m )C解析:>.【分析】先求出反比例函数解析式,判断函数的增减性﹣2>﹣3,即可判断m ,n的大小..【详解】∵双曲线y=k经过点A(a,﹣2a),x∴k=﹣2a2<0,∴双曲线在二、四象限,在每个象限内,y随x的增大而增大,∵B(﹣2,m),C(﹣3,n),﹣2>﹣3,∴m>n,故答案为:>.【点睛】本题利用函数的性质比较大小,关键是求出函数解析式,掌握反比例函数的性质.三、解答题21.(1)①见解析;②见解析;③见解析;(2)见解析【分析】(1)①根据线段的定义画图即可;②根据网格特点和平行线的定义画图即可;③根据网格特点和垂线的定义画图即可;(2)主视图有3列,左侧一列有3层,中间一列有2层,右侧一列有1层;【详解】(1)①如图所示;②如图所示;③如图所示;(2)如图所示,【点睛】本题考查了线段、平行线、垂线的画法,以及三视图的画法,熟练掌握三视图的画法是解答本题的关键.22.(1)22;(2)见解析【分析】(1)直接利用几何体的表面积求法,分别求出各侧面即可;(2)利用从不同角度进而得出观察物体进而得出左视图和俯视图.【详解】解:(1)这个几何体的表面积为2×4+2×4+2×3=22,故答案为:22.(2)如图所示:【点睛】此题主要考查了几何体的表面积求法以及三视图画法,注意观察角度是解题关键. 23.AB=7)31米. 【分析】首先根据题意分析图形;本题涉及到两个直角三角形,设AB=x (米),再利用CD=BC-BD=14的关系,进而可解即可求出答案.【详解】解:在Rt △ABD 中,∵∠ADB=45°,∴3.在Rt △ABC 中,∵∠ACB=30°,∴BC=AB .设AB=x (米),∵CD=14,∴BC=x+14.∴x∴x=7)1即铁塔AB 的高为7)1米. 【点睛】 本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.24.(1)直线AB 的解析式为9y x =-+;(2)存在,()'4,2O ,52t =,见解析; 【分析】 (1)由于点A (8,1)、B (n ,8)都在反比例函数m y x=的图象上,根据反比例函数的意义求出m ,n ,再由待定系数法求出直线AB 的解析式;(2)①由题意知:OP=2t ,OQ=t ,由三角形的面积公式可求出解析式;②通过三角形相似,用t 的代数式表示出O′的坐标,根据反比例函数的意义可求出t 值.【详解】 解:(1)∵点()8,1A 、(),8B n 都在反比例函数m y x =的图象上, ∴818=⨯=m , ∴8y x =, ∴88n=,即1n =. 设AB 的解析式为y kx b =+,把()8,1、()1,8B 代入上式得:818k b k b +=⎧⎨+=⎩,解得:19k b =-⎧⎨=⎩. ∴直线AB 的解析式为9y x =-+.(2)存在.当'O 在反比例函数的图象上时,作PE y ⊥轴,'O F x ⊥轴于F ,交PE 于E ,则90E ∠=︒,'2PO PO t ==,'QO QO t ==.由题意知:'PO Q POQ ∠=∠,'90'QO F PO E ∠=︒-∠,'90'EPO PO E ∠=︒-∠,∴''PEO O FQ △△, ∴''''PE EO PO O F QF QO ==, 设QF b =,'O F a =,则PE OF t b ==+,'2O E t a =-, ∴22t b t a a b+-==, 解得:45a t =,35b t =, ∴84',55O t t ⎛⎫ ⎪⎝⎭, 当'O 在反比例函数的图象上时,84855t t ⋅=, 解得:52t =±, ∵反比例函数的图形在第一象限,∴0t >, ∴52t =, ∴()'4,2O , 当52t =秒时,'O 恰好落在反比例函数的图象上. 【点睛】 本题主要考查了反比例函数的意义,利用图象和待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握反比例函数的意义和能数形结合是解决问题的关键.25.(1)y=3x-;2y x =--;(2)m >1或-3<m <0(1)把M 代入反比例函数的解析式即可求得k 的值,然后求得n 的值,利用待定系数法即可求得一次函数的解析式;(2)先画出两函数的图象,再根据两函数图象的上下位置关系结合交点的横坐标即可得出m 的取值范围.【详解】(1)∵点M (-3,1)和N (1,n )在反比例函数k y x =的图象上, ∴3k =-,3n =-.∴反比例函数表达式为3x=-, 点N 的坐标为N (1,3-),∵点M (-3,1)和N (1,3-)在一次函数y ax b =+的图象上,∴313a b a b -+=⎧⎨+=-⎩, 解得12a b =-⎧⎨=-⎩, ∴一次函数表达式为2y x =--;(2)一次函数2y x =--的图象与反比例函数3y x=-的图象相交于点M (-3,1)和N (1,3-),观察函数图象可知:若过动点C (m ,0)且垂直于x 轴的直线分别与反比例函数图象和一次函数图象交于E 、D 两点,当点E 位于点D 上方时,则m 的取值范围是:m >1或-3<m <0.【点睛】本题是反比例函数与一次函数的综合题,考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.26.433A C '=+利用旋转的性质得BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,再判断出△BCC'是等边三角形,即可得到BC=C'C,进而判断出A'C是线段BC'的垂直平分线,最后用勾股定理和三角函数求解即可.【详解】解:如图,连接CC',∵△ABC绕点B逆时针旋转60°得到△A′BC′,∴BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,∴△BCC'是等边三角形,∴BC=C'C,∵A'B=A'C',∴A'C是BC'的垂直平分线,垂足为D,∴BD=1BC'=3,2在Rt△A'BD中,A'B=5,BD=3,根据勾股定理得,A'D=4,在Rt△BCD中,∠CBD=60°,BC=6,∴CD=BC•cos∠CBD=6×sin60°3∴3【点睛】本题考查了旋转的性质,等边三角形的判定和性质,线段的垂直平分线的判定和性质,锐角三角函数,勾股定理,解本题的关键是判断出A'C是线段BC'的垂直平分线.。

2021-2022九年级数学下期末第一次模拟试卷附答案

2021-2022九年级数学下期末第一次模拟试卷附答案

一、选择题1.如图,AB 是O 的直径,CD 是O 的弦,30,3ACD AD ∠=︒=,下列说法错误的是( )A .30B ∠=︒ B .60BAD ∠=︒C .23BD = D .23AB = 2.如图,在平面直角坐标系中,以原点O 为圆心,6为半径的O 与直线(0)y x b b =-+>交于A ,B 两点,连接,OA OB ,以,OA OB 为邻边作平行四边形OACB ,若点C 恰好在O 上,则b 的值为( )A .33B .23C .32D .22 3.如图,AB 是圆O 的直径,C 、D 、E 都是圆上的点,其中C 、D 在AB 下方,E 在AB 上方,则∠C +∠D 等于( )A .60°B .75°C .80°D .90°4.4.如图,AD 是ABC ∆的外接圆O 的直径,若50BCA ︒∠=,则BAD ∠=( )A .30︒B .40︒C .50︒D .60︒5.已知y 是x 的二次函数,y 与x 的部分对应值如表所示,若该二次函数图象向左平移后通过原点,则应平移( ) x… 1- 0 1 2 … y … 0 3 4 3 …A .1个单位B .2个单位C .3个单位D .4个单位 6.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C .D .7.抛物线()2212y x =+-的对称轴是( )A .直线1x =B .直线1x =-C .直线2x =D .直线2x =- 8.抛物线y =ax 2+bx +c 的顶点坐标(﹣2,3),抛物线与x 轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a ﹣b =0;②a ﹣b +c =0; ③若(﹣4,y 1),(1,y 2)是抛物线上的两点,则y 1>y 2; ④b 2+3b =4ac .其中正确的个数有( )A .4B .3C .2D .19.关于直角三角形,下列说法正确的是( )A .所有的直角三角形一定相似B .如果直角三角形的两边长分别是3和4,那么第三边的长一定是5C .如果已知直角三角形两个元素(直角除外),那么这个直角三角形一定可解D .如果已知直角三角形一锐角的三角函数值,那么这个直角三角形的三边之比一定确定 10.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为( )A .2B .5C .3D .611.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE CF =;②75AEB ∠=︒;③BE DF EF +=;④正方形对角线:13AC =+,其中正确的序号是( )A .①②④B .①②C .②③④D .①③④ 12.如图,矩形ABCD 的对角线交于点O ,已知,,AB m BAC a =∠=∠则下列结论错误..的是( )A .BDC α∠=∠B .tan BC m a =⋅C .2sin m AO α=D .cos m BD a= 二、填空题 13.如图,在ABC 中,D 是边BC 上的一点,以AD 为直径的O 交AC 于点E ,连接DE .若O 与BC 相切,55ADE ∠=︒,则C ∠的度数为______14.如图,在矩形ABCD 中,4AB =,6BC =,点E 是AD 上的动点(不与端点重合),在矩形ABCD 内找点F ,使得EF AD ⊥,且满足2·AF AE AD =,则线段BF 的最小值是__________.15.若点A (﹣12021,y 1)、B (40412021,y 2)都在二次函数y =﹣x 2+2x +m 的图像上,则y 1_____y 2. 16.将抛物线y =2x 2向左平移2个单位,所得抛物线的对称轴是直线_____.17.如图,二次函数2y ax bx c =++与反比例函数k y x=的图象相交于点()()()1231,1,3,A y B y C y -、、三个点,则不等式2kax bx c x ++>的解是____.18.如图,正方形ABCD 的边长为4,E 为AB 边上一点,tan ∠ADE=34,M 为ED 的中点,过点M 作DE 的垂线,交边AD 于点P ,若点N 在射线PM 上,且由点E 、M 、N 组成的三角形与△AED 相似,则PN 的长为______.19.如图,从A 地到B 地需经过C 地,现城市规划需修建一条从A 到B 的笔直道路,已知180AC 米,30CAB ∠=︒,45CBA ∠=︒,则道路改直后比原来缩短了___________米.(结果精确到1米,可能用到的数据:2 1.4≈,3 1.7≈)20.如图,在一笔直的海岸线l 上有A B 、两个观测站,4AB km =,从A 测得船C 在北偏东45°的方向,从B测得船C在北偏东22.5︒的方向,则船C离海岸线l的距离(即CD的长)为_____km.21.如图是一个海绵施把,图1、图2是它的示意图,现用线段BC表示拉手柄,线段DE表示海绵头,其工作原理是:当拉动BC时线段OA能绕点O旋转(设定转角AOQ∠大于等于0°且小于等于180°),同时带动连杆AQ拉着DE向上移动.图1表示拖把的初始位置(点O、A、Q三点共线,P、Q重合),此时45cmOQ=,图2表示拉动过程中的一种状态图,若DE可提升的最大距离10cmPQ=.(1)请计算:OA=______cm;AQ=_____cm.(2)当1sin10OQA∠=时,则PQ=______cm.22.如图,边长为4的等边△ABC,AC边在x轴上,点B在y轴的正半轴上,以OB为边作等边△OBA1,边OA1与AB交于点O1,以O1B为边作等边△O1BA2,边O1A2与A1B交于点O2,以O2B为边作等边△O2BA3,边O2A3与A2B交于点O3,…,依此规律继续作等边△O n﹣1BA n,记△OO1A的面积为S1,△O1O2A1的面积为S2,△O2O3A2的面积为S3,…,△O n﹣1O n A n﹣1的面积为S n,则S n=__.(n≥2,且n为整数)三、解答题23.如图,ABC 的外角BAD ∠的平分线与它的外接圆相交于点E ,连接BE ,CE .求证:(1)BE CE =;(2)若4BC =,6tan EAB ∠=,求O 的半径. 24.如图所示,AC 与O 相切于点C ,线段AO 交O 于点B .过点B 作//BD AC 交O 于点D ,连结,CD OC ,且OC 交DB 于点E .若30,53cm ∠=︒=CDB DB .(1)求COB ∠的大小和O 的半径长.(2)求由弦,CD BD 与弧BC 所围成的阴影部分的面积(结果保留π).25.平安路上,多“盔”有你.在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶40元,售价为每顶68元,平均每周可售出100顶.商店计划将头盔降价销售,每顶售价不高于58元,经调查发现:每降价1元,平均每周可多售出20顶.(1)若该商店希望平均每周获利4000元,则每顶头盔应降价多少?(2)商店降价销售后,决定每销售1顶头盔,就向某慈善机构捐赠m 元(m 为整数,且15m <),帮助做“交通安全”宣传.捐赠后发现,该商店每周销售这种商品的利润仍随售价的增大而增大,求m 的值.26.创新商场销售一批进价为14元的日用品,销售一段时间后,发现每月销售数量y (件)与售价x (元/件)满足关系y =﹣25x +800.(1)若某月售出该日用品200件,求该日用品售出价格为每件多少元?(2)商场为了获得最大的利润,该日用品售出价格应定为每件多少元?此时的最大利润是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,再利用互余可计算出∠BAD的度数,然后利用含30度的直角三角形三边的关系求出BD、AB的长即可.【详解】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°-∠B=90°-30°=60°,故选项A、B不符合题意,在Rt△ADB中,BD=3AD=3,AB=2AD=23,故选项C符合题意,选项D不符合题意,故选:C.【点睛】本题考查了圆周角定理以及含30°角的直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.2.C解析:C【分析】如图,连接OC交AB于T.想办法求出点T的坐标,利用待定系数法即可解决问题.【详解】解:如图,连接OC交AB于T,设直线AB交x轴于M,交y轴于N.∵直线AB的解析式为y=-x+b,∴N(0,b),M(b,0),∴OM=ON,∴∠OMN=45°,∵四边形OACB是平行四边形,OA=OB,∴四边形OACB是菱形,∴OC⊥AB,∴∠COM=45°,∵OC=6,∴C(32,32),∵OT=TC,∴T(322,322),把T点坐标代入y=-x+b,可得b=32,故选:C.【点睛】本题考查圆周角定理,平行四边形的性质,菱形的判定,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.D解析:D【分析】连接OE,根据圆周角定理即可求出答案.【详解】解:连接OE,根据圆周角定理可知:∠C=12∠AOE,∠D=12∠BOE,则∠C+∠D=12(∠AOE+∠BOE)=90°,故选:D.【点睛】本题考查了圆周角的性质,解题关键是连接半径,构造圆心角,依据圆周角与圆心角的关系进行计算.4.B解析:B【分析】根据圆周角定理即可得到结论.【详解】解:∵AD 是△ABC 的外接圆⊙O 的直径,∴∠ABD=90°,∵∠BCA=50°,∴∠ADB=∠BCA=50°,∴BAD ∠=90°-50°=40°故选:B .【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键. 5.C解析:C【分析】由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==,进而可得点()1,4是二次函数的顶点,故设二次函数解析式为()214y a x =-+,然后代入点()1,0-可得二次函数解析式,最后问题可求解.【详解】解:由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==, ∴点()1,4是二次函数的顶点,设二次函数解析式为()214y a x =-+,代入点()1,0-可得:1a =-, ∴二次函数解析式为()214y x =--+, ∵该二次函数图象向左平移后通过原点,∴设平移后的解析式为()214y x b =--++, 代入原点可得:()2014b =--++,解得:123,1b b ==-(舍去),∴该二次函数的图象向左平移3个单位长度;故选C .【点睛】本题主要考查二次函数的图象与性质及平移,熟练掌握二次函数的图象与性质及平移是解题的关键. 6.B解析:B【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-, ∴抛物线一定经过原点,∴选项A 排除;∵()222y mx m x =+- , ∴对称轴为直线x=22224m m m m ---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m -<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m ->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合;故选B.【点睛】 本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.7.B解析:B【分析】根据二次函数的顶点式的性质求对称轴即可;【详解】∵ ()2212y x =+- , ∴对称轴为:x=-1,故选:B .【点睛】本题考查了二次函数顶点式的性质,正确掌握知识点是解题的关键.8.B解析:B【分析】根据抛物线的对称轴可判断①;由抛物线与x 轴的交点及抛物线的对称性以及由x =﹣1时y >0可判断②,由抛物线对称性和增减性,即可判断③;利用抛物线的顶点的纵坐标为3得到244ac b a-=3,即可判断④. 【详解】解:∵抛物线的对称轴为直线x 2b a =-=-2, ∴4a ﹣b =0,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴x =﹣1时y >0,即a ﹣b +c >0,∴所以②错误;由抛物线的对称性知(﹣4,y 1)与(0,y 1)关于对称轴对称,∵抛物线开口向下,对称轴为直线x 2b a=-=-2 ∴当x >-2时,y 随x 的增大而减小,∵-2<0<1∴y 1>y 2∴所以③正确;∵抛物线的顶点坐标为(﹣2,3), ∴244ac b a-=3, ∴b 2+12a =4ac ,∵4a ﹣b =0,∴b =4a ,∴b 2+3b =4ac ,所以④正确;故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ):抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.9.D解析:D【分析】根据题目条件,利用举反例的方法判断即可.【详解】∵因为等腰直角三角形和一般直角三角形是不相似的,∴选项A错误;若斜边长为4,则第三边长为7,∴选项B错误;已知两个角分别为45°,45°,这个直角三角形是无法求解的,缺少解直角三角形需要的边元素,∴选项C错误;∵已知直角三角形的一个锐角的三角函数值,∴就能确定斜边与直角边的比或两直角边的比,根据勾股定理可以确定第三边的量比,∴直角三角形的三边之比一定确定,故选D.【点睛】本题考查了命题的真伪,以数学基本概念,基本性质,基本法则为基础,通过举反例的方法判断是解题的关键.10.A解析:A【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:2,在Rt△PBF中,即可求得tan∠BPF 的值,继而求得答案.【详解】解:如图:连接BE,∵四边形BCED是正方形,∴DF=CF=12CD,BF=12BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=12CF=12BF,在Rt△PBF中,tan∠BPF=BFPF=2,∵∠APD=∠BPF,∴tan ∠APD =2.故选:A .【点睛】本题考查相似三角形的判定与性质,以及求角的正切值,灵活运用相似三角形的性质,并理解正切的定义是解题关键11.A解析:A【分析】证明()Rt ABE Rt ADF HL ≅△△即可证明①正确,由①的结论得到三角形CEF 是等腰直角三角形,即可证明②正确,根据AC 垂直平分EF 可以判断③错误,利用锐角三角函数值求出AC 的长度证明④正确.【详解】解:∵四边形ABCD 是正方形,∴AB AD =,90B D ∠=∠=︒,∵AEF 是等边三角形,∴AE AF =, 在Rt ABE △和Rt ADF 中,AE AF AB AD=⎧⎨=⎩, ∴()Rt ABE Rt ADF HL ≅△△,∴BE DF =,∵BC CD =,∴BC BE CD DF -=-,即CE CF =,故①正确;∵CE CF =,90C ∠=︒,∴45CEF ∠=︒,∵60AEF ∠=︒,∴180604575AEB ∠=︒-︒-︒=︒,故②正确;如图,连接AC ,交EF 于点G ,∵AE AF =,CE CF =,∴AC 是EF 的垂直平分线,∵CAF DAF ∠≠∠,∴DF FG ≠,同理BE EG ≠,∴BE DF EF +≠,故③错误;∵AEF 是边长为2的等边三角形,ACB ACD ∠=∠,∵AC EF ⊥,EG FG =,∴sin 6022AG AE =⋅︒=⨯=112CG EF ==, ∴1AC AG CG =+=+,故④正确.故选:A .【点睛】本题考查四边形综合题,解题的关键是掌握正方形的性质,等边三角形的性质,解直角三角形的方法.12.C解析:C【分析】根据矩形的性质得出∠ABC =∠DCB =90°,AC =BD ,AO =CO ,BO =DO ,AB =DC ,再解直角三角形判定各项即可.【详解】选项A ,∵四边形ABCD 是矩形,∴∠ABC =∠DCB =90°,AC =BD ,AO =CO ,BO =DO ,∴AO =OB =CO =DO ,∴∠DBC =∠ACB ,∴由三角形内角和定理得:∠BAC =∠BDC =∠α,选项A 正确;选项B ,在Rt △ABC 中,tanα=BC m , 即BC =m •tanα,选项B 正确;选项C ,在Rt △ABC 中,AC =cos m α,即AO =2cos m α, 选项C 错误;选项D ,∵四边形ABCD 是矩形,∴DC =AB =m ,∵∠BAC =∠BDC =α,∴在Rt △DCB 中,BD =cos m α, 选项D 正确.故选C .【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.二、填空题13.55°【分析】由直径所对的圆周角为直角得∠AED=90°由切线的性质得∠ADC=90°然后由同角的余角相等得∠C=∠ADE=55°【详解】解:∵AD为的直径∴∠AED=90°∴∠ADE+∠DAE=9解析:55°【分析】由直径所对的圆周角为直角得∠AED=90°,由切线的性质得∠ADC=90°,然后由同角的余角相等得∠C=∠ADE=55°.【详解】解:∵AD为O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°,∵O与BC相切,∴∠ADC=90°,∴∠DAE+∠C=90°,∴∠C=∠ADE=55°.故答案为55°.【点睛】本题考查了切线的性质,圆的相关概念及性质,互余关系等知识点.掌握圆的相关性质是解题的关键.14.2【分析】连结FD由可证△FAE∽△DAF可得∠DFA=90°可知点F在以AD中点为圆心3为半径的半圆上运动由BFO三点共线时利用两点之间线段最短知BF 最短在Rt△ABO中由勾股定理得BO=可求BF解析:2【分析】连结FD,由2·AF AE AD=可证△FAE∽△DAF,可得∠DFA=90°,可知点F在以AD中点为圆心,3为半径的半圆上运动,由B、F、O三点共线时,利用两点之间线段最短知BF最短,在Rt△ABO中,由勾股定理得,可求BF=5-3=2.【详解】连结FD,∵2·AF AE AD=,∴AF AD AE AF=,∵∠FAE=∠DAF,∴△FAE∽△DAF,∴∠FEA=∠DFA ,∵EF AD ⊥,即∠FEA=90°,∴∠DFA=90°,∴点F 在以AD 中点为圆心,3为半径的半圆上运动,当B 、F 、O 三点共线时,BF 最短,在Rt △ABO 中,由勾股定理得, BO=22AB +AO =5,BF=5-3=2,BF 的最小值为2,故答案为:2.【点睛】本题考查三角形相似判定与性质,圆周角性质,勾股定理,两点之间线段最短,掌握三角形相似的判定方法和性质的应用,会根据直角确定点F 在圆周上运动,利用两点之间线段最短解决问题是关键.15.<【分析】把AB 两点坐标代入函数关系式再根据已知条件求出的值最后求出答案即可【详解】解:∵点A (﹣y1)B (y2)都在二次函数y =﹣x2+2x+m 的图像上∴====∴故答案为:<【点睛】本题考查了二解析:<【分析】 把A ,B 两点坐标代入函数关系式,再根据已知条件求出21y y -的值,最后求出答案即可.【详解】解:∵点A (﹣12021,y 1)、B (40412021,y 2)都在二次函数y =﹣x 2+2x +m 的图像上, ∴21y y -=224041404111()2[()2()]2021202120212021m m -+⨯+---+⨯-+ =2111(2)2(2)()202120212021--+⨯-+-222021+ =22412124()4()20212021202120212021-+-+-++ =402021>∴12y y <故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征,能选择适当的方法求解是解答此题的关键. 16.x =-2【分析】利用平移可求得平移后的抛物线的解析式可求得其对称轴【详解】解:∵将抛物线y =2x2向左平移2个单位长度后抛物线解析式为y =2(x+2)2∴所得抛物线的对称轴为直线x =-2故答案是:x解析:x =-2【分析】利用平移可求得平移后的抛物线的解析式,可求得其对称轴.【详解】解:∵将抛物线y =2x 2向左平移2个单位长度后抛物线解析式为y =2(x +2)2, ∴所得抛物线的对称轴为直线 x =-2.故答案是:x =-2.【点睛】主要考查了二次函数的图象与性质,熟练掌握函数图象平移的规律并准确运用平移规律求函数解析式是解题的关键.17.或【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分找出x 的范围即可【详解】解:不等式的解对应图象上面为二次函数图象比反比例函数图象高的部分∴不等式的解为或故答案为:或【点睛】本 解析:10x -<<或13x <<【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分,找出x 的范围即可.【详解】 解:不等式2k ax bx c x++>的解对应图象上面为二次函数图象比反比例函数图象高的部分,∴不等式2k ax bx c x++>的解为10x -<<或13x <<, 故答案为:10x -<<或13x <<.【点睛】本题考查利用函数图象解不等式,即比较图象的高低.18.0或或【分析】首先根据tan ∠ADE=求得AE=3根据勾股定理求出DE=5由M 为ED 的中点得DM=EM=根据tan ∠ADE=求得PM=然后分三种情况根据相似三角形的性质即可求解【详解】解:∵正方形A解析:0或154或12524【分析】首先根据tan∠ADE=34求得AE=3,根据勾股定理求出DE=5,由M为ED的中点得DM=EM=52,根据tan∠ADE=34求得PM=158,然后分三种情况,根据相似三角形的性质即可求解.【详解】解:∵正方形ABCD的边长为4,tan∠ADE=AEAD=34,AE=3,∴DE=22345+=,∵M为ED的中点,∴DM=EM=52,∴在Rt△PMD中,PM=DM∙an∠ADE=52×34=158,如图:点N在线段PM上,1EMN DAE△∽△时1MN EMAE DA=,即15234MN=,∴1158MN=,∴11151588PN PM MN=-=-=;点N在线段PM的延长线上,2EMN DAE△∽△时2MN EM AE DA =,即25234MN =, ∴2158MN =, ∴22151515884PN PM MN =+=+=; 点N 在线段PM 的延长线上,3EMN EAD △∽△时3MN EM AD EA =,即35243MN =, ∴3103MN =, ∴3315101258324PN PM MN =+=+=. 故答案为:0或154或12524. 【点睛】 本题考查正方形的性质,相似三角形的性质,利用正切值求边长,熟练掌握相似三角形的性质是解题的关键.19.【分析】过点C 作CD ⊥AB 垂足为D 计算BCAB 的长度比较AC+BC 与AB 的大小即可【详解】如图过点C 作CD ⊥AB 垂足为D ∵米∴DC=BD=90AD=90BC=90∴AC+BC=180+90≈306A解析:【分析】过点C 作CD ⊥AB ,垂足为D ,计算BC ,AB 的长度,比较AC+BC 与AB 的大小即可.【详解】如图,过点C 作CD ⊥AB ,垂足为D ,∵180AC 米,30CAB ∠=︒,45CBA ∠=︒,∴DC=BD=90,,∴≈306,,∴缩短了:306-243=63(米),故答案为:63米.【点睛】本题考查了解斜三角形,学会作高化,把斜三角形化为直角三角形,并熟练运用特殊角的三角函数值是解题的关键.20.【分析】构造点B的正北方向交AC于点E利用特殊角和已知条件可证AB=BE=EC三角形ACD是等腰直角三角形从而问题得证【详解】构造点B的正北方向交AC于点E如图所示根据题意得∠BAE=∠AEB=∠A.解析:(422)【分析】构造点B的正北方向,交AC于点E,利用特殊角和已知条件,可证AB=BE=EC,三角形ACD是等腰直角三角形,从而问题得证.【详解】构造点B的正北方向,交AC于点E,如图所示,根据题意,得∠BAE=∠AEB=∠ACD=45°,∠EBC=∠ECB=22.5°,∴AB=BE=EC=4,AD=CD,∴AE=42,∴AC=AE+EC=42+4,∴CD=2AC=22+4,2故答案为:22+4.【点睛】本题考查了方位角视角下的解直角三角形,熟记特殊角的函数值,灵活运用方位角知识,规范解直角三角形是解题的关键.21.40或【分析】(1)由题意可知:OA定义DE使得最大值的一半AQ=OQ-OA 即可解决问题(2)分两种情形分别画出图形解直角三角形即可解决问题【详解】解:(1)由题意故答案为540(2)当是钝角时如图解析:40 421211-或481211-【分析】(1)由题意可知:OA 定义DE 使得最大值的一半,AQ =OQ -OA 即可解决问题. (2)分两种情形分别画出图形,解直角三角形即可解决问题.【详解】解:(1)由题意11052OA cm =⨯=,45540AQ cm =-=, 故答案为5,40.(2)当OAQ ∠是钝角时,如图1中,作AH PQ ⊥于H .在Rt AHQ ∆中,1sin 10AH AQH AQ ∠==,40AQ =, 4AH ∴=,22224041211QH AQ AH ∴--在Rt QOH ∆中,223OHOA AH ,31211OQ ∴=+45(311)(4211)PQ cm ∴=-+=-, 当OAQ ∠是锐角时,如图2中,作AH OP ⊥交PO 的延长线于H .同法可得:12113OQ =,45(12113)(481211)PQ cm ∴=-=-.故答案为:421211-或481211-.【点睛】本题考查解直角三角形的应用,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.【分析】由题意:△△△△相似比:探究规律利用规律即可解决问题【详解】由题意:△△△△相似比:故答案为【点睛】此题考查等边三角形的性质解题关键在于结合题意找到图形的规律 解析:133()4n - 【分析】由题意:△1OO A ∽△121O O A ∽△232O O A ,⋯,∽△11n n n O O A --,相似比:1113sin 60O A OO OA OA ==︒,探究规律,利用规律即可解决问题. 【详解】由题意:△1OO A ∽△121O O A ∽△232O O A ,⋯,∽△11n n n O O A --,相似比:1113sin 60O A OO OA OA ==︒, 1113132AOO S S ==⨯=,2134S S =, 2134S S ∴=,2313()4S S =,⋯,111333()()44n n n S S --==, 故答案为133()4n -. 【点睛】此题考查等边三角形的性质,解题关键在于结合题意找到图形的规律.三、解答题23.(1)见解析;(2)56r =【分析】(1)根据圆内接四边形的性质得到DAE EBC ∠=∠,根据角平分线的性质得到DAE EAB ∠=∠,再根据同弧所对的圆周角相等得到EAB ECB ∠=∠,则EBC ECB ∠=∠,即可得到BE CE =(2)连接EO ,并延长交BC 于H ,连接OB ,OC ,可知EH 垂直平分BC ,根据6tan EAB ∠=,EAB ECB ∠=∠,可求出EH 的长,再设圆O 的半径为r ,利用勾股定理即可求解 【详解】 (1)由题意可得DAE ∠为圆内接四边形AEBC 的外角∴DAE EBC ∠=∠AE 平分DAB ∠ ∴DAE EAB ∠=∠EAB ∠与ECB ∠是同弧所对的圆周角∴EAB ECB ∠=∠∴EBC ECB ∠=∠∴BE CE =(2)连接EO ,并延长交BC 于H ,连接OB ,OC,OB OC BE CE ==∴ EH 垂直平分BC , 4BC =122CH BC ∴== EAB ECB ∠=∠,6tan EAB ∠ ∴在Rt EHC 中,6tan 2EH ECB CH ∠==62EH ∴= 6EH ∴=设⊙O 的半径为r ,则6OH r =∴在Rt OHC △中,由勾股定理可得:222OC OH CH =+)2222r r ∴=+解得:r =【点睛】 本题考查了圆的内接四边形的性质,角平分线的性质,勾股定理,三角函数等知识,解题关键是正确作出辅助线,构造直角三角形.24.(1)60COB ∠=︒,O 的半径长为5cm ;(2)()225cm 6π 【分析】(1)根据切线的性质定理和平行线的性质定理得到OC ⊥BD ,根据垂径定理得到BE 的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE ≌△BOE ,则它们的面积相等,故阴影部分的面积就是扇形OBC 的面积.【详解】解:(1)∵AC 与⊙O 相切于点C ,∴∠ACO=90°,∵BD ∥AC ,∴∠BEO=∠ACO=90°,∴DE=EB=12(cm ) ∵∠D=30°,∴∠O=2∠D=60°,在Rt △BEO 中,sin60°=BE OB,∴22OB=, ∴OB=5,即⊙O 的半径长为5cm .(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°,又∵∠CED=∠BEO ,BE=ED ,∴△CDE ≌△OBE ,∴S 阴=S 扇OBC =60360π•52=256π(cm 2), 答:阴影部分的面积为256πcm 2.【点睛】本题考查扇形面积的计算,全等三角形的判定与性质,圆周角定理,切线的性质,解直角三角形,掌握扇形面积的计算,全等三角形的判定与性质,圆周角定理,切线的性质,解直角三角形是解题关键.25.(1)20元;(2)3或4【分析】(1)设每顶头盔应降价x 元,根据题意列出方程求解即可;(2)设每周扣除捐赠后可获得利润为w 元,每顶头盔售价a 元,根据题意列出函数求解即可;【详解】解:(1)设每顶头盔应降价x 元.根据题意,得(10020)(6840)4000x x +--=.解得123,20x x ==.当3x =时,68365-=;当20x 时,682048-=;每顶售价不高于58元,∴每顶头盔应降价20元.(2)设每周扣除捐赠后可获得利润为w 元,每顶头盔售价a 元,根据题意,得 [10020(68)](40)w a a m =+---220(202260)1460(40)a m a m =-++-+ 抛物线对称轴为直线1132m a +=,开口向下, 当58a 时,利润仍随售价的增大而增大,113582m +∴,解得3m . 15,35m m <∴<. m 为整数,3m ∴=或4. 【点睛】本题主要考查了二次函数的应用,结合一元二次方程的求解是解题的关键.26.(1)24元;(2)每件23元,此时的最大利润是2025元【分析】(1)将y=200代入解析式,求得x 的值即可;(2)设利润为w 元,根据总利润=单件利润×日销售量列出函数解析式,配方成顶点式即可得出答案.【详解】解:(1)∵y =﹣25x +800,∴200=﹣25x +800,解得x =24,答:若某月售出该日用品200件,该日用品售出价格为每件24元.(2)设利润为w 元,则有w ()()1425800x x =--+()225232025x =--+,当x =23时,最大利润为2025元,答:该日用品售出价格应定为每件23元,此时的最大利润是2025元.【点睛】本题考查二次函数的应用,解题的关键是正确解读题意,并根据总利润=单件利润×销售量”列出函数式.。

