第11章反常积分答案

合集下载

高等数学课后习题及参考答案(第十一章)

高等数学课后习题及参考答案(第十一章)

高等数学课后习题与参考答案〔第十一章〕习题11-11.写出下列级数的前五项:<1>∑∞=++1211n nn;解 51514141313121211111112222212⋅⋅⋅+++++++++++++++=++∑∞=n n n . 解 3762651045311112⋅⋅⋅+++++=++∑∞=n n n .<2>∑∞=⋅⋅⋅⋅-⋅⋅⋅⋅12 42)12( 31n n n ; 解 10864297531864275316425314231212 42)12( 311⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+=⋅⋅⋅⋅-⋅⋅⋅⋅∑∞=n n n . 解 3840945384105481583212 42)12( 311⋅⋅⋅+++++=⋅⋅⋅⋅-⋅⋅⋅⋅∑∞=n n n .<3>∑∞=--115)1(n n n ; 解 51515151515)1(543211⋅⋅⋅-+-+-=-∑∞=-n n n . 解 3125162511251251515)1(11⋅⋅⋅-+-+-=-∑∞=-n n n . <4>∑∞=1!n n nn.解 5!54!43!32!21!1!543211⋅⋅⋅+++++=∑∞=n n n n. 解3125120256242764211!1⋅⋅⋅+++++=∑∞=n n n n . 2.写出下列级数的一般项:<1> 7151311⋅⋅⋅++++; 解 一般项为121-=n u n . <2> 5645342312⋅⋅⋅-+-+-; 解 一般项为nn u n n 1)1(1+-=-. <3> 86426424222⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+x x x x x ; 解 一般项为!22n x u n n =.<4> 97535432⋅⋅⋅+-+-a a a a . 解 一般项为12)1(11+-=+-n a u n n n . 3.根据级数收敛与发散的定义判定下列级数的收敛性:<1>∑∞=-+1)1(n n n ;解 因为)1( )34()23()12(n n s n -++⋅⋅⋅+-+-+-=)()11(∞→∞→-+=n n ,所以级数发散.<2> )12)(12(1 751531311⋅⋅⋅++-+⋅⋅⋅+⋅+⋅+⋅n n ; 解 因为)12)(12(1 751531311+-+⋅⋅⋅+⋅+⋅+⋅=n n s n)121121(21 )7151(21)5131(21)3111(21+--+⋅⋅⋅+-+-+-=n n )121121 715151313111(21+--+⋅⋅⋅+-+-+-=n n )(21)1211(21∞→→+-=n n , 所以级数收敛.<3> 6sin 63sin 62sin 6sin ⋅⋅⋅+⋅⋅⋅+++ππππn . 解 6sin 63sin 62sin 6sin ππππn s n ⋅⋅⋅+++= )6sin 12sin 2 62sin 12sin 26sin 12sin 2(12sin 21πππππππn +⋅⋅⋅++= )]1212cos 1212(cos )125cos 123(cos )123cos 12[(cos 12sin 21πππππππ+--+⋅⋅⋅+-+-=n n )1212cos 12(cos 12sin 21πππ+-=n . 因为π1212cos lim +∞→n n 不存在,所以n n s ∞→lim 不存在,因而该级数发散. 4.判定下列级数的收敛性: <1> 98)1( 9898983322⋅⋅⋅+-+⋅⋅⋅+-+-n n n ; 解 这是一个等比级数,公比为98-=q ,于是198||<=q ,所以此级数收敛. <2> 31 916131⋅⋅⋅++⋅⋅⋅+++n; 解 此级数是发散的,这是因为如此级数收敛,则级数) 31 916131(311⋅⋅⋅++⋅⋅⋅+++==∑∞=n n n 也收敛,矛盾.<3> 31 3131313⋅⋅⋅++⋅⋅⋅+++n ; 解 因为级数的一般项)(013311∞→≠→==-n u n n n ,所以由级数收敛的必要条件可知,此级数发散.<4> 232323233322⋅⋅⋅++⋅⋅⋅+++n n ; 解 这是一个等比级数,公比123>=q ,所以此级数发散. <5> )3121( )3121()3121()3121(3322⋅⋅⋅+++⋅⋅⋅++++++nn . 解 因为∑∞=121n n 和∑∞=131n n 都是收敛的等比级数,所以级数 )3121( )3121()3121()3121()3121(33221⋅⋅⋅+++⋅⋅⋅++++++=+∑∞=n n n n n 是收敛的.习题11-21.用比较审敛法或极限形式的比较审敛法判定下列级数的收 敛性:<1> )12(1 51311⋅⋅⋅+-+⋅⋅⋅+++n ; 解因为211121lim =-∞→nn n ,而级数∑∞=11n n发散,故所给级数发散. <2> 11 313121211222⋅⋅⋅++++⋅⋅⋅+++++++n n ; 解因为n n n n n n u n 111122=++>++=,而级数∑∞=11n n发散, 故所给级数发散.<3> )4)(1(1 631521⋅⋅⋅++++⋅⋅⋅+⋅+⋅n n ; 解因为145lim 1)4)(1(1lim 222=++=++∞→∞→n n n nn n n n ,而级数∑∞=121n n 收敛, 故所给级数收敛.<4> 2sin 2sin 2sin 2sin 32⋅⋅⋅++⋅⋅⋅+++n ππππ;解因为πππππ==∞→∞→nn n n n n 22sin lim 212sin lim ,而级数∑∞=121n n 收敛, 故所给级数收敛.<5>∑∞=>+1)0(11n n a a . 解因为 ⎪⎩⎪⎨⎧>=<<==+=+∞→∞→11 1 2110 0 1lim 111lim a a a l a a a a n n n n n n ,而当a >1时级数∑∞=11n n a 收敛,当0<a ≤1时级数∑∞=11n n a 发散, 所以级数∑∞=+111n n a 当a >1时收敛,当0<a ≤1时发散. 2.用比值审敛法判定下列级数的收敛性:<1>23 2332232133322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅nn n ; 解级数的一般项为n n n n u 23⋅=.因为 123123lim 322)1(3lim lim 111>=+⋅=⋅⋅⋅+=∞→++∞→+∞→n n n n u u n n n n n n n n n , 所以级数发散.<2>∑∞=123n n n ; 解因为131)1(31lim 33)1(lim lim 22121<=+⋅=⋅+=∞→+∞→+∞→nn n n u u n n n n n n n , 所以级数收敛.<3>∑∞=⋅1!2n n n n n ;解因为12)1(lim 2!2)1()!1(2lim lim 111<=+=⋅⋅++⋅=∞→++∞→+∞→e n n n n n n u u n n n n n n n n n n , 所以级数收敛.<3>∑∞=+112tann n n π. 解因为121221lim 2tan 2tan )1(lim lim 12121<=⋅+=+=++∞→++∞→+∞→n n n n n n n n n n n n n u u ππππ, 所以级数收敛.3.用根值审敛法判定下列级数的收敛性:<1>∑∞=+1)12(n n n n ; 解因为12112lim lim<=+=∞→∞→n n u n n n n ,所以级数收敛. <2>∑∞=+1)]1[ln(1n n n ; 解因为10)1ln(1lim lim<=+=∞→∞→n u n n n n ,所以级数收敛. <3>∑∞=--112)13(n n n n ; 解因为n n n n n n n n n n n u 1212)13(1lim)13(lim lim -∞→-∞→∞→-=-= 131)311(31lim 321212<⋅=-⋅=--∞→en n n n , 所以级数收敛.<4>∑∞=1)(n n na b ,其中a n →a <n →∞>,a n ,b ,a 均为正数.解因为a b a b u nn nn n ==∞→∞→lim lim , 所以当b <a 时级数收敛,当b >a 时级数发散.4.判定下列级数的收敛性:<1> )43( )43(3)43(24332⋅⋅⋅++⋅⋅⋅+++n n ; 解这里n n n u )43(=,因为 143431lim )43()43)(1(lim lim 11<=⋅+=+=∞→+∞→+∞→n n n n u u n nn n n n n , 所以级数收敛.<2>!!33!22!114444⋅⋅⋅++⋅⋅⋅+++n n ; 解这里!4n n u n =,因为 10)1(1lim !)!1()1(lim lim 3441<=+⋅=⋅++=∞→∞→+∞→n n nn n n n u u n n n n n , 所以级数收敛.<3>∑∞=++1)2(1n n n n ; 解因为121lim 1)2(1lim =++=++∞→∞→n n nn n n n n ,而级数∑∞=11n n发散, 故所给级数发散.<4>∑∞=13sin2n nn π; 解因为1323232lim 3sin 23sin 2lim 1111<=⋅⋅=++∞→++∞→n n n n n n n n n n ππππ, 所以级数收敛.<5> 1 232⋅⋅⋅+++⋅⋅⋅++nn ; 解因为011lim lim ≠=+=∞→∞→n n u n n n , 所以级数发散.<6>)0 ,0( 1 211>>⋅⋅⋅+++⋅⋅⋅++++b a bna b a b a . 解因为n a b na u n 111⋅>+=,而级数∑∞=11n n发散, 故所给级数发散.5.判定下列级数是否收敛?如果是收敛的,是绝对收敛还是 条件收敛?<1> 4131211⋅⋅⋅+-+-; 解这是一个交错级数∑∑∞=-∞=--=-11111)1()1(n n n n n n u ,其中n u n 1=. 因为显然u n ≥u n +1,并且0lim =∞→n n u ,所以此级数是收敛的. 又因为∑∑∞=∞=-=-1111|)1(|n n n n nu 是p <1的p 级数,是发散的,所以原级数是条件收敛的.<2>∑∞=---1113)1(n n n n ; 解∑∑∞=-∞=--=-111113|3)1(|n n n n n n n . 因为131331lim 1<=+-∞→n n n n n ,所以级数∑∞=-113n n n 是收敛的, 从而原级数收敛,并且绝对收敛.<3> 2131213121312131432⋅⋅⋅+⋅-⋅+⋅-⋅;解这是交错级数∑∞=-⋅-112131)1(n n n ,并且∑∑∞=∞=-⋅=⋅-1112131|2131)1(|n n n n n . 因为级数∑∞=⋅12131n n 是收敛的,所以原级数也收敛,并且绝对收敛. <4> 5ln 14ln 13ln 12ln 1⋅⋅⋅+-+-; 解这是交错级数∑∑∞=-∞=-+-=-1111)1ln()1()1(n n n n n n u ,其中)1ln(1+=n u n . 因为u n ≥u n +1,并且0lim =∞→n n u ,所以此级数是收敛的. 又因为11)1ln(1+≥+n n ,而级数∑∞=+111n n 发散, 故级数∑∑∞=∞=-+=-111)1ln(1|)1(|n n n n n u 发散,从而原级数是条件收敛的. <5>∑∞=+-11!2)1(2n n n n . 解级数的一般项为!2)1(21n u n n n +-=. 因为∞=⋅⋅⋅⋅⋅-⋅-⋅===∞→∞→∞→∞→122232 22122lim !)2(lim !2lim ||lim 2n n n n n n n n n n n n n n n n n n u , 所以级数发散.习题11-31. 求下列幂级数的收敛域:<1>x +2x 2+3x 3+⋅⋅⋅+nx n +⋅⋅⋅;解 11lim ||lim 1=+=∞→+∞→nn a a n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=1n n , 是发散的;当x =-1时, 幂级数成为∑∞=-1)1(n n n , 也是发散的,所以收敛域为<-1,1>.<2> )1( 21222⋅⋅⋅+-+⋅⋅⋅++-nx x x n n ; 解 1)1(lim 1)1(1lim ||lim 22221=+=+=∞→∞→+∞→n n n n a a n n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=-221)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=+1211n n , 也是收敛的, 所以收敛域为[-1,1].<3> )2( 42 64242232⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+n x x x x n ; 解 0)1(21lim )!1(2!2lim ||lim 11=+=⋅+⋅⋅=∞→+∞→+∞→n n n a a n n n n n n n , 故收敛半径为R =+∞, 收敛域为<-∞,+∞>. <4> 33332313322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅n n n x x x x ; 解 31131lim 3)1(3lim ||lim 11=+⋅=⋅+⋅=∞→+∞→+∞→n n n n a a n n n n n n n , 故收敛半径为R =3. 因为当x =3时, 幂级数成为∑∞=11n n , 是发散的; 当x =-3时, 幂级数成为∑∞=-11)1(n n n , 也是收敛的, 所以收敛域为[-3,3>. <5> 12 102522223322⋅⋅⋅+++⋅⋅⋅+++n n x n x x x ;解 21)1(1lim 2211)1(2lim ||lim 222211=+++=+⋅++=∞→+∞→+∞→n n n n a a n n n n n n n , 故收敛半径为21=R . 因为当21=x 时, 幂级数成为∑∞=+1211n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=+-1211)1(n n n , 也是收敛的, 所以收敛域为]21 ,21[-. <6>∑∞=++-11212)1(n n n n x ; 解 这里级数的一般项为12)1(12+-=+n x u n nn . 因为212321|1232|lim ||lim x x n n x u u n n n n n n =+⋅+=++∞→+∞→, 由比值审敛法, 当x 2<1, 即|x |<1时, 幂级数绝对收敛; 当x 2>1, 即|x |>1时, 幂级数发散, 故收敛半径为R =1.因为当x =1时, 幂级数成为∑∞=+-1121)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=++-11121)1(n n n , 也是收敛的, 所以收敛域为[-1, 1].<7>∑∞=--122212n n n x n ; 解 这里级数的一般项为22212--=n nn x n u . 因为22212121|)12(22)12(|lim ||lim x x n x n u u n n n n n n n n =-⋅+=-+∞→+∞→, 由比值审敛法, 当1212<x , 即2||<x 时, 幂级数绝对收敛; 当1212>x , 即2||>x 时, 幂级数发散, 故收敛半径为2=R . 因为当2±=x 时, 幂级数成为∑∞=-1212n n , 是发散的, 所以收敛域为)2 ,2(-.<8>∑∞=-1)5(n nn x . 解 11lim ||lim 1=+=∞→+∞→n n a a n n n n , 故收敛半径为R =1, 即当-1<x -5<1时级数收敛, 当|x -5|>1时级数发散.因为当x -5=-1, 即x =4时, 幂级数成为∑∞=-1)1(n nn , 是收敛的; 当x -5=1, 即x =6时, 幂级数成为∑∞=11n n, 是发散的, 所以收敛域为[4, 6>. 2. 利用逐项求导或逐项积分, 求下列级数的和函数:<1>∑∞=-11n n nx ;解 设和函数为S <x >, 即∑∞=-=11)(n n nx x S , 则][][])([)(1010110'='='=∑⎰⎰∑⎰∞=-∞=-n xn x n n x dx nx dx nxdx x S x S)11( )1(1]111[][21<<--='--='=∑∞=x x x x n n . <2>∑∞=++11414n n n x ; 解 设和函数为S <x >, 即∑∞=++=11414)(n n n x x S , 则dx x dx n x dx x S S x S x n n x n n x ⎰∑⎰∑⎰∞=∞=+='+='+=01401140]14[)()0()( ⎰⎰-⋅++⋅+-=--=x x dx x x dx x02204)112111211()111( )11( arctan 2111ln 41<<--+-+=x x x x x .提示: 由)0()()(0S x S dx x S x -='⎰得⎰'+=xdx x S S x S 0)()0()(. <3>⋅⋅⋅+-+⋅⋅⋅+++- 12 531253n x x x x n . 解 设和函数为S <x >, 即⋅⋅⋅+-+⋅⋅⋅+++=-=-∞=-∑ 12 5312)(1253112n x x x x n x x S n n n , 则 ⎰∑⎰∑⎰∞=-∞=-='-='+=x n n x n n x dx x dx n x dx x S S x S 012201120]12[)()0()( )11( 11ln 211102<<--+=-=⎰x x x dx xx . 提示: 由)0()()(0S x S dx x S x -='⎰得⎰'+=xdx x S S x S 0)()0()(.习题11-41. 求函数f <x >=cos x 的泰勒级数, 并验证它在整个数轴上收敛于这函数.解 )2cos()()(π⋅+=n x x f n <n =1,2,⋅⋅⋅>, )2cos()(00)(π⋅+=n x x f n <n =1,2,⋅⋅⋅>, 从而得f <x >在x 0处的泰勒公式)(!2)cos())(2cos(cos )(200000⋅⋅⋅+-++-++=x x x x x x x x f ππ )( )(!)2cos(00x R x x n n x n n +-++π. 因为)!1(|||)()!1(]21)(cos[||)(|101000+-≤-+++-+=++n x x x x n n x x x x R n n n πθ<0≤θ≤1>, 而级数∑∞∞→++-n n n x x )!1(||10总是收敛的, 故0)!1(||lim 10=+-+∞→n x x n n , 从而0|)(|lim =∞→x R n n . 因此 )(!2)cos())(2cos(cos )(200000⋅⋅⋅+-++-++=x x x x x x x x f ππ⋅⋅⋅+-++ )(!)2cos(00n x x n n x π,x ∈<-∞,+∞>.2. 将下列函数展开成x 的幂级数, 并求展开式成立的区间: <1>2sh x x e e x --=; 解 因为∑∞==0!n n xn x e ,x ∈<-∞,+∞>,所以 ∑∞=--=0!)1(n n nx n x e ,x ∈<-∞,+∞>, 故 ∑∑∑∑∞=-∞=∞=∞=-=--=--=012000)!12(!])1(1[21]!)1(![21sh n n n n n n n n n n n x n x n x n x x ,x ∈<-∞,+∞>. <2>ln<a +x ><a >0>;解 因为)1ln(ln )1(ln )ln(a x a a x a x a ++=+=+,∑∞=++-=+011)1()1ln(n n nn x x <-1<x ≤1>, 所以 ∑∑∞=++∞=++-+=+-+=+01101)1()1(ln )(11)1(ln )ln(n n n n n n n a n x a a x n a x a <-a <x ≤a >. <3>a x ;解 因为∑∞==0!n n x n x e ,x ∈<-∞,+∞>, 所以 ∑∑∞=∞=====00ln !)(ln !)ln (n n n n n x a x x x n a n a x e ea ,x ∈<-∞,+∞>, <4>sin 2x ; 解 因为x x 2cos 2121sin 2-=,∑∞=-=02)!2()1(cos n n nn x x ,x ∈<-∞,+∞>, 所以 ∑∑∞=-∞=⋅-=--=1212022)!2(2)1()!2()2()1(2121sin n n n n n n n n x n x x x ∈<-∞,+∞>. <5><1+x >ln<1+x >;解 因为∑∞=++-=+011)1()1ln(n n nn x x <-1<x ≤1>, 所以 ∑∞=++-+=++011)1()1()1ln()1(n n nn x x x x ∑∑∞=+∞=++-++-=02011)1(1)1(n n n n n nn x n x ∑∑∞=++∞=+-++-+=11111)1(1)1(n n n n n n n x n x x 111])1(1)1([+∞=+∑-++-+=n n n n x n n x 111)1()1(+∞=-∑+-+=n n n x n n x <-1<x ≤1>. <6>21x x +. 解 因为∑∞=--+=+122/12!)!2(!)!12()1(1)1(1n n n x n n x <-1≤x ≤1>, 所以 ∑∑∞=+∞=+⋅-+=--+=+11221122)2()!()!2(2)1(!)!2(!)!12()1(1n n n n n n x n n x x n n x xx <-1≤x ≤1>. 3. 将下列函数展开成<x -1>的幂级数, 并求展开式成立的区间: <1>3x ;解 因为)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x n m . 所以 233)]1(1[-+=x x )1(!)123( )123(23 )1(!2)123(23)1(2312⋅⋅⋅+-+-⋅⋅⋅-+⋅⋅⋅+--+-+=n x n n x x)111(<-<-x ,即 )1(!2)25( )3()1(13 )1(!2213)1(231223⋅⋅⋅+-⋅-⋅⋅⋅-⋅-⋅⋅+⋅⋅⋅+-⋅⋅+-+=n n x n n x x x )20(<<x .上术级数当x =0和x =2时都是收敛的, 所以展开式成立的区间是[0,2].<2>lg x .解 ∑∞=-≤-<---=-+==11)111( )1()1(10ln 1)]1(1ln[10ln 110ln ln lg n n n x nx x x x , 即 ∑∞=-≤<--=11)20( )1()1(10ln 1lg n n n x nx x . 4. 将函数f <x >=cos x 展开成)3(π+x 的幂级数. 解 3sin )3sin(3cos )3cos(]3)3cos[(cos ππππππ+++=-+=x x x x )3sin(23)3cos(21ππ+++=x x ∑∑∞=+∞=++-++-=01202)3()!12()1(23)3()!2()1(21n n n n n n x n x n ππ )( ])3()!12(3)3()!2(1[)1(211202+∞<<-∞++++-=+∞=∑x x n x n n n n n ππ. 5.将函数xx f 1)(=展开成<x -3>的幂级数. 解 ∑=<-<---=-+=-+=n n n n x x x x x 0)1331( )33()1(313311313311, 即 ∑=<<--=n n n n x x x 0)60( )33()1(311. 6.将函数231)(2++=x x x f 展开成<x +4>的幂级数. 解 2111231)(2+-+=++=x x x x x f ,而 ∑∞=<++-=+--=++-=+0)1|34(| )34(31341131)4(3111n n x x x x x , 即 )17( 3)4(1101-<<-+-=+∑∞=+x x x n n n ; ∑∞=<++-=+--=++-=+0)1|24(| )24(21241121)4(2121n n x x x x x , 即 )26( 2)4(2101-<<-+-=+∑∞=+x x x n n n . 因此 ∑∑∞=∞=+++++-=++=001122)4(3)4(231)(n n n n n n x x x x x f )26( )4)(3121(011-<<-+-=∑∞=++x x n n n n . 习题11-51. 利用函数的幂级数展开式求下列各数的近似值:<1>ln3<误差不超过0.0001>; 解)11( ) 121 5131(211ln 1253<<-⋅⋅⋅+-+⋅⋅⋅+++=-+-x x n x x x x x n , ) 21121 2151213121(2211211ln 3ln 1253⋅⋅⋅+⋅-+⋅⋅⋅+⋅+⋅+=-+=-n n . 又 ] 2)32(12)12(1[2||3212⋅⋅⋅+⋅++⋅-=+-n n n n n r ] 2)52(2)12(2)32(2)12(1[2)12(25212321212⋅⋅⋅+⋅+⋅++⋅+⋅+++=+++++n n n n n n n n n n 2242122)12(31) 21211(2)12(2-+-=⋅⋅⋅++++<n n n n , 故 00012.021131||85≈⋅⋅<r ,00003.021331||105≈⋅⋅<r . 因而取n =6, 此时1.0986 )21111219121712151213121(23ln 119753≈⋅+⋅+⋅+⋅+⋅+=. <2>e <误差不超过0.001>;解 )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x , 21!1 21!212112⋅⋅⋅+⋅⋅⋅⋅+⋅++=nn e . 由于 21)!2(121)!1(121⋅⋅⋅+⋅++⋅+=++n n n n n r 21)1()2(121111[2!12⋅⋅⋅+⋅+⋅++⋅++⋅=n n n n n 22!3141112!1-⋅⋅=-⋅⋅<n n n n , 故 0003.02!53134≈⋅⋅=r . 因此取n =4得648.121!4121!3121!21211432≈⋅+⋅+⋅++≈e . <3>9522<误差不超过0.00001>; 解)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x n m , 9/199)2101(2522+= ] )210(!33178)210(!298210911[23922929⋅⋅⋅-⋅⋅⋅+⋅⋅-⋅+=. 由于002170.0210919≈⋅,000019.0)210(!298292≈⋅⋅, 故00430.2)000019.0002170.01(25229≈-+=.<4>cos 2︒<误差不超过0.0001>.解 )( )!2()1( !4!21cos 242+∞<<-∞⋅⋅⋅+-+⋅⋅⋅-+-=x n x x x x n n , )90(!61 )90(!41)90(!21190cos 2cos 642⋅⋅⋅+⋅-⋅+⋅-==︒ππππ.由于42106)90(!21-⨯≈⋅π,8410)90(!41-≈⋅π, 故 9994.00006.01 )90(!2112cos 2=-≈⋅⋅-≈︒π.2.利用被积函数的幂级数展开式求下列定积分的近似值:<1>⎰+5.00411dx x <误差不超过0.0001>; 解⎰⎰⋅⋅⋅+-+⋅⋅⋅+-+-=+5.00412845.004] )1( 1[11dx x x x x dx x n n 5.001395|) 1319151(⋅⋅⋅+-+-=x x x x 2113121912151211395⋅⋅⋅+⋅-⋅+⋅-. 因为00625.021515≈⋅,00028.021919≈⋅,000009.02113113≈⋅, 所以4940.0219121512111955.004≈⋅+⋅-≈+⎰dx x . <2>⎰5.00arctan dx xx <误差不超过0.0001>. 解)11( 121)1( 5131arctan 1253<<-⋅⋅⋅++-+⋅⋅⋅-+-=+x x n x x x x n n, dx x n x x dx x x n n ] 121)1( 51311[arctan 5.002425.00⎰⎰⋅⋅⋅++-+⋅⋅⋅-+-= 5.00753|) 49125191(⋅⋅⋅+-+-=x x x x 2149121251219121753⋅⋅⋅+⋅-⋅+⋅-=. 因为0139.021913≈⋅,0013.0212515≈⋅,0002.0214917≈⋅, 所以487.021*********arctan 535.00≈⋅+⋅-=⎰dx x x . 3.将函数e x cos x 展开成x 的幂级数. 解)(21cos ix ix e e x -+=, ][21)(21cos )1()1(i x i x ix ix x x e e e e e x e -+-+=+⋅=∑∑∑∞=∞=∞=-++=-++=000!)1()1(21!)1(!)1([21n n n n n n n n n n x n i i x n i x n i . 因为421πi e i =+,421πi e i -=-, 所以4cos 2)4cos 2(2][2)1()1(122442ππππn n e e i i n n n i n i n n n +-==+=-++. 因此)( !4cos 2cos 02+∞<<-∞=∑∞=x x n n x e n n n x π.习题11-7 1.下列周期函数f <x >的周期为2π,试将f <x >展开成傅里叶级数,如果f <x >在[-π,π>上的表达式为:<1>f <x >=3x 2+1<-π≤x <π>;解 因为)1(2)13(1)(1220+=+==⎰⎰--πππππππdx x dx x f a , ⎰-=ππππdx n x f a n cos )(1 2212)1(cos )13(1n dx n x n -=+=⎰-ππππ <n =1,2,⋅⋅⋅>, ⎰-=ππππdx n x f b n sin )(1 0sin )13(12=+=⎰-ππππdx n x <n =1,2,⋅⋅⋅>, 所以f <x >的傅里叶级数展开式为)( cos )1(121)(122+∞<<-∞-++=∑∞=x nx n x f n n π.<2>f <x >=e 2x <-π≤x <π>;解 因为πππππππππ21)(12220----===⎰⎰e e dx e dx x f a x ,⎰-=ππππdx n x f a ncos )(1πππππππ)4()()1(2cos 12222+--==--⎰n e e dx n e n x<n =1,2,⋅⋅⋅>, ⎰-=ππππdx n x f b n sin )(1πππππππ)4()()1(sin 12222+---==--⎰n e e n dx n e n x<n =1,2,⋅⋅⋅>, 所以f <x >的傅里叶级数展开式为∑∞=--+-+-=1222)sin cos 2(4)1(41[)(n n nx n nx n e e x f πππ<x ≠<2n +1>π,n =0,±1,±2,⋅⋅⋅>.<3>⎩⎨⎧<≤<≤-=ππx ax x bx x f 0 0)(<a ,b 为常数,且a >b >0>.解 因为)(211000b a axdx bxdx a -=+=⎰⎰-πππππ, ]cos 1cos 100⎰⎰+=-ππππnxdx ax nxdx bx a nn n a b )1(1[2---=π<n =1,2,⋅⋅⋅>,⎰⎰+=-ππππ00sin 1sin 1nxdx ax nxdx bx b nnb a n +-=+1)1(<n =1,2,⋅⋅⋅>, 所以f <x >的傅里叶级数展开式为∑∞=-+-+---+-=112}sin )()1(cos )]()1(1[{)(4)(n n n nx n b a nx n a b b a x f ππ <x ≠<2n +1>π,n =0,±1,±2,⋅⋅⋅>.2.将下列函数f <x >展开成傅里叶级数:<1>3sin2)(x x f =<-π≤x ≤π>; 解 将f <x >拓广为周期函数F <x >, 则F <x >在<-π,π>中连续, 在x =±π间断, 且)()]()([21πππ-≠-+-+-f F F ,)()]()([21πππf F F ≠++-, 故F <x >的傅里叶级数在<-π,π>中收敛于f <x >, 而在x =±π处F <x >的傅里叶级数不收敛于f <x >. 计算傅氏系数如下: 因为3sin2x <-π<x <π>是奇函数, 所以a n=0<n =0,1,2,⋅⋅⋅>,⎰⎰+--==ππππ00])31cos()31[cos(2sin 3sin 22dx x n x n nxdx x b n19318)1(21-⋅-=+n nn π<n =1,2,⋅⋅⋅>, 所以∑∞=+--=12119sin )1(318)(n n n nx n x f π<-π<x <π>.<2>⎩⎨⎧≤≤<≤-=ππx x e x f x 0 10)(.解 将f <x >拓广为周期函数F <x >, 则F <x >在<-π,π>中连续, 在x =±π间断, 且)()]()([21πππ-≠-+-+-f F F ,)()]()([21πππf F F ≠++-,故F <x >的傅里叶级数在<-π,π>中收敛于f <x >, 而在x =±π处F <x >的傅里叶级数不收敛于f <x >. 计算傅氏系数如下:ππππππ---+=+=⎰⎰e dx dx e a x 1][1000, )1()1(1]cos cos [1200n e nxdx nxdx e a n xn +--=+=--⎰⎰πππππ<n =1,2,⋅⋅⋅>,]sin sin [100⎰⎰+=-πππnxdx nxdx e b xn})1(11])1(1[{12n n e n n n --++---=-ππ<n =1,2,⋅⋅⋅>, 所以πππ21)(--+=e x f∑∞=----++-+-++--+122}]sin )1(11)1([cos 1)1(1{1n n n n nx n n ne n nx n e πππ <-π<x <π>.3.设周期函数f <x >的周期为2π,证明f <x >的傅里叶系数为⎰=ππ20cos )(1nxdx x f a n <n =0, 1, 2,⋅⋅⋅>,⎰=ππ20sin )(1nxdx x f b n <n =1, 2,⋅⋅⋅>.证明 我们知道, 若f <x >是以l 为周期的连续函数, 则⎰+la adx x f )(的值与a 无关, 且⎰⎰=+lla adx x f dx x f 0)()(,因为f <x >,cos nx ,sin nx 均为以2π为周期的函数, 所以f <x >cos nx ,f <x >sin nx 均为以2π为周期的函数, 从而⎰⎰+---==πππππππ2cos )(1cos )(1nxdx x f nxdx x f a n⎰=ππ20cos )(1nxdx x f <n =1, 2,⋅⋅⋅>.同理 ⎰=ππ20sin )(1nxdx x f b n <n =1, 2,⋅⋅⋅>.4.将函数2cos )(xx f =<-π≤x ≤π>展开成傅里叶级数: 解 因为2cos )(x x f =为偶函数, 故b n =0<n =1, 2,⋅⋅⋅>, 而⎰⎰==-πππππ0cos 2cos 2cos 2cos 1nxdx x nxdx x a n⎰+--=ππ0])21cos()21[cos(1dx x n x n 1414)1(21-⋅-=+n n π<n =1, 2,⋅⋅⋅>. 由于2cos )(x x f =在[-π,π]上连续, 所以 ∑∞=+--+=121cos 141)1(422cos n n nx n x ππ<-π≤x ≤π>. 5.设f <x >的周期为2π的周期函数, 它在[-π,π>上的表达式这⎪⎪⎩⎪⎪⎨⎧<≤<≤--<≤--=ππππππππx x x x x f 2 222 2 2)(,将f <x >展开成傅里叶级数.解 因为f <x >为奇函数, 故a n =0<n =0,1,2,⋅⋅⋅>, 而]sin 2sin [2sin )(22200⎰⎰⎰+==πππππππnxdx nxdx x nxdx x f b n2sin 2)1(2ππn n n n +--=<n =1,2,⋅⋅⋅>,又f <x >的间断点为x =<2n +1>π,n =0,±1,±2,⋅⋅⋅, 所以nx n n n x f n n sin ]2sin 2)1([)(121∑∞=++-=ππ< x ≠<2n +1>π,n =0,±1,±2,⋅⋅⋅>.6. 将函数2)(x x f -=π<0≤x ≤π>展开成正弦级数.解 作奇延拓得F <x >:⎪⎩⎪⎨⎧<<---=≤<=0)(0 00 )()(x x f x x x f x F ππ,再周期延拓F <x >到<-∞,+∞>, 则当x ∈<0,π]时F <x >=f <x >,)0(20)0(f F =≠=π.因为a n =0<n =0,1,2,⋅⋅⋅>, 而nnxdx x b n 1sin 220=-=⎰πππ <n =1,2,⋅⋅⋅>, 故 nx nx f n sin 1)(1∑∞==<0<x ≤π>,级数在x =0处收敛于0.7.将函数f <x >=2x 2<0≤x ≤π>分另别展开成正弦级数和余弦级数. 解对f <x >作奇延拓,则a n =0<n =0, 1, 2,⋅⋅⋅>,而]2)2()1[(4sin 2232302n n n nxdx x b n n ---==⎰ππππ<n =1, 2,⋅⋅⋅>,故正弦级数为nx n n n x f n n sin ]2)2()1[(4)(1323∑∞=---=ππ<0≤x <π>, 级数在x =0处收敛于0.对f <x >作偶延拓,则b n =0<n =1, 2,⋅⋅⋅>,而20203422πππ==⎰dx x a , 2028)1(cos 22nnxdx x a n n -==⎰ππ <n =1, 2,⋅⋅⋅>, 故余弦级数为nx nx f n n cos )1(832)(122∑∞=-+=π<0≤x ≤π>.8.设周期函数f <x >的周期为2π, 证明<1>如果f <x -π>=-f <x >, 则f <x >的傅里叶系数a 0=0,a 2k =0,b 2k =0<k =1,2,⋅⋅⋅>; 解 因为020200)(1)(1)(1a dt t f dx t f dx x f a xt -=-=-=⎰⎰⎰+=-πππππππππ令,所以a 0=0. 因为dx t k t f kxdx x f a xt k )(2cos )(12cos )(1202ππππππππ--=⎰⎰+=-令k a ktdt t f 2202cos )(1-=-=⎰ππ,所以a 2k =0.同理b 2k =0<k =1,2,⋅⋅⋅>.<2>如果f <x -π>=f <x >, 则f <x >的傅里叶系数a 2k +1=0,b 2k +1=0<k =1,2,⋅⋅⋅>. 解因为)12cos()(112⎰-++=πππxdx k x f a kdx t k t f xt ))(12cos()(1 20πππππ-+-⎰+=令1220)12cos()(1+-=+-=⎰k a tdt k t f ππ,所以a 2k +1=0<k =1,2,⋅⋅⋅>. 同理b 2k +1=0<k =1,2,⋅⋅⋅>.习题11-81. 将下列各周期函数展开成傅里叶级数<下面给出函数在一个周期内的表达式>: <1>)2121(1)(2<≤--=x x x f ;解 因为f <x >=1-x 2为偶函数, 所以b n =0<n =1,2,⋅⋅⋅>, 而611)1(4)1(2/12210221020=-=-=⎰⎰dx x dx x a ,⎰-=21022/1cos )1(2/12dx x n x a n π2212102)1(2cos )1(4ππn xdx n x n +-=-=⎰<n =1,2,⋅⋅⋅>,由于f <x >在<-∞,+∞>内连续, 所以∑∞=+-+=12122cos )1(11211)(n n x n n x f ππ,x ∈<-∞,+∞>.<2>⎪⎪⎩⎪⎪⎨⎧<≤-<≤<≤-=121 1210 101 )(x x x x x f ;解 21)(1212100111-=-+==⎰⎰⎰⎰--dx dx xdx dx x f a n ,⎰⎰⎰⎰-+==--1212100111cos cos cos cos )(xdx n xdx n xdx n x xdx n x f a n ππππ2sin 2])1(1[122πππn n n n +--= <n =1,2,⋅⋅⋅>,dx x n xdx n xdx n x xdx n x f b n ⎰⎰⎰⎰-+==--121210111sin sin sin sin )(πππππππn n n 12cos 2+-= <n =1,2,⋅⋅⋅>.而在<-∞,+∞>上f <x >的间断点为x =2k ,212+k ,k =0,±1,±2,⋅⋅⋅,故 }sin 2cos 21cos ]2sin 2)1(1{[41)(122x n n n x n n n n x f n nπππππππ-++--+-=∑∞= <x ≠2k ,212+≠k x ,k =0,±1,±2,⋅⋅⋅>.<3>⎩⎨⎧<≤<≤-+=30 1 03 12)(x x x x f .解 1])12([31)(313003330-=++==⎰⎰⎰--dx dx x dx x f a ,]3cos 3cos )12([313cos )(31300333⎰⎰⎰--++==dx x n dx x n x dx x n x f a n πππ])1(1[622n n --=π<n =1,2,⋅⋅⋅ >, ]3sin 3sin )12([313sin )(31300333⎰⎰⎰--++==dx x n dx x n x dx x n x f b n πππn n )1(6-=π<n =1,2,⋅⋅⋅ >, 而在<-∞,+∞>上,f <x >的间断点为 x =3<2k +1>,k =0,±1,±2,⋅⋅⋅,故 }3sin 6)1(3cos])1(1[6{21)(1122∑∞=+-+--+-=n n n x n n x n n x f ππππ,<x ≠3<2k +1>,k =0,±1,±2,⋅⋅⋅>.2. 将下列函数分别展开成正弦级数和余弦级数:<1>⎪⎩⎪⎨⎧≤≤-<≤=lx x l l x x x f 2l20 )(; 解 正弦级数:对f <x >进行奇延拓, 则函数的傅氏系数为 a 0=0<n =0,1,2,⋅⋅⋅>,2sin 4]sin )(sin [22221210ππππn n l dx l x n x l dx l x n x l b l n =-+=⎰⎰<n =1,2,⋅⋅⋅ >故 ∑∞==122sin 2sin14)(n l x n n nl x f πππ,x ∈[0,l ].余弦级数:对f <x >进行偶延拓, 则函数的傅氏系数为2])([2212100l dx x l xdx l a l=-+=⎰⎰,⎰⎰-+=l n dx l x n x l dx l x n x l a 21210]cos )(cos [2ππ ])1(12cos 2[222n n n l ---=ππ <n =1, 2,⋅⋅⋅ > b n =0<n =1, 2,⋅⋅⋅ >,故lx n n n l l x f n n πππcos ])1(12cos2[124)(122∑∞=---+=,x ∈[0,l ].<2>f <x >=x 2<0≤x ≤2>.解正弦级数:对f <x >进行奇延拓, 则函数的傅氏系数为 a 0=0<n =0, 1, 2,⋅⋅⋅>,]1)1[()(168)1(2sin 2231202--+-==+⎰n n n n n dx x n x b πππ,故 2sin }]1)1[()(168)1{()(131x n n n x f n n n πππ∑∞=+--+-=2sin }]1)1[(2)1({81231x n n n n n n πππ∑∞=+--+-=,x ∈[0,2>. 余弦级数:对f <x >进行偶延拓, 则函数的傅氏系数为38222020==⎰dx x a2202)(16)1(2cos 22ππn dx x n x a n n -==⎰<n =1, 2,⋅⋅⋅>, b n =0<n =1, 2,⋅⋅⋅>,故 2cos )(16)1(34)(12x n n x f n n ππ∑∞=-+=2cos )1(1634122x n n n n ππ∑∞=-+=,x ∈[0,2].总习题十一 1.填空: <1>对级数∑∞=1n n u ,0lim =∞→n n u 是它收敛的________条件,不是它收敛的________条件; 解 必要; 充分.<2>部分和数列{s n }有界是正项级数∑∞=1n n u 收敛的________条件; 解 充分必要. <3>若级数∑∞=1n n u 绝对收敛,则级数∑∞=1n n u 必定________;若级数∑∞=1n n u 条件收敛,则级数∑∞=1||n n u 必定________. 解 收敛; 发散.2.判定下列级数的收敛性: <1>∑∞=11n n nn ; 解因为11lim 11lim ==∞→∞→n n nn nnn n ,而调和级数∑∞=11n n发散,故由比较审敛法知,级数发散. <2>∑∞=1222)!(n nn ;解因为∞==⋅++=∞→∞→+∞→222221lim )!(2)1(2])!1[(lim lim n n n n n u u n n n n n , 故由比值审敛法知,级数发散.<3> ∑∞=1223cos n n n n π; 解因为n n n n n 223cos 2<π,12121lim 2lim <==∞→∞→n n n n n n n所以由根值审敛法,级数∑∞=12n n n 收敛;由比较审敛法,级数∑∞=1223cos n nn n π收敛. <4>∑∞=110ln 1n n;解 因为∞==∞→∞→nn n u n n n 10ln lim 1lim, 而调和级数∑∞=11n n发散, 故由比较审敛法知, 原级数发散. 提示:∞===⋅⋅⋅==⋅=∞→∞→∞→∞→∞→xx x x x x x x x x x x x x 11lim !101ln lim !101 ln lim 1011ln 101limln lim9910<5>∑∞=1n s nna <a >0,s >0>. 解 因为a n a n a s n n ns n n ==∞→∞→)(lim lim , 故由根值审敛法知, 当a <1时级数收敛, 当a >1时级数发散.当a =1时, 原级数成为∑∞=11n s n, 这是p =s 的p -级数, 当s >1时级数收敛, 当s ≤1时级数发散. 3.设正项级数∑∞=1n n u 和∑∞=1n n v 都收敛,证明级数∑∞=+12)(n n n v u 与收敛. 证明 因为∑∞=1n n u 和∑∞=1n n v 都收敛, 所以0lim =∞→n n u ,0lim =∞→n n v . 又因为0)2(lim 2lim 2=+=+∞→∞→n n n nn n n n v u u v u u ,0lim lim 2==∞→∞→n n n n n v v v , 所以级数∑∞=+12)2(n n n n v u u 和级数∑∞=12n n v 都收敛, 从而级数 ∑∑∞=∞=+=++12122)(])2[(n n n n n n n n v u v v u u也是收敛的.4.设级数∑∞=1n n u 收敛,且1lim =∞→n n n u v ,问级数∑∞=1n n v 是否也收敛?试说明理由. 解 级数∑∞=1n n v 不一定收敛. 当∑∞=1n n u 和∑∞=1n n v 均为正项级数时, 级数∑∞=1n n v 收敛, 否则未必. 例如级数∑∞=-11)1(n n 收敛, 但级数∑∞=+-1]11)1[(n n n 发散, 并且有 11)1(11)1(lim =-+-∞→nn n n .5.讨论下列级数的绝对收敛性与条件收敛性:<1>∑∞=-11)1(n p n n ; 解∑∑∞=∞==-111|1)1(|n p n p n n n 是p 级数.故当p >1时级数∑∞=11n p n 是收敛的,当p ≤1时级数∑∞=11n p n 发散.因此当p >1时级数∑∞=-11)1(n p n n 绝对收敛. 当0<p ≤1时,级数∑∞=-11)1(n p n n 是交错级数,且满足莱布尼茨定理的条件,因而收敛,这时是条件收敛的. 当p ≤0时,由于01)1(lim ≠-∞→p nn n ,所以级数∑∞=-11)1(n p n n 发散. 综上所述,级数∑∞=-11)1(n p n n 当p >1时绝对收敛,当0<p ≤1时条件收敛,当p ≤0时发散. <2>∑∞=+++-1111sin )1(n n n n ππ; 解因为1111|1sin )1(|+++≤+-n n n n πππ,而级数∑∞=+111n n π收敛,故由比较审敛法知级数|1sin )1(|111∑∞=+++-n n n n ππ收敛,从而原级数绝对收敛. <3> ∑∞=+-11ln )1(n n n n ; 解因为1ln )11ln(lim 1ln lim 1|1ln )1(|lim ==+=+=+-∞→∞→∞→e n n n n nn n n n n n n ,而级数∑∞=11n n发散,故由比较审敛法知级数|1ln )1(|1∑∞=+-n n n n 发散,即原级数不是绝对收敛的. 另一方面,级数∑∞=+-11ln )1(n n n n 是交错级数,且满足莱布尼茨定理的条件,所以该级数收敛,从而原级数条件收敛.<4>∑∞=++-11)!1()1(n n nn n . 解令1)!1()1(++-=n n n n n u .因为 11)11(112lim )1(12lim )!1()1()!2(lim ||||lim 121<=+⋅++=+⋅++=+⋅++∞→∞→++∞→+∞→enn n n n n n n n n n u u n n n n n n n n n n , 故由比值审敛法知级数|)!1()1(|11∑∞=++-n n n n n 收敛,从而原级数绝对收敛. 6.求下列级限: <1>∑=∞→+n k k k n k n 12)11(311lim ; 解 显然∑=+=nk k k n k s 12)11(31是级数∑∞=+12)11(31n n n n 的前n 项部分和. 因为13)11(31lim )11(31lim 2<=+=+∞→∞→e n n n n n n n n , 所以由根值审敛法, 级数∑∞=+12)11(31n nn n 收敛, 从而部分和数列{s n }收敛.因此01lim )11(311lim 12=⋅=+∞→=∞→∑n n n k k k n s n k n . <2>])2( 842[lim 312719131n n n ⋅⋅⋅⋅⋅∞→. 解n n nn 3 27392313127191312)2( 842+⋅⋅⋅+++=⋅⋅⋅⋅⋅.显然n n n s 3 2739231+⋅⋅⋅+++=是级数∑∞=13n n n 的前n 项部分和. 设∑∞=-=11)(n n nx x S ,则210)1(1]111[][])([)(x x x dx x S x S n n x -='--='='=∑⎰∞=. 因为43)311(131)31(31)31(3132111=-⋅===∑∑∞=-∞=S n n n n n n , 所以43lim =∞→n n s , 从而 4331271913122lim ])2( 842[lim ==⋅⋅⋅⋅⋅∞→∞→nn s n n n .7.求下列幂级数的收敛域:<1>∑∞=+153n n n n x n ; 解 51)53(5)53(31lim 53153lim ||lim 111=++⋅+=+⋅++=∞→++∞→+∞→n n n n n n n n n n n n n n n a a , 所以收敛半径为51=R . 因为当51=x 时, 幂级数成为]1)53[(11+∑∞=n n n , 是发散的; 当51-=x 时, 幂级数成为]1)53[()1(1+-∑∞=n n n n , 是收敛的, 所以幂级数的收敛域为)51,51[-. <2>∑∞=+12)11(n n n x n ; 解 n n n x n u 2)11(+=, 因为||||)11(lim ||lim x e x nu n n n n n =+=∞→∞→, 由根值审敛法, 当e |x |<1, 即ex e 11<<-时, 幂级数收敛; 当e |x |>1,时幂级数发散. 当e x 1-=时, 幂级数成为∑∞=+1)1()11(2n n n e n ;。