【人教版】初三数学下期末一模试卷带答案

【人教版】初三数学下期末一模试卷带答案

一、选择题1.如图是某个几何体的三视图,则该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥2.如图,左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.3.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.4.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)5.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m6.如图,旗杆AB竖立在斜坡CB的顶端,斜坡CB长为65米,坡度为125i 小明从与点C相距115米的点D处向上爬12米到达建筑物DE的顶端点E,在此测得放杆顶端点A 的仰角为39°,则旗杆的高度AB 约为( )米.(参考数据:sin390.63︒≈,cos390.78︒≈,tan390.81︒≈)A .12.9B .22.2C .24.9D .63.17.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a -米C .11sin a-米D .11cos a+米8.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A=35°,则直角边AC 的长是( )A .m·sin35°B .cos35m︒C .sin 35m︒D .m·cos35°9.在Rt △ABC 中,若∠ACB =90°,tanA =12,则sinB =( ) A .12B .32C 5D 2510.如图,平行四边形ABCD 中,AB ⊥AC ,AB 3BC 7,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交B C ,AD 于点E ,F ,下列说法:①在旋转过程中,AF =CE . ②OB =AC ,③在旋转过程中,四边形ABEF 的面积为212,④当直线AC 绕点O 顺时针旋转30°时,连接BF ,DE 则四边形BEDF 是菱形,其中正确的是( )A.①②④B.① ②C.①②③④D.② ③ ④11.如图,在△ABC中,DE∥BC,EF∥AB,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.1212.函数y=x+m与myx(m≠0)在同一坐标系内的图象可以是()A.B.C.D.二、填空题13.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是_____m.14.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为_____.15.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是____.16.如图,在边长为10的菱形ABCD 中,AC 为对角线,∠ABC =60°,M 、N 分别是边BC ,CD 上的点,BM =CN ,连接MN 交AC 于P 点,当MN 最短时,PC 长度为_____.17.已知抛物线2y ax bx c =++过点()0,3A ,且抛物线上任意不同两点()11,M x y ,()22,N x y ,都满足:当120x x <<时,()()12120x x y y -->;当120x x <<时,()()12120x x y y --<.以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B ,C ,且B 在C 的左侧,ABC ∆有一个内角为60︒,则抛物线的解析式为______.18.如图,在△BDE 中,∠BDE =90°,BD =4,点D 的坐标是(6,0),∠BDO =15°,将△BDE 旋转到△ABC 的位置,点C 在BD 上,则旋转中心的坐标为__________.19.已知13x y =,则x y y-的值为______ 20.设A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,则实数k 的取值范围是__.三、解答题21.如图,是由一些大小相同且棱长为1的小正方体组合成的简单几何体.(1)这几个简单几何体的表面积是__________.(2)该几何体的立体图如图所示,请在下面方格纸中分别画出它的左视图和俯视图(请用铅笔涂上阴影).22.(1)如图是由10个同样大小棱长为1的小正方体搭成的几何体,请分别画出它的主视图、左视图和俯视图(2)这个组合几何体的表面积为 个平方单位(包括底面积)(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最多要 个小立方体.23.如图,在ABC 中,90C ∠=︒,ABC ∠的平分线交AC 于点E ,过点E 作BE 的垂线交AB 于点F ,O 是BEF 的外接圆.(1)求证:AC 是O 的切线.(2)过点E 作EH AB ⊥,垂足为H ,求证:CD HF =. (3)若1CD =,3EH =,求BF 及AF 长.24.如图所示的一张矩形纸片ABCD (AD >AB ),将纸片折叠一次,使点A 与C 重合,再展开,折痕EF 交AD 边于点E ,交BC 边于点F ,交AC 于点O ,分别连接AF 和CE .(1)求证:四边形AFCE 是菱形;(2)过E 点作AD 的垂线EP 交AC 于点P ,求证:2AE 2=AC •AP ;(3)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长.25.如图,在平面直角坐标系xOy中,反比例函数y=mx的图象与一次函数y=k(x-2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.26.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB 10BC=1,求PO的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选B.2.D解析:D【分析】根据主视图的概念即可求解.【详解】A.是左视图.故该选项错误;B.不是主视图.故该选项错误;C.是俯视图.故该选项错误;D.是主视图.故该选项正确.故选:D【点睛】此题主要考查组合体的三视图,正确理解每种视图的概念是解题的关键.3.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选B.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.4.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.5.A解析:A【解析】∵BE∥AD,∴△BCE∽△ACD,∴CB CE AC CD =,即 CB CEAB BC DE EC =++, ∵BC=1,DE=1.8,EC=1.2∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8, ∴AB=1.5m . 故选A .6.C解析:C 【分析】通过作高,构造直角三角形,利用直角三角形的边角关系和坡度即可求出答案. 【详解】解:过点B 作BF ⊥CD ,垂足为F ,过点E 作EG ⊥BF ,垂足为G ,在Rt △BCF 中, 由斜坡BC 的坡度i=125,得,BF FC =125, 又BC=65,设BF=12x ,FC=5x ,由勾股定理得,(12x )2+(5x )2=652, ∴x=5, ∴BF=60,FC=25, 又∵DC=115,∴DF=DC-FC=115-25=90=EG ,在Rt △AEG 中,AG=EG•tan39°≈90×0.81=72.9, ∴AB=AG+FG-BF=72.9+12-60=24.9(米), 故选:C . 【点睛】本题考查坡度、仰角以及直角三角形的边角关系,理解坡度、仰角和直角三角形的边角关系式解决问题的关键.7.C解析:C 【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sin αPCPB =',列出方程即可解决问题. 【详解】解:设PA=PB=PB′=x , 在RT △PCB′中,sin αPCPB ='∴1sin αx x-=∴x 1xsin α-=,∴(1-sin α)x=1,∴x=11sin α-.故选C . 【点睛】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.8.D解析:D 【分析】根据Rt △ABC 中cos35AC AB ACm︒==,即可得到AC 的长. 【详解】在Rt △ABC 中, AB=m ,∠A=35°,cos35AC AB ACm︒==, ∴AC=cos35m ⋅︒, 故选:D. 【点睛】此题考查锐角三角函数的实际应用,正确掌握各三角函数对应边的比值是解题的关键.9.D解析:D 【分析】作出草图,根据∠A 的正切值设出两直角边分别为k ,2k ,然后利用勾股定理求出斜边,则∠B 的正弦值即可求出. 【详解】解:如图,∵在Rt △ABC 中,∠C =90°,tanA =12, ∴设AC =2k ,BC =k ,则AB ,∴sinB =AC AB=5k =25.故选:D .【点睛】考核知识点:勾股定理,三角函数.理解正弦、正切定义是关键.10.A解析:A 【分析】①通过证明AOF COE ≅△△即可判断;②分别利用勾股定理求出OB,AC 的长度即可得出答案;③先利用ABC 的面积求出AG 的长度,然后利用梯形的面积公式求解即可; ④易证四边形BEDF 是平行四边形,然后通过角度得出90DOF ∠=︒,然后证明DOF DOE ≅,则有DF DE =,则可证明结论.【详解】∵四边形ABCD 是平行四边形,,//,AO CO AD BC AD BC ∴== ,AFO CEO ∴∠=∠ .在AOF 和COE 中,AFO CEO AOF COE AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩()AOF COE AAS ∴≅,AF CE OF OE ∴==,故①正确;∵AB ⊥AC ,90BAC ∴∠=︒ .∵AB 3BC 7222AC BC AB ∴=-= , 112AO AC ∴== , 222OB AO AB ∴=+=,OB AC ∴=,故②正确;过点A 作AG BC ⊥交BC 于点G ,1122ABC S AB AC BC AG =⋅=⋅ , 3222177AB AC AG BC ⋅⨯∴=== , 11221()7322ABEF S AF BE AG ∴=+⋅=⨯⨯=四边形 ,故③错误; 连接DE,BF ,,AF CE AD BC ==,DF BE ∴= .∵//DF BE ,∴四边形BEDF 是平行四边形.3sin 2AB AOB OB ∠== , 60AOB ∴∠=︒ .30AOF ∠=︒,180603090DOF ∴∠=︒-︒-︒=︒,90DOE ∴∠=︒.在DOF △和DOE △中,FO OE DOF DOE DO DO =⎧⎪∠=∠⎨⎪=⎩()DOF DOE SAS ∴≅,DF DE ∴=,∴四边形BEDF 是菱形,故④正确;所以正确的有:①②④,故选:A .【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数,掌握平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数是解题的关键.11.C解析:C【分析】根据DE ∥BC ,EF ∥AB ,判断出DE BF =,在根据DE ∥BC ,EF ∥AB ,便可以找到分的线段成比例。