十一章反常积分

十一章反常积分
y= 1 x2
0
1
b
x
二、两类反常积分的定义. 两类反常积分的定义
定义1: 定义 设函数 f (x)定义在区间[a, +∞)上, 且在任何 有限区间[a, u]上可积,如果存在极限
u →+∞ a
lim
∫ f ( x )dx = J
u
则称此极限为函数 f (x)在无穷区间[a, +∞)上 (x) [a, +∞) 的无穷限反常积分, 记作
u2
u 1
f (x)d <ε. x
2,比较原则
设定义在[ a,+∞)上的两个函数f和g都在任何有限区间上可积,
且满足
f (x ≤g(x x∈ a+ ) ) ), [, ∞
定理11.2(比较原则) (比较原则) 定理
设定义在[ a,+∞)上的两个函数f和g都在任何有限区间上可积,
[, ∞ 且满足 f (x) ≤g(x), x∈ a+ ) 则
若 g(x d 收 ,则 ∫ )x 敛 ∫
a
+ ∞
+ ∞
a
f (x d 收 ; ) x 敛
若 ∫
例1 : 讨论 ∫
+∞ 0
+ ∞
a
f (x d 发 ,则 g(x d 发 . ) x 散 ∫ )x 散
a
+ ∞
sin x dx的收敛性. 2 1+ x
a sin x x +b
3 2
例 2 : 讨论 ∫
+∞
a
+∞
a +∞
[k1 f1 ( x) + k 2 f 2 ( x)]dx也收敛, 且 [k1 f1 ( x) + k 2 f 2 ( x)]dx = k1 ∫