【人教版】初三数学下期末一模试题含答案

【人教版】初三数学下期末一模试题含答案

一、选择题1.如图所示的几何体的主视图是( )A .B .C .D . 2.如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,则该几何体从正面看是( )A .B .C .D . 3.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .64.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x + 5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是( ).A .主视图的面积为4B .左视图的面积为4C .俯视图的面积为3D .三种视图的面积都是46.如图,旗杆AB 竖立在斜坡CB 的顶端,斜坡CB 长为65米,坡度为125i =小明从与点C 相距115米的点D 处向上爬12米到达建筑物DE 的顶端点E ,在此测得放杆顶端点A 的仰角为39°,则旗杆的高度AB 约为( )米.(参考数据:sin390.63︒≈,cos390.78︒≈,tan390.81︒≈)A .12.9B .22.2C .24.9D .63.17.如图,四边形ABCD 中,AB AC AD ==,E 是BC 的中点,AE CE =,3BAC CBD ∠=∠,6266BD =+,则AB 的长为( )A .6B .62C .12D .102 8.如图,△ABC 的三个顶点均在格点上,则cos A 的值为( )A .12B 5C .2D 25 9.如图,已知第一象限内的点A 在反比例函数2y x=的图象上,第二象限的点B 在反比例函数k y x =的图象上,且OA ⊥OB ,tanA=2,则k 的值为( )A .4B .8C .-4D .-8 10.如图,ABC 中,6AB AC AE AC DE ==⊥,,垂直平分AB 于点D ,则EC 的长为( )A .23B .43C .22D .4211.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①AED B ∠=∠;②//DE BC ;③AD AE AC AB=;④AD BC DE AC ⋅=⋅,能满足ADE ACB 的条件有( )A .1个B .2个C .3个D .4个12.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为()1,1-,点B 在x 轴正半轴上,点D 在第三象限的双曲线8y x=上,过点C 作//CE x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .2.3D .5二、填空题13.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,//AB CD ,1.5AB m =, 4.5CD m =,点P 到CD 的距离为2.7m ,则AB 与CD 间的距离是________m .14.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)15.如图,△ABC 与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.16.如图,在直角坐标系xOy 中,已知点A (0,1),点P 在线段OA 上,以AP 为半径的⊙P 周长为1.点M 从A 开始沿⊙P 按逆时针方向转动,射线AM 交x 轴于点N (n ,0).设点M 转过的路程为m (01m <<),,随着点M 的转动,当m 从13变化到23时,点N 相应移动的路径长为___.17.如图,△ABC 是等边三角形,AB =3,点E 在AC 上,AE 23=AC ,D 是BC 延长线上一点,将线段DE 绕点E 逆时针旋转90°得到线段FE ,当AF ∥BD 时,线段AF 的长为____.18.如图,在△BDE 中,∠BDE =90°,BD =4,点D 的坐标是(6,0),∠BDO =15°,将△BDE 旋转到△ABC 的位置,点C 在BD 上,则旋转中心的坐标为__________.19.如图,在正方形ABCD 中,15AB =,点,E F 分别为AB ,DC 上的点,将正方形沿EF 折叠,使点A 落在A '处,点D 落在D 处,FD '交BC 于点G ,A D ''交BC 于点H ,若10DF =,203CG =,则BH 的长为___________.20.如图,反比例函数6y x=在第一象限的图象上有两点,,A B 它们的横坐标分别为1,3,则OAB ∆的面积为___.三、解答题21.如图,已知一个几何体的主视图与俯视图,求该几何体的体积.(π取3.14,单位: cm)22.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2米,它的影子BC=1.6米,木杆PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8米,求木杆PQ的长度.23.“筒车”是一种以水流作动力,取水灌田的工具.据史料记载,它发明于隋而盛于唐,距今已有1000多年的历史,是我国古代劳动人民的一项伟大创造.明朝科学家徐光启在《农政全书》中用图画描绘“筒车”的工作原理.如图,“筒车”盛水筒的运行轨迹是以轴心O为圆心的圆,已知圆心O在水面上方,且当圆被水面截得的弦AB为6米时,水面下盛水筒的最大深度为1米(即水面下方部分圆上一点距离水面的最大距离).(1)求该圆的半径;(2)若水面上涨导致圆被水面截得的弦AB从原来的6米变为8米时,则水面上涨的高度为多少米?24.sin30tan452cos45sin60tan60︒⋅︒︒+︒⋅︒∆中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度25.如图,ABC向点C移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t 秒.(1)根据题意知:CQ=cm,CP=cm;(用含t的代数式表示)(2)t 为何值时,CPQ ∆与ABC ∆相似.26.在同一平面直角坐标系中,设一次函数1y mx n =+(m ,n 为常数,且0,m m n ≠≠-)与反比例函数2m n y x+=. (1)若1y 与2y 的图象有交点()1,5,且4n m =,①求:m 、n 的值;②当15y ≥时,2y 的取值范围;(2)若1y 与2y 的图象有且只有一个交点,求m n的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.2.A解析:A【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,2,1;左视图有2列,每列小正方形数目分别为2,2,据此可画出图形.【详解】根据图形可知:主视图有3列,每列小正方形数目分别为1,2,1.故选A.【点睛】本题考查了几何体的三视图画法.由几何体的俯视图及小正方形中的数字,可知主视图有3列,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图有2列,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.3.C解析:C【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选C.【点睛】本题主要考查了由三视图判断几何体,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题的关键.4.A解析:A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.5.A解析:A【分析】根据三视图的绘制,首先画出三视图再计算其面积.【详解】解:A .主视图的面积为4,此选项正确;B .左视图的面积为3,此选项错误;C .俯视图的面积为4,此选项错误;D .由以上选项知此选项错误;故选A .【点睛】本题主要考查三视图的画法,关键在于正面方向.6.C解析:C【分析】通过作高,构造直角三角形,利用直角三角形的边角关系和坡度即可求出答案.【详解】解:过点B 作BF ⊥CD ,垂足为F ,过点E 作EG ⊥BF ,垂足为G ,在Rt △BCF 中,由斜坡BC 的坡度i=125,得,BF FC =125, 又BC=65,设BF=12x ,FC=5x ,由勾股定理得,(12x )2+(5x )2=652,∴x=5,∴BF=60,FC=25,又∵DC=115,∴DF=DC-FC=115-25=90=EG ,在Rt △AEG 中,AG=EG•tan39°≈90×0.81=72.9,∴AB=AG+FG-BF=72.9+12-60=24.9(米),故选:C .【点睛】本题考查坡度、仰角以及直角三角形的边角关系,理解坡度、仰角和直角三角形的边角关系式解决问题的关键. 7.C解析:C【分析】作DF BC ⊥于F ,根据题意判断出ABC ∆是等腰直角三角形,求出CBD ∠的度数,进而判断出ACD ∆是等边三角形,设AB a ,在Rt BDF ∆中利用直角三角形的性质求出DF的长,用a 表示出CF 的长,再根据勾股定理即可得出a 的值,进而得出答案.【详解】解:作DF BC ⊥于F ,AB AC AD ==,E 是BC 的中点,AE BC ∴⊥,AE CE =,BE EC =,90BAC ∴∠=︒,45ABC ACB ∴∠=∠=︒,3BAC CBD ∠=∠,30DBC ∴∠=︒,15ABD ∠=︒,1801515150BAD ∴∠=︒-︒-︒=︒,90BAC ∠=︒,60CAD ∴∠=︒,AC AD =,ACD ∴∆是等边三角形,AB AC AD CD ∴===,设AB a ,则2BC a =,AC AD CD a ===, 在Rt BDF ∆中, 30DBF ∠=︒,6266BD =+, 32362BD DF ∴==+,3cos (6266)3692BF BD CBD =∠=+⨯=+, 36922CF BF BC a ∴=-=+-,在Rt CDF ∆中,由勾股定理可得222CF DF CD +=,即222(36922)(3236)a a +-++=,解得12a =或12324+,∵12324+>6266+,即此时AB >BD ,不符合,∴AB=12,故选:C .【点睛】本题考查的是等腰直角三角形的性质、等边三角形的判定与性质及含30度角的直角三角形的性质,解答此题的关键是作出辅助线,构造出含30度角的直角三角形,根据直角三角形的性质进行解答.8.D解析:D【分析】过B点作BD⊥AC,得AB的长,AD的长,利用锐角三角函数得结果.【详解】解:过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=AD=222222+=cosA=222510ADAB==故选D.【点睛】本题考查了锐角三角函数和勾股定理,作出适当的辅助线构建直角三角形是解答此题的关键.9.D解析:D【分析】过点A、B分别作AC⊥x轴、BD⊥x轴,垂足分别为点C、D,如图,易证△AOC∽△OBD,则根据相似三角形的性质可得214AOCBODS OAS OB⎛⎫==⎪⎝⎭△△,再根据反比例函数系数k的几何意义即可求出k的值.【详解】解:过点A、B分别作AC⊥x轴、BD⊥x轴,垂足分别为点C、D,如图,则∠ACO=∠BDO=90°,∠OAC+∠AOC=90°,∵OA⊥OB,tan∠BAO=2,∴∠AOC+∠BOD=90°,OA:OB=1:2,∴∠OAC=∠BOD,∴△AOC∽△OBD,∴221124 AOCBODS OAS OB⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭△△,∵1212AOCS⨯==,12BODS k=△,∴11142k=,∴8k=,∵k<0,∴k=﹣8.故选:D.【点睛】本题考查了反比例函数系数k的几何意义、相似三角形的判定和性质以及三角函数的定义等知识,熟练掌握所学知识、明确解答的方法是解题的关键.10.B解析:B【分析】根据线段垂直平分线的性质得到AE=BE,由等腰三角形的性质得到∠B=∠BAE,根据三角形的外角的性质得到∠AEC=∠B+∠BAE=2∠B,求得∠C=30°,根据三角函数的定义即可得到结论.【详解】∵DE垂直平分AB于点D,∴AE=BE,∴∠B=∠BAE,∴∠AEC=∠B+∠BAE=2∠B,∵AB=AC,∴∠AEC=2∠C,∵AE⊥AC,∴∠EAC=90°,∴∠C=30°,∴CE=cos30AC==︒故选:B.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形外角的性质以及特殊角的三角函数值.注意掌握数形结合思想的应用.11.B解析:B【分析】根据相似三角形的判定逐个判断即可得.【详解】①在ADE 和ACB △中,AED B A A ∠=∠⎧⎨∠=∠⎩, ADEACB ∴,则条件①能满足; ②//DE BC ,ADE ABC ∴,则条件②不能满足;③在ADE 和ACB △中,AD AE AC AB A A⎧=⎪⎨⎪∠=∠⎩,ADE ACB ∴,则条件③能满足;④由AD BC DE AC ⋅=⋅得:AD DE AC BC=, 对应的夹角ADE ∠与C ∠不一定相等,∴此时ADE 和ACB △不一定相似,则条件④不能满足;综上,能满足的条件有2个,故选:B .【点睛】 本题考查了相似三角形的判定,熟练掌握判定方法是解题关键.12.B解析:B【分析】证明()△△DHA CGD AAS ≅,()△△ANB DGC AAS ≅得到:1AN DG AH===,而11AH m =--=,解得2m =-,即可求解; 【详解】 设点8,D m m ⎛⎫ ⎪⎝⎭, 如图所示,过点D 作x 轴的垂线交CE 于点G ,过点A 作x 轴的平行线DG 于点H ,过点A 作AN x ⊥轴于点N ,∵90GDC DCG ∠+∠=︒,90GDC HDA ∠=∠=︒,∴HDA GCD ∠=∠,又AD CD =,90DHA CGD ∠=∠=︒,∴()△△DHA CGDAAS ≅,∴HA DG =,DH CG =, 同理可得:()△△ANB DGCAAS ≅, ∴1AN DG AH===, 则点8,1G m m ⎛⎫- ⎪⎝⎭,CG DH =, 11AH m =--=,解得:2m =-, 故点()2,5G --,()2,4D --,()2,1H-, 则点8,55E ⎛⎫-- ⎪⎝⎭,25GE =, ∴223555CE CG GE DH GE =-=-=-=. 故答案选B .【点睛】本题主要考查了反比例函数图象上点的坐标特征,正方形的性质,准确分析计算是解题的关键.二、填空题13.【分析】由AB ∥CD 得:△PAB ∽△PCD 由相似三角形对应高之比等于对应边之比列出方程求解【详解】∵AB ∥CD ∴△PAB ∽△PCD 假设CD 到AB 距离为x 则:即x=18∴AB 与CD 间的距离是18m ;故解析:1.8【分析】由AB ∥CD 得:△PAB ∽△PCD ,由相似三角形对应高之比等于对应边之比,列出方程求解.【详解】∵AB∥CD,∴△PAB∽△PCD,假设CD到AB距离为x,则:2.72.7AB xCD-=即1.52.74.5 2.7x-=,x=1.8,∴AB与CD间的距离是1.8m;故答案是:1.8.【点睛】考查了中心投影,用到的知识点是相似三角形的性质和判定,相似三角形对应高之比等于对应边之比.解此题的关键是把实际问题转化为数学问题(三角形相似问题).14.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.15.(90)【详解】根据位似图形的定义连接A′AB′B并延长交于(90)所以位似中心的坐标为(90)故答案为:(90)解析:(9,0)【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).16.【分析】当m从变化到时点N相应移动的路经是一条线段只需考虑始点和终点位置即可解决问题当m=时连接PM如图1点M从点A绕着点P逆时针旋转了一周的从而可得到旋转角为120°则∠APM=120°根据PA=解析:23 3【分析】当m从13变化到23时,点N相应移动的路经是一条线段,只需考虑始点和终点位置即可解决问题.当m=13时,连接PM,如图1,点M从点A绕着点P逆时针旋转了一周的13,从而可得到旋转角为120°,则∠APM=120°,根据PA=PM可得∠PAM=30°,在Rt△AON中运用三角函数可求出ON的长;当m=23时,连接PM,如图2,点M从点A绕着点P逆时针旋转了一周的23,从而可得到旋转角为240°,则∠APM=120°,同理可求出ON的长,问题得以解决.【详解】解:①当m=13时,连接PM,如图1,∠APM=13×360°=120°.∵PA=PM,∴∠PAM=∠PMA=30°.在Rt△AON中,NO=AO•tan∠OAN=1×33=33.②当m=23时,连接PM,如图2,∠APM=360°-23×360°=120°,同理可得:NO=3.综合①、②可得:点N相应移动的路径长为33+33=233.故答案为23 3【点睛】本题主要考查了旋转角、等腰三角形的性质、三角函数等知识,若动点的运动路径是一条线段,常常可通过考虑临界位置(动点的始点和终点)来解决.17.1【分析】过点E作EM⊥AF于M交BD于N根据30°直角三角形的性质求出AM=1再根据∠60°的三角函数值求出EN的长再依据△EMF≌△DNE(AAS)得出MF=EN据此可得当AF∥BD时线段AF的解析:13 +.【分析】过点E作EM⊥AF于M,交BD于N,根据30°直角三角形的性质求出AM =1,再根据∠60°的三角函数值求出EN的长,再依据△EMF≌△DNE(AAS)得出MF=EN32=,据此可得,当AF∥BD时,线段AF的长为13 +.【详解】如图过点E作EM⊥AF于M,交BD于N.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ACB=60°.∵AE23=AC,∴AE=2,EC=1.∵AF∥BD,∴∠EAM=∠ACB=60°.∵EM⊥AF,∴∠AME=90°,∴∠AEM=30°,∴AM12=AE=1.∵AF∥BD,EM⊥AF,∴EN⊥BC,∴EN=EC•sin60°=∵∠EMF=∠END=∠FED=90°,∴∠MEF+∠MFE=90°,∠MEF+∠DEN=90°,∴∠EFM=∠DEN.∵ED=EF,∴△EMF≌△DNE(AAS),∴MF=EN=∴AF=AM+MF=1.故答案为:1.【点评】本题主要考查了直角三角形的性质、特殊角的三角函数值和全等三角形的判定的综合运用,解题的关键是作辅助线构造直角三角形和全等三角形,熟记特殊角的三角函数值. 18.【分析】根据旋转的性质AB与BD的垂直平分线的交点即为旋转中心P连接PD过P作PF⊥x轴于F再根据点C在BD上确定出∠PDB=45°并求出PD的长然后求出∠PDO=60°根据直角三角形两锐角互余求出解析:(6【分析】根据旋转的性质,AB与BD的垂直平分线的交点即为旋转中心P,连接PD,过P作PF⊥x 轴于F,再根据点C在BD上确定出∠PDB=45°并求出PD的长,然后求出∠PDO=60°,根据直角三角形两锐角互余求出∠DPF=30°,然后解直角三角形求出点P的坐标.【详解】如图,AB与BD的垂直平分线的交点即为旋转中心P,连接PD,过P作PF⊥x轴于F,∵点C在BD上,∴点P到AB、BD的距离相等,都是12BD,即1422⨯=,∴∠PDB=45°,PD=∵∠BDO=15°,∴∠PDO=45°+15°=60°,∴∠DPF=30°,∴DF=12PD=12222⨯=,3cos302262PF PD︒=⋅=⨯=,∵点D的坐标是(6,0),∴OF=OD﹣DF=62-,∴旋转中心的坐标为(62,6)-,故答案为:(62,6)-.【点睛】本题考查坐标与图形变化-旋转,解直角三角形,熟练掌握旋转的性质确定出旋转中心的位置是解题的关键.19.【分析】根据正方形的性质得到AB=AD=DC=BC=15∠A=∠D=∠C=∠B=90°根据折叠的性质得到∠D=∠D´=90°DF=DF´=10根据勾股定理可得FC的长从而得到D´G根据相似三角形的判解析:25 4【分析】根据正方形的性质得到AB=AD=DC=BC=15,∠A=∠D=∠C=∠B=90°,根据折叠的性质得到∠D=∠D´=90°,DF=DF´=10,根据勾股定理可得FC的长,从而得到D´G,根据相似三角形的判定得到△HGD´∽△FGC,从而得到HG GDFG GC'=,可得HG的长,由BH=BC-HG-CG即可得出结论.【详解】解:∵四边形ABCD为正方形,∴AB=AD=DC=BC=15,∠A=∠D=∠C=∠B=90°,由折叠的性质,得∠D=∠D´=90°,DF=DF´=10,在Rt△FCG中,FC=DC-DF=15-10=5,CG=203,∴22222025533 CG FC⎛⎫+=+=⎪⎝⎭,∴D´G=D´F-FG=10-253=53,∵∠D´=∠C=90°,∠HGD´=∠FGC ,∴△HGD´∽△FGC , ∴HG GD FG GC '=, ∴HG=255·253320123FG GD GC =='⨯, ∴BH=BC-HG-CG=15-2512-203=254. 故答案为254. 【点睛】本题考查了相似三角形的判定与性质,勾股定理,折叠的性质及正方形的性质.证得△HGD´和△FGC 相似是解题的关键.20.8【分析】根据题意结合反比例函数图象上点的坐标性质S △AEO=S △ACO =S △OBD =3得出S 四边形AODB 的值是解题关键【详解】解:如图所示:过点A 作AE ⊥x 轴于点E 过点B 作BD ⊥x 轴于点D ∵反比解析:8【分析】根据题意结合反比例函数图象上点的坐标性质S △AEO =S △ACO =S △OBD =3,得出S 四边形AODB 的值是解题关键.【详解】解:如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BD ⊥x 轴于点D ,∵反比例函数6y x=在第一象限的图象上有两点A ,B ,它们的横坐标分别是1,3, ∴x =1时,y =6;x =3时,y =2,故S △AEO =S △OBD =S △ACO=3, S 四边形AEDB =12×(2+6)×2=8, 故△AOB 的面积是:S 四边形AEDB + S 四边形AECO -S △ACO -S △OBD =8.故答案为:8.此题主要考查了反比例函数图象上点的坐标性质,得出四边形AODB 的面积是解题关键.三、解答题21.40048【分析】根据三视图得到几何体上半部分是圆柱,下半部分是长方体,分别计算体积相加即可解题.【详解】解:由几何体的主视图和俯视图,可以想象出该几何体由两部分组成:上部是一个圆柱,底面直径是20cm ,高是32cm ;下部是一个长方体,长、宽、高分别是30cm ,25cm ,40cm ,所以该几何体的体积为23203.14()3230254040048(cm )2⨯⨯+⨯⨯=. 【点睛】主视图是在物体正面从前向后观察物体得到的图形;俯视图是站在物体的正面从上向下观察物体得到的图形;左视图是在物体正面从左向右观察到的图形,掌握三视图的定义是解题关键. 22.2.3米【分析】先根据同一时刻物高与影长成正比求出QD 的影长,再根据此影长列出比例式即可 【详解】解:如图,过点N 作ND ⊥PQ 于D ,则DN=PM ,∴△ABC ∽△QDN ,AB QD BC DN∴=. ∵AB=2米,BC=1.6米,PM=1.2米,NM=0.8米, 2 1.21.6AB DN QD BC ⨯===1.5(米), ∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(米).答:木杆PQ 的长度为2.3米.【点睛】此题考查相似三角形的应用和平行投影,解题关键在于掌握运算法则23.(1)该圆的半径为5m .;(2)2米.【分析】(1)连接OC ,延长CO 交AB 于点D ,利用垂径定理求出AD ,再利用勾股定理求出圆的(2)过点O作OE⊥AB',利用垂径定理求出A'E的长,再利用勾股定理求出OE的长,然后求出水面上涨的高度.【详解】(1)解:连接OC,延长CO交AB于点D,∴CD⊥AB∴116322AD AB==⨯=,设圆的半径为r,OD=r-1在Rt△AOD中OD2+AD2=AO2即(r-1)2+9=r2.解之:r=5.∴该圆的半径为5m.(2)解:过点O作OE⊥AB'∴A'E=1''2A B=4,∴2222''543OE A O A E,∴水面上涨的高度为5-3=2米.【点睛】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.24.3【分析】将特殊角的三角函数值代入求解【详解】解:sin 30tan 45cos 45sin 60tan 60︒⋅︒︒+︒⋅︒=122⨯ =13+1+22=3【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值. 25.(1)t ;(4﹣2t );(2)要使CPQ ∆与CBA ∆相似,运动的时间为1.2或1611秒. 【分析】(1)结合题意,直接得出答案即可;(2)若两三角形相似,则由相似三角形性质可知,其对应边成比例.设经过t 秒后两三角形相似,则可分下列两种情况进行求解:①若Rt ABC Rt QPC ∆∆∽,②若Rt ABC Rt PQC ∆∆∽,然后列方程求解.【详解】解:(1)经过t 秒后,CQ =t ,CP =4﹣2t ,故答案为:t ;(4﹣2t ).(2)设经过t 秒后两三角形相似,则可分下列两种情况进行求解,①若Rt ABC Rt QPC ∆∆∽,则AC QC BC PC =,即3442t t =-,解得t =1.2; ②若Rt ABC Rt PQC ∆∆∽,则PC AC QC BC =,即4234t t -=,解得t =1611; 由P 点在BC 边上的运动速度为2cm/s ,Q 点在AC 边上的速度为1cm/s ,可求出t 的取值范围应该为0<t <2,验证可知①②两种情况下所求的t 均满足条件.答:要使CPQ ∆与CBA ∆相似,运动的时间为1.2或1611秒. 【点睛】本题综合考查了相似三角形的性质以及一元一次方程的应用问题,并且需要用到分类讨论的思想,解题时应注意解答后的验证.26.(1)①1,4m n ==;②205y <≤;(2)12m n =- 【分析】(1)①将点()1,5代入一次函数解析式得5m n +=,结合4n m =,即可求出m 、n 的值;②由①已经得到一次函数和反比例函数的解析式,根据15y ≥求出x 的取值范围,再根据反比例函数的性质求出2y 的取值范围;(2)根据题意,1y 与2y 的图象有且只有一个交点,即方程m n mx n x +=+有且只有一解,根据根的判别式即可求出结果.【详解】(1)①把()1,5代入1y mx n =+,得5m n +=,∵4n m =,∴1,4m n ==;②由①得:1254,y x y x =+=, ∴当15y ≥时,45x +≥,∴1≥x ,∵反比例函数25y x=在第一象限内y 随着x 的增大而减小, ∴当1≥x 时,2y 的取值范围是205y <≤;(2)令m n mx n x+=+, 得2()0mx nx m n +-+=, 由题意得,22Δ4()(2)0n m m n m n +=+=+=即20m n +=, ∴12m n =-. 【点睛】 本题考查一次函数和反比例函数,以及一元一次方程根的判别式,解题的关键是掌握函数解析式的求解方法,理解函数图象的交点对应方程的解.。

最新九年级数学下期末一模试题含答案

最新九年级数学下期末一模试题含答案
(2)该几何体的立体图如图所示,请在下面方格纸中分别画出它的左视图和俯视图(请用铅笔涂上阴影).
22.画出如图所示的几何体的主视图、左视图和俯视图.
23.如图,在 中, , ,垂足分别为 , , 与 相交于点 .
(1)求证: ∽ ;
(2)当 , 时,求 的长.
24.如图,已知一次函数 的图象与反比例函数 的图象交于点A(-1,2)和点B.
(1)求b和k的值;
(2)请求出点B的坐标,并观察图象,直接写出关于x的不等式 的解集;
(3)若点P在y轴上一点,当 最小时,求点P的坐标.
25.如图,在 中, , , ,以AC为腰,点A为顶点作等腰 ,且 ,则 ______.
26.如图,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,CE垂直y轴于点E.
18.在Rt△ABC中,∠C=90°,AB=2AC,则∠A=__°,∠B=___°.
19.如图,⊙O的直径为5,在⊙O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A,B重合),过C作CP的垂线CD交PB的延长线于D点.则△PCD的面积最大为______________.
20.近视眼镜的度数 (度)与镜片焦距 (米)成反比例,已知 度近视眼镜镜片的焦距为 米,则眼镜度数 与镜片焦距 之间的函数关系式为________.(无需确定 的取值范围)
三、解答题
21.如图,是由一些大小相同且棱长为1的小正方体组合成的简单几何体.
(1)这几个简单几何体的表面积是__________.
3.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()
A.主视图改变,左视图改变B.俯视图不变,左视图不变

新初三数学下期末一模试题附答案

新初三数学下期末一模试题附答案

新初三数学下期末一模试题附答案一、选择题1.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米 2.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( )A .4B .3C .2D .13.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3B .x ≥-3且1x ≠C .1x ≠D .3x ≠-且1x ≠4.下表是某学习小组一次数学测验的成绩统计表: 分数/分 70 80 90100 人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( ) A .80分B .85分C .90分D .80分和90分5.2-的相反数是( ) A .2- B .2C .12D .12-6.函数21y x =-中的自变量x 的取值范围是( )A .x ≠12 B .x ≥1C .x >12D .x ≥127.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .48.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .119.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=o ,则GAF ∠的度数为( )A .110oB .115oC .125oD .130o 10.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1B .0,1C .1,2D .1,2,311.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( ) 捐款数额 10 20 30 50 100 人数24531A .众数是100B .中位数是30C .极差是20D .平均数是3012.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .18二、填空题13.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.14.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx的图象上,则k 的值为________.15.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .16.计算:2cos45°﹣(π+1)0+111()42-+=______. 17.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .18.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为_____.19.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号).20.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.三、解答题21.2x =600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.22.矩形ABCD 的对角线相交于点O .DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若∠ACB =30°,菱形OCED 的而积为83,求AC 的长.23.解分式方程:23211x x x +=+- 24.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 25.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184. 根据统计数据制作了如下统计表: 个数x 150≤x <170 170≤x <185 185≤x <190 x ≥190 男生 5 8 5 2 女生38a3两组数据的极差、平均数、中位数、众数如表所示:极差平均数中位数众数男生55178b c女生43181184186(1)请将上面两个表格补充完整:a=____,b=_____,c=_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.26.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD∴AB=AD+BD=100(故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.2.A解析:A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.3.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.4.D解析:D【解析】【分析】先通过加权平均数求出x的值,再根据众数的定义就可以求解.【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1),x=3∴该组数据的众数是80分或90分.故选D.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.5.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .6.D解析:D【解析】【分析】由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x≥12,故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.C解析:C【解析】【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确; ②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确; ③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确. 故选C .8.D解析:D 【解析】 【分析】根据流程图所示顺序,逐框分析代入求值即可. 【详解】当x =2时,x 2﹣5=22﹣5=﹣1,结果不大于1, 代入x 2﹣5=(﹣1)2﹣5=﹣4,结果不大于1, 代入x 2﹣5=(﹣4)2﹣5=11, 故选D . 【点睛】本题考查了代数式求值,正确代入求值是解题的关键.9.A解析:A 【解析】 【分析】依据AB//CD ,EFC 40∠=o ,即可得到BAF 40∠=o ,BAE 140∠=o ,再根据AG 平分BAF ∠,可得BAG 70∠=o ,进而得出GAF 7040110∠=+=o o o . 【详解】解:AB//CD Q ,EFC 40∠=o ,BAF 40∠∴=o , BAE 140∠∴=o ,又AG Q 平分BAF ∠,BAG 70∠∴=o ,GAF 7040110∠∴=+=o o o ,故选:A . 【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.10.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k的非负整数值为1,故选A.11.B解析:B【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D不正确.故选B.点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB ∵AE垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角解析:【解析】试题解析:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD==【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,kx),则点A的坐标为(-x,kx),点B的坐标为(0,2kx),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 15.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110° 解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°16.【解析】解:原式==故答案为:32. 【解析】解:原式=12122-++3232. 17.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.18.6【解析】试题解析:∵DE 是BC 边上的垂直平分线∴BE=CE ∵△EDC 的周长为24∴ED+DC+EC=24①∵△ABC 与四边形AEDC 的周长之差为12∴(AB+AC+BC )-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE 是BC 边上的垂直平分线,∴BE=CE .∵△EDC 的周长为24,∴ED+DC+EC=24,①∵△ABC 与四边形AEDC 的周长之差为12,∴(AB+AC+BC )-(AE+ED+DC+AC )=(AB+AC+BC )-(AE+DC+AC )-DE=12,∴BE+BD-DE=12,②∵BE=CE ,BD=DC ,∴①-②得,DE=6.考点:线段垂直平分线的性质.19.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 20.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.三、解答题21.无22.(1)证明见解析;(2)8.【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.23.x=-5【解析】【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x+1)( x-1),化为整式方程求解,求出x的值后不要忘记检验.【详解】解:方程两边同时乘以(x+1)( x-1)得: 2x (x-1)+3(x+1)=2(x+1)( x-1)整理化简,得 x =-5经检验,x =-5是原方程的根∴原方程的解为:x =-5.24.(1)223a 5ab 3b -+-;(2)m m 2-. 【解析】【分析】 ()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a 2b (2a b)-+--=2222a 2ab ab 2b 4a 4ab b +---+-223a 5ab 3b =-+-;(2)221m 4m 41m 1m m -+⎛⎫-÷ ⎪--⎝⎭=()2m m 1m 2m 1(m 2)--⋅-- m m 2=-. 【点睛】 本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键.25.(1)a =6,b =179,c =188;(2)600;(3)详见解析.【解析】【分析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x <190的数据有:186,188,186,185,186,187.∴a =6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b =(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c =188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.26.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.。

新九年级数学下期末一模试卷(含答案)

新九年级数学下期末一模试卷(含答案)

新九年级数学下期末一模试卷(含答案)一、选择题1.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( ) A . B . C . D .2.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =k x(k≠0,x >0)上,若矩形ABCD 的面积为12,则k 的值为( )A .12B .4C .3D .6 3.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+4.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数0 1 2 3 4 人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A .中位数是2B .众数是17C .平均数是2D .方差是25.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分6.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个7.如图,菱形ABCD 的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是( )A .24B .16C .413D .238.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .49.下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm10.下列计算正确的是( )A .()3473=a b a bB .()232482--=--b a b ab b C .32242⋅+⋅=a a a a aD .22(5)25-=-a a 11.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100 12.下列几何体中,其侧面展开图为扇形的是( )A .B .C .D .二、填空题13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.14.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.15.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.16.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.17.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.18.当m =____________时,解分式方程533x m x x-=--会出现增根. 19.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A .从一个社区随机选取1 000户家庭调查;B .从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C .从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是 .(填“A”、“B”或“C”) (2)将一种比较合理的调查方式调查得到的结果分为四类:(A )已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.22.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.23.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.24.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)25.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)26.计算:(1)2(m﹣1)2﹣(2m+1)(m﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】解:A .不是轴对称图形,是中心对称图形,不符合题意;B .既是轴对称图形,也是中心对称图形,符合题意;C .不是轴对称图形,是中心对称图形,不符合题意;D .不是轴对称图形,也不是中心对称图形,不符合题意.故选B .2.D解析:D【解析】分析:设点A 的坐标为(m,k m ),则根据矩形的面积与性质得出矩形中心的纵坐标为2k m ,求出中心的横坐标为m+6m k ,根据中心在反比例函数y =k x上,可得出结果. 详解:设点A 的坐标为(m,k m), ∵矩形ABCD 的面积为12, ∴121212m BC k AB k m=== ,∴矩形ABCD 的对称中心的坐标为(m+6m k ,2k m ), ∵对称中心在反比例函数上,∴(m+6m k )×2k m =k , 解方程得k=6,故选D.点睛:本题考查了反比例函数图象上点的坐标特点,熟知反比例函数中k=xy 位定值是解答本题的关键.3.D解析:D【解析】试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.4.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.5.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.7.C解析:C【解析】【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB 的长,然后利用勾股定理,求得AB的长,继而求得答案.【详解】∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=12AC=3,OB=12BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB=222+3=13,∴菱形的周长为413.故选C.8.C解析:C【解析】【详解】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确.故选C.9.D解析:D【解析】【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.10.C解析:C【解析】【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.11.B解析:B【解析】【分析】设商品进价为x 元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x 元,售价为每件0.8×200元,由题意得 12.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A 、圆柱的侧面展开图是矩形,故A 错误;B 、三棱柱的侧面展开图是矩形,故B 错误;C 、圆锥的侧面展开图是扇形,故C 正确;D 、三棱锥的侧面展开图是三个三角形拼成的图形,故D 错误,故选C .【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函 解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上∴AC=A′C ∴△A′AC 是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上,∴AC=A′C ,∴△A′AC 是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°. 15.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos ∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC ∴cos∠OCB=故答案为【点睛】【解析】【分析】根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.【详解】∵∠A =45°,∴∠BOC=90°∵OB=OC ,由勾股定理得,OC ,∴cos ∠OCB =2OC BC ==.故答案为2. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.16.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.【详解】如图,分别延长AE 、BF 交于点H .∵∠A=∠FPB=60°,∴AH ∥PF ,∵∠B=∠EPA=60°,∴BH ∥PE ,∴四边形EPFH 为平行四边形,∴EF 与HP 互相平分.∵G 为EF 的中点,∴G 也正好为PH 中点,即在P 的运动过程中,G 始终为PH 的中点,所以G 的运行轨迹为三角形HCD 的中位线MN .∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.17.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.18.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.(1)C ;(2)①作图见解析;②35万户.【解析】【分析】(1)C 项涉及的范围更广;(2)①求出B ,D 的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A=∠F AB,根据等腰三角形的判定与性质,可得∠DAF=∠DF A,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC22FC FB+=2234+,∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.23.(1)14;(2)10、40、144;(3)恰好选取的是a1和b1的概率为16.【解析】【分析】(1)根据D组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x的值;(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人,∴x=40﹣(4+16+6)=14,故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%,∴m=10、n=40,C等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144;(3)列表如下:a1和b1的有2种结果,∴恰好选取的是a1和b1的概率为21 126.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.24.(1)BC与⊙O相切,理由见解析;(2)①⊙O的半径为2.②S阴影=2 233π- .【解析】【分析】(1)根据题意得:连接OD,先根据角平分线的性质,求得∠BAD=∠CAD,进而证得OD∥AC,然后证明OD⊥BC即可;(2)设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得结果.【详解】(1)相切.理由如下:如图,连接OD.∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠ODA=∠BAD,∴∠ODA=∠CAD,∴OD∥AC.又∠C=90°,∴OD⊥BC,∴BC与⊙O相切(2)①在Rt△ACB和Rt△ODB中,∵AC=3,∠B=30°,∴AB=6,OB=2OD.又OA=OD=r,∴OB=2r,∴2r+r=6,解得r=2,即⊙O的半径是2②由①得OD=2,则OB=4,BD=3S阴影=S△BDO-S扇形ODE=12×3×2-2602360π⨯=3-23π25.A、C之间的距离为10.3海里.【解析】【分析】【详解】解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=3x.-.又∵BC=20,∴x+3x=20,解得:x =10(31)x=⋅-≈⨯⨯-=≈ (海里).∴AC=2210(31) 1.4110(1.731)10.29310.3答:A、C之间的距离为10.3海里.26.(1)﹣3m+3;(2)【解析】【分析】(1)先根据完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)先计算括号内分式的减法,将除法转化为乘法,再约分即可得.【详解】(1)原式=2(m2﹣2m+1)﹣(2m2﹣2m+m﹣1)=2m2﹣4m+2﹣2m2+2m﹣m+1=﹣3m+3;(2)原式=(﹣)÷==.【点睛】本题主要考查分式和整式的混合运算,熟练掌握分式与整式的混合运算顺序和运算法则是解题关键.。