第11章反常积分答案

第11章反常积分答案

第十一章 反常积分一、单选题(每题2分)1、广义积分dxx x ⎰∞+-1211=( )A 、0B 、2πC 、4πD 、发散2、广义积分dx x x ⎰∞+-+2221=( ) A 、4ln B 、0 C 、4ln 31 D 、发散3、广义积分⎰+-20234x x dx =( )A 、3ln 1-B 、32ln 21 C 、3ln D 、发散 4、下列广义积分收敛的是( )A 、⎰∞+edx x xln B 、⎰∞+e x x dx ln C 、⎰∞+e x x dx 2)(ln D 、⎰∞+ex x dx21)(ln~5、下列广义积分发散的是( )A 、⎰∞-0dxe xB 、⎰π2cos x dx C 、⎰-202x dx D 、⎰∞+-0dx e x6、下列积分中( )是收敛的A 、⎰∞+∞-xdx sin B 、⎰-222sin ππx dx C 、⎰∞+0dx e xD 、⎰-101x dx 7、下列广义积分发散的是( )A 、⎰-11sin x dx B 、⎰--1121x dx C 、⎰∞+-02dx xe x D 、⎰∞+22)(ln x x dx8、⎰=-10121dx e x x( )A 、e 1B 、11-eC 、e 1-D 、∞9、已知2sin 0π=⎰∞+dx x x ,则=⎰∞+dx x x x 0cos sin ( )A 、0B 、4πC 、 2πD 、π》10、广义积分=+⎰∞+∞-dx x 211( )A 、0B 、2πC 、2π-D 、π11、下列积分中绝对收敛的是( )A 、dx x x ⎰∞+12sin B 、dx x x ⎰∞+1sin C 、dx x ⎰∞+12sin D 、dx x x ⎰∞+14sin12、已知广义积分dxx ⎰∞+∞-sin ,则下列答案中正确的是( )A 、因为()x f 在()+∞∞-,上是奇函数,所以0sin =⎰∞+∞-dx x B 、dx x ⎰∞+∞-sin =()()()[]0cos cos cos =∞--∞+-=∞-∞+-xC 、dx x ⎰∞+∞-sin =()0cos cos lim sin lim =+-=⎰-+∞→+∞→b b xdx bbb bD 、dxx ⎰∞+∞-sin 发散13、设广义积分dxe kb ⎰∞+-0收敛,则k ( )^A 、0≥B 、0>C 、0<D 、0=答案:BCDCB DAABD ADB二、判断题(每题2分)1、当10<<λ时,无穷积分dx x x⎰∞+1cos λ条件收敛; ( )2、当10<<λ时,无穷积分dx x x⎰∞+1sin λ绝对收敛; ( )3、若无穷积分()⎰∞+adxx f 收敛,而函数()x ϕ在[)+∞,a 单调有界, 则无穷积分()()⎰∞+adxx x f ϕ收敛; ( )4、若()⎰∞+adxx f 收敛,则()0lim =+∞→x f x ; ( )/5、若()x f 在[)+∞,a 无界,则()⎰∞+a dx x f 发散; ( )6、若()x f x +∞→lim 不存在,则()⎰∞+adxx f 发散; ( )7、若()x f 单调,()⎰∞+adxx f 收敛,则()0lim =+∞→x f x ; ( )8、若()⎰∞+adxx f 收敛,则()⎰∞+adxx f 2收敛; ( )9、若()⎰∞+adxx f 2,()⎰∞+adxx g 2收敛,则()()⎰∞+adxx g x f 收敛; ( )10、如果()⎰∞+adxx f 收敛,()x g 在[)+∞,a 上有界,则()()⎰∞+a dx x g x f 收敛;( )11、若()⎰∞+adxx f 收敛,()0lim =+∞→x f x ,则()⎰∞+adxx f 2收敛; ( )12、如果()⎰∞+adxx f 绝对收敛,()1lim =+∞→x g x ,则()()⎰∞+adxx g x f 收敛;( )答案:××× ××× ×、三、填空题(每题2分) 1、若无穷积分()⎰∞+a dx x f 收敛,则()=⎰∞++∞→dx x f pp lim;2、若无穷积分()⎰∞+adxx f 收敛,则a b >时,无穷积分()⎰∞+bdxx f ;3、设(]b a x ,∈∀,函数()0≥x f ,a 是其瑕点,且极限())0()(lim +∞≤≤=-+→d d x f a x ax λ,若+∞≤<≥d 0,1λ,则瑕积分()⎰ba dx x f ;4、设[)+∞∈∀,a x ,函数()0≥x f ,0>a ,且极限())0(lim +∞≤≤=+→d d x f x a x λ, 若+∞<≤>d 0,1λ,则无穷积分()⎰∞+a dx x f ;5、若()⎰∞+adxx f 收敛,则无穷积分()⎰∞+adxx f ;6、当1>λ时,无穷积分dx x x⎰∞+1cos λ ;7、当1≥p 时,瑕积分⎰10px dx ;'8、若()⎰∞+adxx f 收敛,且存在极限()Ax f x =+∞→lim ,则=A ;9、=+⎰∞+12)1(x x dx ;=⎰∞+e x x dx 2ln ;10、设⎰∞-∞→=⎪⎭⎫ ⎝⎛+at axx dtte x x 1lim ,则常数=a ;11、如果广义积分dxx p ⎰∞++11收敛,则p ;12、如果广义积分dxx p ⎰-11发散,则p ;答案:1、0 2、收敛 3、发散 4、收敛 5、绝对收敛 6、绝对收敛7、发散 8、0 9、2ln 21;1 10、2 11、2-< 12、2≥四、计算题(每题5分) | 1、⎰∞+++0284x x dx解:⎰∞+++0284x x dx =)022arctan 21(lim 4)2(lim 02u x x dx u u u +=+++∞→+∞→⎰=8)42(21)422(arctan 21lim ππππ=-=-++∞→u u 2、dxx x 1sin 122⎰∞+π解:设x t 1=,则dt t dx 21-=,有dx x x 1sin 122⎰∞+π=120cos sin 02==-⎰ππt tdt 3、⎰∞+-+222x x dx解:⎰∞+-+222x x dx =221ln 31lim )2111(31lim 2u x x dx x x u u u ⎪⎭⎫ ⎝⎛+-=+--+∞→+∞→⎰ =2ln 32)2ln 221ln lim (31=-+-+∞←u u u4、⎰1ln xdx,解:⎰1ln xdx =()1)ln 1(lim 1ln lim ln lim 0100-=+--=-=+++→→→⎰εεεεεεεεx x x xdx5、⎰--1121x dx解:⎰--1121x dx=⎰⎰-→+-→-+-++εεεε10200121lim 1lim x dxx dx =)01arcsin 10(arcsin lim 0εεε-++-+→x x))1arcsin()1arcsin((lim 0εεε-++--=+→=πππ=+226、()⎰--112x x dx 解:因为()C x C t t dtt x xx dx+--=+-=+-=---⎰⎰1arctan 2arctan 2121122所以()⎰--1012x x dx=01)1arctan 2(lim 1)2(lim 010εεεε---=--++→-→⎰x xx dx=2)4arctan lim (20ππεε=--+→7、⎰∞+++04211dx x x-解:由 Cx x x x xx d dx x x x dx x x +-=+--=++=++⎰⎰⎰21arctan 212)1()1(111112222342得 ⎰∞+++04211dx x x =221arctan 21lim 11lim 20420πεεεε=-=++⎰++→+∞→→+∞→u x x dx x x u u u8、())0(ln >⎰∞+a x x dxa p解:1=p 时,+∞===+∞→∞++∞→⎰⎰a u x x x d x x dxu u a au ln ln lim ln ln lim ln1≠p 时,()()a u x p x xd x x dxpu uapu a p-+∞→+∞→∞+-==⎰⎰1)(ln 11limln ln limln=⎪⎩⎪⎨⎧<∞>--11)(ln 111p p a p p故当1>p 时,()⎰∞+a px x dx ln =()pa p --1ln 111≤p 时,()⎰∞+apx x dxln 发散;9、⎰2)ln(sin πdxx解:=I ⎰20)ln(sin πdx x =⎰+→20sin ln lim πεxdx ⎰+→=422sin ln lim 2πεεtdt t x、=⎰+++→42)cos ln sin ln 2(ln lim 2πεεdtt t=⎰⎰++⋅404cos ln 2sin ln 242ln 2πππtdttdt=⎰⎰+=++404022ln 2cos ln 2sin ln 22ln 2ππππIxdx xdx由此求得 2ln 2π-=I10、⎰∞+-∈=0)(N n dx e x I x n n解:当0=n 时,⎰∞+-==001dx e I x当1≥n 时,dx x e n ux e dx x e I un x u nx u un x u n ⎰⎰--+∞→-+∞→-+∞→+-==010lim 0)(lim lim=⎰---+∞→=u n n x u nI dx x e n 011lim则 !12)1(0n I n n I n =⋅⋅-= 五、证明题(每题5分) ~ 1、证明01ln 02=+⎰∞+dx x x证:令t x 1=,则 ⎰⎰⎰∞-∞+∞++-=⎪⎭⎫ ⎝⎛⋅+=+00222021ln 1111ln1ln dt t t dt t t t dx x x =⎰∞++-021ln dxx x则有 01ln 02=+⎰∞+dx x x2、证明dx x x⎰∞++01cos 收敛,且11cos 0≤+⎰∞+dx x x证:dx x x ⎰∞++01cos =dxx x x x ⎰∞+++∞++02)1(sin 01sin =dxx x⎰∞++02)1(sin又()22111sin x x x+≤+)(,而dxx ⎰∞++02)1(1收敛,所以dx x x ⎰∞++02)1(sin 收敛⇒dxx x ⎰∞++01cos 收敛而≤+=+⎰⎰∞+∞+02)1(sin 1cos dx x xdx xx1011)1(102=∞++-=+⎰∞+x dx x3、证明:若()x f 在()+∞∞-,上连续,且()⎰∞+∞-dx x f 收敛,则对任何()+∞∞-∈,x ,有()()⎰∞-=x x f dt t f dx d , ()()⎰∞+-=x x f dt t f dx d ,证:,a ∀由条件()1J dx x f =⎰∞-,()⎰∞+=02J dx x f 都存在;再由()x f 连续可得…()()()⎰⎰∞-=⎪⎭⎫ ⎝⎛+=x x a x f dt t f J dx d dt t f dx d ,1()()()⎰⎰∞+-=⎪⎭⎫ ⎝⎛+=x a x x f J dt t f dx d dt t f dx d ,24、 设()⎰∞+adxx f 收敛,证明:(1)若极限()x f x +∞→lim 存在,则()0lim =+∞→x f x(2)若()x f 在[)∞+a 上为单调函数,则()0lim =+∞→x f x证:(1)设()Ax f x =+∞→lim 。

第十一章 反常积分

第十一章 反常积分

定义中C为瑕点,以上积分称为瑕积分.
例5 计算广义积分 0 解
a
dx a2 x2
(a 0).
lim
xa 0
1 , 2 2 a x
x a 为被积函数的无穷间断点.
0
a
a dx lim 0 2 2 0 a x
a
dx a2 x2
x a . lim arcsin lim arcsin 0 0 a 0 0 a 2
(注意:不能忽略内部的瑕点)
a f ( x )dx a f ( x )dx c
b
c
b
f ( x )dx
思考题
积分 0
1
ln x dx 的瑕点是哪几点? x 1
思考题解答
积分 0
1
ln x dx 可能的瑕点是 x 0, x 1
x 1
ln x 1 lim 1, lim x 1 x x 1 x 1 0
b b
a

f ( x )dx lim a f ( x )dx
当极限存在时,称广义积分收敛;当极限不存在 时,称广义积分发散.
类似地,设函数 f ( x ) 在区间( , b ] 上连续,取
a b ,如果极限 lim
b
f ( x )dx 存在,则称此极 a a
0
.
故原广义积分发散.
例8 计算广义积分 0
3
dx ( x 1)
3 1
2 3
. dx
x 1瑕点
2 3

0
1
3
dx ( x 1) dx
2 3 2 3
( )