最新九年级数学下期末一模试卷及答案

最新九年级数学下期末一模试卷及答案

一、选择题1.以坐标原点O 为圆心,1为半径作圆,直线y x b =-+与O 相交,则b 的取值范围是( )A .11b -<<B .22b -<<C .20b -<<D .02b << 2.若点A 在O 内,点B 在O 外,3OA =,5OB =,则O 的半径r 的取值范围是( )A .03r <<B .28r <<C .35r <<D .5r > 3.如图,ABC 中,10,8,4AB AC BC ===,以点A 为圆心,AB 为半径作圆,交BC 的延长线于点D ,则CD 长为( )A .10B .9C .45D .84.如图,ABC 内接于O ,50A ∠=︒,点E 是边BC 的中点,连接OE 并延长交O 于点D ,连接BD ,则D ∠的大小为( )A .55°B .65°C .70°D .75°5.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =0 6.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( )A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =--7.某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为( )A .35元B .36元C .37元D .36或37元 8.如图,抛物线2y ax bx c =++的顶点位于第二象限,对称轴是直线1x =-,且抛物线经过点(1,0).下面给出了五个结论:①0abc >;②240a b c -+>;③40a c +<;④13a b c -=;⑤326320a b c --<.其中结论正确的有( )A .5个B .4个C .3个D .2个 9.在Rt ABC △中,如果各边长度都扩大为原来的2倍,那么锐角A 的余弦值( ) A .扩大2倍 B .缩小2倍 C .扩大4倍 D .没有变化 10.如图,在ABC 中,AD 平分BAC ∠,//DE AC 交AB 于点E ,//DF AB 交AC 于点F ,且AD 交EF 于点O ,若8AF EF ==,则sin DAC ∠的值为( )A .13B .32C .12D .2211.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC=2BF ,连接AE ,EF .若AB=2,AD=3,则cos ∠AEF 的值是( )A .12B .1C .22D .3212.如图,在Rt ABC △中,90C ∠=︒,4AC =,3BC =,则( )A .3sin 4A =B .4cos 5A =C .3cos 4B =D .3tan 5B =二、填空题13.如图,ABC 内接于O ,∠BAC=70°,D 是BC 的中点,且∠AOD=156°,AE ,CF 分别是BC ,AB 边上的高,则∠BCF 的度数是____________.14.如图,点P 为⊙O 外一点,PA ,PB 分别与⊙O 相切于点A ,B ,∠APB =90°.若⊙O 的半径为2,则图中阴影部分的面积为_____(结果保留π).15.将抛物线2y x =-先向左平移1个单位长度,再向上平移2个单位长度后,得到的抛物线的解析式是______.16.道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落在同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是___________.17.已知A (0,y 1),B (1,y 2),C (4,y 3)是抛物线y =x 2﹣3x 上的三点,则y 1,y 2,y 3的大小关系为____.(用“<”符号连接)18.一运动员乘雪橇以10米/秒的速度沿坡比1:3的斜坡匀速滑下,若下滑的垂直高度为1000米,则该运动员滑到坡底所需的时间是______秒.19.如图,菱形ABCD 的两个顶点,B D 在反比例函数k y x=的图象上,对角线,AC BD 的交点О恰好是坐标原点,已知()2,2A ,120BCD ∠=︒,则k 的值是__________.20.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=________.21.如图,已知90ACB ∠=︒,90BAD ∠=︒,AB AD =,若5CD =,1tan 4BAC ∠=,则四边形ABCD 的面积为______.22.如图,在Rt △ABC 中,∠C =90°,AB =13,AC =5,则cos A 的值是_____.三、解答题23.已知O 及O 外一点P ,在O 上找一点,M 使得PM OM ⊥,求作点M .要求:尺规作图,保留作图痕迹.24.已知:如图,在ABC 中,AB BC =,D 是AC 中点,BE 平分ABD ∠交AC 于点E ,点O 是AB 上一点,O 过B ,E 两点,交BD 于点G ,交AB 于点F .(1)求证:AC 与O 相切;(2)当6BD =,3sin 5C =时,求O 的半径. 25.某商店销售一种商品,每件进价为40元,对销售情况作了调查,结果发现月最大销售是y (件)与销售单价x (元)(5090)x ≤≤之间的函数关系如图中的线段AB .(月最大销售量指进货量足够的情况下最多售出件数)(1)求出y 与x 之间的函数表达式.(2)该商品每月的总利润w (元),求w 关于x 的函数表达式,并指出销售单价x 为多少元时利润w 最大,该月进货数量应定为多少?(3)若该商店进货350件,如果销售不完,就以亏本36元/件计入总利润,则销售单价定为多少,当月月利润最大?26.如图,在平面直角坐标系中,已知AOB ,90AOB ∠=︒,AO BO =,点A 的坐标为()3,1-.(1)求点B 的坐标.(2)求过点A ,O ,B 的二次函数的表达式.(3)设点B 关于二次函数的对称轴l 的对称点为1B ,求1AB B 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】求出直线y x b =-+与圆相切时,函数经过一、二、四象限和当直线y x b =-+与圆相切时,函数经过二、三、四象限b 的值,则b 的值在相交时与相切时两个b 之间;【详解】当直线y x b =-+与圆相切时,函数经过一、二、四象限,如图所示:在y x b =-+中,令x=0,y=b ,则与y 轴的交点为B(0,b),令x=b ,y=0,则与x 轴的交点为A(b ,0),则OA=OB ,即△AOB 是等腰直角三角形,连接圆心O 与切点C ,则OC=1,∴ △BOC 也是等腰直角三角形,∴ BC=OC=1,∴ 22112BO =+= ,同理当直线y x b =-+与圆相切时且函数经过二、三、四象限,b=2- ,∴ 当直线y x b =-+与圆相交时,b 的取值范围是22b -<< ;故选:B .【点睛】本题主要考查了直线与圆的关系的综合,解题的关键是根据题意找到直线与圆相切时b 的值.2.C解析:C【分析】根据点和圆的位置关系可判断.【详解】解:∵点A 在O 内,3OA =, ∴3r <,∵点B 在O 外,5OB =,∴5r <, O 的半径r 的取值范围是35r <<,故选:C .【点睛】本题考查了点和圆的位置关系,解题关键是熟知点和圆的位置关系是由半径和点到圆心的3.B解析:B【分析】如图,过点A作AE⊥BD于点E,连接AD,可得AD=AB=10,根据垂径定理可得DE=BE,得CE=BE-BC=DE-4,再根据勾股定理即可求得DE的长,进而可得CD的长.【详解】解:如图,过点A作AE⊥BD于点E,连接AD,∴AD=AB=10,根据垂径定理,得DE=BE,∴CE=BE-BC=DE-4,根据勾股定理,得AD2-DE2=AC2-CE2,102-DE2=82-(DE-4)2,解得DE=132,∴CD=DE+CE=2DE-4=9,故选:B.【点睛】本题考查了垂径定理,解决本题的关键是掌握垂径定理.4.B解析:B【分析】连接CD,根据圆的内接四边形的性质得到∠CDB=180°-∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论;【详解】如图:连接CD,∵∠A=50°,∴∠CDB=180°-∠A=130°,∵ E是边BC的中点,∴ OD⊥BC,∴ BD=CD,∴∠ODB=∠ODC=12∠BDC=65°,【点睛】本题考查了三角形的外接圆与外心,圆内接四边形的性质,垂径定理,等腰三角形的性质,正确的理解题意是解题的关键.5.D解析:D【分析】根据抛物线与x 轴有两个交点可对A 进行判断;由抛物线开口向上得m >0,由抛物线与y 轴的交点在x 轴下方得k <0,则可对B 进行判断;根据抛物线的对称轴是x =1对C 选项进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点为(−1,0),所以m−n +k =0,则可对D 选项进行判断.【详解】解:A .∵抛物线与x 轴有两个交点,∴n 2﹣4mk >0,所以A 选项错误;B .∵抛物线开口向上,∴m >0,∵抛物线与y 轴的交点在x 轴下方,∴k <0,∴mk <0,所以B 选项错误;C .∵二次函数图象的对称轴是直线x =1,∴﹣2n m=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∴m ﹣n +k =0,所以D 选项正确;故选:D .【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2b x a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.6.B解析:B【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x 元时,获得的利润为y 元,根据题意可得:[](35)2005(40)y x x =--- 即y=(x-35)(400-5x ),故选:B .【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.7.C解析:C【分析】根据利润=数量×每件的利润就可以求出关系式,根据(1)的解析式,将其转化为顶点式,根据二次函数的顶点式的性质就可以求出结论.【详解】解:依题意得:y=(30-20+x )(240-10x )y=-10x 2+140x+2400.∵每件首饰售价不能高于40元.∴0≤x≤10.∴求y 与x 的函数关系式为:y=-10x 2+140x+2400,x 的取值范围为0≤x≤10;∴y=-10(x-7)2+2890.∴a=-10<0.∴当x=7时,y 最大=2890.∴每件首饰的售价定为:30+7=37元.∴每件首饰的售价定为37元时,可使月销售利润最大,最大的月利润是2890元. 故选C .【点睛】本题考查了二次函数的解析式的运用,根据解析式的函数值求自变量的值的运用,二次函数的顶点式的性质的运用,解答时求出二次函数的解析式是关键.8.A解析:A【分析】由二次函数的图象即可判断a 、b 、c 的符号,即可判断①;由对称轴和与x 轴交点坐标即可求出c=-3a 和b=2a ,即可判断②③④;把()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+-变形之后即可判断⑤;【详解】∵由图象可知开口向下,∴a <0,∵对称轴为x=-1,∴ b <0,抛物线与y 轴的交点在原点上方,∴ c >0,∴ abc >0,故①正确;∵ 抛物线经过点(1,0),对称轴为x=-1,∴ 抛物线与x 轴的另一交点时是(-3,0),∴ a+b+c=0,∵对称轴为x=-1,∴ b=2a ,∴ a+2a+c=0,即c=-3a ,()24443150a b c a a a a -+=-+⨯-=-> ,故②正确;4430a c a a a +=-=< ,故③正确;123a b a a a c -=-=-= ,故④正确; ()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+- ,∵ ()21a -≥0,由图象得:1a ≠ , ∴32632a b c --<0,故⑤正确;故选:A .【点睛】本题考查了二次函数图象的性质、对称轴以及函数值的求法,正确掌握二次函数的性质是解题的关键.9.D解析:D【分析】根据三角函数的定义和分数的基本性质联手解答即可.【详解】如图,cosA=BC AB, 根据分数的基本性质,得BC AB =22BC AB, ∴余弦值不变,故选D .【点睛】本题考查了锐角三角函数的定义及其分数的基本性质,熟练掌握函数的定义,灵活运用分数的基本性质是解题的关键.10.C解析:C【分析】先证明四边形AEDF 是平行四边形,在根据题意得到四边形AEDF 是菱形,即可得到结果;【详解】由题意://DE AC ,//DF AB ,即//DE AF ,//DF EA ,∴四边形AEDF 是平行四边形,又∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∵//AE DF ,∴BAD ADF ∠=∠,∴DAF FDA ∠=∠,∴FA FD =,∴四边形AEDF 是菱形,∴EF AD ⊥,且O 为EF 的中点,8EF =,∴4OF =,∴在Rt △OAF 中,41sin 82OF DAF AF ∠===; ∴1sin 2DAC ∠=; 故答案选C .【点睛】本题主要考查了菱形的判定与性质,结合三角函数计算是解题的关键. 11.C解析:C【分析】连接AF ,根据题意可分别求出BF 、FC 、DE 的长,再利用勾股定理分别求出AF 、AE 、EF 的长,利用勾股定理的逆定理判断出AEF 为等腰直角三角形,再利用三角函数即可求得答案.【详解】如图:连接AF ,四边形ABCD 是矩形∴2,3AB DC AD BC ====∴∠B=∠C=∠D=90°FC=2BF∴BF=1,FC=2E 是CD 的中点∴DE=CE=1∴BF=CE=1在Rt ABF 中22222215AF AB BF =+=+=在Rt EFC 中22222215EF FC CE =+=+=在Rt ADE △中222223110AE AD DE =+=+=∴222AE EF AF =+且AF=EF∴△AEF 为等腰直角三角形∴∠AFE=90°,∠AEF=∠EAF=45°∴cos ∠AEF=cos45°2 故选:C .【点睛】本题考查了矩形的性质,勾股定理及其逆定理的运用,特殊角的三角函数值,解题关键是利用勾股定理逆定理判断出AEF 为等腰直角三角形. 12.B解析:B【分析】首先由勾股定理求得斜边AB=5;然后由锐角三角函数的定义依次计算判断即可.【详解】解:∵在Rt △ABC 中,∠C=90°,AC=4,BC=3.∴2222435AC BC +=+= A. 3sin =5BC A AB =,故此项错误;B. 4cos =5AC A AB =,故此项正确; C. os =35c BC B AB =,故此项错误; D. 4tan 3AC BC B ==,故此项错误; 故选B .【点睛】 本题考查了锐角三角函数定义,勾股定理.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.二、填空题13.23°【分析】连接OBOC 根据垂径定理求出再根据角的性质计算出根据计算出从而能够求出最后根据⊥求出的大小【详解】连接OBOC ∵D 是BC 的中点∴∵∴∴∵⊥∴故答案为:【点睛】本题考查圆的垂径定理圆周角解析:23°【分析】连接OB 、OC ,根据垂径定理求出BOD ∠,再根据角的性质计算出AOB ∠,根据OA OB =计算出ABO ∠,从而能够求出ABC ∠,最后根据CF ⊥AB ,求出BCF ∠的大小.【详解】连接OB 、OC∵OB OC =,D 是BC 的中点∴1702BOD BOC BAC ===︒∠∠∠ 1567086AOB AOD BOD =-=︒-︒=︒∠∠∠∵OA OB =∴18086472ABO ︒-︒==︒∠ 907020OBC =︒-︒=︒∠∴472067ABC ABO OBC =+=︒+︒=︒∠∠∠∵CF ⊥AB∴90906723BCF ABC =︒-=︒-︒=︒∠∠故答案为:23︒【点睛】本题考查圆的垂径定理,圆周角和圆心角关系,以及直角三角形的性质,属于基础题. 14.4-π【分析】连接OAOB 由S 阴影=S 正方形OBPA-S 扇形AOB 则可求得结果【详解】解:连接OAOB ∵PAPB 分别与⊙O 相切于点AB ∴OA ⊥APOB ⊥PBPA=PB ∴∠OAP=∠OBP=90°=∠解析:4-π【分析】连接OA ,OB ,由S 阴影=S 正方形OBPA -S 扇形AOB 则可求得结果.【详解】解:连接OA ,OB ,∵PA ,PB 分别与⊙O 相切于点A ,B ,∴OA ⊥AP ,OB ⊥PB ,PA=PB ,∴∠OAP=∠OBP=90°=∠BPA ,∴四边形OBPA 是正方形,∴∠AOB=90°,∴阴影部分的面积=S 正方形OBPA -S 扇形AOB 则=22-904360π⨯⨯=4-π. 故答案为:4-π.【点睛】此题考查了切线长定理,正方形的判定与性质,扇形面积公式等知识.解题关键是连接半径,构造正方形,把阴影部分面积转化为正方形面积与扇形面积差.15.【分析】根据左加右减上加下减的原则进行解答即可【详解】解:将抛物线向左平移1个单位所得直线解析式为:;再向上平移2个单位为:故答案为:【点睛】此题主要考查了二次函数图象与几何变换要求熟练掌握平移的规 解析:()212y x =-++【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线2y x =-向左平移1个单位所得直线解析式为:()2+1y x =-; 再向上平移2个单位为:()2+21+y x =-.故答案为:()212y x =-++.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减. 16.4【分析】根据抛物线形状建立二次函数模型以AB 中点为原点建立坐标系xOy 通过已知线段长度求出A(10)B(-1O)由二次函数的性质确定y =ax2-a 利用PQ =EF 建立等式求出二次函数中的参数a 即可得解析:4【分析】根据抛物线形状建立二次函数模型,以AB 中点为原点,建立坐标系xOy ,通过已知线段长度求出A(1,0),B(-1,O),由二次函数的性质确定y =ax 2-a ,利用PQ =EF 建立等式,求出二次函数中的参数a ,即可得出EF 的值.【详解】解:如图,令P 下方的点为H ,以AB 中点为原点,建立坐标系xOy ,则A(1,0),B(-1,O),设抛物线的方程为y=ax 2+bx+c∴抛物线的对称轴为x=0,则2b a-=0,即b =0. ∴y =ax 2 +c .将A(1,0)代入得a+c =0,则c =-a .∴y =ax 2-a . ∵OH =2×15×12=0.2,则点H 的坐标为(-0.2,0) 同理可得:点F 的坐标为(-0.6,0).∴PH =a×(-0.2)2-a =-0.96aEF =a×(-0.6)2-a =-0.64a .又∵PQ =EF =1-(-0.96a )=-0.64a∴1+0.96a =-0.64a .解得a =58-.∴y =58-x 2+58. ∴EF =(58-)×(-0.6)2+58=25. 故答案为:0.4.【点睛】 本题考查了二次函数的应用,解题的关键是能在几何图形中建立适当的坐标系并结合图形的特点建立等式求出二次函数表达式.17.y2<y1<y3【分析】根据二次函数的解析式得出图象的开口向上对称轴是直线x=根据x >时y 随x 的增大而增大即可得出答案【详解】解:∵y=x2﹣3x ∴图象的开口向上对称轴是直线x=∵A (0y1)B (1解析:y 2<y 1<y 3【分析】根据二次函数的解析式得出图象的开口向上,对称轴是直线x=32,根据x >32时,y 随x 的增大而增大,即可得出答案.【详解】解:∵y=x 2﹣3x ,∴图象的开口向上,对称轴是直线x=32. ∵A (0,y 1),B (1,y 2),C (4,y 3)是抛物线y=x 2﹣3x 上的三点,且0<1<32<4, ∴y 2<y 1<y 3.故答案为:y 2<y 1<y 3.【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.18.200【分析】由坡比可得垂直高度与对应的水平宽度的比值因而可求出垂直高度为1000米对应的水平宽度再用勾股定理求出斜坡长;在已知速度的条件下即可求出时间【详解】解:由已知得:垂直高度1000米与水平解析:200【分析】由坡比可得垂直高度与对应的水平宽度的比值,因而可求出垂直高度为1000米对应的水平宽度,再用勾股定理求出斜坡长;在已知速度的条件下即可求出时间.【详解】解:由已知得:垂直高度1000米与水平宽度之比为1∴水平宽度为2000m =; ∴200020010s t s v ===. 故答案为:200.【点睛】 此题考查了解直角三角形−坡度坡角问题,正确理解坡比的定义是解题的关键. 19.【分析】由点求得进而求得根据点在直线上可以求得点的坐标从而可以求得的值【详解】解:四边形是菱形是等边三角形点∴直线的解析式为直线的解析式为点在直线上点的坐标为点在反比例函数的图象上解得故答案为:【点 解析:12-【分析】由点()2,2A,求得OA =OB =B 在直线:BD y x =-上,可以求得点B 的坐标,从而可以求得k 的值.【详解】 解:四边形ABCD 是菱形,BA BC ∴=,AC BD ⊥,120BCD ∠=︒,60ABC ∴∠=︒,ABC 是等边三角形,点()2,2A ,∴OA =a tan t n 30OA OA BO ABO ∴====∠︒ 直线AC 的解析式为y x =,∴直线BD 的解析式为y x =-,2OB =B 在直线BD 上,∴点B的坐标为(-, 点B 在反比例函数k y x=的图象上,∴=解得,12k =-,故答案为:12-.【点睛】本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.20.【分析】根据正方形的面积公式可得大正方形的边长为5小正方形的边长为5再根据直角三角形的边角关系列式即可求解【详解】解:∵大正方形的面积是125小正方形面积是25∴大正方形的边长AB=5小正方形的边长 解析:15 【分析】 根据正方形的面积公式可得大正方形的边长为55,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【详解】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长AB=55,小正方形的边长CD=5,在Rt △ABC 中BC=AD=sinθ×AB=55sinθ,AC=cosθ×AB=55cosθ, ∵AC-AD=CD ,∴55cosθ-55sinθ=5,∴cosθ-sinθ=5, ∴(cosθ-sinθ)2=15∴(sinθ-cosθ)2=15. 故答案为:15.【点睛】本题考查了解直角三角形的应用,正方形的面积,难度适中.21.10【分析】过点D 作DE ⊥AC 于E 利用AAS 证出ABC ≌DAE 从而得出BC=AEAC=DE ∠BAC=∠ADE 根据锐角三角函数可得设BC=AE=x 则AC=DE=4x 从而求出CE 利用勾股定理列出方程即可解析:10【分析】过点D 作DE ⊥AC 于E ,利用AAS 证出ABC ≌DAE ,从而得出BC=AE ,AC=DE ,∠BAC=∠ADE ,根据锐角三角函数可得14BC AE AC DE ==,设BC=AE=x ,则AC=DE=4x ,从而求出CE ,利用勾股定理列出方程即可求出x 的值,从而求出BC 、AC 和DE ,再根据四边形ABCD 的面积=ABC ACD SS +即可求出结论.【详解】 解:过点D 作DE ⊥AC 于E∴∠EAD +∠ADE=90°∵90BAD ∠=︒∴∠BAC +∠EAD=90°∴∠BAC=∠ADE∵∠BCA=∠AED=90°,AB AD = ∴ABC ≌DAE∴BC=AE ,AC=DE ,∠BAC=∠ADE ∴1tan tan 4BAC ADE ∠=∠=∴14BC AE AC DE == 设BC=AE=x ,则AC=DE=4x∴EC=AC -AE=3x在Rt CDE 中,CE 2+DE 2=CD 2即(3x )2+(4x )2=52解得:x=1或-1(不符合题意舍去)∴BC=1,AC=DE=4∴四边形ABCD 的面积=ABC ACD SS + =12BC·AC +12AC·DE =12×1×4+12×4×4 =10故答案为:10.【点睛】此题考查的是全等三角形的判定及性质、锐角三角函数和勾股定理,掌握全等三角形的判定及性质、锐角三角函数和勾股定理是解题关键.22.【分析】根据余弦的定义解答即可【详解】解:在Rt △ABC 中cosA ==故答案为:【点睛】此题考查解直角三角形正确掌握三角函数的计算公式是解题的关键 解析:513 【分析】根据余弦的定义解答即可.【详解】解:在Rt △ABC 中,cos A =AC AB =513, 故答案为:513. 【点睛】此题考查解直角三角形,正确掌握三角函数的计算公式是解题的关键. 三、解答题23.如图所示,M 点有两个,分别为M 1,M 2【分析】根据圆周角定理:直径所对的圆周角是直角,以OP 为直径作圆,根据尺规作图画出OP 的垂直平分线,A 点即为OP 中点,画出圆即可得出OP ⊥OM【详解】如图所示,连接OP ,分别以O 、P 为半径,大于12OP 为半径作圆弧,连接两个交点,与OP 交于A 点,A 点即为OP 的中点,以A 点为圆心,OA 为半径作圆,与O 的交点即为M 点【点睛】本题考察尺规作图,熟练掌握圆周角定理:直径所对的圆周角是直角,以及垂直平分线的作法是解题的关键24.(1)见解析;(2)154【分析】(1)连接OE ,根据等腰三角形性质求出BD AC ⊥,推出ABE DBE ∠∠=和OBE OEB ∠=∠,得出OEB DBE ∠=∠,推出//OE BD ,得出OE AC ⊥,根据切线的判定定理即可得出结果;(2)根据3sin 5C =,求出10AB BC ==,设O 的半径为r ,则10AO r =-,得出10610r r -=,即可得出; 【详解】(1)证明:连接OE ,∵AB BC =且D 是AC 中点,∴BD AC ⊥,∵BE 平分ABD ∠,∴ABE DBE ∠∠=,∵OB OE =,∴OBE OEB ∠=∠,∴OEB DBE ∠=∠,∴//OE BD ,∵BD AC ⊥,∴OE AC ⊥,∵OE 为O 半径, ∴AC 与O 相切.(2)解:∵6BD =,3sin 5C =,BD AC ⊥, ∴10BC =,∴10AB BC ==,设O 的半径为r ,则10AO r =-,∵//OE BD ,∴AOE ABD ∽ ∴OE AO BD AB=,∴10610r r -= ∴154r =, 答:⊙O 的半径是154.【点睛】本题主要考查了切线的判定与性质,三角函数,相似三角形的判定与性质,准确计算是解题的关键.25.(1)()1010005090y x x =-+;(2)当销售单价为70元时,总利润w 最大,进货数量为300件;(3)此时销售单价定为68元时,当月月利润最大.【分析】(1)利用待定系数法即可求出y 与x 之间的函数表达式;(2)根据“总利润=单件利润×销售件数”列出函数关系式,配成顶点式,根据二次函数性质即可求解;(3)设当月月利润为m ,根据“总利润=总盈利-总亏损”得到m 与x 函数关系式,根据二次函数性质即可求解.【详解】解:(1)设y 与x 之间函数关系式为()0y kx b k =+≠,将点A (50,500),B (90,100)代入函数关系式得5050090100k b k b +=⎧⎨+=⎩, 解得101000k b =-⎧⎨=⎩, ∴求出y 与x 之间的函数表达式为()1010005090y x x =-+;(2)由题意得()()10100040w x x =-+-21014004000x x =-+-()210709000x =--+,∴当销售单价为70元时,总利润w 最大,此时该月进货数量应为-10×70+1000=300件; (3)设当月月利润为m , ()()()()210100040403635010001010136037400m x x x x x =-+----+=-+-, ∵-10<0,∴当136068220b x a =-==-时,m 最大, 答:此时销售单价定为68元时,当月月利润最大.【点睛】本题为一次函数、二次函数综合题,综合性较强,熟练掌握待定系数法和求总利润的数量关系,二次函数性质是解题关键.26.(1)点B 的坐标是()1,3;(2)251366y x x =+;(3)1 235=AB B S △. 【分析】(1)过点A 作AD x ⊥轴于点D .过点B 作BE x ⊥轴于点E .证明()OEB AAS ADO ≌△△,利用三角形全等的性质可得1OE AD ==,3==BE OD ,从而可得答案;(2) 设过点A ,O ,B 的抛物线的函数表达式为2y ax bx c =++,把()()()3,1,0,0,1,3,A O B -代入解析式,利用待定系数法列方程组解方程组可得答案; (3)如图,延长DA 交1BB 于,M 由1,B B 关于l 对称,则1,DA BB ⊥ 先求解抛物线的对称轴1313651026x =-=-⨯,1,B B 关于l 对称,再求解1,,BB AM 利用三角形的面积公式可得答案.【详解】解(1)过点A 作AD x ⊥轴于点D .过点B 作BE x ⊥轴于点E .∴ 90,ADO BEO ∠=∠=︒90AOD DAO ∠+∠=︒,()3,1,A -3,1,OD AD ∴==∵90AOB ∠=︒,∴90AOD BOE ∠+∠=︒.∴DAO BOE ∠=∠.在Rt AOD 和Rt OBE 中,90ADO BEO DAO BOEAO BO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()OEB AAS ADO ≌△△.∴1OE AD ==,3==BE OD∴ 点B 的坐标是()1,3.(2)()()()3,1,0,0,1,3,A O B -设过点A ,O ,B 的抛物线的函数表达式为2y ax bx c =++,∴3 931a b ca b cc++=⎧⎪-+=⎨⎪=⎩.∴5 6 136abc⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩.过点A,O,B的抛物线的函数表达式为251366y x x=+.(3)如图,延长DA交1BB于,M由1,B B关于l对称,则1,DA BB⊥251366y x x=+的对称轴1313651026x=-=-⨯.1,B B关于l对称,()()1,3,3,1,B A-1132321,105BB⎛⎫∴=⨯+=⎪⎝⎭()33M-,,312,AM∴=-=∴1123232255AB BS=⨯⨯=.【点睛】本题考查的是图形与坐标,三角形全等的判定与性质,利用待定系数法求解二次函数的解析式,二次函数的性质,掌握以上知识是解题的关键.。

新九年级数学下期末一模试卷附答案

新九年级数学下期末一模试卷附答案

新九年级数学下期末一模试卷附答案一、选择题1.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <32.下列运算正确的是( ) A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =3.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 4.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .154B .14C .1515D .417175.下列运算正确的是( ) A .23a a a +=B .()2236a a =C .623a a a ÷=D .34a a a ⋅=6.下列命题中,真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线互相垂直平分的四边形是正方形 C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形7.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .128.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A.B.C.D.9.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q10.估6的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间11.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个12.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.14.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.15.若一个数的平方等于5,则这个数等于_____. 16.使分式的值为0,这时x=_____.17.计算:82-=_______________.18.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .19.若a b =2,则222a b a ab--的值为________.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.计算:219(34)02cos 452-︒⎛⎫-+-- ⎪⎝⎭. 22.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一 如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考(1)设,点到的距离.①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格.654 3.53 2.5210.5000.55 1.2 1.58 1.0 2.473 4.29 5.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率. 24.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:ooo o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈) 25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元 (1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?26.如图,一艘巡逻艇航行至海面B 处时,得知正北方向上距B 处20海里的C 处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C 处营救.已知C 处位于A 处的北偏东45°的方向上,港口A 位于B 的北偏西30°的方向上.求A 、C 之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据点A 的坐标找出b 值,令一次函数解析式中y=0求出x 值,从而找出点B 的坐标,观察函数图象,找出在x 轴上方的函数图象,由此即可得出结论. 【详解】解:∵一次函数y =﹣2x+b 的图象交y 轴于点A (0,3), ∴b =3,令y =﹣2x+3中y =0,则﹣2x+3=0,解得:x =32, ∴点B (32,0). 观察函数图象,发现:当x <32时,一次函数图象在x 轴上方, ∴不等式﹣2x+b >0的解集为x <32. 故选:B . 【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B 的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.2.C解析:C 【解析】 【分析】分别计算出各项的结果,再进行判断即可. 【详解】A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误. 故选C 【点睛】本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.3.A解析:A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .4.A解析:A 【解析】∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC ,则cos B =BC AB =4, 故选A5.D解析:D 【解析】 【分析】 【详解】解:A 、a+a 2不能再进行计算,故错误; B 、(3a )2=9a 2,故错误; C 、a 6÷a 2=a 4,故错误; D 、a·a 3=a 4,正确; 故选:D . 【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.6.D解析:D 【解析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【详解】对角线互相垂直且平分的四边形是菱形,故A是假命题;对角线互相垂直平分且相等的四边形是正方形,故B是假命题;对角线相等且平分的四边形是矩形,故C是假命题;对角线互相平分的四边形是平行四边形,故D是真命题.故选D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.8.B解析:B试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.9.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.10.C解析:C【解析】【分析】先化简后利用的范围进行估计解答即可.【详解】=6-3=3,∵1.7<<2,∴5<3<6,即5<<6,故选C.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.11.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.12.无二、填空题13.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴E F=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.14.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:415.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:5±【解析】【分析】根据平方根的定义即可求解.【详解】±.若一个数的平方等于5,则这个数等于:5±.故答案为:5【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.16.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法17.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键2【解析】【分析】82.【详解】82=222.2.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.18.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间解析:5.【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴22125+考点:1.轴对称-最短路线问题;2.正方形的性质.19.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2【解析】分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a=2b时,原式=22b bb+=32.故答案为32.点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】 【分析】 先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.1【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【详解】解:原式=4﹣3+1﹣222⨯=2﹣1=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是.【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,.②作于.,,,,,,故答案为:,.(2)①当时,,当时,,故答案为2,6.②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为.性质2:函数图象在第一象限,随的增大而减小.【点睛】本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)24.43米【解析】【分析】【详解】解:设CD = x.在Rt△ACD中,tan37AD CD︒=,则34ADx =,∴34 AD x=.在Rt△BCD中,tan48° =BD CD,则1110BDx=,∴1110 BD x=∵AD+BD = AB,∴31180 410x x+=.解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.25.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.26.A、C之间的距离为10.3海里.【解析】【分析】【详解】解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD3x.又∵BC=20,∴x3x=20,解得:x =31).x=≈⨯⨯-=≈ (海里).∴AC2231) 1.4110(1.731)10.29310.3答:A、C之间的距离为10.3海里.。

新九年级数学下期末一模试题(带答案)

新九年级数学下期末一模试题(带答案)

新九年级数学下期末一模试题(带答案)一、选择题1.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0)B .(1,0)C .(32,0)D .(52,0) 2.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .63.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .94.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )A .21.7米B .22.4米C .27.4米D .28.8米 5.2-的相反数是( )A .2-B .2C .12D .12- 6.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( )A.B.C.D.7.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°8.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°9.下列各曲线中表示y是x的函数的是()A.B.C.D.10.已知直线y=kx﹣2经过点(3,1),则这条直线还经过下面哪个点()A.(2,0)B.(0,2)C.(1,3)D.(3,﹣1)11.下列二次根式中,与3是同类二次根式的是()A.18B.13C24D0.312.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A.B.C.D.二、填空题13.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.14.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.15.分式方程32xx2--+22x-=1的解为________.16.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3=,那么tan∠DCF的值是____.17.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.19.已知10a b b -+-=,则1a +=__.20.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.三、解答题21.已知222111x x x A x x ++=---. (1)化简A ; (2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值. 22.如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.23.如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)m y x x=>经过点B . (1)求直线10y kx =-和双曲线m y x=的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD , ①当点C 在双曲线上时,求t 的值;②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值;③当136112DC =时,请直接写出t 的值.24.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E .(1)求证:直线CD 是⊙O 的切线.(2)求证:CD BE AD DE ⋅=⋅.25.(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A 型车2015年6月份销售总额为3.2万元,今年经过改造升级后A 型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A 型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A 型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A 型车和B 型车共50辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A 、B 两种型号车的进货和销售价格如下表:A 型车B 型车 进货价格(元/辆)1100 1400 销售价格(元/辆) 今年的销售价格 240026.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:122122k bk b⎧+⎪⎪⎨⎪+⎪⎩==,解得:k=-1,b=52,∴直线AB的解析式是y=-x+52,当y=0时,x=52,即P(52,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.2.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.3.A解析:A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.4.A解析:A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A .【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .6.D解析:D【解析】【分析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D7.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.9.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.10.A解析:A【解析】【分析】把点(3,1)代入直线y=kx﹣2,得出k值,然后逐个点代入,找出满足条件的答案.【详解】把点(3,1)代入直线y=kx﹣2,得1=3k﹣2,解得k=1,∴y=x﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y=x﹣2中,只有(2,0)满足条件.故选A.【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.11.B解析:B【解析】【分析】【详解】ABC=D=10故选B.12.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.二、填空题13.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A解析:18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.14.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣43 【解析】 【分析】 【详解】 试题分析:如图所示:连接AC ,BD 交于点E ,连接DF ,FM ,MN ,DN ,∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC ⊥BD ,四边形DNMF 是正方形,∠AOC=90°,BD=2,AE=EC=3,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S 正方形DNMF =2(3﹣1)×2(3﹣1)×12=8﹣43, S △ADF =12×AD×AFsin30°=1, ∴则图中阴影部分的面积为:4S △ADF +S 正方形DNMF =4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.15.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.16.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB=CD∠D=90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF=BC∵∴∴设CD =2xCF =3x∴∴tan∠DCF=故答案为:【点解析:2. 【解析】【分析】【详解】 解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3=.∴设CD =2x ,CF =3x ,∴.∴tan ∠DCF =DF CD =.【点睛】 本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.17.【解析】【分析】根据甲乙两车单独运这批货物分别用2a 次a 次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合 解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a 次、a 次能运完”甲的效率应该为12a ,乙的效率应该为1a ,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T 吨,甲车每次运t 甲吨,乙车每次运t 乙吨,∵2a ⋅t 甲=T ,a ⋅t 乙=T ,∴t 甲:t 乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键. 18.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.19.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案.【详解】b﹣1|=0,≥,|1|0b-≥,∴a﹣b=0且b﹣1=0,解得:a=b=1,∴a+1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a、b的方程是解题的关键.20.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.三、解答题21.(1)11x-;(2)1【解析】【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.【详解】(1)原式=2(1)(1)(1)1x xx x x+-+--=111x xx x+---=11x xx+--=11x-(2)不等式组的解集为1≤x<3 ∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=11x-中x≠1,∴当x=1时,A=11x-无意义.②当x=2时,A=11x-=1=12-1考点:分式的化简求值、一元一次不等式组.22.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.(1)直线的表达式为5106y x =-,双曲线的表达式为30y x =-;(2)①52;②当06t <<时,BCD ∠的大小不发生变化,tan BCD ∠的值为56;③t 的值为52或152. 【解析】【分析】(1)由点(12,0)A 利用待定系数法可求出直线的表达式;再由直线的表达式求出点B 的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)①先求出点C 的横坐标,再将其代入双曲线的表达式求出点C 的纵坐标,从而即可得出t 的值;②如图1(见解析),设直线AB 交y 轴于M ,则(0,10)M -,取CD 的中点K ,连接AK 、BK .利用直角三角形的性质证明A 、D 、B 、C 四点共圆,再根据圆周角定理可得BCD DAB ∠=∠,从而得出tan tan OM BCD DAB OA∠=∠=,即可解决问题; ③如图2(见解析),过点B 作⊥BM OA 于M ,先求出点D 与点M 重合的临界位置时t 的值,据此分05t <<和512t ≤<两种情况讨论:根据,,A B C 三点坐标求出,,AM BM AC 的长,再利用三角形相似的判定定理与性质求出DM 的长,最后在Rt ACD ∆中,利用勾股定理即可得出答案.【详解】(1)∵直线10y kx =-经过点(12,0)A 和(,5)B a -∴将点(12,0)A 代入得12100k -= 解得56k = 故直线的表达式为5106y x =- 将点(,5)B a -代入直线的表达式得51056a -=- 解得6a =(6,5)B ∴- ∵双曲线(0)m y x x=>经过点(6,5)B - 56m ∴=-,解得30m =- 故双曲线的表达式为30y x =-; (2)①//AC y Q 轴,点A 的坐标为(12,0)A∴点C 的横坐标为12将其代入双曲线的表达式得305122y =-=- ∴C 的纵坐标为52-,即52AC = 由题意得512t AC ⋅==,解得52t = 故当点C 在双曲线上时,t 的值为52; ②当06t <<时,BCD ∠的大小不发生变化,求解过程如下: 若点D 与点A 重合由题意知,点C 坐标为(12,)t -由两点距离公式得:222(612)(50)61AB =-+--= 2222(126)(5)36(5)BC t t =-+-+=+-+22AC t =由勾股定理得222AB BC AC +=,即226136(5)t t ++-+= 解得12.2t =因此,在06t <<范围内,点D 与点A 不重合,且在点A 左侧 如图1,设直线AB 交y 轴于M ,取CD 的中点K ,连接AK 、BK 由(1)知,直线AB 的表达式为5106y x =- 令0x =得10y =-,则(0,10)M -,即10OM =Q 点K 为CD 的中点,BD BC ⊥12BK DK CK CD ∴===(直角三角形中,斜边上的中线等于斜边的一半) 同理可得:12AK DK CK CD === BK DK CK AK ∴===∴A 、D 、B 、C 四点共圆,点K 为圆心BCD DAB ∴∠=∠(圆周角定理)105tan tan 126OM BCD DAB OA ∴∠=∠===;③过点B 作⊥BM OA 于M由题意和②可知,点D 在点A 左侧,与点M 重合是一个临界位置 此时,四边形ACBD 是矩形,则5AC BD ==,即5t = 因此,分以下2种情况讨论:如图2,当05t <<时,过点C 作CN BM ⊥于N(6,5(1),2,0),(12,)B A t C --Q12,6,6,5,OA OM AM OA OM BM AC t ∴===-=== 90CBN DBM BDM DBM ∠+∠=∠+∠=︒QCBN BDM ∴∠=∠又90CNB BMD ∠=∠=︒QCNB BMD ∴∆~∆CN BN BM DM∴= AM BM AC BM DM -∴=,即655t DM-= 5(5)6DM t ∴=- 56(5)6AD AM DM t ∴=+=+- 由勾股定理得222AD AC CD += 即222513616(5)(6t t ⎡⎤+-+=⎢⎥⎣⎦解得52t =或152t =(不符题设,舍去) 当512t ≤<时,同理可得:222513616(5)(6t t ⎡⎤--+=⎢⎥⎣⎦解得152t =或52t =(不符题设,舍去) 综上所述,t 的值为52或152.【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.24.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,由角平分线的定义得到∠CAD=∠BAD ,根据等腰三角形的性质得到∠BAD=∠ADO ,求得∠CAD=∠ADO ,根据平行线的性质得到CD ⊥OD ,于是得到结论;(2)连接BD ,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD ,∵AD 平分BAC ∠,∴CAD BAD ∠=∠,∵OA OD =,∴BAD ADO =∠∠,∴CAD ADO ∠=∠,∴AC OD ∥,∵CD AC ⊥,∴CD OD ⊥,∴直线CD 是⊙O 的切线;(2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径,∴90ABE BDE ︒∠=∠=,∵CD AC ⊥,∴90C BDE ︒∠=∠=,∵CAD BAE DBE ∠=∠=∠,∴ACD BDE ∆∆∽, ∴CD AD DE BE=, ∴CD BE AD DE ⋅=⋅.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.25.(1)2000;(2)A 型车17辆,B 型车33辆【解析】试题分析:(1)设去年A 型车每辆x 元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A 型车m 辆,则B 型车(50﹣m )辆,获得的总利润为y 元,先求出m 的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A 型车每辆x 元,那么今年每辆(x+400)元,根据题意得, 解之得x=1600, 经检验,x=1600是方程的解. 答:今年A 型车每辆2000元.(2)设今年7月份进A 型车m 辆,则B 型车(50﹣m )辆,获得的总利润为y 元,根据题意得50﹣m≤2m解之得m≥, ∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m )=﹣100m+50000, ∴y 随m 的增大而减小, ∴当m=17时,可以获得最大利润.答:进货方案是A 型车17辆,B 型车33辆.考点:(1)一次函数的应用;(2)分式方程26.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人,∴x=40﹣(4+16+6)=14,故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%,∴m=10、n=40,C等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144;(3)列表如下:a1和b1的有2种结果,∴恰好选取的是a1和b1的概率为21 126.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.。