数学分析(华东师大)第十一章反常积分,DOC

数学分析(华东师大)第十一章反常积分,DOC

第十一章反常积分§1反常积分概念一问题提出在讨论定积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制,考虑无穷区间上的“积分”,或是无界函数的“积分”,这便是本章的主题.例1(第二宇宙速度问题)在地球表面垂直发射火箭(图11-1),要使火箭克服地球引力无限远离地球,试问初速度v0至少要多大?设地球半径为R,火箭质量为m,地面上的重力加速度为g.仅供个人学习参考r mgR ∫∫2∫d x= mgR21-1 .Rx2R r当r →+∞时,其极限mgR 就是火箭无限远离地球需作的功.我们很自然地会把这极限写作上限为+∞的“积分”:图11-1+∞mgR2d x= limrmgR2Rx2r →+∞Rd x= mgR.x2最后,由机械能守恒定律可求得初速度v 0至少应使122mv 0= mgR.用g =9.81(m 6s /2),R =6.371×106(m )代入,便得例211-2).2∫ ∫ ∫ §1反常积分概念265从物理学知道,在不计摩擦力的情形下,当桶内水位高度为(h -x)时,水从孔中流出的流速(单位时间内流过单位截面积的流量)为 v=2g(h- x),其中g 为重力加速度. 设在很小一段时间d t 内,桶中液面降低的微小量为d x,它们之间应满足πR 2d x=v πr 2d t, 图11-2由此则有t=Rd 2.上可积.(1)+∞J=f(x )d x,(1′)a+∞ +∞ 并称 f(x)d x 收敛.如果极限(1)不存在,为方便起见,亦称f(x)d xaa发散.类似地,可定义f 在(-∞,b]上的无穷积分:bb∫∫ ∫ ∫∫266第十一章反常积分∫f(x)d x=lim∫f(x )d x.(2)-∞u →-∞u对于f 在(-∞,+∞)上的无穷积分,它用前面两种无穷积分来定义:+∞af(x)d x=-∞-∞+∞ f(x)d x+af(x)d x, (3)其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的.注1无穷积分(3)的收敛性与收敛时的值,都和实数a 的选取无关.注2由于无穷积分(3)是由(1)、(2)两类无穷积分来定义的,因此,f 在任何有限区间[v,u]ì(-∞,+∞)上,首先必须是可积的.+∞注3af(x)d x 收敛的几何意义是:若f 在[a,+线轴之间那一块向右无限延伸的 图11-31∫) +∞ d x 2 x(ln x)p ; 2) +∞d x-∞1+x 2.解1)由于无穷积分是通过变限定积分的极限来定义的,因此有关定积分的换元积分法和图11-4a∫∫§1反常积分概念267分部积分法一般都可引用到无穷积分中来.对于本例来说,就有∫+∞d x+∞d t2x(ln x)p =∫ln2tp.从例3知道,该无穷积分当p >1时收敛,当p ≤1时发散.2)任取实数a,讨论如下两个无穷积分:∫d x+∞d x -∞1+x2和∫a由于a1+x2.lim∫d x = lim (arctan a-arctan u)u →-∞ u1+x 2v u →-∞=arctan a+π,2注定义[u,b]ì(5)(5′)bf(x)a 而无 b界函数反常积分 f(x)d x 又称为瑕积分.a类似地,可定义瑕点为b 时的瑕积分:bu∫f(x)d x=lim∫f(x)d x.au →b-a其中f 在[a,b)有定义,在点b 的任一左邻域内无界,但在任何[a,u]ì[a,b)1 1 x 268 第十一章反常积分上可积.若f 的瑕点c ∈(a,b),则定义瑕积分b c b∫f(x )d x=∫f(x )d x+∫f(x)d xaacub=lim ∫f(x )d x+lim ∫f(x )d x.(6)u →c-av →c+v其中f 在[a,c)∪(c,b]上有定义,在点c 的任一领域内无界,但在任何[a,u]ì[a,c)和[v,b]ì(c,b]上都可积.当且仅当(6)式右边两个瑕积分都收敛时,左边的瑕积分才是收敛的.又若a 、b 两点都是f 的瑕点,而f 在任何[u,v]ì(a,b)上可积,这时定义瑕积分b c b∫f(x)d x=∫f(x)d x+∫f(x )d x(7)其中c ,上可积例6(8)故当0<q <1时,瑕积分(8)收敛,且∫d x ∫d x 1q = lim 0 u →0+u x q=1- q ;∫∫§1反常积分概念269而当q ≥1时,瑕积分(8)发散于+∞.上述结论在图11-4中同样能获得直观的反映. 如果把例3与例6联系起来,考察反常积分 +∞我们定义d xx p (p>0). (9)∫+∞d x 1d x+∞d x 0xp=∫0x p+∫1xp,它当且仅当右边的瑕积分和无穷积分都收敛时才收敛.但由例3与例6的结果可知,这两个反常积分不能同时收敛,故反常积分(9)对任何实数p 都是发散的.习题1.讨论下列无穷积分是否收敛?若收敛,则求其值:+∞2.3.4.举例说明: f(x)d x 收敛且f 在[a,+∞)上连续时,不一定有limax →+∞f(x)=0.+∞5.证明:若af(x)d x 收敛,且存在极限lim x →+∞f(x)=A,则A=0.∫ ∫∫ ∫∫ ∫ ∫ ∫ 270第十一章反常积分+∞6.证明:若f 在[a,+∞)上可导,且a+∞f(x)d x 与 af ′(x )d x 都收敛,则lim x →+∞f(x)=0.§2无穷积分的性质与收敛判别一无穷积分的性质+∞由定义知道,无穷积分auf(x)d x 收敛与否,取决于函数F(u) =f(x)d x 在u →+∞时是否存在极限.因此可由函数极限的柯西准则导出无穷 a积分收敛的柯西准则.+∞定理11.1无穷积分af(x)d x 收敛的充要条件是:任给ε>0,存在G此外,+∞ [k a(1)性质d x 与+∞ b(2)另一充要条件:任给ε>0,存在G ≥a,当u> G 时,总有 +∞f(x)d x<ε.u∫ ∫ ∫ ∫∫ ∫ ∫ §2无穷积分的性质与收敛判别271事实上,这可由+∞u +∞∫f(x)d x=∫f(x)d x+∫f(x)d xaau结合无穷积分的收敛定义而得.+∞性质3若f 在任何有限区间[a,u ]上可积,且有a+∞f(x)d x 亦必收敛,并有a|f(x)|d x 收敛,则+∞+∞f(x)d x≤aa+∞f(x) d x. (3)证由≥a,当u等式(u +∞由于 |f(x)|d x 关于上限u 是单调递增的,因此aa|f(x)|d x 收敛的u 充要条件是 a| f(x)|d x 存在上界.根据这一分析,便立即导出下述比较判别法(请读者自己写出证明):定理11.2(比较法则)设定义在[a,+∞)上的两个函数f 和g 都在任何∫ ∫ ∫ ∫∫∫∫272 第十一章反常积分有限区间[a,u]上可积,且满足f(x)≤g(x),x ∈[a,+∞),+∞+∞ 则当 g(x )d x 收敛时aa+∞ +∞|f(x)|d x 必收敛(或者,当 a|f(x)|d x 发散时,ag(x)d x 必发散).+∞例1讨论sin xd x 的收敛性. 1+x 2+∞解由于sin x1d x π1+x2≤1+x 2,x ∈[0,+∞),以及∫1+x 2=为收敛2(§1sin xd x 为绝对收敛. =c,则有:(i i .则有:.xp a推论3设f 定义于[a,+∞),在任何有限区间[a,u]上可积,且则有: lim x →+∞x pf(x) =λ.+∞(i)当p >1,0≤λ<+∞时, f(x)d x 收敛;a+∞(ii)当p ≤1,0<λ≤+∞时,af(x)d x 发散.+∞∫∫∫1§2无穷积分的性质与收敛判别273例2讨论下列无穷限积分的收敛性:1∫)+∞x αe -xd x;2)1+∞x 2d x. 0x 5+1解本例中两个被积函数都是非负的,故收敛与绝对收敛是同一回事.1)由于对任何实数α都有limx →+∞x 2·x αe -x= lim x →+∞ x α+2ex=0,因此根据上述推论3(p =2,λ=0),推知1)对任何实数α都是收敛的.2)由于12limx →+∞x 2·x x 5+1=1,, g(x)limx →+∞又因u 2>u 1 11于是有uξuf(x)g(x)d x ≤g(u 1)·uuf(x)d x+ g(u 2)·∫ f(x)d x11ξξ u=g(u 1)·∫f(x )d x ∫-f(x)d xaa22u∫∫ ∫ ∫∫∫∫ ∫274第十一章反常积分2+ g(u 2)·ξf(x)d x-∫f(x)d xε4M ·2M+ +∞ aaε4M·2M=ε.根据柯西准则,证得af(x)g(x)d x 收敛.+∞定理11.4(阿贝尔(Abel)判别法)若 af(x)d x 收敛,g(x)在[a,+∞)+∞上单调有界,则a f(x)g(x)d x 收敛.这定理同样可用积分第二中值定理来证明,但又可利用狄利克雷判别法更方便地获得证明(留作习题).:+而1 u∫1cos2x 1 其中12xd x=2 2 cos ttd t 满足狄利克雷判别条件,是收敛的,而+∞d x12x是发散的,因此当0<p ≤1时该无穷积分不是绝对收敛的.所以它是条 件收敛的.例4证明下列无穷积分都是条件收敛的:<∫∫ ∫∫ ∫ ∫∫ ∫∫+∞ §2无穷积分的性质与收敛判别275+∞sin x 2d x,1+∞cos x 2d x,1+∞x sin x 4d x.1证前两个无穷积分经换元t =x 2得到+∞+∞sin x 2d x=1 1+∞ +∞ cos x 2d x= 11sin t d t, 2 tcos t d t.2 t由例3已知它们是条件收敛的.对于第三个无穷积分,经换元t =x 2而得∫x sin x 4d x=1+∞sin t 2d t,,甚至是无界的,1.2.+∞若a收敛.3.g(x).(1(4.(5∫)ln (1+x)d x;(6)11+x +∞x md x(n 、m ≥0).1xn0 1+xn5.讨论下列无穷积分为绝对收敛还是条件收敛:(1∫)sin xd x;(2)1x+∞sgn(sin x)d x;1+x2+∞+∞∫ ∫∫∫∫∫276第十一章反常积分(3∫)x cos xd x; (4)100+xln(ln x)sin x d x.eln x6.举例说明∫:+∞+∞ +∞f(x)d x 收敛时aaf 2(x )d x 不一定收敛∫; +∞ f(x)d x 绝对收敛时,af 2(x)d x 也不一定收敛. a+∞ +∞7.证明:若af(x)d x 绝对收敛,且lim x →+∞f(x)=0,则a+∞f 2(x)d x 必定收敛.8.证明:若f 是[a,+∞)上的单调函数,且 af(x)d x 收敛,则lim x →+∞f(x)=0,且f(x)=o 1x,x →+∞.+∞9.10,存在δ>性质b∫f 1(x )a敛,(1)性质b c∫f(x)d x 与∫f(x)d x 同敛态,并有aab c b∫f(x)d x=∫f(x )d x+∫f(x)d x,(2)aacb其中 f(x)d x 为定积分.c+∞+∞∫∫∫∫(x- a)p ∫§3瑕积分的性质与收敛判别277性质3设函数f的瑕点为x=a,f在(a,b]的任一内闭区间[u,b]上可b积.则当af(x) d x收敛时∫,b bf(x)d x也必定收敛,并有ab∫f(x)d x ≤∫f(x) d x. (3)a ab b同样地,当a f(x) d x收敛时,称f(x)d x为绝对收敛.又称收敛而不绝a对收敛的瑕积分是条件收敛的.判别瑕积分绝对收敛的比较法则及其推论如下:定理11.6(比较法则)设定义在(a,b]上的两个函数f与g,瑕点同为x=a,在任何[u,b]ì(a,b]上都可积,且满足则当, bg(x)a((成为则有:(ii)当f(x) ≥1,且p≥1时,af(x) d x发散.推论3设f定义于(a,b],a为其瑕点,且在任何[u,b]ì(a,b]上可积. 如果则有: limx→a +(x- a)p f(x) =λ,∫ ∫x278第十一章反常积分b(i )当0<p <1,0≤λ<+∞时af(x)d x 收敛;b(ii)当p ≥1,0<λ≤+∞时a例1判别下列瑕积分的收敛性:f(x)d x 发散.1∫) ln x d x ;2∫)0 x2x1ln xd x.解本例两个瑕积分的被积函数在各自的积分区间上分别保持同号———ln x在(0,1]上恒为负, x 在(1,2]上恒为正———所以它们的瑕积分收敛与绝xln x2(i)x →0+x1-α· 1+x =1,根据定理11.6推论3,当0<p =1-α<1,即α>0且λ=1时,瑕积分I(α)收1∫ §3瑕积分的性质与收敛判别279敛;当p =1-α≥1,即α≤0且λ=1时,I(α)发散.(ii)再讨论J(α),它是无穷积分.由于α-1lim x →+∞ x 2-α·x1+x= lim x →+∞ x 1+x =1,根据定理11.2推论3,当p =2-α>1,即α<1且λ=1时,J(α)收敛;而当p =2-α≤1,即α≥1且λ=1时,J(α)发散.1.2.3.4.5.x)d x=π62/6.(1∫) =-πln20 2(2∫)θsin θd θ=2πln2. 01-cos θπ1∫2∫ 280 第十一章反常积分总练习题1.证明下列等式:1 p-1 +∞-p (1∫) x d x=∫x d x,p>0;0x+1 1 x+1+∞ p-1 +∞-p (2∫) x d x=∫xd x,0<p<1.0 x+1 0 x+12.证明下列不等式:(1)π<∫d x <π;22 (2)1 20 1-1 e 1-x 4 +∞ < 0 2 e -x d x<1+1. 2e3.计算下列反常积分的值:4.5.(2)若6.(也收敛.(2+∞ a●。

高等数学下册第十一章习题答案详解

高等数学下册第十一章习题答案详解

高等数学下册第十一章习题答案详解1.设L 为xOy 面内直线x a =上的一段,证明:(,)d 0LP x y x =⎰,其中(),P x y 在L 上连续.证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故 ()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(,0)a 到点(,0)b 的一段直线,证明:(,)d (,0)d bLaP x y x P x x =⎰⎰,其中(),P x y 在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b . 故()(),d ,0d bLaP x y x P x x =⎰⎰3.计算下列对坐标的曲线积分: (1)22()d Lxy x -⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧;(2)d Lxy x ⎰,其中L 为圆周()222x a y a -+=(0)a >及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d Ly x x y +⎰,其中L 为圆周cos ,sin x R t y R t ==上对应t 从0到π2的一段弧; (4)22()d ()d Lx y x x y y x y+--+⎰,其中L 为圆周222x y a +=(按逆时针方向绕行); (5)2d d d x x z y y z +-⎰Γ,其中Γ为曲线,,x k y acos z asin θθθ===上对应θ从0到π的一段弧;(6) 322d 3d ()d x x zy y xy z ++-⎰Γ,其中Γ是从点3,2,1()到点0,0,0()的一段直线;(7)d d d x y y z -+⎰Γ,其中Γ为有向闭折线ABCA ,这里AB C 、、依次为点1,0,0()、010(,,)、(001),,;(8)22(2)d (2)d Lx xy x y xy y -+-⎰,其中L 是抛物线2y x =上从点(1,1)-到点(1,1)的一段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a ) 故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t t Rt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π. 故()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π220π3220π3320332d d d sin sin cos cos d d 131ππ3x xz y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()()322322103141d 3d d 27334292d 87d 1874874x x zy y x y z t t t t t tt tt Γ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()()()221224211235412d 2d 222d 224d 1415L x xy x y xy yx x x x x x x xxx x x x---+-⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰⎰4. 计算()d ()d Lx y x y x y ++-⎰,其中L 分别是:(1)抛物线2y x =上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线2221,1x t t y t =++=+上从点(1,1)到点(4,2)的一段弧. 解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰ (2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2 故()()()()()2121221d d 32332d 104d 5411L x y x y x yy y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰ (3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且 L 1:1x y y=⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰从而()()()()()12d d d d 1271422LL L x y x y x yx y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰5. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由(,0)a 沿椭圆移动到0,Bb (),求力所做的功. 解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t=⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6. 计算对坐标的曲线积分:(1)d xyz z ⎰Γ,Γ为2221x y z ++=与z y =相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅶ、Ⅷ卦限;(2)222222(-)d ()d ()d y z x z x y x y z +-+-⎰Γ,Γ为2221x y z ++=在第Ⅰ卦限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos x ty tz t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π 故:2π2π2202π202π0222d cos sin sin cos d 2sin cos d 2sin 2d 21cos 4d 22πxyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x ty t z =⎧⎪=⎨⎪=⎩t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt t Γ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y z y z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰ 习题11-31. 应用格林公式计算下列积分:(1)(24)d (356)d Lx y x x y y -+++-⎰,其中L 为三顶点分别为()()0,0,3,0和(32),的三角形正向边界;(2)222(cos 2sin e )d (sin 2e )d x x Lx y x xy x y x x x y y +-+-⎰,其中L 为正向星形线222333x y a +=0a >();(3)3222(2cos )d (12sin 3)d Lxy y x x y x x y y -+-+⎰,其中L 为抛物线22πx y =上由点0,0()到点π,12⎛⎫⎪⎝⎭的一段弧; (4)22()d (sin )d Lxy x x y y --+⎰,其中L 是圆周22y x x =-上由点0,0()到()1,1的一段弧;(5)(e sin )d (e cos )d x x Ly my x y m y -+-⎰,其中m 为常数,L 为由点(),0a 到0,0()经过圆22x y ax +=上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Qx∂=∂,1P y ∂=-∂,由格林公式得 ()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x , 则2cos 2sin 2e x P x x x x y y∂=+-∂,2cos 2sin 2e x Qx x x x y x∂=+-∂.从而P Qy x∂∂=∂∂,由格林公式得.()()222d dcos2sin e sin2ed d++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x xLDx yx y x xy x y x x yQ Px yx y(3)如图11-5所示,记OA,AB,BO围成的区域为D.(其中BO=-L)图11-5P=2xy3-y2cos x,Q=1-2y sin x+3x2y2262cosPxy y xy∂=-∂,262cosQxy y xx∂=-∂由格林公式有:d d d d0L OA AB DQ PP x Q y x yx y-++∂∂⎛⎫-+==⎪∂∂⎝⎭⎰⎰⎰故π2122001222d d d dd d d dππd d12sin3243d12π4π4++=+=+++⎛⎫=+-+⋅⋅⎪⎝⎭⎛⎫=-+⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰L OA ABOA ABP x Q y P x Q yP x Q y P x Q yO x yy yyy y(4)L、AB、BO及D如图11-6所示.图11-6由格林公式有d d d d++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO DQ PP x Q y x yx y而P=x2-y,Q=-(x+sin2y).1∂=-∂Py ,1∂=-∂Q x,即,0∂∂-=∂∂Q P x y 于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264LLBA OB P x Q y x yx y x y x y x yx y x y x y x y y x x y x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x P y m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰ 于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m a P x Q y P x Q y m a xm m m a xm a2. 设a 为正常数,利用曲线积分,求下列曲线所围成的图形的面积:(1) 星形线 33cos ,sin ;x a t y a t == (2) 双纽线 22cos2;r a θ= (3) 圆 22x y ax ++=解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ. 于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y x a a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y xa a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 3. 证明下列曲线积分与路径无关,并计算积分值: (1)(1,1)(0,0)()(d d )x y x y --⎰;(2)(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰;(3)(1,2)2(1,1)d d y x x yx +⎰沿在右半平面的路径; (4)(6,8)(1,0)⎰.证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y∂=-∂,2123Qxy y x∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x y xyy x y xy y x y y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Qy x∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q ,且P Qy x∂∂==∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,811,0801529x y =+⎡=+⎣=⎰⎰⎰4.验证下列()(),d ,d P x y x Q x y y +在整个xOy 平面内是某一函数(),u x y 的全微分,并求这样的一个函数(),u x y :(1)()()2d 2d x y x x y y +++;(2)22d d xy x x y +;(3)223238d 812e d yx y xy x x x y y y ++++()(); (4)222cos cos d 2sin sin d x y y x x y x x y y ++-()(). 解:证:(1)P =x +2y ,Q =2x +y .2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x y x y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Qx y x∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()(),20,02022d d ,0d d x y xy u xy x x y x y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Qx xy y x,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y 是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyyy y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos P x y y x y ∂=-+∂,2cos 2sin Qy x x y x∂=-∂, 有P Qy x∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分,()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰5.证明:22xdx ydyx y ++在整个xOy 平面内除y 轴的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数。

分析方法 第十一章 反常积分

分析方法  第十一章 反常积分
a
b
c
b
当且仅当 f ( x)dx与 f ( x)dx同时收敛时, 称 f ( x)dx收敛, 且其值
a c a
c
a
b
c
b
f ( x)dx f ( x)dx f ( x)dx
若a, b都是f的瑕点, 并且f在任何u, v a, b上可积, 可任取c a, b,

u
f ( x)dx I , 则称极限值I为函数f ( x)在[a,)上的无
a
u
u
f ( x)dx lim f ( x)dx I .
a u a
也称无穷积分 f ( x)dx收敛.
a
u

反之, 若 lim
u
f ( x)dx不存在, 称无穷积分 f ( x)dx发散.
1 a
, 并且它们收敛时, 有 与 f ( x)dx 同敛态即同时收敛或发散



a, u 上可积, 则对b : a b, f ( x)dx 性质2 若函数f ( x)在任何有限区间
a
b

f ( x)dx f ( x)dx f ( x)dx.
a a b
0 0
dx dx dx ,积分收敛 . 2 2 2 1 x 1 x 1 x 0

0

定义2 设函数f ( x)定义在区间 (a, b]上, 且在点a的任意右邻域无界 ,
u, b (a, b], f ( x)在u, b上可积, 若存在极限 称a为函数f ( x)的瑕点, 并对任何
u
由例3知,当p 1时无穷积分收敛 ,当p 1时发散.
dx dx (2) lim lim arctan u , 2 2 u u 1 x 1 x 2 0 0 dx dx lim lim arctan u . 2 2 u u 1 x 1 x 2 u