最新九年级数学下期末一模试卷附答案

最新九年级数学下期末一模试卷附答案

一、选择题1.如图,A B C D 、、、是O 上的点,180AOD BOC ∠+∠=︒.若2,6AD BC ==,则BOC ∆的面积为( )A .3B .6C .9D .122.图中的三块阴影部分由两个半径为1的圆及其外公切线分割而成,如果中间一块阴影的面积等于上下两块面积之和,则这两圆的公共弦长是( )A .5B .6C .21252π-D .21162π- 3.如图,ABC 内接于O ,A 40∠=︒,ABC 70∠=︒,BD 是O 的直径,BD 交AC 于点E ,连接CD ,则AEB ∠等于( )A .70︒B .90°C .110°D .120°4.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论: ①AD ⊥BD ;②BC 平分∠ABD ;③BD=2OF=CF ;④△AOF ≌△BED ,其中一定成立的是( )A .①②B .①③④C .①②④D .③④ 5.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( ) A . B .C .D .6.已知二次函数2y x bx c =-+与x 轴只有一个交点,且图象经过两点A (1,n ),B (m +2,n ),则m 、n 满足的关系为( )A .24m n =B .22m n =C .()214m n += D .()212m n += 7.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论:①0ab <;②24b ac >;③20a b c ++<;④30a c +<.其中正确的是( )A .①②④B .②④C .①②③D .①②③④ 8.已知二次函数2y ax bx c =++的图象如图所示,则下列结论正确的个数有( ) ①0c >;②240b ac -<;③0a b c -+>;④当1x >时,y 随x 的增大而减小A .4个B .3个C .2个D .1个 9.在Rt ABC 中,∠C =90º,下列关系式中错误的是( ) A .BC =AB•sinA B .BC =AC•tanA C .AC =BC•tanB D .AC =AB•cosB 10.如图,矩形ABCD 的四个顶点分别在直线3l ,4l ,2l ,1l 上,若直线1234//////l l l l 且间距相等,3AB =,2BC =,则tan α的值为( )A .38B .13C .52D .151511.如右图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在格点上,则sin BAC ∠的值为( )A .45B .35C .34D .2312.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则sin ∠BDE 的值是 ( )A .15B .14C .13D .24二、填空题13.如图,已知矩形ABCD 中3AB =,4BC =,将三角板的直角顶点P 放在矩形内,移动三角板保持两直角边分别经过点B 、C ,则PD 的最小值为________.14.如图,已知O 中,弦AB CD 、交于,4,2P AP PB CP ===,则CD =____.15.如图,在平面直角坐标中,对抛物线222y x x =-+在x 轴上方的部分进行循环反复的轴对称或中心对称变换,若点A 是该抛物线的顶点,则经过第2020次变换后所得的A 点的坐标是_________.16.如图,点P 是双曲线()4:0C y x x=>上的一点,过点P 作x 轴的垂线交直线1:22AB y x =-于点Q ,连结,OP OQ 当点P 在曲线C 上运动,且点P 在Q 的上方时,POQ △面积的最大值是________.17.将抛物线2y x =-先向左平移1个单位长度,再向上平移2个单位长度后,得到的抛物线的解析式是______.18.正三角形的边长为2,则它的边心距为_____.19.如图是高铁站自动检票口的双翼闸机,检票后双翼收起,通过闸机的物体的最大宽度为70cm ,检票前双翼展开呈扇形CAP 和扇形DBQ ,若AC =BD =55cm ,∠PCA =∠BDQ =30°,则A 、B 之间的距离为_____cm .20.如图,在ABC 中,AD BC ⊥交BC 于点D ,AD BD =,若42AB =,4tan 3C =,则BC =________.21.已知等腰ABC ,AB AC =,BH 为腰AC 上的高,3BH =,3tan ABH ∠=,则CH 的长为______. 22.在锐角ABC 中,2232sin cos 2A B ⎛⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=0,则∠C 的度数为____. 三、解答题23.如图,在ABC 中,AB AC =,点O 在AB 上,O 经过点B ,与BC 交于另一点D ,与AB 交于另一点E ,作DF AC ⊥,连结EF .(1)求证∶DF 与O 相切; (2)若EF 与O 相切,7AC =,4DF =. ①求证∶四边形ODCF 为平行四边形; ②求O 的半径.24.如图,在ABC 中,AB AC =,以AB 为直径的 O 分别交BC AC 、边于点D F 、.过点D 作DE CF ⊥于点 E .(1)求证:DE 是O 的切线;(2)2,2AF DE EF -==,求O 的半径. 25.如图, 已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线2y ax bx c =++与直线交于A ,E 两点,与x 轴交于B (1,0),C (2,0)两点.(1)求该抛物线的解析式;(2)动点P 在x 轴上移动, 当△PAE 是直角三角形时, 请通过计算写出一个满足条件点P 的坐标.26.如图,在平面直角坐标系中,点()2,3A 为二次函数()220y ax bx a =+-≠与反比例函数()0k y k x=≠在第一象限的交点,已知该抛物线()220y ax bx a =+-≠与x 轴正、负半轴分别交于点E 、点D ,交y 轴负半轴于点B ,且1tan 2ADE ∠=. (1)求二次函数和反比例函数的表达式; (2)已知点M 为抛物线上一点,且在第三象限,顺次连接点D M B E 、、、,求四边形DMBE 面积的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】作出辅助线延长BO 交O 于点E ,连接CE ,由此构建圆心角AOD COE ∠=∠,根据圆周角与弧长和弦长的关系得到2AD CE ==,再据此求出BEC △的面积,经由OB OE =即可求出BCE 的面积.【详解】解:如图延长BO 交O 于点E ,连接CE ,∵B O E 、、三点共线∴180COE BOC ∠+∠=︒,90BCE ∠=︒,∴CE BC ⊥,∵180AOD BOC ∠+∠=︒,∴AOD COE ∠=∠,∴AD CE =,∴2AD CE ==,∵6BC =, ∴1162622S BC CE ==⨯⨯=△BCE , ∵OB OE =, ∴116322S S ==⨯=△BOC △BEC . 故选A.【点睛】本题主要考查圆心角所对弧、弦的关系,圆周角定理,关键在于作出OB 的延长线OE ,来构造出圆心角相等,以此来解决问题.2.D解析:D【分析】由题意得到四边形ABCD 为矩形,BC=2,再根据中间一块阴影的面积等于上下两块面积之和,得到BC•AB -(S 半圆AD +S 半圆BC -S )=S ,即2AB-π•12+S=S ,可求出AB=2π,则OP=12AB=4π,在Rt △OEP 中,利用勾股定理可计算出EP ,即可得到两圆的公共弦长EF .【详解】解:∵AB ,CD 为两等圆的公切线,∴四边形ABCD 为矩形,BC=2,设中间一块阴影的面积为S ,∵中间一块阴影的面积等于上下两块面积之和,∴BC •AB -(S 半圆AD +S 半圆BC -S )=S ,即2AB-π•12+S=S ,∴AB=2π. 如图,EF 为公共弦,PO ⊥EF ,OP=12AB=4π, ∴22OE OF -222161()4ππ--=, ∴21162π-. 故选:D .【点睛】本题考查了垂径定理、勾股定理,公切线,连心线的性质,熟练掌握相关知识是解题的关键.3.D解析:D【分析】根据三角形内角和定理和圆周角定理求解即可;【详解】∵A 40∠=︒,ABC 70∠=︒,∴180407070ACB ∠=︒-︒-︒=︒, ∵BD 是圆O 的直径,∴90BCD ∠=︒,∴20ACD ∠=︒,∴20ABD ACD ∠=∠=︒,∴()1801804020120AEB BAE ABE∠=︒-∠+∠=︒-︒-︒=︒;故答案选D .【点睛】本题主要考查了圆周角定理、三角形内角和,准确计算是解题的关键.4.A解析:A【分析】根据直径的性质,垂径定理等知识一一判断即可;【详解】解:∵AB 是直径,∴∠ADB =90°,∴AD ⊥BD ,故①正确,∵OC ∥BD ,BD ⊥AD ,∴OC ⊥AD ,∴AC CD =,∴∠ABC =∠CBD ,∴BC 平分∠ABD ,故②正确,∵AF =DF ,AO =OB ,∴BD =2O F≠CF ,故③错误,△AOF 和△BED 中,没有对应边相等,故④错误,故选:A .【点睛】本题考查直径的性质、垂径定理、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.B解析:B【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断.【详解】解:A 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2b a >0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a <0,b >0,故本选项错误.故选:B .【点睛】本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键. 6.C解析:C【分析】设解析式为()()12y x x m n =---+,得对称轴为32m x +=,由抛物线与x 轴只有一个交点得顶点为3,02m +⎛⎫ ⎪⎝⎭,代入()()12y x x m n =---+整理后即可得出结论. 【详解】解:设解析式为()()12y x x m n =---+∵A ,B 两点关于对称轴对称∴对称轴为直线12322m m x +++== ∵二次函数与x 轴只有一个交点∴顶点为3,02m +⎛⎫ ⎪⎝⎭把3,02m +⎛⎫ ⎪⎝⎭代入()()12y x x m n =---+ ∴3312022m m m n ++⎛⎫⎛⎫---+= ⎪⎪⎝⎭⎝⎭∴1102222m m n ⎛⎫⎛⎫+--+= ⎪⎪⎝⎭⎝⎭∴()214m n += 故选:C【点睛】本题考查的是抛物线与x 轴的交点问题,根据题意得出抛物线的对称轴方程是解答此题的关键.7.C解析:C【分析】根据函数的图像分别确定各项系数的正负,再由对称轴和与x 轴的交点即可解题.【详解】∵抛物线开口向上,∴a>0,∵抛物线与y 轴的交点在x 轴下方,∴c<0,抛物线的对称轴为直线x=-b 2a =10>,即02<b a0a >0b ∴<∴ab<0,所以①正确;∵抛物线与x 轴有2个交点,∴△=b 2-4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=-b 2a =1, ∴b=-2a ,而x=-1时,y>0,即a-b+c>0,∴a+2a+c>0,即30a c +>所以④错误.故选C .【点睛】本题考查了二次函数的图像与性质,属于简单题,熟悉二次函数的图像性质是解题关键. 8.B解析:B【分析】根据二次函数的图象与y 轴的交点判断c 的正负;根据二次函数的图象与x 轴交点个数,判断②的正确性;根据1x =-时,y 取值的正负,判断③的正确性;根据图象中函数的增减性判断④的正确性.【详解】解:∵二次函数的图象与y 轴的交点在正半轴,∴0c >,故①正确;∵二次函数的图象与x 轴有两个交点,∴方程20ax bx c ++=有两个不相同的实数根,∴240b ac ->,故②错误;当1x =-时,0y >,即0a b c -+>,故③正确;根据图象,当1x >时,y 随x 的增大而减小,故④正确.故选:B .【点睛】本题考查二次函数,解题的关键是根据二次函数的图象分析解析式中系数的关系.9.D解析:D【分析】根据三角函数的定义即可作出判断.【详解】解:A 、∵sin BC A AB=, ∴sin BC AB A =, 故正确,不符合题意;B 、∵tanA= BC AC, ∴BC=AC•tanA ,故正确,不符合题意;C 、∵tanB=AC BC, ∴AC=BC•tanB , 故正确,不符合题意;D 、∵cos BC B AB=, ∴cos BC AB B =,故错误,符合题意;故选:D .【点睛】本题考查锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.10.B解析:B【分析】根据题意,可以得到BG 的长,再根据∠ABG=90°,AB=3,可以得到∠BAG 的正切值,再根据平行线的性质,可以得到∠BAG=∠α,从而可以得到tanα的值.【详解】解:作CF ⊥l 4于点F ,交l 3于点E ,设CB 交l 3于点G ,由已知可得,GE ∥BF ,CE=EF ,∴△CEG ∽△CFB , ∴CE CG CF CB =, ∵12CE CF =, ∴12CG CB =, ∵BC=2,∴GB=1,∵l 3∥l 4,∴∠α=∠GAB ,∵四边形ABCD 是矩形,AB=3,∴∠ABG=90°,∴1tan 3BG BAG AB ∠==, ∴tanα的值为13, 故选:B .【点睛】本题考查矩形的性质,解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答. 11.A解析:A【分析】过C 作CD AB ⊥于D ,首先根据勾股定理求出AC ,然后在Rt ACD ∆中即可求出sin BAC ∠的值.【详解】如图,过C 作CD AB ⊥于D ,则=90ADC ∠︒,AC 5.4sin 5CD BAC AC ∠==. 故选:A .【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线构造直角三角形是解题的关键. 12.C解析:C【分析】由矩形的性质可得AB =CD ,AD =BC ,AD ∥BC ,可得BE =CE =12BC =12AD ,由全等三角形的性质可得AE =DE ,由相似三角形的性质可得AF =2EF ,由勾股定理可求DF 的长,即可求sin ∠BDE 的值.【详解】∵四边形ABCD 是矩形∴AB =CD ,AD =BC ,AD ∥BC∵点E 是边BC 的中点,∴BE =CE =12BC =12AD , ∵AB =CD ,BE =CE ,∠ABC =∠DCB =90°∴△ABE ≌△DCE (SAS )∴AE =DE∵AD ∥BC∴△ADF ∽△EBF ∴AF AD =EF BE=2 ∴AF =2EF , ∴AE =3EF =DE ,∴ sin ∠BDE =EF 1=DE 3, 故选C .【点睛】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键. 二、填空题13.【分析】点P 的运动轨迹是以BC 为直径在矩形内的半圆圆心在线段BC 的中点处连接圆心和点D 交半圆于点P 则此时PD 最短利用勾股定理求出OD 的长再减去OP的长即可【详解】由题意可得:点P的运动轨迹是以BC为解析:132-【分析】点P的运动轨迹是以BC为直径,在矩形内的半圆,圆心在线段BC的中点处,连接圆心和点D,交半圆于点P,则此时PD最短,利用勾股定理求出OD的长,再减去OP的长即可【详解】由题意可得:点P的运动轨迹是以BC为直径,在矩形内的半圆,圆心在线段BC的中点处,设圆心为点O,如图:连接OD,交半圆与点P,则此时PD最短,4BC=∴圆的半径122OP OC BC===3AB DC==在Rt DCO中22222313OD DC OC+=+132PD OD OP∴=-=132.【点睛】本题考查了最值问题,矩形的性质,勾股定理,解题关键是能准确分析出点P的运动轨迹.14.10【分析】连接ADBC可证∆BPC~∆DPA从而列出比例式即可求解【详解】解:连接ADBC则∠PBC=∠PDA又∵∠BPC=∠DPA∴∆BPC~∆DPA∴∴DP===8∴CD=8+2=10故答案是解析:10【分析】连接AD,BC,可证∆BPC~∆DPA,从而列出比例式,即可求解.【详解】解:连接AD,BC,则∠PBC=∠PDA,又∵∠BPC=∠DPA,∴∆BPC~∆DPA , ∴PA PD PC PB=, ∴DP =PA PB PC ⋅=442⨯=8, ∴CD=8+2=10.故答案是:10.【点睛】本题主要考查圆周角定理,相似三角形的判定和性质,添加辅助线,构造相似三角形,是解题的关键.15.【分析】观察图形可知每三次对称为一个循环组依次循环用2020除以3然后根据商和余数的情况确定出变换后的点A 所在的象限然后解答即可【详解】解:∵∴抛物线的顶点坐标为点A 第一次关于x 轴对称后在第四象限第解析:11,22⎛⎫- ⎪⎝⎭【分析】观察图形可知每三次对称为一个循环组依次循环,用2020除以3,然后根据商和余数的情况确定出变换后的点A 所在的象限,然后解答即可.【详解】解:∵2221122=2()2()22y x x x x x =-+--=--+∴抛物线222y x x =-+的顶点坐标为11,22⎛⎫ ⎪⎝⎭点A 第一次关于x 轴对称后在第四象限,第二次关于原点对称后在第二象限,第三次关于y 轴对称后在第一象限,回到原始位置,所以每3次对称为一个循环组,∵20203=6731÷∴经过第2020次变换后所得的A 点位置第一次变换后的位置相同,在第四象限,坐标为11,22⎛⎫- ⎪⎝⎭故答案为:11,22⎛⎫- ⎪⎝⎭【点睛】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每三次对称为一个循环组依次循环是解题的关键,也是本题的难点.16.3【分析】设P (x )则Q (xx−2)得到PQ =−x +2根据三角形面积公式得到S △POQ =−(x−2)2+3根据二次函数的性质即可求得最大值【详解】解:∵PQ ⊥x 轴∴设P (x )则Q (xx−2)∴PQ =解析:3【分析】设P (x ,4x ),则Q (x ,12x−2),得到PQ =4x −12x +2,根据三角形面积公式得到S △POQ =−14(x−2)2+3,根据二次函数的性质即可求得最大值. 【详解】解:∵PQ ⊥x 轴, ∴设P (x ,4x ),则Q (x ,12x−2), ∴PQ =4x −12x +2, ∴S △POQ =12(4x −12x +2)•x =−14(x−2)2+3, ∵−14<0, ∴△POQ 面积有最大值,最大值是3,故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y =k x (k≠0)系数k 的几何意义:从反比例函数y =k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|. 17.【分析】根据左加右减上加下减的原则进行解答即可【详解】解:将抛物线向左平移1个单位所得直线解析式为:;再向上平移2个单位为:故答案为:【点睛】此题主要考查了二次函数图象与几何变换要求熟练掌握平移的规 解析:()212y x =-++【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线2y x =-向左平移1个单位所得直线解析式为:()2+1y x =-; 再向上平移2个单位为:()2+21+y x =-.故答案为:()212y x =-++.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减. 18.【分析】如图连接OBOC ;求出∠BOC =120°进而求出∠BOD =60°运用三角函数即可解决问题【详解】解:如图△ABC 为正三角形点O 为其中心;作OD ⊥BC 于点D ;连接OBOC ;∵OA =OC ∠BOC 解析:33 【分析】 如图,连接OB 、OC ;求出∠BOC =120°,进而求出∠BOD =60°,运用三角函数即可解决问题.【详解】解:如图,△ABC 为正三角形,点O 为其中心;作OD ⊥BC 于点D ;连接OB 、OC ;∵OA =OC ,∠BOC =120°,∴BD =12BC =1,∠BOD =12∠BOC =60°, ∴tan ∠BOD =BD OD , ∴OD =3BD =3, 即边长为2的正三角形的边心距为3. 故答案为:3.【点睛】本题考查了正三角形的性质、三角函数、边心距的计算;熟练掌握正三角形的性质,根据题意画出图形,利用数形结合的思想求解是解答本题的关键;19.15【分析】如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F求出CEDF即可解决问题【详解】解:如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F∵AB∥EFAE∥BF∴四边形解析:15【分析】如图,连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F.求出CE, DF即可解决问题.【详解】解:如图,连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F.∵AB∥EF,AE∥BF,∴四边形ABFE是平行四边形,∵∠AEF=90°,∴四边形AEFB是矩形,∴EF=AB∵AE∥PC,∴∠PCA=∠CAE=30°,∴CE=AC•sin30°=27.5(cm),同法可得DF=27.5(cm),∴EF= CD-CE-DF=70-27.5-27.5=15(cm),∴AB=15(cm),故答案为15.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.20.7【分析】由题意得是等腰直角三角形由求出AD和BD的长度再根据求出CD的长即可求出BC的长【详解】解:∵∴是等腰直角三角形∴∴∵∴∵∴∵∴故答案是:7【点睛】本题考查解直角三角形解题的关键是掌握利用解析:7【分析】由题意得ABD △是等腰直角三角形,由42AB =求出AD 和BD 的长度,再根据4tan 3C =,求出CD 的长,即可求出BC 的长. 【详解】 解:∵AD BC ⊥,AD BD =, ∴ABD △是等腰直角三角形,∴45ABD ∠=︒,∴2sin 2AD ABD AB ∠==, ∵42AB =,∴4=AD ,∵4tan 3AD C CD ==, ∴3CD =, ∵4BD AD ==,∴437BC BD CD =+=+=.故答案是:7.【点睛】本题考查解直角三角形,解题的关键是掌握利用锐角三角函数解直角三角形的方法. 21.或【分析】如图所示分两种情况利用特殊角的三角函数值求出的度数利用勾股定理求出所求即可【详解】当为钝角时如图所示在中根据勾股定理得:即;当为锐角时如图所示在中设则有根据勾股定理得:解得:则故答案为或【 解析:33或3【分析】如图所示,分两种情况,利用特殊角的三角函数值求出ABH ∠的度数,利用勾股定理求出所求即可.【详解】当BAC ∠为钝角时,如图所示,在Rt ABH 中,3tan AH ABH BH ∠==,3BH =, 3AH ∴=根据勾股定理得:22(3)323AB =+=23AC =23333CH CA AH ∴=+==当BAC ∠为锐角时,如图所示,在Rt ABH 中,3tan ABH ∠=, 30ABH ∴∠=,1122AH AB AC ∴==, 设AH x =,则有2AB AC x ==, 根据勾股定理得:222(2)3x x =+, 解得:3x = 则3HC AC AH =-= 故答案为333【点睛】此题属于解直角三角形题型,涉及的知识有:等腰三角形的性质,勾股定理,以及特殊角的三角函数值,熟练掌握直角三角形的性质及分类的求解的数学思想是解本题的关键. 22.75°【分析】由非负数的性质可得:可求从而利用三角形的内角和可得答案【详解】解:由题意得sinA =cosB =解得∠A =60°∠B =45°∠C =180°﹣∠A ﹣∠B =75°故答案为:75°【点睛】本题解析:75°【分析】 由非负数的性质可得:3sin 2cos 2A B ⎧=⎪⎪⎨⎪=⎪⎩,可求,A B ∠∠,从而利用三角形的内角和可得答案.【详解】解:由题意,得sinA 3cosB 2, 解得∠A =60°,∠B =45°,∠C =180°﹣∠A ﹣∠B =75°,故答案为:75°.【点睛】本题考查了非负数的性质:偶次方、三角形的内角和定理,特殊角的三角函数值,掌握以上知识是解题的关键.三、解答题23.(1)见解析;(2)见解析;(3)2或83. 【分析】(1)根据等腰三角形的性质,证明//OD AC ,根据切线的定义解答即可;(2)①连接OF ,利用切线长定理,证明//OF BC 即可;②设圆的半径为x ,根据平行四边形的性质,利用勾股定理构建x 的一元二次方程求解即可.【详解】解:(1)连接OD ,如图1, AB AC =,OB OD =B C ∴∠=∠,B ODB ∠=∠,C ODB ∴∠=∠,//OD AC ∴.DF AC ⊥,DF OD ∴⊥OD 为O 的半径,DF ∴与O 相切.(2)①连接OF ,如图2,∵EF=DF ,OE=OD ,∠OEF=∠ODF=90°,∴ODF OEF ≌△△,EOF DOF ∴∠=∠.EOD OBD ODB ∠=∠+∠,EOF OBD ∴∠=∠,OF//BC ∴OD//CF ,∴四边形ODCF 为平行四边形.②设O 的半径为x7AB AC ==,72AE x ∴=-.四边形ODCF 为平行四边形,CF OD x ∴==,7AF x ∴=-.4OF =,4EF DF ∴==在Rt AEF △中,222AE EF AF +=,222(72)4(7)x x ∴-+=-解得12x =,283x = O ∴的半径是2或83. 【点睛】本题考查了圆的切线的判定,平行四边形的判定,切线长定理,平行线的性质,勾股定理和一元二次方程的解法,熟练掌握圆的切线的判定,灵活运用已知解答是解题的关键. 24.(1)见解析;(2)5.【分析】(1)连接OD ,根据AB AC =,OD OB =得 C B ∠=∠,ODB B ∠=∠,即有C ODB ∠=∠,可证 //OD AC ,再根据DE CF ⊥可得90ODE DEC ∠=∠=︒,则可得 OD DE ⊥且OD 为O 的半径,可得DE 是O 的切线;(2)过点O 作OG AF ⊥于点G ,根据90OGE OGA ∠=∠=︒,根据垂径定理可得12AG GF AF ==,又90DEG ODE ∠=∠=︒,得四边形OGED 为矩形,则有OG DE =,OD GE =,设AG GF x ==,则2OA OD GE GF EF x ===+=+,2AF x =,222OG DE AF x ==-=-,在Rt OAG 中,根据勾股定理222AG OG OA +=得222(22)(2)x x x +-=+,解得13x =, 可得325OD =+=,即O 的半径为5.【详解】(1)证明:连接,OD DE CF ⊥,90DEC DEF ∴∠=∠=︒.,AB AC C B =∴∠=∠,,OD OB ODB B =∴∠=∠.C ODB ∴∠=∠.//OD AC ∴,90ODE DEC ∴∠=∠=︒,OD DE ∴⊥且OD 为O 的半径.DE ∴是O 的切线.(2)过点O 作OG AF ⊥于点G ,190,2OGE OGA AG GF AF ∴∠=∠=︒==. 又90DEG ODE ∠=∠=︒,∴四边形OGED 为矩形,,OG DE OD GE ∴==.设AG GF x ==,则2OA OD GE GF EF x ===+=+, 2AF x =,222OG DE AF x ==-=-.在Rt OAG 中,222AG OG OA +=,即222(22)(2)x x x +-=+,解得13x =,20x =(不合题意,舍去)325OD ∴=+=,即O 的半径为5.【点睛】本题考查的是切线的判定与性质,垂径定理,矩形的判定与性质,勾股定理,解一元二次方程等知识点,掌握切线的判定定理、垂径定理是解题的关键.25.(1)213122=-+y x x ;(2)点P 的坐标为1(,0)2或(1,0)或(3,0)或11(,0)2. 【分析】(1)根据直线的解析式求得点A (0,1),然后利用待定系数法求得函数解析式;(2)让直线解析式与抛物线的解析式结合即可求得点E 的坐标.△PAE 是直角三角形,应分点P 为直角顶点,点A 是直角顶点,点E 是直角顶点三种情况探讨.【详解】解:(1)解:(1)∵直线y=12x+1与y 轴交于点A , ∴A (0,1),将A (0,1),B (1,0),C (2,0)代入2y ax bx c =++中10420c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:12321a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴抛物线的解析式为:213122=-+y x x (2) 设点E 的横坐标为m ,则它的纵坐标为213122m m -+即E 点的坐标213(,1)22m m m -+, 又∵点E 在直线112y x =+上, ∴213111222m m m -+=+解得10m =(舍 去) ,24m =, E ∴的坐标为(4,3).(Ⅰ)当A 为直角顶点时,过A 作1AP DE ⊥交x 轴于1P 点,设1(,0)P a 易知D 点坐标为(2,0)-,由Rt AOD Rt ∆∽△1POA 得:DO OA OA OP =,即211a=, 12a ∴=, 11(2P ∴,0). (Ⅱ) 同理,当E 为直角顶点时, 过E 作2EP DE ⊥交x 轴于2P 点,由Rt AOD Rt ∆∽△2P ED 得,2DO DE OA EP =,即221=2EP ∴=,2152DP ∴==, 1511222a ∴=-=, 2P 点坐标为11(,0)2.(Ⅲ) 当P 为直角顶点时, 过E 作EF x ⊥轴于F ,设3(P b ,0),由90OPA FPE ∠+∠=︒,得OPA FEP ∠=∠,Rt AOP Rt PFE ∆∆∽,由AO OP PF EF =得143b b =-, 解得13b =,21b =,∴此时的点3P 的坐标为(1,0)或(3,0),综上所述, 满足条件的点P 的坐标为1(,0)2或(1,0)或(3,0)或11(,0)2.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,直线和抛物线的交点等;分类讨论的思想是解题的关键.26.(1)213222y x x =+-;6y x =;(2)9 【分析】(1)将()2,3A 代入反比例函数解析式即可求出k 值;再根据1tan 2ADE ∠=构建直角三角形即可求出D 点坐标;再讲A 、D 两点坐标代入二次函数解析式即可求出二次函数的表达式;(2)作出辅助线后将所求四边形的面积分为三部分,即DHM △、OEB 和梯形HOBM ,分别求出后求和,即可得出面积S 与M 点横坐标m 的二次函数关系式,有函数性质即可求出四边形DMBE 面积的最大值.【详解】解:(1)如图,过A 点作AC x ⊥轴且与x 轴交于点C ;将()2,3A 代入k y x =中,解得6k =, ∴6y x=, ∴3AC =,2OC = ∵1tan 2ADE ∠=, ∴6DC =,∴4DO DC OC =-=,∴(4,0)D -,将A ,D 代入()220y ax bx a =+-≠中得: 422316420a b a b +-=⎧⎨--=⎩解得1232a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴二次函数表达式为:213222y x x =+-; (2)如图,过M 作MH x ⊥轴于H ,并设点M 的坐标为213(,2)22m m m +-, ∵M 点在第三象限 ∴213222MH m m =--+ 则+DMBE HOBM S S S S =+△DHM △OEB 四边形梯形, 4212=222m MH m ++⨯++()MH ()(-)42=12mMH MH m mMH +--+ =21MH m -+213=2(2)122m m m --+-+ 2=45m m --+2=(2)9m -++∴当2m =-时四边形DMBE 的面积最大,最大面积为9.【点睛】本题主要考查利用待定系数法求解二次函数、反比例函数的解析式以及函数的性质和数形结合的能力,对于学生的综合能力要求较高.。

新九年级数学下期末一模试题带答案

新九年级数学下期末一模试题带答案

新九年级数学下期末一模试题带答案一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx=图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)3.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D4.在△ABC中(2)2+|1-tanB|=0,则△ABC一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形5.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°6.下列命题中,其中正确命题的个数为()个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A.1B.2C.3D.47.若点P1(x1,y1),P2(x2,y2)在反比例函数kyx=(k>0)的图象上,且x1=﹣x 2,则( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 28.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤ B .54k >C .514k k ≠<且D .514k k ≤≠且 9.如果,则a 的取值范围是( ) A .B .C .D .10.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)11.下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm 12.若0xy <,则2x y 化简后为( ) A .x y -B .x yC .x y -D .x y --二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表: 摸球实验次数 100 1000 5000 10000 50000 100000 “摸出黑球”的次数 36387201940091997040008“摸出黑球”的频率 (结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 16.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .17.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________. 18.分解因式:2x 2﹣18=_____.19.如图,在平面直角坐标系xOy 中,函数y=kx(k >0,x >0)的图象经过菱形OACD 的顶点D 和边AC 的中点E ,若菱形OACD 的边长为3,则k 的值为_____.20.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 22.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=V ,求点D 的坐标; (3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.23.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元? 24.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:ooo o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈) 25.已知:如图,点E ,A ,C 在同一条直线上,AB ∥CD ,AB=CE ,AC=CD .求证:BC=ED .26.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB , 即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b , 把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D . 【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.3.B解析:B 【解析】 【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到. 【详解】解:∵△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1, ∴连接PP 1、NN 1、MM 1, 作PP 1的垂直平分线过B 、D 、C , 作NN 1的垂直平分线过B 、A , 作MM 1的垂直平分线过B , ∴三条线段的垂直平分线正好都过B , 即旋转中心是B . 故选:B .【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.4.D解析:D【解析】【分析】根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得∠A、∠B 的度数,根据直角三角形的判定,可得答案.【详解】解:由(2)2+|1-tanB|=0,得2,1-tanB=0.解得∠A=45°,∠B=45°,则△ABC一定是等腰直角三角形,故选:D.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.6.C解析:C 【解析】 【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项. 【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题; ②影响超市进货决策的主要统计量是众数,正确,是真命题; ③折线统计图反映一组数据的变化趋势,正确,是真命题; ④水中捞月是随机事件,故错误,是假命题, 真命题有3个, 故选C . 【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.7.D解析:D 【解析】 由题意得:1212k ky y x x ==-=- ,故选D. 8.D解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D . 【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键9.B解析:B 【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.10.A解析:A【解析】【分析】把点(3,1)代入直线y=kx﹣2,得出k值,然后逐个点代入,找出满足条件的答案.【详解】把点(3,1)代入直线y=kx﹣2,得1=3k﹣2,解得k=1,∴y=x﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y=x﹣2中,只有(2,0)满足条件.故选A.【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.11.D解析:D【解析】【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.12.A解析:A【解析】【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简.解答【详解】2x y y>0,∵xy<0,∴x<0,∴原式=x y故选A【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.14.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率解析:4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.16.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD 交于点E 连接DFFMMNDN∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣【解析】【分析】【详解】试题分析:如图所示:连接AC ,BD 交于点E ,连接DF ,FM ,MN ,DN ,∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC ⊥BD ,四边形DNMF 是正方形,∠AOC=90°,BD=2,∴∠AOE=45°,ED=1,∴﹣1,∴S 正方形DNMF =21)×21)×12=8﹣,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.17.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.18.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q解析:25【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),则C点的坐标为(a+3,b),∵E为AC的中点,∴EF=12CM=12b,AF=12AM=12OQ=12a,E点的坐标为(3+12a,12b),把D、E的坐标代入y=kx得:k=ab=(3+12a)12b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:5∴5故答案为5【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a、b的方程是解此题的关键.20.【解析】【分析】连接BD根据中位线的性质得出EFBD且EF=BD进而根据勾股定理的逆定理得到△BDC是直角三角形求解即可【详解】连接BD分别是ABAD的中点EFBD且EF=BD又△BDC是直角三角形解析:4 3【解析】【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD ,E F Q 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =Q8BD ∴=又Q 8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.三、解答题21.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.(1)213y x x 222=--;(2)D 的坐标为1727,⎛- ⎝⎭,1727,⎛+ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫-⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解.【详解】(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:2016420a b a b --=⎧⎨+-=⎩ ,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =12 x 2﹣32x ﹣2. (2)当x =0时,y =12x 2﹣32x ﹣2=﹣2, ∴点C 的坐标为(0,﹣2).∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),,BC=AB =5.∵AC 2+BC 2=25=AB 2,∴∠ACB=90°.过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC,∴△AD 1M 1∽△ACB.∵S △DBC =35S ABC ∆, ∴125AM AB =, ∴AM 1=2,∴点M 1的坐标为(1,0),∴BM 1=BM 2=3,∴点M 2的坐标为(7,0).设直线BC 的解析式为y =kx+c (k≠0),将B (4,0),C (0,﹣2)代入y =kx+c ,得:402k c c +=⎧⎨=-⎩ ,解得:122k c ⎧=⎪⎨⎪=-⎩ , ∴直线BC 的解析式为y =12x ﹣2. ∵D 1M 1∥BC∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0),∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12x ﹣72. 联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得:112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=⎪⎩3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩, ∴点D 的坐标为(2),(),(1,﹣3)或(3,﹣2). (3)分两种情况考虑,如图2所示.①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,设直线AC 的解析设为y =mx+n (m≠0),将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:-02m n n +=⎧⎨=-⎩ ,解得:22m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2.∵AC⊥BC,OF 1⊥BC,∴直线OF 1的解析式为y =﹣2x .连接直线OF 1和直线BC 的解析式成方程组,得:2122y x y x =-⎧⎪⎨=-⎪⎩ , 解得:4585x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点F 1的坐标为(45,﹣85 ); ②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .∵EC=EB ,EF 2⊥BC 于点F 2,∴点F 2为线段BC 的中点,∴点F 2的坐标为(2,﹣1);∵BC=,∴CF 2=12 BC,EF 2=12 CF 2=,F 2F 3=12 EF 2=4, ∴CF 3. 设点F 3的坐标为(x ,12 x ﹣2), ∵CF 3=4,点C 的坐标为(0,﹣2),∴x 2+[12x ﹣2﹣(﹣2)]2=12516, 解得:x 1=﹣52 (舍去),x 2=52, ∴点F 3的坐标为(52,﹣34). 综上所述:存在以C 、E 、F 为顶点的三角形与△ABC 相似,点F 的坐标为(45 ,﹣85 ),(2,﹣1)或(52 ,﹣34).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D 且与直线BC 平行的直线的解析式;(3)分点E 与点O 重合及点E 与点O 不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F 的坐标.23.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.24.43米【解析】【分析】【详解】解:设CD = x .在Rt △ACD 中,tan 37AD CD ︒=, 则34AD x=, ∴34AD x =. 在Rt △BCD 中,tan48° =BD CD, 则1110BD x=, ∴1110BD x = ∵AD +BD = AB , ∴31180410x x +=. 解得:x≈43. 答:小明家所在居民楼与大厦的距离CD 大约是43米.25.见解析【解析】【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC和△ECD中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECD(SAS).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.26.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。

新九年级数学下期末一模试卷(附答案)

新九年级数学下期末一模试卷(附答案)

新九年级数学下期末一模试卷(附答案) 一、选择题1.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx=图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×1073.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A.7710⨯﹣B.80.710⨯﹣C.8710⨯﹣D.9710⨯﹣4.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.65.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A.平均数B.中位数C.众数D.方差6.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A14B.4cm C15D.3cm7.如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到△ANM,若AN平分∠MAB,则折痕AM的长为()A .3B .23C .32D .68.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36- 9.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .10010.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x=+ C .1201508x x=- D .1201508x x =+ 11.an30°的值为( )A .B .C .D .12.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A .1 个B .2 个C .3 个D .4个二、填空题13.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE <15°,∠C的度数为整数,则∠C的度数为_____.14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.15.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .16.不等式组125x ax x->⎧⎨->-⎩有3个整数解,则a的取值范围是_____.17.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx =在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.18.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.19.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.表1:四种款式电脑的利润电脑款式A B C D利润(元/台)160200240320表2:甲、乙两店电脑销售情况电脑款式A B C D甲店销售数量(台)2015105乙店销售数量(台)88101418试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.22.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.23.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明24.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.25.如图1,在直角坐标系中,一次函数的图象l 与y 轴交于点A (0 , 2),与一次函数y =x ﹣3的图象l 交于点E (m ,﹣5).(1)m=__________;(2)直线l 与x 轴交于点B ,直线l 与y 轴交于点C ,求四边形OBEC 的面积; (3)如图2,已知矩形MNPQ ,PQ =2,NP =1,M (a ,1),矩形MNPQ 的边PQ 在x 轴上平移,若矩形MNPQ 与直线l 或l 有交点,直接写出a 的取值范围_____________________________ 26.解方程:3x x +﹣1x=1.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:122122k bk b⎧+⎪⎪⎨⎪+⎪⎩==,解得:k=-1,b=52,∴直线AB的解析式是y=-x+52,当y=0时,x=52,即P(52,0),故选D.本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.C解析:C【解析】230000000= 2.3×108 ,故选C.3.D解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.4.A解析:A 【解析】分析:根据多边形的内角和公式计算即可. 详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.5.B解析:B 【解析】 【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可. 【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了. 故选B . 【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.6.A解析:A运用直角三角形的勾股定理,设正方形D的边长为x,则22222(65)(5)10x+++=,x=(负值已舍),故选A7.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴==故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 8.C解析:C【解析】【分析】【详解】∵A(﹣3,4),∴,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入kyx=得,4=8k-,解得:k=﹣32.故选C.考点:菱形的性质;反比例函数图象上点的坐标特征.9.B解析:B【解析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得10.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.11.D解析:D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.12.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E∵∠B=90°∴∴BE=∴解析:6 5【解析】【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.15.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°16.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得解析:﹣2≤a<﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E∴2x=x+2 解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 18.2【解析】【分析】设这个圆锥的底面圆的半径为R 根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R 由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R ,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R ,由题意: 2πR=1804180π⨯, 解得R=2.19.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300 s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为516. 三、解答题21.(1)310(2)应对甲店作出暂停营业的决定 【解析】【分析】(1)用利润不少于240元的数量除以总数量即可得;(2)先计算出每售出一台电脑的平均利润值,比较大小即可得.【详解】解:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为1053201510510+=+++, 故答案为310; (2)甲店每售出一台电脑的平均利润值为160202001524010320550⨯+⨯+⨯+⨯=204(元), 乙店每售出一台电脑的平均利润值为160820010240143201850⨯+⨯+⨯+⨯=248(元),∵248>204, ∴乙店每售出一台电脑的平均利润值大于甲店;又两店每月的总销量相当,∴应对甲店作出暂停营业的决定.【点睛】本题主要考查概率公式的应用,解题的关键是熟练掌握概率=所求情况数与总情况数之比及加权平均数的定义.22.(1)证明见解析;(22【解析】【分析】(1)在△CAD 中,由中位线定理得到MN ∥AD ,且MN=12AD ,在Rt △ABC 中,因为M 是AC 的中点,故BM=12AC ,即可得到结论; (2)由∠BAD=60°且AC 平分∠BAD ,得到∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到222BN BM MN =+,再由MN=BM=1,得到BN 的长.【详解】(1)在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,且MN=12AD ,在Rt △ABC 中,∵M 是AC 的中点,∴BM=12AC ,又∵AC=AD ,∴MN=BM ; (2)∵∠BAD=60°且AC 平分∠BAD ,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN ∥AD ,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴222BN BM MN =+,而由(1)知,MN=BM=12AC=12×2=1,∴. 考点:三角形的中位线定理,勾股定理. 23.(1)见解析 (2) 12AD BC =,理由见解析. 【解析】【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE ⊥AN ,AD ⊥BC ,所以求证∠DAE=90°,可以证明四边形ADCE 为矩形.(2)由正方形ADCE 的性质逆推得AD DC =,结合等腰三角形的性质可以得到答案.【详解】(1)证明:在△ABC 中,AB=AC ,AD ⊥BC , ∴∠BAD=∠DAC ,∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE=∠CAE ,∴∠DAE=∠DAC+∠CAE=12×180°=90°, 又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC=∠CEA=90°,∴四边形ADCE 为矩形.(2)当12AD BC =时,四边形ADCE 是一个正方形. 理由:∵AB=AC , AD ⊥BC ,BD DC ∴=12AD BC =Q ,AD BD DC ∴== ,∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形.∴当12AD BC =时,四边形ADCE 是一个正方形. 【点睛】本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.24.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.25.(1)-2;(2);(3)≤a≤或3≤a≤6. 【解析】【分析】(1)根据点E 在一次函数图象上,可求出m 的值;(2)利用待定系数法即可求出直线l 1的函数解析式,得出点B 、C 的坐标,利用S 四边形OBEC =S △OBE +S △OCE 即可得解;(3)分别求出矩形MNPQ 在平移过程中,当点Q 在l 1上、点N 在l 1上、点Q 在l 2上、点N 在l 2上时a 的值,即可得解.【详解】解:(1)∵点E (m ,−5)在一次函数y =x−3图象上,∴m−3=−5,∴m =−2;(2)设直线l 1的表达式为y =kx +b (k≠0),∵直线l 1过点A (0,2)和E (−2,−5),∴ ,解得,∴直线l1的表达式为y=x+2,当y=x+2=0时,x=∴B点坐标为(,0),C点坐标为(0,−3),∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;(3)当矩形MNPQ的顶点Q在l1上时,a的值为;矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),∴a的值为+2=;矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),∴a的值为4+2=6,综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.26.分式方程的解为x=﹣34.【解析】【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【详解】两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣34,检验:当x=﹣34时,x(x+3)=﹣2716≠0,所以分式方程的解为x=﹣34.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键.。

【人教版】九年级数学下期末一模试题带答案

【人教版】九年级数学下期末一模试题带答案

一、选择题1.如图,左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.2.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22个B.19个C.16个D.13个3.如图,水杯的俯视图是()A.B.C.D.4.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体().A.6个B.5个C.4个D.3个5.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:96.如图,在矩形ABCD中,G是AB边上一点,连结GC,取线段CG上点E,使ED DCAED∠=︒,AF CG=且90⊥于F,2AF=,1FG=,则EC的长()A .4B .5C .163D .83 7.如图,ABC 中,6AB AC AE AC DE ==⊥,,垂直平分AB 于点D ,则EC 的长为( )A .23B .43C .22D .42 8.如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD ,若2AC =,30ADC ∠=︒,①四边形ACED 是平行四边形;②BCE ∆是等腰三角形;③四边形ACEB 的周长是10213+;则以上结论正确的是( )A .①②③B .①②C .①③D .②③ 9.如图,平行四边形ABCD 中,AB ⊥AC ,AB =3,BC =7,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交B C ,AD 于点E ,F ,下列说法:①在旋转过程中,AF =CE . ②OB =AC ,③在旋转过程中,四边形ABEF 的面积为212,④当直线AC 绕点O 顺时针旋转30°时,连接BF ,DE 则四边形BEDF 是菱形,其中正确的是( )A .①②④B .① ②C .①②③④D .② ③ ④ 10.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1 11.如图,在四边形ABCD 中,//AD BC ,如果添加下列条件,不能使得△ABC ∽△DCA成立的是( )A .∠BAC =∠ADCB .∠B =∠ACDC .AC 2=AD •BC D .DC AB AC BC = 12.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<二、填空题13.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.14.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要_____块正方体木块,至多需要_____块正方体木块.15.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.16.如图所示,菱形ABCD 的边长为8,且AE ⊥BC 于E ,AF ⊥CD 于F ,∠B=60°,则菱形的面积为____.17.如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是________.18.锐角α和锐角β互余,记f =sinα+sinβ,则f 的取值范围为_____.参考答案19.如图,在△ABC 中,AE AF EB FC=,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于点Q ,当CQ =13CE 时,EP +BP =20,则BC 的长为________.20.如果反比例函数2k y x-=的图像在第二、四象限内,那么k 的取值范围是______. 三、解答题21.如图所示为一个上、下底密封纸盒的三视图,请描述图中所表示的几何体.并根据图中数据,计算这个密封纸盒的表面积.22.已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形(1)判断该几何体形状;(2)求该几何体的侧面展开图的面积(结果保留π)23.小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知36a =︒,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm )(参考数据:360.60︒≈sin ,360.80cos ≈,360.75tan ≈)24.如图,在等边三角形ABC 中,点E 为CB 边上一点(与点C 不重合),点F 是AC 边上一点.若5AB =,2BE =,60AEF ∠=︒,求AF 的长度.25.如图,已知一次函数1332y x =-与反比例函数2k y x =的图象相交于点A (4,n )和M(m ,﹣6),与x 轴相交于点B .(1)求m ,n 的值; (2)观察图象,当y 2≥﹣6且y 2≠0时,自变量x 的取值范围为 ,若y 1﹣y 2<0时自变量x 的取值范围为 ;(3)若P 点为x 轴上一点, Q 点为平面直角坐标系中的一点,以点A 、B 、P 、Q 为顶点的四边形为菱形,求Q 点的坐标.26.在ABC 中,AB AC =,45BAC ∠=︒,将ABC 绕点A 顺时针旋转得到ADE ,连接BD 、CE ,直线BD 、CE 相交于点F .(1)求证BD CE =.(2)求BFC ∠的度数.(3)若2AB AC ==,当四边形ADFC 是菱形时,求BF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据主视图的概念即可求解.【详解】A . 是左视图.故该选项错误;B.不是主视图.故该选项错误;C.是俯视图.故该选项错误;D.是主视图.故该选项正确.故选:D【点睛】此题主要考查组合体的三视图,正确理解每种视图的概念是解题的关键.2.D解析:D【分析】先根据俯视图判断出这个几何体的行列数,然后根据正视图推算每列小正方体的最少个数,最后将各列的小正方体个数求和即可得.【详解】由俯视图可得,这个几何体共有3行3列,其中左边一列有2行,中间一列有2行,右边一列有3行由正视图可得,左边一列2行中的最高层数为2,则这列小正方体最少有213+=个中间一列2行中的最高层数为3,则这列小正方体最少有314+=个右边一列3行中的最高层数为4,则这列小正方体最少有4116++=个因此,这个几何体的一种可能的摆放为2,3,41,1,10,0,1(数字表示所在位置小正方体的个数),小正方体最少有34613++=个故选:D.【点睛】本题考查了三视图(俯视图、正视图)的定义,根据俯视图和正视图得出几何体的实际可能摆放是解题关键.另一个重要概念是左视图,这是常考知识点,需掌握.3.A解析:A【解析】【分析】找到从上面看所得到的图形即可.【详解】根据几何体的三视图,可知该几何体的俯视图是一个圆和一条线段.故选A.4.C解析:C【分析】这些正方体分前、后两排,左、右两行.后排左边是一列2个正方体,右边一个正方体;前排1个正方体,与后排右列对齐.【详解】如图搭成此展台共需这样的正方体(如下图)共需4个这样的正方体.故选C.【点睛】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.5.B解析:B【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A 、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B 、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C 、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D 、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B .【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.6.C解析:C【分析】如图,过D 作DP CE ⊥于,P 证明:,EP CP EDP CDP =∠=∠,,DEC DCE ∠=∠再证明,AEF BCG EDP ∠=∠=∠ 结合矩形的性质证明:,AFG EFA ∽利用相似三角形的性质可得4EF =,再求解,AG AE ,设,BG x = 可得5,2,DE x AD x =+= 利用勾股定理求解,x 再由,BCG EDP ∠=∠可得:1,2EP DP =设,EP m = 则2,DP m = 由勾股定理求解m , 从而可得答案.【详解】解:如图,过D 作DP CE ⊥于,P,DE DC =,EP CP EDP CDP ∴=∠=∠, ,DEC DCE ∠=∠90,AED DCB ∠=︒=∠90,AEF DEC DCE BCG DEC EDP ∴∠+∠=︒=∠+∠=∠+∠,AEF BCG EDP ∴∠=∠=∠,,90AGF CGB AF CG B ∠=∠⊥∠=︒,,FAG BCG ∴∠=∠,FAG AEF ∴∠=∠90AFG EFA ∠=∠=︒,,AFG EFA ∴∽,AF FG EF FA∴= 21AF FG ==,,21,2EF ∴= 4EF ∴=,AE ∴== AG == 设BG x =,则,AB CD x DE ==+=AEF BCG ∠=∠,1tan tan ,2AF AEF BCG EF ∴∠=∠== 1,2BG BC ∴= 2,BC x AD ∴== ()((2222,x x ∴=+235250,x x ∴--=55x ∴=5x = 55855DE ∴== ,EDP BCG ∠=∠1,2EP DP ∴= 设,EP m = 则2,DP m =()22285+2,m m ∴=⎝⎭ 83m ∴=(负根舍去) 162.3EC EP ∴==故选:.C【点睛】 本题考查的是矩形的性质,勾股定理的应用,等腰三角形的性质,三角形相似的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.7.B解析:B【分析】根据线段垂直平分线的性质得到AE=BE ,由等腰三角形的性质得到∠B=∠BAE ,根据三角形的外角的性质得到∠AEC=∠B+∠BAE=2∠B ,求得∠C=30°,根据三角函数的定义即可得到结论.【详解】∵DE 垂直平分AB 于点D ,∴AE=BE ,∴∠B=∠BAE ,∴∠AEC=∠B+∠BAE=2∠B ,∵AB=AC ,∴∠AEC=2∠C ,∵AE ⊥AC ,∴∠EAC=90°,∴∠C=30°,∴CE=cos30AC ==︒ 故选:B .【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形外角的性质以及特殊角的三角函数值.注意掌握数形结合思想的应用.8.A解析:A【分析】证明AC ∥DE ,再由条件CE ∥AD 可证明四边形ACED 是平行四边形;根据线段的垂直平分线证明AE=EB 可得△BCE 是等腰三角形;首先利用三角函数计算出AD=4,CD=出AB 长可得四边形ACEB 的周长是10+【详解】①∵∠ACB=90°,DE ⊥BC ,∴∠ACD=∠CDE=90°,∴AC ∥DE ,∵CE ∥AD ,∴四边形ACED 是平行四边形,故①正确;②∵D 是BC 的中点,DE ⊥BC ,∴EC=EB ,∴△BCE 是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=cos30AD ⋅︒=∵四边形ACED 是平行四边形,∴CE=AD=4,∵CE=EB ,∴EB=4,DB=∴BC=∴==∴四边形ACEB 的周长是10+③正确;综上,①②③均正确,故选:A .【点睛】本题主要考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法.9.A解析:A【分析】①通过证明AOF COE ≅△△即可判断;②分别利用勾股定理求出OB,AC 的长度即可得出答案;③先利用ABC 的面积求出AG 的长度,然后利用梯形的面积公式求解即可; ④易证四边形BEDF 是平行四边形,然后通过角度得出90DOF ∠=︒,然后证明DOF DOE ≅,则有DF DE =,则可证明结论.【详解】∵四边形ABCD 是平行四边形,,//,AO CO AD BC AD BC ∴== ,AFO CEO ∴∠=∠ .在AOF 和COE 中,AFO CEO AOF COE AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩()AOF COE AAS ∴≅,AF CE OF OE ∴==,故①正确;∵AB ⊥AC ,90BAC ∴∠=︒ .∵ABBC2AC ∴== ,112AO AC ∴== ,2OB ∴==,OB AC ∴=,故②正确;过点A 作AG BC ⊥交BC 于点G ,1122ABC S AB AC BC AG =⋅=⋅ , 3222177AB AC AG BC ⋅⨯∴=== , 11221()7322ABEF S AF BE AG ∴=+⋅=⨯⨯=四边形 ,故③错误; 连接DE,BF ,,AF CE AD BC ==,DF BE ∴= .∵//DF BE ,∴四边形BEDF 是平行四边形.3sin 2AB AOB OB ∠== , 60AOB ∴∠=︒ .30AOF ∠=︒,180603090DOF ∴∠=︒-︒-︒=︒,90DOE ∴∠=︒.在DOF △和DOE △中,FO OE DOF DOE DO DO =⎧⎪∠=∠⎨⎪=⎩()DOF DOE SAS ∴≅,DF DE ∴=,∴四边形BEDF 是菱形,故④正确;所以正确的有:①②④,故选:A .【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数,掌握平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数是解题的关键.10.A解析:A【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE=4OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC=212a 即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120°∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH ∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=32OE ∴DE=2EH=3OE∴S △ODE =12DE·OH=3OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE ′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE′=12BC=12a 在Rt △OBE′中 OE′=BE′·tan ∠OBE′=12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC ∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 ∵23=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE =2312a∴四边形ODBE的面积始终不变,故③正确;∵△ODB≌△OEC∴DB=EC∴BDE的周长=DB+BE+DE= EC+BE+DE=BC+DE=a+DE ∴DE最小时BDE的周长最小∵OE∴OE最小时,DE最小而OE的最小值为∴DE=1 2 a∴BDE的周长的最小值为a+12a=1.5a,故④正确;综上:4个结论都正确,故选A.【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.11.D解析:D【分析】利用相似三角形的判定定理,在AD∥BC,得∠DAC=∠BCA的前提下,需添加一角或夹这角的两边对应成比例进行排查即可.【详解】解:A.∵AD∥BC,∴∠DAC=∠BCA,当∠BAC=∠ADC时,则△ABC∽△DCA;B.∵AD∥BC,∴∠DAC=∠BCA,当∠B=∠ACD时,则△ABC∽△DCA;C.∵AD∥BC,∴∠DAC=∠BCA,由AC2=AD•BC变形为AC ADBC AC=,则△ABC∽△DCA;D.∵AD∥BC,∴∠DAC=∠BCA,当DC ABAC BC=时,不能判断△ABC∽△DCA.故选择:D.【第讲】本题考查三角形相似问题,掌握相似三角形的判定定理,会根据判定定理进行添加条件使三角形相似解题关键.12.B解析:B【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.二、填空题13.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个. 点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.14.616【解析】试题分析:由物体的主视图和左视图易得第一层最少有4块正方体最多有12块正方体;第二层最少有2块正方体最多有4块正方体故总共至少有6块正方体至多有16块正方体考点:几何体的三视图解析:6 16【解析】试题分析:由物体的主视图和左视图易得,第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.考点:几何体的三视图.15.16【分析】易得△AOB ∽△ECD 利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△EC D∴解解析:16【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.16.【分析】根据已知条件解直角三角形ABE可求出AE的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD的边长为8∴AB=BC=8∵AE⊥BC于E∠B=60°∴sinB=即∴AE∴菱形的面积故答案解析:323【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.【详解】∵菱形ABCD的边长为8,∴AB=BC=8,∵AE⊥BC于E,∠B=60°,∴sinB=AEAB ,即328AE=,∴AE43=,∴菱形的面积843323=⨯=故答案为:323【点睛】本题考查了菱形的性质以及特殊角的三角函数值,菱形面积公式的运用.关键是掌握菱形的性质.17.【分析】由题意可知要求出答案首先需要构造出直角三角形连接AB设小正方形的边长为1可以求出OAOBAB的长度由勾股定理的逆定理可得是直角三角形再根据三角函数的定义可以求出答案【详解】连接AB如图所示:解析:2 2【分析】由题意可知,要求出答案首先需要构造出直角三角形,连接AB,设小正方形的边长为1,可以求出OA、OB、AB的长度,由勾股定理的逆定理可得ABO是直角三角形,再根据三角函数的定义可以求出答案.【详解】连接AB如图所示:设小正方形的边长为1,∴2OA=23+1=10,22BA=3+1=10,222OB=4+2=20,∴ABO是直角三角形,∴BA102sin AOB=OB20∠=,故答案为:2 2.【点睛】本题主要考查了勾股定理的逆定理和正弦函数的定义,熟练掌握技巧即可得出答案. 18.1<f≤【分析】根据锐角三角函数的定义即可求出答案【详解】∵α+β=90°∴sinβ=sin(90°−α)=cosα∴f=sinα+cosα=sin(α+45°)∵α是锐角∴<sin(α+45°)≤解析:1<2【分析】根据锐角三角函数的定义即可求出答案.【详解】∵α+β=90°,∴sinβ=sin(90°−α)=cosα,∴f=sinα+cosα=2sin(α+45°)∵α是锐角,∴2<sin(α+45°)≤1,∴1<f≤2,故答案为:1<f≤2.【点睛】本题考查锐角三角函数,解题的关键是正确理解锐角三角函数的定义,本题属于中等题型.19.10【分析】延长BQ交射线EF于点M先证明△BCQ∽△MEQ然后可得=根据EM=20即可得出答案【详解】解:如图延长BQ交射线EF于点M∵EF是ABAC的中点∴EF是△ABC的中位线∴EF∥BC∴∠解析:10【分析】延长BQ交射线EF于点M,先证明△BCQ∽△MEQ,然后可得EMBC=2EQCQ,根据EM=20,即可得出答案.【详解】解:如图,延长BQ交射线EF于点M,∵E,F是AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠BME=∠MBC,∵BQ平分∠CBP,∴∠PBM=∠MBC,∴∠BME=∠PBM,∴BP=PM,∴EP+BP=EM=20,∵CQ=13CE,∴2EQ CQ=, ∵EF ∥BC ,∴△BCQ ∽△MEQ , ∴EM BC =2EQ CQ =, ∵EM=20, ∴202BC=,即BC=10, 故答案为:10.【点睛】 本题考查了相似三角形的判定和性质,三角形中位线定理,判定△BCQ ∽△MEQ 是解题关键.20.k <2【分析】由反比例函数的图象位于第二四象限得出k-2<0即可得出结果【详解】解:∵反比例函数的图象位于第二四象限∴k-2<0∴k <2故答案为:k <2【点睛】本题考查了反比例函数的图象以及性质;熟解析:k <2.【分析】由反比例函数的图象位于第二、四象限,得出k-2<0,即可得出结果.【详解】解:∵反比例函数的图象位于第二、四象限,∴k-2<0,∴k <2,故答案为:k <2.【点睛】本题考查了反比例函数的图象以及性质;熟练掌握反比例函数的图象和性质,并能进行推理论证是解决问题的关键.三、解答题21.2【分析】根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积.【详解】解:根据该几何体的三视图知道其是一个六棱柱,设正六边形的中心为O ,连接OA 、OB ,作OD ⊥AB 于D ,由图可知其高为12cm ,底面半径为5cm ,∴侧面积为6×5×12=360cm 2,∵∠AOB=360°÷6=60°,∴△AOB是等边三角形,∴AB=5cm,OD=sin60°×OA=53cm,∴密封纸盒2个底面的面积为:153265753⨯⨯⨯⨯= cm2,22∴其全面积为:(753+360)cm2.【点睛】本题考查了由三视图判断几何体,等边三角形的判定与性质,正六边形的性质,以及解直角三角形的知识,解题的关键是正确的判定几何体.22.(1)圆锥;(2)10π.【分析】(1)由三视图可知,该几何体是圆锥;(2)根据圆锥的侧面积公式计算即可.【详解】解:(1)由三视图可知,该几何体是圆锥;(2)侧面展开图的面积=π×2×5=10π.【点睛】本题考查三视图,圆锥等知识,解题的关键是掌握圆锥的侧面积公式.23.200mm【分析】求ABCD的周长就是求AB和AD的长,可分别过B、D作垂线垂直于l,通过构造直角三角形根据α=36°和ABCD的四个顶点恰好在横格线且每个横格宽12mm等条件来求出AB、AD 的长.【详解】作BE⊥m于点E,DF⊥m于点F,∵α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°,根据题意,得 BE=24mm ,DF=48mm ,在Rt △ABE 中,BE sin AB α=, ∴2440sin 360.60BE AB ===︒( mm), 在Rt △ADF 中,DF cos ADF AD ∠=, ∴4860cos360.80DF AD ===︒( mm), ∴矩形ABCD 的周长=2(40+60)=200( mm).【点睛】本题考查了矩形的性质,解直角三角形的应用,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.24.195=AF 【分析】 由相似三角形的判定方法可证明△ABE ∽△ECF ,由相似三角形的性质可求出CF 的长,进而可求出AF 的长.【详解】解:∵ABC ∆是等边三角形,∴60ABC ACB ∠=∠=︒,5BC AB AC ===,又∵2BE =,∴3EC BC BE =-=.∵60AEF ∠=︒,∴120AEB FEC AEB BAE ∠+∠=∠+∠=︒,∴BAE FEC ∠=∠,∴ABE ECF ∆∆∽,∴::AB EC BE CF =,∵5AB =,2BE =,3CE =,∴5:32:CF =, ∴65CF =,∴195AF AC CF =-=. 【点睛】 本题考查了等边三角形的性质以及相似三角形的判定和性质,解题的关键是由等边三角形得到∠ABC=∠ACB=60°.25.(1)m =-2,n=3 ;(2)x ≤﹣2或x >0;0<x <4或x <﹣2; (3)点Q 的坐标为(4,3)或(43)或(34,3)或(4,﹣3) 【分析】(1)把点A 、B 的坐标代入直线的解析式求解即可;(2)满足条件y 2≥﹣6且y 2≠0时的x 的取值范围即为反比例函数2k y x=在直线y =﹣6与x 轴之间的图象与第一象限内的图象对应的x 的范围,满足y 1﹣y 2<0时自变量x 的取值范围即为反比例函数比直线高的图象部分对应的x 的取值范围,据此解答即可;(3)先求出点B 的坐标,再分三种情况:①AB 、BP 为菱形的边,如图1;②AB 为菱形的对角线,如图2;③AB 为边、BP 为对角线,如图3;分别利用菱形的性质和勾股定理求解即可.【详解】解:(1)把点A (4,n )和M (m , ﹣6)代入一次函数1332y x =-, 得:34332n =⨯-=,3632m -=-, ∴2m =-,3n =;(2)对2k y x=,当y 2≥﹣6且y 2≠0时,自变量x 的取值范围为x ≤﹣2或x >0; 若y 1﹣y 2<0即y 1<y 2时自变量x 的取值范围为0<x <4或x <﹣2; (3)对1332y x =-,可得点B 的坐标为(2,0),①若AB 、BP 为菱形的边,则AB ==若点P 在点B 右侧,如图1,则所以点Q 的坐标为(43);若点P 在点B 左侧,同理可得点Q 的坐标为(4,3);②若AB 为菱形的对角线,如图2,设点Q 坐标为(n ,3),则BQ=AQ=4-n , 过点Q 作QF ⊥x 轴于点F ,则BF=2-n ,QF=3,在Rt △BQF 中,根据勾股定理,得()()222324n n +-=-,解得34n =, ∴点Q 的坐标为(34,3);③若AB 为边、BP 为对角线,如图3,由菱形的性质知:点Q 、A 关于x 轴对称, ∴点Q 的坐标为(4,﹣3);综上,点Q 的坐标为(413,3)或(413+,3)或(34,3)或(4,﹣3). 【点睛】 本题主要考查了一次函数与反比例函数的图象与性质、菱形的性质以及勾股定理等知识,属于常考题型,熟练掌握相关知识、灵活应用数形结合的思想是解题的关键.26.(1)见解析;(2)45BFC ∠=︒或135BFC ∠=︒;(3)222BF =-【分析】(1)通过AEC ADB △≌△即可证得BD=CE ;(2)分情况讨论:旋转角小于45︒和旋转角大于45︒两种情况;(3)AB 与FC 相交于点G ,依题意可证得△AGC 和△FBG 是等腰直角三角形,再利用锐角三角函数求出AG 和FB ,问题可解.【详解】解:(1)∵将ABC 绕点A 顺时针旋转得到ADE ,∴CAE BAD ∠=∠,,,45AC AE AB AD BAC DAE ==∠=∠=︒,∵AB AC =,∴AC AE AB AD ===,∴AEC ADB △≌△(SAS )BD CE ∴=;(2)过点A 作AM BD ⊥于M ,AN CE ⊥于N ,当45CAE BAD ∠=∠︒<时,如图,AC AE AB AD ===,1234∴∠=∠=∠=∠,90AMB ANF ∠=∠=︒,在四边形ANFN 中,180BFC MAN ∠+∠=︒ ,MAN 311245BAE BAE BAC ∠=∠+∠+∠=∠+∠+∠=∠=︒18045135BFC ∴∠=︒-︒=︒;当45CAE BAD ∠=∠︒>时,如图,45BAC DAE ∠=∠=︒BAC BAE DAE BAE ∴∠+∠=∠+∠,DAB CAE ∴∠=∠,AC AE AB AD ===,111,222EAN CAE BAM DAB ∴∠=∠=∠∠=∠=∠, 12EAN BAM ∴∠=∠=∠=∠145MAN BAN BAM BAN BAC ∴∠=∠+∠=∠+∠=∠=︒90AMF ANF ∠=∠=︒,180135MFN MAN ∴∠=︒-∠=︒,18045BFC MFN ∴∠=︒-∠=︒,故45BFC ∠=︒或135︒;(3)如图,AB 与EC 交于G ,∵四边形ADFC 是菱形,AC ∴∥BD ,45FBA BAC ∴∠=∠=︒,BFC 45∠=︒,90FGB AGC ∴∠=∠=︒,在Rt △AGC 中,AC=2, ∴2cos 45222AG AC =⋅︒=⨯= 22GB AB AG ∴=-=22222sin 452BG BF -∴===︒ .【点睛】本题考察了全等三角形的判定和性质,旋转变换,四边形内角和,等腰直角三角形的性质,锐角三角函数等知识,有一定的综合性,根据旋转的特征进行分类讨论和正确运用图形的性质是解题的关键.。