第十一章反常积分习题课

第十一章反常积分习题课

第十一章 反常积分习题课一 概念叙述 1.叙述()dx x f a⎰+∞收敛的定义.答:()dx x f a⎰+∞收敛⇔()()lim+∞→+∞=⎰⎰uaau f x dx f x dx 存在.⇔()lim0+∞→+∞=⎰uu f x dx .2.叙述()b af x dx ⎰(a 是暇点)收敛的定义.答:()ba f x dx ⎰收敛⇔()()lim +→=⎰⎰b buau a f x dx f x dx 存在.⇔0,0,εδ∀>∃>当δ<<+a u a ,有()()ε-<⎰⎰b buaf x dx f x dx .3. 叙述()dx x f a⎰+∞收敛的柯西准则.答:无穷积分()dx x f a⎰+∞收敛的柯西准则是:任给0ε>,存在0M >,只要12,u u M >,便有()()()2121u u u aau f x dx f x dx f x dx ε-=<⎰⎰⎰.4. 叙述()b af x dx ⎰(a 是暇点)收敛的柯西准则.答:瑕积分()dx x f ba ⎰(瑕点为a )收敛的充要条件是:任给0ε>,存在0δ>,只要()12,,u u a a ∈+δ,总有()()()2121b bu u u u f x dx f x dx f x dx -=<ε⎰⎰⎰.二 疑难问题1.试问⎰+∞adx x f )(收敛与0)(lim =+∞→x f x 有无联系?答:首先,0)(lim =+∞→x f x 肯定不是⎰+∞adx x f )(收敛的充分条件,例如01lim=+∞→x x ,但⎰+∞11dx x发散.那么0)(lim =+∞→x f x 是否是⎰+∞adx x f )(收敛的必要条件呢?也不是!例如⎰+∞12sin dx x ,⎰+∞12cos dx x ,⎰+∞14sin dxx x 都收敛,因为前两个无穷积分经换元2t x =得到⎰+∞12sin dx x 1+∞=⎰,21cos x dx +∞=⎰=dt tt ⎰+∞12cos ,则⎰+∞12sin dx x ,⎰+∞12cos dx x 是条件收敛,对于第三个无穷积分,经换元2t x =而得⎰+∞14sin dx x x =⎰+∞12sin 21dt t ,它也是条件收敛的. 从这三个无穷积分的收敛性可以看到,当x →+∞时被积函数即使不趋于零,甚至是无界的,无穷积分仍有可能收敛.注:若lim ()0x f x A →+∞=≠,则⎰+∞ax x f d )(发散.注:1)若⎰+∞ax x f d )(收敛,且lim ()x f x A →+∞=存在, 则定有0)(lim =+∞→x f x ;2)若⎰+∞a x x f d )(收敛,且f 在[)+∞,a 上为单调,则0)(lim =+∞→x f x ;3)若⎰+∞a x x f d )(收敛,且f 在[)+∞,a 上一致连续,则0)(lim =+∞→x f x ;4)若⎰+∞ax x f d )(收敛,且()d af x x +∞'⎰收敛,则0)(lim =+∞→x f x .证:1)设A x f x =+∞→)(lim .若0≠A (不妨设0A >),则由极限保号性,M a ∃>,当x M ≥时满足 于是有()()2MaAf x dx u M ≥+-⎰, 于是 而这与⎰+∞ax x f d )(收敛相矛盾,故0A =.2)不妨f 在[)+∞,a 上单调增,若f 在[)+∞,a 上无上界,则0A ∀>,M a ∃>,当x M ≥时,使A x f ≥)(.类似于1)的证明,推知⎰+∞+∞=a dx x f )(,矛盾.所以f 在[)+∞,a 上单调增而有上界,于是由单调有界定理知A x f x =+∞→)(lim 存在.依据已证得的命题1),0)(l i m =+∞→x f x .3)由f 在[)+∞,a 上一致连续,则0,0εδ∀>∃>,(设)δε≤[),,x x a '''∀∈+∞ x x δ'''-<只要时,就有()()2f x f x ε'''-<.又因⎰+∞adx x f )(收敛,故对上述,M a δ∃>,当12,x x M >时,有212()2x x f x dx δ<⎰.现对任何x M >,取12,x x M >,且使1221,.x x x x x δ<<-=此时由 便得(),.f x x M ε<>这就证得.0)(lim =+∞→x f x4)因为()d af x x +∞'⎰收敛,则()()()lim()d lim uau u f x x f u f a →+∞→+∞'=-⎰存在,于是()lim u f u →+∞存在,由1)得证.2.()af x dx +∞⎰收敛,与|()|af x dx +∞⎰收敛,2()af x dx +∞⎰收敛的关系?答:1)因为绝对收敛⇒收敛,反之不对,条件收敛的例子都是反例,则|()|af x dx +∞⎰收敛()af x dx +∞⎰收敛.2)()af x dx +∞⎰2()af x dx +∞⎰收敛,例1+∞⎰条件收敛,但 21111sin 1cos 21cos 2222xx x dx dx dx dx x x x x+∞+∞+∞+∞-==-⎰⎰⎰⎰,112dx x +∞⎰发散,1cos 22x dx x+∞⎰发散,则21sin x dx x +∞⎰发散. 例 211dx x +∞⎰收敛,但11dx x+∞⎰发散. 3)()af x dx +∞⎰收敛2()af x dx +∞⎰收敛,例 ()2441,10,1n n x n n f x n x n n ⎧≤<+⎪⎪=⎨⎪+≤<+⎪⎩,对ε∀,总存在1M >,使当n M >时,都有41221n n nn dx n ε+=<⎰. 故但对于()2f x ,例302sin x dx x+∞⎰绝对收敛,即302sin x dx x+∞⎰收敛,因为312sin x dx x+∞⎰绝对收敛,即312sin x dx x+∞⎰收敛,而1302sin x dx x⎰,0是暇点,取12p =,则3322sin lim lim 1ppx x x x x x xx++→→==,因为112p =<收敛. 因为2133330010sin 1cos 21cos 21cos 2222x x x x dx dx dx dx x x x x+∞+∞+∞---==+⎰⎰⎰⎰, 311cos 22xdx x +∞-⎰收敛.1301cos 22x dx x -⎰,0是暇点,取1p = ,则23300141cos 22lim lim 122p p x x xx x x x x ++→→-==, 因为1p =,则发散.例 211dx x +∞⎰收敛,但11dx x+∞⎰发散. 3.()baf x dx ⎰(a 为瑕点)收敛,与|()|baf x dx ⎰收敛 ,2()baf x dx ⎰收敛的关系?答:1)|()|baf x dx ⎰收敛()baf x dx ⎰收敛.因为绝对收敛⇒收敛,反之不对,条件收敛的例子都是反例. 2)()baf x dx ⎰收敛2()baf x dx ⇒⎰收敛,()baf x dx ⎰收敛2()baf x dx ⇒⎰收敛.反例1⎰收敛,但101dx x ⎰发散.3)若2()b af x dx ⎰(a 为瑕点)收敛,则|()|baf x dx ⎰(a 为瑕点)收敛.证 因()()212f x f x +≤,则由比较原则,可得|()|b a f x dx ⎰收敛,从而()b a f x dx ⎰收敛.3.下列说法对吗?1)因为sin xx 在0没有定义,则10sin x dx x⎰是瑕积分;2)因为ln 1xx -在1x =没有定义,则1x =是10ln 1x dx x-⎰的暇点.答:若被积函数f 在点a 的近旁是无界的,这时点a 称为f 的瑕点.1)错误,因为0sin lim 1x x x +→=,则s i n xx在0的近旁有界,因此不是瑕点,10sin x dx x ⎰是定积分.若()x f 在(]b a ,上连续,()A x f ax =+→lim (常数),则()⎰badx x f 可看成正常积分,事实上,定义()()(]⎩⎨⎧∈==.,,,,b a x x f a x A x F 知()x F 在[]b a ,上连续,即()⎰badxx F 存在,而()()()⎰⎰⎰-→-→++==ba ba b adx x F dx x f dx x f εεεε00lim lim ,由于()x F 在[]b a ,上连续,知变下限函数()()⎰-=ba dx x F G εε在[]a b -,0上连续,有()()()⎰==+→ba dx x F G G 0limεε,即()().⎰⎰=b a b a dx x F dx x f 故()⎰ba dx x f 可看成正常积分。

高等数学(本科)第十一章课后习题解答

高等数学(本科)第十一章课后习题解答

习题11.11.回答下列问题.(1)何谓级数∑∞=1n n u 的前n 项部分和?何谓级数∑∞=1n n u 的收敛和发散?何谓收敛级数的和?【答】(1)∑∞=1n n u 的前n 项部分和是指(),...2,11==∑=n u S nk k n ;(2)∑∞=1n n u 收敛是指s S n n =∞→lim 存在,这时并称s 为∑∞=1n n u 的和;∑∞=1n nu发散是指n n S ∞→lim 不存在.(2)当公比q 取何值时,等比级数∑∞=-11n n aq 收敛?当公比q 取何值时,等比级数∑∞=-11n n aq发散?写出收敛时的和数.【答】(1)当1<q 时,∑∞=-11n n aq 收敛,且其和数为qas -=1; (2)当1≥q 时,∑∞=-11n n aq 发散.(3) 级数∑∞=1n n u 收敛的必要条件是什么?它是否也是充分条件.请举例说明.【答】(1)∑∞=1n n u 收敛的必要条件是0lim =∞→n n u ;(2)0lim =∞→n n u 不是∑∞=1n n u 收敛的充分条件.比如,01lim =∞→n n ,但∑∞=11n n发散.2.若级数()()()......2211+++++++n n b a b a b a 收敛,去掉括号之后的级数级数......2211+++++++n n b a b a b a 是否还收敛?它说明了什么? 【答】未必,比如()()() (1111111)+-++-+=-∑∞=-n n .3.把下列级数写成级数”“∑的形式.(1) ...5ln 5ln 5ln 32+++ ;【解】∑∞==+++1325ln ...5ln 5ln 5ln n n ;(2) (8)141211-+-+- ; 【解】()11211...8141211-∞=∑-=-+-+-n n n ;(3) ...001.0001.0001.03+++ ;【解】()nn 113001.0...001.0001.0001.0∑∞==+++;(4)...751531311+⨯+⨯+⨯. 【解】()()∑∞=+-=+⨯+⨯+⨯112121...751531311n n n . 4.根据级数收敛与发散的定义,判别下列级数的敛、散性.(1) (8)1614121++++;【解】nn 1.21...816141211∑∞==++++发散.(2)∑∞=⎪⎭⎫⎝⎛-2211ln n n; 【解】记()()n n n n n n n n u n 1ln 1ln 11ln11ln 22++-=+-=⎪⎭⎫ ⎝⎛-=,...)2(=n 则 1432...+++++=n n u u u u S⎪⎭⎫ ⎝⎛++-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=n n n n 1ln 1ln ...45ln 43ln 34ln 32ln 23ln 21lnn n n n n n 1ln1ln 1ln ...43ln 34ln 32ln 23ln 21ln ++⎪⎭⎫ ⎝⎛-+-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++= ,...)2,1(11ln 21ln =⎪⎭⎫⎝⎛++=n n因为 21ln lim =∞→n n S ,所以∑∞=⎪⎭⎫⎝⎛-2211ln n n 收敛. (3) ∑∞=⎪⎪⎭⎫ ⎝⎛+14122ln n nn n ; 【解】因∑∞=122ln n n n ∑∞=⎪⎭⎫⎝⎛=122ln n n及∑∞=141n n nn ⎪⎭⎫ ⎝⎛=∑∞=141均收敛,故∑∞=⎪⎪⎭⎫ ⎝⎛+14122ln n n n n 收敛. (4) (1)31...2191131+++++++n n ;【解】因为 (3)1...9131++++n 收敛,但 (1)...211++++n 发散,故原级数发散.(5) (4)33221+++ ;【解】 级数的通项为 ,...)2,1(1=+=n n nu n ,因为01lim ≠=∞→n n u ,故...433221+++发散.(6) ...cos ...3cos 2cos cos +++++nππππ ;【解】级数的通项为 ,...)2,1(cos ==n nu n π,因为010cos lim ≠==∞→n n u ,故...cos ...3cos 2cos cos +++++nππππ发散.(7) nn n n ∑∞=⎪⎭⎫⎝⎛-12ln ;【解】级数的通项为 ,...)2,1(2ln =⎪⎭⎫⎝⎛-=n n n u nn ,因为02ln 21ln lim lim 222≠-==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=---∞→∞→en u n n n n ,故nn n n ∑∞=⎪⎭⎫⎝⎛-12ln 发散.(8) (9)898983322+-+-.【解】...9898983322+-+-nn ∑∞=⎪⎭⎫⎝⎛-=198是等比级数,且公比98-的绝对值小于1,故...9898983322+-+-收敛.5.已知级数∑∞=1n n u 的部分和3n S n =,当2≥n 时,求n u .【解】(),...)2(13312331=+-=--=-=-n n n n n S S u n n n .6.若级数∑∞=1n n u 收敛,记∑==ni i n u S 1,则(B )A. 0lim =∞→n n S ; B. n n S ∞→lim 存在;C. n n S ∞→lim 可能不存在; D. {}n S 是单调数列.7.若级数∑∞=1n n u 收敛,则下列级数中收敛的是(A )A. ∑∞=110n n u; B.()∑∞=+110n nu;C. ∑∞=110n nu ; D.()∑∞=-110n nu.8.设501=∑∞=n n u ,1001=∑∞=n n v ,则()∑∞=+132n n n v u (D )A. 发散;B. 收敛,和为100;C. 收敛,和为50;D. 收敛,和为400. . 9.下列条件中,使级数()∑∞=+1n n n v u 一定发散的是(A )A.∑∞=1n nu发散且∑∞=1n n v 收敛; B.∑∞=1n nu发散;C.∑∞=1n nv发散; D.∑∞=1n nu和∑∞=1n n v 都发散.10.设级数()∑∞=-11n n u 收敛,求n n u ∞→lim .【解】因为()∑∞=-11n n u 收敛,故根据级数收敛的必要条件知()01lim =-∞→n n u ,所以 =∞→n n u lim ()[]=--∞→n n u 11lim ()1011l i m1=-=--∞→n n u .11.将下列循环小数表示为分数 (1) ∙3.0 ;【解】...003.003.03.03.0+++=∙是公比为1.0=q 的等比级数,故311.013.03.0=-=∙. (2) ∙∙370.0.【解】...0000073.000073.0073.0370.0+++=∙∙是公比为01.0=q 的等比级数,故.9907301.01073.0370.0=-=∙∙12.设级数∑∞=1n n u 满足条件:(1)0lim =∞→n n u ;(2)()∑∞=-+1212n n n u u 收敛,证明级数∑∞=1n n u 收敛.【解】记∑∞=1n n u 的前n 次部分和数列为{}n S .又记()∑∞=-+1212n n n u u 的前n 次部分和数列为{}n σ.则有(),...2,12==n S n n σ.因为已知()∑∞=-+1212n n n u u ,故根据级数收敛的定义知 =∞→n n σl i ms S n n =∞→2lim ①存在;又已知0lim =∞→n n u ,故0lim 12=+∞→n n u ,从而=+∞→12lim n n S ()s s S u n n n =+=++∞→0lim 212②也存在.综合①、②式知s S n n =∞→lim 存在,所以级数∑∞=1n n u 收敛.13.小球从1米高处自由落下,每次弹起的高度均为前一次高度的一半,问小球会在自由下落约多少秒后停止运动? 【解】小球为自由落体运动,即212s gt =。

《数学分析》第十一章 反常积分 2

《数学分析》第十一章 反常积分 2
a x
上有界, 在 [a ,+∞ ) 上有界,则广义积分

+∞
a
f ( x )dx 收敛. 收敛.
由定理1, 由定理 ,对于非负函数的无穷限的广义积 分有以下比较收敛原理. 分有以下比较收敛原理.
(比较审敛原理 ) 设函数 f ( x ),g ( x ) 在 定理2 区间[a ,+∞ ) 上连续,如果 0 ≤ f ( x ) ≤ g ( x ) (a ≤ 上连续, x < +∞ ), 并且 ∫ g ( x )dx 收敛,则 ∫ f ( x )dx 收敛,
x →a + 0
存在, 则广义积分

b
a
f ( x )dx 收敛; 收敛;
x →a + 0
如果存在常数 q ≥ 1,使得 lim ( x a )q f ( x ) = d > 0 (或 lim ( x a )q f ( x ) = +∞ ), 则广义积
x →a + 0
发散. 分 ∫ f ( x )dx 发散.
根据极限审敛法1 所给广义积分发散. 根据极限审敛法1,所给广义积分发散.
+∞
上连续, 定理5 设函数 f ( x ) 在区间 [a ,+∞ ) 上连续, 如果 ∫
+∞ a
f ( x ) dx 收敛;则 ∫ f ( x )dx 也收敛. 收敛; 也收敛.
a
+∞
1 证 令 ( x ) = ( f ( x ) + f ( x ) ). 2 +∞ Q ( x ) ≥ 0,且 ( x ) ≤ f ( x ) , ∫ f ( x )dx 收敛 ,
x →a + 0

反常积分例题

反常积分例题

反常积分例题这里的题目来自裴礼文《数学分析中的典型问题与方法》。

广义积分就是我刚才讲的知识内容,华东师范大学第四版数学分析第十一章。

本文主要考虑广义积分的计算问题。

粗略而言,反常积分是正常积分和极限工具的结合,所以定积分的计算方法:牛顿-莱布尼茨公式,换元积分,分部积分这些方法都是适用的。

4.5.1 反常积分的计算1. 计算反常积分 I=\int_{-\infty}^{+\infty}|t-x|^{1/2}\frac{y}{(t-x)^2+y^2}dt.解本题中 t-x 的形式有堆砌之嫌,个人以为不妨直接命题I=2\int_0^{+\infty}\frac{\sqrt uy}{u^2+y^2}dt.关键的步骤,令 \sqrt{u/y}=v ,则 I=4\sqrt y\int_0^{+\infty}\frac{v^2}{1+v^4}dv=4\sqrt y J ,下面计算 J=\int_0^1\frac{1}{1+v^4}dv +\int_1^{+\infty}\frac{1}{1+v^4}dv=J_1+J_2 .令 w=1/v ,得J_1=\int_1^{+\infty}\frac{w^2}{1+w^4}dw ,从而J=\int_1^{+\infty}\frac{1+w^2}{1+w^4}dw=\int_1^{+\inft y}\frac{1}{(v-1/v)^2+2}d(v-1/v)=\frac{\pi}{2\sqrt2} ,代入得到 I=\sqrt{2y}\pi .2. 证明I=\int_0^{+\infty}f(ax+\frac{b}{x})dx=\frac{1}{a}\int_ 0^{+\infty}f(\sqrt{t^2+4ab})dt, a, b>0 .证明由 ax+b/x=\sqrt{t^2+4ab} ,我们令 t=ax-b/x ,则x=\frac{1}{2a}(t+\sqrt{t^2+4ab}),dx=\frac{1}{2a}(1+\frac{t}{\sqrt{t^2+4ab}})dt, 代入可得结论。

数学分析(华东师大版)上第十一章11-2

数学分析(华东师大版)上第十一章11-2

二、非负函数无穷积分的收敛判别法
定理11.2(非负函数无穷积分的判别法设) 定义在 上的非负函数 f 在任何 收敛的充要条件是:
证设
前页 后页 返回
从而 F (u) 是单调递增的 增函数的收敛判别准则,
由单调递
定理11.3 ( 比较判别法) 设定义在
上的两个
非负函数 f , g在任何有限区间[a, u]上可积, 且

的收敛性( k > 0 ).
前页 后页 返回
三、一般函数无穷积分的判别法
若无穷积分 以下定理可用来判别一般函数无穷积分的收敛性. 定理11.4 ( 绝对收敛的无穷积分必收敛若) f 在任何有限区间[a, u]上可积,
前页 后页 返回
证因
由柯西准则的必要性, 对
因此 再由柯西准则的充分性, 又对任意
前页 后页 返回
证 即
前页 后页 返回
前页 后页 返回
推论2 设 f 是定义在
上的非负函数, 在任何
前页 后页 返回
推论3设 f 是定义在
上的非负函数,在任何有
限 区 间 [ a , u] 上可积.
说明: 推论3是推论2的极限形式,读者应不难写 出它的证明.
前页 后页 返回
例4 讨论 解(i)
§2 无穷积分的性质及收敛判别
本节讨论无穷积分的性质, 并用这些 性质得到无穷积分的收敛判别法.
一、无穷积分的性质 二、非负函数无穷积分的收敛判别法 三、一般函数无穷积分的收敛判别法
前页 后页 返回
一、无穷积分的性质
定理11.1 ( 无穷积分收敛的柯西准则)无穷积分 收敛的充要条件是:
证 极限的柯西准则,此等价于
由 g的单调性,用积分第二中值定理,对于任意的 使得

数学分析PPT课件第四版华东师大研制 第11章 反常积分

数学分析PPT课件第四版华东师大研制  第11章 反常积分

例1(第二宇宙速度问题)在地球表面垂直发射火
箭, 要使火箭克服地球引力无限远离地球, 试问初
速度 v0 至少要多大?
前页 后页 返回
解 设地球半径为 R,火箭质量为 m,地面上的重
力加速度为 g, 按万有引力定理, 在距地心 x R
处火箭所受的引力为
F
mgR 2 x2
,
于是火箭从地面上升到距地心为 r R 处需作功
F(x)
b a
F (b)
F(a )
F(b) lim F(u). ua 1
例4 计算瑕积分0 ln x dx.

1
ln
xdx
的瑕点为
0.
因此,
0
1
ln xdx limx l x 1 1dx
0
0
lim
0
0
ln
1
1.
前页 后页 返回
复习思考题
1. f ( x) 在 [a, )上非负连续, 且 f ( x)dx 收敛, a 是否必有lim f ( x) 0? x
0, G a, u1 ,u2 G, F (u1) F (u2 ) ,

u1 f ( x)dx u2 f ( x)dx u2 f ( x)dx .
a
a
u1
根据反常积分定义,容易导出以下性质1 和性质2.
性质1 若
a
f1
(
x
)
dx

a f2( x)dx
都收敛 ,
k1 ,
§1 反常积分概念
反常积分讨论的是无穷区间上的积 分和无界函数的积分,是定积分概念 的推广.
一、反常积分的背景 二、两类反常积分的定义
前页 后页 返回