新初三数学下期末一模试题含答案

新初三数学下期末一模试题含答案

新初三数学下期末一模试题含答案一、选择题1.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =kx(k≠0,x >0)上,若矩形ABCD 的面积为12,则k 的值为( )A .12B .4C .3D .62.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <33.下列关于矩形的说法中正确的是( ) A .对角线相等的四边形是矩形 B .矩形的对角线相等且互相平分 C .对角线互相平分的四边形是矩形 D .矩形的对角线互相垂直且平分4.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( ) A .中位数 B .平均数 C .众数 D .方差 5.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( )A .0.7×10﹣3B .7×10﹣3 C .7×10﹣4 D .7×10﹣5 6.函数21y x =-中的自变量x 的取值范围是( )A .x ≠12 B .x ≥1C .x >12D .x ≥127.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒8.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x 套,则x 应满足的方程为( ) A .96096054848x -=+ B .96096054848x +=+ C .960960548x-= D .96096054848x-=+ 9.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)10.如图,在半径为13的O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .210C .211D .4311.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣3B .13π3 C .43π﹣3 D .43π3 12.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.1069605076020500x x-=+B.5076010696020500x x-=+C.1069605076050020x x-=+D.5076010696050020x x-=+二、填空题13.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.14.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.15.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.16.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.17.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3=,那么tan∠DCF的值是____.18.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32DB的延长线上取一点P,满足∠ABD =∠MAP+∠PAB,则AP=_____.19.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.20.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.三、解答题21.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长; (2)求△ADB 的面积.22.已知222111x x xA x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值.23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少? 24.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.25.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC 于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.26.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60 B组60≤x<70 C组70≤x<80 D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:设点A的坐标为(m,km),则根据矩形的面积与性质得出矩形中心的纵坐标为2km,求出中心的横坐标为m+6mk,根据中心在反比例函数y=kx上,可得出结果.详解:设点A的坐标为(m,km),∵矩形ABCD的面积为12,∴121212m BCkAB km===,∴矩形ABCD的对称中心的坐标为(m+6mk,2km),∵对称中心在反比例函数上,∴(m+6mk)×2km=k,解方程得k=6,故选D.点睛:本题考查了反比例函数图象上点的坐标特点,熟知反比例函数中k=xy位定值是解答本题的关键.2.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.3.B解析:B【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.4.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.5.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.6.D解析:D【解析】【分析】由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x≥12,故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】解:直线//m n,21180ABC BAC ∴∠+∠∠+∠=+︒,30ABC =︒∠,90BAC ∠=︒,140∠=︒, 218030904020∴∠=---︒︒=︒︒︒, 故选:B . 【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.8.D解析:D 【解析】解:原来所用的时间为:96048,实际所用的时间为:96048x +,所列方程为:96096054848x -=+.故选D . 点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.9.D解析:D 【解析】 【分析】 【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1). 故选:D10.C解析:C 【解析】 【分析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出2OG ==,证出EOG ∆是等腰直角三角形,得出45,OEG OE ∠=︒==30OEF ∠=︒,由直角三角形的性质得出12OF OE ==DF =【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,221392OG OB BG =-=-=, ∴EG OG =,∴EOG ∆是等腰直角三角形, ∴45OEG ∠=︒,222OE OG ==,∵75DEB ∠=︒, ∴30OEF ∠=︒, ∴122OF OE ==, 在Rt ODF ∆中,2213211DF OD OF =-=-=, ∴2211CD DF ==; 故选:C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.11.C解析:C 【解析】分析:连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 菱形ABCO ﹣S 扇形AOC 可得答案. 详解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2, ∴OB=OA=OC=2, 又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=1,在Rt △COD 中利用勾股定理可知:=,∵sin ∠COD= CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =12B×AC=12×2× S 扇形AOC =2120243603ππ⨯⨯=,则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =43π- 故选C .点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π,有一定的难度. 12.A解析:A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A . 考点:由实际问题抽象出分式方程. 二、填空题13.【解析】【分析】延长AD 和BC 交于点E 在直角△ABE 中利用三角函数求得BE 的长则EC 的长即可求得然后在直角△CDE 中利用三角函数的定义求解【详解】如图延长ADBC 相交于点E ∵∠B=90°∴∴BE=∴ 解析:65【解析】【分析】延长AD 和BC 交于点E ,在直角△ABE 中利用三角函数求得BE 的长,则EC 的长即可求得,然后在直角△CDE 中利用三角函数的定义求解.【详解】如图,延长AD 、BC 相交于点E ,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.14.【解析】根据弧长公式可得:=故答案为解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.15.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A解析:18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.17.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD =2xCF=3x∴∴tan∠DCF=故答案为:【点【解析】【分析】【详解】解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3=.∴设CD =2x ,CF =3x ,∴.∴tan ∠DCF =DF CD =.【点睛】 本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.18.6【解析】分析:根据BD=CDAB=CD 可得BD=BA 再根据AM⊥BDDN⊥AB 即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP 即可得到△APM 是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD ,AB=CD ,可得BD=BA ,再根据AM ⊥BD ,DN ⊥AB ,即可得到,依据∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,即可得到△APM 是等腰直角三角形,进而得到AM=6.详解:∵BD=CD ,AB=CD ,∴BD=BA ,又∵AM ⊥BD ,DN ⊥AB ,∴,又∵∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,∴∠P=∠PAM ,∴△APM 是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM 是等腰直角三角形.19.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理. 20.28【解析】【分析】设加分前及格人数为x 人不及格人数为y 人原来不及格加分为及格的人数为n 人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n 分别表示xy 得到解析:28【解析】【分析】设加分前及格人数为x 人,不及格人数为y 人,原来不及格加分为及格的人数为n 人,所以,用n 分别表示x 、y 得到x+y =n ,然后利用15<n <30,n 为正整数,n 为整数可得到n =5,从而得到x+y 的值.【详解】设加分前及格人数为x 人,不及格人数为y 人,原来不及格加分为为及格的人数为n 人, 根据题意得, 解得,所以x+y =n , 而15<n <30,n 为正整数,n 为整数, 所以n =5,所以x+y =28,即该班共有28位学生.故答案为28.【点睛】本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.三、解答题21.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 22.(1)11x -;(2)1 【解析】【分析】(1)根据分式四则混合运算的运算法则,把A 式进行化简即可.(2)首先求出不等式组的解集,然后根据x 为整数求出x 的值,再把求出的x 的值代入化简后的A 式进行计算即可.【详解】 (1)原式=2(1)(1)(1)1x x x x x +-+--=111x x x x +---=11x x x +--=11x - (2)不等式组的解集为1≤x <3∵x 为整数,∴x =1或x =2,①当x =1时,∵x ﹣1≠0,∴A =11x -中x ≠1, ∴当x =1时,A =11x -无意义. ②当x =2时,A =11x -=1=12-1考点:分式的化简求值、一元一次不等式组.23.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.24.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.25.(1)DE 与⊙O 相切,理由见解析;(2)阴影部分的面积为2π【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE 与⊙O 相切,理由:连接DO ,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC 的平分线交⊙O 于点D ,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点D ,DE⊥BE,DF⊥AB,∴DE=DF=3, 3 223+33()=6, ∵sin∠DBF=31=62, ∴∠DBA=30°,∴∠DOF=60°, ∴sin60°=33DF DO DO == 3则3 260(23)1333322ππ⨯-= 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键. 26.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A 、B 、C 、E 组的人数,求出D 组的人数,从而补全统计图;(2)用B 组抽查的人数除以总人数,即可求出a ;用360乘以C 组所占的百分比,求出C 组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D 的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图。

新初三数学下期末一模试卷(及答案)

新初三数学下期末一模试卷(及答案)

新初三数学下期末一模试卷(及答案)一、选择题1.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D .2.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-3.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A .1B .2C .3D .44.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°5.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A .12B .24C .123D .1636.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.5 7.下列计算正确的是( ) A .()3473=a b a b B .()232482--=--b a b ab b C .32242⋅+⋅=a a a a aD .22(5)25-=-a a 8.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A .B .C .D .9.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( )A .8%B .9%C .10%D .11% 10.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或0 11.下列各式化简后的结果为2 的是( )A 6B 12C 18D 3612.8×200=x+40解得:x=120答:商品进价为120元.故选:B .【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.14.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA=43,则CD =_____.15.一列数123,,,a a a ……n a ,其中1231211111,,,,111nn a a a a a a a -=-===---L L ,则1232014a a a a ++++=L L __________. 16.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________17.分解因式:x 3﹣4xy 2=_____.18.使分式的值为0,这时x=_____.19.分解因式:2x 2﹣18=_____.20.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.三、解答题21.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD ,且∠CDB=∠OBD=30°,DB=3.(1)求证:AC 是⊙O 的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)22.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?23.解分式方程:232 11xx x+= +-24.已知抛物线y=ax2﹣13x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒(1)求抛物线的解析式;(2)当BQ=13AP时,求t的值;(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.25.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?26.已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.(1)求证:△ADC≌△BEC;(2)如果EC⊥BE,证明:AD∥EC.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.2.A解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.3.C解析:C【解析】【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.4.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.5.D解析:D【解析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE•tan∠AEB=2tan60°3.∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD 的面积D .考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.6.B解析:B【解析】【分析】【详解】解:∵∠ACB =90°,∠ABC =60°,∴∠A =30°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°, ∴∠A =∠ABD ,∴BD =AD =6, ∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3. 故选B . 7.C解析:C【解析】【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.8.D解析:D【解析】【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.9.C解析:C【解析】【分析】设月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设该商店的每月盈利的平均增长率为x,根据题意得:240000(1+x)2=290400,解得:x1=0.1=10%,x2=-0.21(舍去),故选C.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-.10.A解析:A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.C解析:C【解析】A不能化简;B C,故正确;D,故错误;故选C.点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.12.无二、填空题13.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半解析:2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可.详解:扇形的圆心角是120°,半径为6,则扇形的弧长是:1206180π⋅=4π,所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π,解得:r=2.所以圆锥的底面半径是2.故答案为2.点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.14.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE 的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E∵∠B=90°∴∴BE=∴解析:6 5【解析】【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°, ∴4tan 3BE A AB ==, ∴BE=443AB ⋅=, ∴CE=BE-BC=2,5=, ∴3sin 5AB E AE ==, 又∵∠CDE=∠CDA=90°, ∴在Rt △CDE 中,sin CD E CE =, ∴CD=36sin 255CE E ⋅=⨯=. 15.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a 3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.16.<a<-2【解析】【分析】【详解】解:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a >−设f (x )=ax2-3x-1如图∵实数根都在-1 解析:94-<a<-2 【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.17.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】 试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法 19.2(x+3)(x ﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x ﹣3)故答案为:2(x+3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x +3)(x ﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x 2﹣9)=2(x +3)(x ﹣3),故答案为:2(x +3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 20.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.三、解答题21.(1)证明见解析;(2)6πcm2.【解析】【分析】连接BC,OD,OC,设OC与BD交于点M.(1)求出∠COB的度数,求出∠A的度数,根据三角形的内角和定理求出∠OCA的度数,根据切线的判定推出即可;(2)证明△CDM≌△OBM,从而得到S阴影=S扇形BOC.【详解】如图,连接BC,OD,OC,设OC与BD交于点M.(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC∥BD,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC⊥AC,∵OC为半径,∴AC是⊙O的切线;(2)由(1)知,AC为⊙O的切线,∴OC⊥AC.∵AC∥BD,∴OC⊥BD.由垂径定理可知,MD=MB=1 2BD=33.在Rt△OBM中,∠COB=60°,OB=33cos303MB︒==6.在△CDM与△OBM中3090CDM OBMMD MBCMD OMB︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM∴阴影部分的面积S阴影=S扇形BOC=2606360π⋅=6π(cm2).考点:1.切线的判定;2.扇形面积的计算.22.甲每小时做24个零件,乙每小时做20个零件.【解析】【分析】设甲每小时做x个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设甲每小时做x个零件,则乙每小时做(x﹣4)个零件,根据题意得:1201004x x=-,解得:x=24,经检验,x=24是分式方程的解,∴x﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.x=-5【解析】【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x+1)( x-1),化为整式方程求解,求出x的值后不要忘记检验.【详解】解:方程两边同时乘以(x+1)( x-1)得: 2x (x-1)+3(x+1)=2(x+1)( x-1)整理化简,得x=-5经检验,x=-5是原方程的根∴原方程的解为:x=-5.24.(1)y=-23x2-13x+2;(2)当BQ=13AP时,t=1或t=4;(3)存在.当t=1-+M(1,1),或当t=3+M(﹣3,﹣3),使得△MPQ为等边三角形.【解析】【分析】(1)把A(﹣2,0),B(0,2)代入y=ax2-13x+c,求出解析式即可;(2)BQ=13AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP关于t的表示,代入BQ=13AP可求t值.(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.【详解】(1)∵抛物线经过A(﹣2,0),B(0,2)两点,∴240,32.a cc⎧++=⎪⎨⎪=⎩,解得2,32.ac⎧=-⎪⎨⎪=⎩∴抛物线的解析式为y=-23x2-13x+2.(2)由题意可知,OQ=OP=t,AP=2+t.①当t≤2时,点Q在点B下方,此时BQ=2-t.∵BQ=13AP,∴2﹣t=13(2+t),∴t=1.②当t>2时,点Q在点B上方,此时BQ=t﹣2.∵BQ=13AP,∴t﹣2=13(2+t),∴t=4.∴当BQ=13AP时,t=1或t=4.(3)存在.作MC⊥x轴于点C,连接OM.设点M的横坐标为m,则点M的纵坐标为-23m2-13m+2.当△MPQ为等边三角形时,MQ=MP,又∵OP=OQ,∴点M点必在PQ的垂直平分线上,∴∠POM=12∠POQ=45°,∴△MCO为等腰直角三角形,CM=CO,∴m =-23m 2-13m +2, 解得m 1=1,m 2=﹣3. ∴M 点可能为(1,1)或(﹣3,﹣3).①如图,当M 的坐标为(1,1)时,则有PC =1﹣t ,MP 2=1+(1﹣t )2=t 2﹣2t +2,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ ,∴t 2﹣2t +2=2t 2,解得t 1=1+3-,t 2=13--(负值舍去).②如图,当M 的坐标为(﹣3,﹣3)时,则有PC =3+t ,MC =3,∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ ,∴t 2+6t +18=2t 2,解得t 1=333+t 2=333-∴当t =3-M (1,1),或当t =333+M (﹣3,﹣3),使得△MPQ 为等边三角形.【点睛】本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.x=;(2)原分式方程中“?”代表的数是-1.25.(1)0【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】x-得(1)方程两边同时乘以()2()+-=-x5321x=解得0x=是原分式方程的解.经检验,0(2)设?为m,x-得方程两边同时乘以()2()+-=-m x321x=是原分式方程的增根,由于2x=代入上面的等式得所以把2()3221m+-=-m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.26.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据两锐角互余的关系可得∠ACD=∠BCE,利用SAS即可证明△ADC≌△BEC;(2)由△ADC≌△BEC可得∠ADC=∠E=90°,根据平行线判定定理即可证明AD//EC.【详解】(1)∵EC⊥DM,∴∠ECD=90°,∴∠ACB=∠DCE=90°,∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,∴∠ACD=∠BCE,∵CD=CE,CA=CB,∴△ADC≌△BEC(SAS).(2)由(1)得△ADC≌△BEC,∵EC⊥BE,∴∠ADC=∠E=90°,∴AD⊥DM,∵EC⊥DM,∴AD∥EC.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.若关于 x 的一元二次方程 k 1 x2 x 1 0 有两个实数根,则 k 的取值范围是()
A. k 5 4
B. k> 5 4
C. k< 5 且k 1 4
D. k 5 且k 1 4
7.估计 10 +1 的值应在( )
A.3 和 4 之间
B.4 和 5 之间
C.5 和 6 之间
8.下列二次根式中的最简二次根式是( )
a 1
a 1
入求值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】先求出∠1 的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2 的度
数. 【详解】如图,∵∠1=70°, ∴∠3=180°﹣∠1=180°﹣70°=110°, ∵a∥b, ∴∠2=∠3=110°, 故选 B.
25.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报 比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制 成如右两幅统计图.请你根据图中所给信息解答意)
(1)等奖所占的百分比是________;三等奖的人数是________人;
(2)据统计,在获得一等奖的学生中,男生与女生的人数比为1:1,学校计划选派 1 名男
3.A
解析:A 【解析】 【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可. 【详解】由“左加右减”的原则可知,将直线 y=2x-3 向右平移 2 个单位后所得函数解析式为 y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线 y=2x-7 向上平移 3 个单位后所得函数解 析式为 y=2x-7+3=2x-4, 故选 A. 【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.
()
A.(1,2,1,2,2)
B.(2,2,2,3,3)
3)
D.(1,2,1,1,2)
10.an30°的值为( )
C.(1,1,2,2,
A.
B.
C.
D.
11.某种商品的进价为 800 元,出售时标价为 1200 元,后来由于该商品积压,商店准备
打折销售,但要保证利润率不低于 5%,则至多可打( )
A.6 折
B.7 折
C.8 折
D.9 折
12.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图
所示,则此工件的左视图是 ( )
A.
B.
C.
D.
二、填空题
13.如图,小明的父亲在相距 2 米的两棵树间拴了一根绳子,给小明做了一个简易的秋千. 拴绳子的地方距地面高都是 2.5 米,绳子自然下垂呈抛物线状,身高 1 米的小明距较近的 那棵树 0.5 米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为
∴AE= 2 AB, ∵AD= 2 AB,
∴AE=AD, 又∠ABE=∠AHD=90° ∴△ABE≌△AHD(AAS), ∴BE=DH, ∴AB=BE=AH=HD,
∴∠ADE=∠AED= 1 (180°﹣45°)=67.5°, 2
∴∠CED=180°﹣45°﹣67.5°=67.5°, ∴∠AED=∠CED,故①正确;
4.C
解析:C 【解析】 【分析】 根据主视图是从正面看到的图形,进而得出答案. 【详解】 主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚
竖线,画法正确的是:

故选 C. 【点睛】 本题考查了三视图的知识,关键是找准主视图所看的方向.
5.A
解析:A 【解析】 【分析】 【详解】
设 a b 2 m n 2 2 (其中 a、b、m、n 均为整数),则有
a b 2 m2 2n2 2mn 2 . ∴ a m2 2n2,b 2mn .这样小明就找到了一种把部分 a b 2 的式子化为平方式的方 法. 请你仿照小明的方法探索并解决下列问题:
当 a、b、m、n 均为正整数时,若 a b
24.如图,在平面直角坐标系中,小正方形格子的边长为 1,Rt△ABC 三个顶点都在格点 上,请解答下列问题: (1)写出 A,C 两点的坐标; (2)画出△ABC 关于原点 O 的中心对称图形△A1B1C1; (3)画出△ABC 绕原点 O 顺时针旋转 90°后得到的△A2B2C2,并直接写出点 C 旋转至 C2 经 过的路径长.
的解,tan∠BAO= 1 . 2
(1)求点 A 的坐标; (2)点 E 在 y 轴负半轴上,直线 EC⊥AB,交线段 AB 于点 C,交 x 轴于点 D,
S△DOE=16.若反比例函数 y= k 的图象经过点 C,求 k 的值; x
(3)在(2)条件下,点 M 是 DO 中点,点 N,P,Q 在直线 BD 或 y 轴上,是否存在点 P,使四边形 MNPQ 是矩形?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.
D.6 和 7 之间
A. 30
B. 12
C. 8
D. 0.5
9.现定义一种变换:对于一个由有限个数组成的序列 S0,将其中的每个数换成该数在 S0
中出现的次数,可得到一个新序列 S1,例如序列 S0:(4,2,3,4,2),通过变换可生 成新序列 S1:(2,2,1,2,2),若 S0 可以为任意序列,则下面的序列可作为 S1 的是
k 1≠0 ∴ =12 -4(k 1) 1 0 ,
解得:k≤ 5 且 k≠1. 4
故选:D. 【点睛】 此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键
7.B
解析:B 【解析】
解:∵ 3 10 4 ,∴ 4 10 1 5 .故选 B .
点睛:此题主要考查了估算无理数的大小,正确得出 10 的取值范围是解题关键. 8.A
4.如图,下列关于物体的主视图画法正确的是( )
A.
B.
C.
D.
5.为了绿化校园,30 名学生共种 78 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵,设 男生有 x 人,女生有 y 人,根据题意,所列方程组正确的是( )
x y 78
x y 78
x y 30
x y 30
A. 3x 2y 30 B. 2x 3y 30 C. 2x 3y 78 D. 3x 2y 78
3
mn
2
3 ,用含 m、n 的式子分别表示
a、b ,得 a =
,b=

(2)利用所探索的结论,找一组正整数 a、b、m、n ,填空: + =( +
3 )2;
(3)若 a 4 3 m+n 3 2 ,且 a、b、m、n 均为正整数,求 a 的值.
23.已知点 A 在 x 轴负半轴上,点 B 在 y 轴正半轴上,线段 OB 的长是方程 x2﹣2x﹣8=0
x y 30 该班男生有 x 人,女生有 y 人.根据题意得: 3x 2 y 78 ,
故选 D. 考点:由实际问题抽象出二元一次方程组.
6.D
解析:D 【解析】 【分析】 运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】 解:∵关于 x 的一元二次方程(k﹣1)x2+x+1=0 有两个实数根,
米.
14.已知关于 x 的方程 3x n 2 的解是负数,则 n 的取值范围为 . 2x 1
15.若 a , b 互为相反数,则 a2b ab2 ________. 16.已知关于 x 的一元二次方程 ax2 2x 2 c 0 有两个相等的实数根,则 1 c 的值
a
等于_______. 17.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高 度,进行了如下操作: (1)在放风筝的点 A 处安置测倾器,测得风筝 C 的仰角∠CBD=60°; (2)根据手中剩余线的长度出风筝线 BC 的长度为 70 米; (3)量出测倾器的高度 AB=1.5 米.
【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁 内角互补.
2.C
解析:C 【解析】 【分析】 【详解】 试题分析:∵在矩形 ABCD 中,AE 平分∠BAD, ∴∠BAE=∠DAE=45°, ∴△ABE 是等腰直角三角形,
新九年级数学下期末一模试题(附答案)
一、选择题
1.如图,已知 a∥b,l 与 a、b 相交,若∠1=70°,则∠2 的度数等于( )
A.120°
B.110°
C.100°
D.70°
2.如图,在矩形 ABCD 中,AD= 2 AB,∠BAD 的平分线交 BC 于点 E,DH⊥AE 于点
H,连接 BH 并延长交 CD 于点 F,连接 DE 交 BF 于点 O,下列结论:①∠AED=∠CED;
②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
A.2 个
B.3 个
C.4 个
D.5 个
3.将直线 y 2x 3 向右平移 2 个单位,再向上平移 3 个单位后,所得的直线的表达式为
()
A. y 2x 4
B. y 2x 4
C. y 2x 2
D. y 2x 2
解析:A 【解析】 【分析】 根据最简二次根式的概念判断即可. 【详解】 A、 30 是最简二次根式;
B、 12 =2 3 ,不是最简二次根式; C、 8=2 2 ,不是最简二次根式;
D、 0.5 = 2 ,不是最简二次根式; 2
故选:A. 【点睛】 此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方 数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
生和 1 名女生参加市手抄报比赛,请求出所选 2 位同学恰是 1 名男生和 1 名女生的概率;
相关文档
最新文档