反常积分-的审敛法

反常积分-的审敛法

第11章 反常积分§11. 1 反常积分的概念一 基本内容一、无穷限反常积分定义 1 设函数()f x 在[, )a +∞上有定义,且在任意区间[, ]a u 上可积,如果lim()d uau f x x→+∞⎰存在,则称此极限为()f x 在[, )a +∞上的反常积分,亦称为()f x 在[,)a +∞上的无穷限反常积分,简称无穷限积分,记作 ()d af x x+∞⎰.ie ()d lim()d uaau f x x f x x+∞→+∞=⎰⎰:,此时并称 ()d af x x+∞⎰收敛.如果极限不存在,则称 ()d af x x+∞⎰发散.同理可定义 ()d lim()d bbuu f x x f x x-∞→-∞=⎰⎰, ()d ()d ()d a af x x f x x f x x+∞+∞-∞-∞=+⎰⎰⎰,几何解释如图.()d af x x+∞⎰收敛是指图中阴影区域的 面积存在.二、瑕积分定义 2 设函数()f x 在(, ]a b 上有定义,且在点a 的任一右邻域内无界,而在[, ](, ]u b a b ⊂上有界可积,如果 lim ()d buu a f x x+→⎰存在,则称此极限为无界函数()f x 在上(, ]a b 的反常积分,记作 ()d baf x x⎰,ie ()d lim ()d bbauu af x x f x x+→=⎰⎰:,并称 ()d baf x x⎰收敛,否则称其发散.其中a 称为瑕点.无界函数的反常积分亦称为瑕积分.同理可得b 为瑕点时,()d lim ()d buaau bf x x f x x-→=⎰⎰.当()f x 的瑕点(, )c a b ∈,则定义()d ()d ()d bcbaacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d u bauu cu cf x x f x x -+→→=+⎰⎰.若, a b 都是()f x 的瑕点,则定义()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d c uucu au bf x x f x x+-→→=+⎰⎰.二 习题解答1 讨论下列无穷积分是否收敛?若收敛,则求其值 (1)2d x xe x+∞-⎰;解:由于2201d (1)2ux u xe x e --=--⎰,21limd 2ux u xe x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(2)2d x xe x+∞--∞⎰;解:由于22 01d (1)2x u uxe x e -=--⎰21limd 2x ux xe x -→-∞=-⎰而2220d d d 0x x x xe x xe x xe x +∞+∞----∞-∞=+=⎰⎰⎰所以该反常积分收敛,且收敛于0.(3)0x +∞⎰;解:由于21ux ⎛⎫= ⎝⎰,lim 212u →+∞⎛⎫= ⎝.所以该反常积分收敛,且收敛于2.(4) 2 11d (1)x x x +∞+⎰;解:由于22 111111d d (1)1uu x x x x xx x ⎛⎫=-+ ⎪++⎝⎭⎰⎰ 11111ln 1ln ln 2ux u x x u u ++⎛⎫=-+=-+- ⎪⎝⎭.2 11limd 1ln 2(1)uu x x x →+∞=-+⎰.所以该反常积分收敛,且收敛于1ln 2-.(5) 2 1d 445x x x +∞-∞++⎰;解:由于 22 0 0111d d(21)4452(21)1u u x x x x x =+++++⎰⎰011arctan(21)arctan(21)228|u x u π=+=+-2 01lim d 445488uu x x x πππ→+∞=-=++⎰,0 022 111d d(21)4452(21)1u u x x x x x =+++++⎰⎰ 011arctan(21)arctan(21)282|u x u π=+=-+02 1lim d 44584u u x x x ππ→-∞=+++⎰所以该反常积分收敛,且收敛于2π.(6)1sin d x e x x+∞-⎰;解:由于 11sin d [1(sin cos )]2ux ue x x e u u --=-+⎰,11lim sin d 2ux u e x x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(7) sin d x e x x+∞-∞⎰;解:由于 01sin d [1(sin cos )]2uxu e x x e u u =-+⎰,1limsin d ux u e x x →+∞=∞⎰.所以该反常积分发散. (8)1x +∞⎰.解:由于 1ln(u x u =+⎰,1lim u u x →+∞=+∞⎰.所以该反常积分发散.2 讨论下列瑕积分是否收敛?若收敛,则求其值(1) 1d ()b p a x x a -⎰; 解:由于x a =为瑕点,而11 ()1()11d 11()ln()ln()1p p b p u b a u a p x p px a b a u a p --⎧---≠⎪=--⎨-⎪---=⎩⎰,1 ()11lim d 1()1pb p u u a b a p x p x a p +-→⎧-<⎪=-⎨-⎪∞≥⎩⎰,所以1p <时,该瑕积分收敛,且值为1()1pb a p ---; 所以1p ≥时,该瑕积分发散.(2) 1201d 1x x -⎰;解:由于1x =为瑕点,而u2011d [ln(1)ln(1)]12x u u x =+---⎰,u2011lim d 1u x x -→=∞-⎰.所以该瑕积分发散.(3)2x⎰;解:由于1x =为瑕点,而2(1uux x ==⎰⎰,1lim 2uu x -→=⎰.同理21lim 2uu x +→=⎰,所以该瑕积分收敛,且值为4.(4)1x ⎰;解:由于1x =为瑕点,而1u x =⎰,1lim 1uu x -→=⎰所以该瑕积分收敛,且值为1. (5)1ln d x x⎰;解:由于0x =为瑕点,而1ln d 1ln ux x u u u=-+-⎰,1lim ln d 1uu x x +→=-⎰.所以该瑕积分收敛,且值为1-. (6)x ⎰;解:令2sin x t =,则cos dx t t t=⎰⎰2220 02sin d(1cos2)d2t t t tπππ==-=⎰⎰,所以该瑕积分收敛,且值为2π.(7)1x⎰;解:令2sinx t=,则12x tπ=⎰⎰22d tππ==⎰.所以该瑕积分收敛,且值为π.(8)11d(ln)pxx x⎰.解:由于0x=,1为瑕点,又11(ln)111d(ln)ln ln1ppx C ppxx xx C p-⎧+≠⎪-=⎨⎪+=⎩⎰,而1p=时,1limlnlnxx-→=∞,1p<时,11lim(ln)1pxxp+-→=∞-1p>时,111lim(ln)1pxxp--→=∞-所以p R∀∈,瑕积分11d(ln)pxx x⎰发散.3 举例说明:瑕积分()dbaf x x⎰收敛时,2()dbaf x x⎰不一定收敛.解:例如x⎰收敛于2π,但1d1xxx-⎰发散.4 举例说明:积分()daf x x+∞⎰收敛,且()f x在[,)a+∞上连续时,不一定有lim()0xf x→+∞=.解:例如+41sin dx x x∞⎰.因令x=+ +41 11sin d4x x x t∞∞=⎰⎰.所以 +4 1sin d x x x∞⎰收敛,且4()sin f x x x =在[,)a +∞上连续,但lim ()x f x →+∞不存在.5 证明:若 ()d af x x+∞⎰收敛,且lim ()x f x A→+∞=存在,则0A =. 证:假设0A ≠,不妨设0A >,因lim ()x f x A→+∞=,所以0M ∃>,()2Ax M f x ∍>⇒>“”.于是()d ()2uMAf x x u M >-⎰,从而lim()d uMu f x x →+∞=∞⎰.此与 ()d af x x+∞⎰收敛矛盾,故0A =.6 证明:若()f x 在[,)a +∞上可导,且 ()d af x x+∞⎰与()d af x x+∞'⎰都收敛,则lim ()0x f x →+∞=.证:因为()d ()()u af x x f u f a '=-⎰,所以由()d af x x+∞'⎰都收敛知lim ()x f x →+∞存在,故由上一题知lim ()0x f x →+∞=.§11. 2 无穷限积分的性质与收敛判别一 基本内容一、无穷限积分的性质 由无穷限积分的定义知()d af x x+∞⎰收敛lim()d uau f x x→+∞⇔⎰存在;由极限的柯西收敛准则知lim()d uau f x x→+∞⎰存在0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.定理1()d af x x+∞⎰收敛0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.性质1 若 1 ()d ,af x x +∞⎰ 2 ()d af x x+∞⎰都收敛,则12,k k ∀,[] 1111()()d ak f x k f x x +∞+⎰也收敛,且[] 11111122 ()()d ()d ()d aaak f x k f x x k f x x k f x x+∞+∞+∞+=+⎰⎰⎰.性质2 若,()u a f x ∀>在[, ]a u 上可积,则b a ∀>, ()d af x x+∞⎰与 ()d bf x x+∞⎰同收同发,且()d ()d ()d b aabf x x f x x f x x+∞+∞=+⎰⎰⎰.性质3 若,()u a f x ∀>在[, ]a u 上可积,则()d af x x+∞⎰收敛()d af x x+∞⇒⎰收敛,且()d ()d aaf x x f x x+∞+∞≤⎰⎰.定义1 如果 ()d af x x+∞⎰收敛,则 ()d af x x+∞⎰称绝对收敛.二、比较判别法比较判别法仅应用于绝对收敛的判别. 由于()()d uaF u f x x=⎰单调上升,所以,()d af x x+∞⎰收敛()()d ua F u f x x⇔=⎰有上界.定理2 若,(),()u a f x g x ∀>在[, ]a u 上可积,且,()()x a f x g x ∀>≤,则 ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛;而 ()d af x x+∞⎰发散()d ag x x+∞⇒⎰发散.推论 (比较判别法的极限形式)若,(),()u a f x g x ∀>在[, ]a u 上可积,, ()0x a g x ∀>>,且()lim()x f x cg x →+∞=, 则(1) 0c <<+∞ ()d af x x+∞⇒⎰与 ()d ag x x+∞⎰同收同发; (2) 0c =时, ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛; (3) c =+∞时, ()d ag x x+∞⎰发散()d af x x+∞⇒⎰发散.当选用 11d p x x +∞⎰为比较“尺子”时,则得下面的柯西判别法.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]a u 上可积,则 1(1) ()p f x x ≤,且1p >时, ()d a f x x+∞⎰收敛;1(2) ()p f x x ≥,且1p ≤时, ()d a f x x+∞⎰发散.定理'3(柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]a u 上可积,且lim ()p x x f x λ→+∞=,则(1) 0λ≤<+∞,且1p >时, ()d af x x +∞⎰收敛; (2) 0λ<≤+∞,且1p ≤时, ()d af x x+∞⎰发散.三、狄立克雷判别法与阿贝尔判别法 此法是对一般无穷限积分的敛散性判别. 定理4 (狄立克雷判别法) 若,()()d uau a F u f x x∀>=⎰有界,()g x 在[,)a +∞上单调,且lim ()0x g x →+∞=,则()()a f x g x dx +∞⎰收敛.定理 5 (阿贝尔判别法) 若()d af x x+∞⎰收敛,()g x 在[,)a +∞上单调有界,则()()d af xg x x+∞⎰收敛.二 习题解答1 设()f x 与()g x 是定义在[,)a +∞上的函数,u a ∀>,()f x 与()g x 在[,]a u 上可积,证明:若2 ()d a f x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,则 ()()d af xg x x+∞⎰与 2 [()()]d af xg x x+∞+⎰亦收敛.证:(1) 因为t R ∀∈,()2()()0tf x g x -≥,从而()2()()d 0a tf x g x x +∞+≥⎰, 即222()d 2()()d ()d 0aaatf x x t f xg x x g x x +∞+∞+∞-+≥⎰⎰⎰.故由判别式为负得()2222()()d 4()d ()d 0aaaf xg x x f x x g x x +∞+∞+∞-≤⎰⎰⎰.即()222()()d ()d ()d aaaf xg x xf x xg x x+∞+∞+∞≤⎰⎰⎰.而 2()d af x x+∞⎰,2()d ag x x+∞⎰收敛,所以 ()()d a f x g x x+∞⎰收敛.又2 [()()]d af xg x x+∞+⎰2()d af x x +∞=⎰2()()d af xg x x +∞+⎰2()d ag x x+∞+⎰,所以2 [()()]d af xg x x+∞+⎰收敛.证:(2) 因为 2 ()d a f x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,所以22 ()()d 2af xg x x+∞+⎰收敛.而 22()()()()2f x g x f x g x +≤,故 ()()d a f x g x x+∞⎰绝对收敛,亦收敛.又2 [()()]d af xg x x+∞+⎰22 ()d 2()()d ()d aaaf x x f xg x x g x x+∞+∞+∞=++⎰⎰⎰.所以由四则运算知 2 [()()]d af xg x x+∞+⎰收敛.2 设()f x 、()g x 、()h x 是定义在[,)a +∞上的三个连续函数,且()()()f x g x h x ≤≤,证明(1) 若 ()d a f x x +∞⎰, ()d a h x x +∞⎰都收敛,则 ()d a g x x+∞⎰也收敛; 证:因为()()()f x g x h x ≤≤,所以u a ∀>,()d uaf x x ⎰()d u ag x x ≤⎰ ()d uah x x≤⎰.而()d af x x+∞⎰, ()d ah x x+∞⎰都收敛,所以 lim()d uau f x x →+∞⎰, lim ()d ua u h x x →+∞⎰都存在,从而 lim()d uau g x x→+∞⎰存在,故 ()d ag x x+∞⎰收敛.(2) 若 ()d af x x +∞⎰ ()d ah x x A+∞==⎰,则 ()d a g x x A+∞=⎰.证:因为 ()d a f x x +∞⎰ ()d ah x x A +∞==⎰所以lim()d uau f x x A→+∞=⎰, lim()d uau h x x A→+∞=⎰,于是由夹逼性定理得 lim()d uau g x x A→+∞=⎰,故 ()d a g x x A+∞=⎰.3 讨论下列无穷限积分的收敛性:(1) 0x +∞⎰;解:因为43lim 1x x →+∞=,而x+∞⎰收敛,故x+∞⎰收敛.(2)1d 1x xx e +∞-⎰;解:因为2lim 01x x x x e →+∞⋅=-,而 2 11d x x +∞⎰收敛,故 1d 1xxx e +∞-⎰收敛.(3)x +∞⎰;解:因为lim 1x =,而1x+∞⎰发散,故x+∞⎰发散.(4) 3 1arctan d 1x xx x +∞+⎰;解:因为23arctan lim 12x x x x x π→+∞⋅=+,而 2 01d x x +∞⎰收敛, 故 3 1arctan d 1x xx x +∞+⎰收敛.(5) 1ln(1)d n x x x +∞+⎰; 解:当1n ≤时, 1ln(1)d n x x x +∞+⎰发散,当1n >时, 1ln(1)d n x x x +∞+⎰收敛.(6)d (,0)1mn x x m n x +∞>+⎰.解:因为lim 11m n mn x x x x -→+∞⋅=+,所以当1n m -≤时,0d 1mn xx x +∞+⎰发散,当1n m ->时,0d 1mnx x x +∞+⎰收敛.4 讨论下列无穷限积分绝对收敛还是条件收敛: (1)1x ⎰;解:因为12lim 1x x →+∞=,而1x+∞⎰发散,所以1x ⎰发散.又1()2cos14F u x ==-≤⎰,()g x 在x →+∞时单调下降以零为极限,所以由狄氏判别法知1x x +∞⎰收敛.综上可知 1x ⎰条件收敛.(2) 2 0sgn(sin )d 1x x x +∞+⎰; 解:因为22sgn(sin )111x x x ≤++,而 201d 1x x +∞+⎰收敛,所以 2 0sgn(sin )d 1x x x +∞+⎰绝对收敛.(3)x⎰;解:因为0()cos d sin 1u F u x x u ==≤⎰,而()100g x x =+在x →+∞时单调下降以零为极限,所以由狄氏判别法知x⎰收敛.=+,而d 100x x +∞+⎰发散,0d 100xxx +∞+⎰收敛,所以x⎰发散,综上可知0x⎰条件收敛.(4)ln(ln )sin d ln ex x x x +∞⎰.解:因为()sin d cos cos 2u eF u x x e u ==-≤⎰,ln(ln )()ln x g x x =在x →+∞时单调下降以零为极限,所以由狄氏判别法知ln(ln)sin dlnexx xx+∞⎰收敛.又2ln(ln)ln(ln)ln(ln)ln(ln)sin sin cos2ln ln2ln2lnx x x xx x x x x x x≥=-,而ln(ln)dlnexxx+∞⎰发散,ln(ln)cos2dlnexx xx+∞⎰收敛,所以ln(ln)sin dlnexx xx+∞⎰条件收敛.5 举例说明,()daf x x+∞⎰收敛时,2()daf x x+∞⎰不一定收敛;()daf x x+∞⎰绝对收敛时,2()daf x x+∞⎰也不一定收敛.证:例如()f x1()df x x+∞⎰收敛,但221 1()df x x x+∞+∞=⎰⎰发散.又如345345333100,221,()1,11 01,(1)xn x n n x n nnf xn x n n x n nnx n nn n ⎧⎡⎤∈-⎪⎢⎥⎣⎦⎪⎪⎛⎫+-∈-⎪ ⎪⎝⎭⎪=⎨⎡⎤⎪-++∈+⎢⎥⎪⎣⎦⎪⎛⎫⎪∈-+-⎪⎪-⎝⎭⎩,如图.则23331111()d231236f x x nnπ+∞=⋅+⋅++⋅+=-⎰,所以 1()d f x x+∞⎰收敛且为绝对收敛.但21()df x x+∞⎰发散.6 证明:()daf x x+∞⎰若绝对收敛,且lim()0xf x→+∞=,则2()daf x x+∞⎰必定收敛.证:因为lim()0xf x→+∞=,所以110,,()1M a x M f x ε∀>∃>∍>⇒≤“”,于是1x M >时,2 ()()f x f x ≤, 又()d af x x+∞⎰收敛,就上述ε,2M a ∃>,21122,()d u u u u M f x x ε∍>⇒<⎰“”取12max{,}M M M =,则12,u u M >时,22112()d ()d u u u u f x x f x x ε≤<⎰⎰,故 2 ()d af x x+∞⎰收敛.7 证明:若()f x 是[,)a +∞上的单调函数,且 ()d a f x x +∞⎰收敛,则lim ()0x f x →+∞=. 证:不妨设()f x ,则[,),()0x a f x ∀∈+∞≥.实因假设00[,),()0x a f x ∃∈+∞<,则0x x >时,0()()f x f x ≤, 从而 000 ()d ()()ux f x x f x u x ≥-⎰,即 0lim()d ux u f x x →+∞=∞⎰,此与 ()d af x x+∞⎰收敛矛盾.又由 ()d af x x+∞⎰收敛得 0,M a ε∀>∃>,22()d 2xx x M f t t ε∍>⇒<⎰“”. 而221()d ()d ()02x xxx f t t f x t xf x ≥=≥⎰⎰,所以2x M >时,0()xf x ε≤<,于是0()f x ε≤<, 故lim ()0x f x →+∞=.8 证明:若()f x 在[,)a +∞上一致连续,且 ()d a f x x+∞⎰收敛,则lim ()0x f x →+∞=.证:假设lim ()0x f x →+∞≠,则00ε∃>,M a ∀>,0x M ∃>,00()f x ε∍≥“”.因为()f x 在[,)a +∞上一致连续,所以0δ∃>,000()()22x x f x f x εδδ∍<-<⇒-<“”. 从而00()()()()2f x f x f x f x ε≥--≥于是M a ∀>,0,x x M ∃>,00()d 24xx f x x x x εεδ∍≥->⎰“”.此与 ()d af x x+∞⎰收敛矛盾,故lim ()0x f x →+∞=.9 利用狄利克雷判别法证明阿贝尔判别法. 证:因为 ()d af x x+∞⎰收敛,所以0M ∃>,u a ∀>,()()d uaF u f x x M=≤⎰,即()F u 在[,)a +∞上有界.又()g x 单调有界,所以极限存在.设lim ()x g x A→+∞=,则()lim ()0x g x A →+∞-=,从而由狄氏差别法知() ()()d af xg x A x+∞-⎰收敛.而() ()()d ()()d ()d a aaf xg x x f x g x A x A f x x+∞+∞+∞=--⎰⎰⎰故 ()()d af xg x x+∞⎰收敛.§11. 3 瑕积分的性质与收敛判别一 基本内容一、瑕积分的性质设a 为瑕点,由瑕积分的定义知()d baf x x⎰收敛存在lim ()d buu af x x+→⇔⎰,由极限的柯西收敛准则知lim ()d buu af x x+→⎰存在0,0,εδ⇔∀>∃>2112 ,(,)()u u u u a a f x dx δε∍∈+⇒<⎰“”.定理1()d baf x x⎰收敛0,0εδ⇔∀>∃>,2112 ,(,)()d u u u u a a f x x δε∍∈+⇒<⎰“”.性质 1 设 a 为瑕点,若1 ()d baf x x⎰、2 ()d baf x x⎰都收敛,则12,k k ∀,[] 1122()()d bak f x kf x x+⎰也收敛,且[] 11221122 ()()d ()d ()d bbbaaak f x k f x x k f x x k f x x+=+⎰⎰⎰.性质2 设a 为瑕点,则(,)c a b ∀∈, ()d baf x x⎰与 ()d caf x x⎰同收同发,且收敛时,()d ()d ()d bcb aacf x x f x x f x x=+⎰⎰⎰.性质3 设 a 为瑕点,若,()u a f x ∀>在[, ]u b 上可积,则()d baf x x⎰收敛()d baf x x⇒⎰收敛,且()d ()d bbaaf x x f x x≤⎰⎰.定义1 如果收敛 ()d ba f x x⎰,则称 ()d ba f x x⎰绝对收敛. 二、比较判别法比较判别法仅应用于绝对收敛的判别.定理2 设a 为瑕点,若,(),()u a f x g x ∀>在[, ]u b 上可积,且,()()x a f x g x ∀>≤, 则 ()d ba g x x⎰收敛()d baf x x⇒⎰收敛,而()d baf x x⎰发散⇒()d bag x x⎰发散.推论(比较判别法的极限形式) 若,(),()u a f x g x ∀>在[, ]u b 上可积,, ()0x a g x ∀>>,且()lim ()x a f x c g x +→=,则(1) 0c <<+∞时, ()d ba f x x⎰与 ()d bag x x ⎰同收同发; (2) 0c =时, ()d bag x x⎰收敛()d b af x x⇒⎰收敛;(3) c =+∞时, ()d bag x x⎰发散 ()d ba f x x⇒⎰发散.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]u b 上可积,则(1)1()()pf x x a ≤-且01p <<时, ()d b a f x x ⎰收敛; (2)1()()pf x x a ≥-且1p ≥时, ()d ba f x x ⎰发散. 定理 3 (柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]ub 上可积,且lim()|()|p x a x a f x λ+→-=,则(1) 0λ≤<+∞且01p <<时, ()d ba f x x⎰收敛;(2) 0λ<≤+∞且1p ≥时, ()d ba f x x⎰发散.二 习题解答1 讨论瑕积分的收敛性(1) 22 01d (1)x x -⎰;解:瑕点为1x =.改写积分为 2 1 2222 0 0 1111d d d (1)(1)(1)x x xx x x =+---⎰⎰⎰.因为 12 01d (1)x x -⎰发散,所以 22 01d (1)xx -⎰发散.(2) 32sin d xxx π⎰; 解:瑕点为0x =.因为2lim 1x x →=,而xπ⎰收敛,所以32sin d x xxπ⎰收敛.(3)1x⎰;解:瑕点为0,1x =.因为H 1111lim(1)lim 11x x x x x --→→→-==,而 1 01d 1x x -⎰发散,所以 1x ⎰发散.(4) 10ln d 1xx x -⎰;解:瑕点为1x =.而112H211112ln ln (1)lim(1)lim lim 012(1)x x x xx x x x xx ---→→→--⋅===--,又1x⎰收敛,所以 10ln d 1xx x -⎰收敛.(5) 130arctan d 1xx x -⎰; 解:瑕点为1x =.而3211arctan arctan lim(1)lim 1112x x x x x x x x π--→→-⋅==-++, 又 1 01d 1x x -⎰发散,所以 130arctan d 1xx x -⎰发散.(6)2 01cos d m xx x π-⎰;解:瑕点为0x =.而21cos 1lim 2m m x x x x +-→-⋅=,所以当21m -<,即3m <时21cos d m xx x π-⎰收敛;所以当21m -≥,即3m ≥时2 01cos d mxx x π-⎰发散.(7)1011sin d x x x α⎰; 解:瑕点为0x =.而111sin x x x αα≤, 所以当01α<<时, 1 011sin d x x x α⎰绝对收敛;又2α≥时,1111sin xx x αα-≤,而 1101d x x α-⎰发散,所以此时 1011sin d x x x α⎰发散; 当12α≤<时,1 011sin d x x x α⎰条件收敛. (8) 0ln d x e x x+∞-⎰.解:积分表为11ln d ln d ln d xxx e x x e x x e x x+∞+∞---=+⎰⎰⎰.就 1 0ln d x e x x-⎰,瑕点为0x =,而120lim ln 0xx x e x +-→⋅=,所以 1ln d x e x x-⎰收敛;就 1ln d x e x x+∞-⎰,因20lim ln 0xx x e x +-→⋅=,所以 1ln d x e x x+∞-⎰收敛.综上可知 0ln d x e x x+∞-⎰收敛.2 计算下列瑕积分的值 (1) 1(ln )d n x x⎰;解:设1 0(ln )d n n I x x=⎰,则1111 0lim(ln )lim (ln )d |n n n n eee e I x x n x x nI ++--→→=-=-⎰,而10 0d 1I x ==⎰,所以 1 0(ln )d (1)!n n x x n =-⎰.(2)1nx ⎰.解:令2sin x t =,则d 2sin cos d x t t t =,于是1212 02sin d nn n I x t t π+==⎰⎰ 22 02sin d(cos )n t t π=-⎰22122202sin cos 22sin cos d |nn t t n t t tππ-=-+⋅⎰212122 04sin d 4sin d n n n t t n t tππ-+=-⎰⎰12()n n n I I -=-,于是 1221n n n I I n -=+,而0I =2 02sin d 2t t π==⎰,所以212(2)!!2(!)2(21)!!(21)!n n n n I n n +=⋅=++.3 证明瑕积分2 0ln(sin )d J x xπ=⎰收敛,且ln 22J π=-,(提示:利用22 0ln(sin )d ln(cos )d x x x xππ=⎰⎰,并将它们相加).证:瑕点为0x =,而3H 20001sin lim ln(sin )lim lim 2cos x x x x x x x+++→→→=-⋅3201sin lim 02cos x x x x +→=-=,所以2 0ln(sin )d J x xπ=⎰收敛.令2x t π=-知22 0 0ln(sin )d ln(cos )d x x x x ππ=⎰⎰,于是22 0 02ln(sin )d ln(cos )d J x x x xππ=+⎰⎰22 0 0sin 2ln(sin cos )d lnd 2xx x x x ππ==⎰⎰2 0ln sin 2d ln 22x x ππ=-⎰.而令2x t =得201ln sin 2d ln sin d 2x x t t ππ=⎰⎰ 2 0 211ln sin d ln sin d 22t t t t πππ=+⎰⎰ 22 0 011ln sin d ln cos d 22t t t t J ππ=+=⎰⎰.所以ln 22J π=-.4 利用上题结果,证明(1)2ln(sin )d ln 22ππθθθ=-⎰;证:令t θπ=-,则ln(sin )d ()ln(sin )d t t tππθθθπ=-⎰⎰,于是ln(sin )d ln(sin )d 2πππθθθθθ=⎰⎰220ln(sin )d ln 22πππθθ==-⎰.(2) 0sin d 2ln 21cos πθθθπθ=-⎰.证:() 0 0sin d d ln(1cos )1cos ππθθθθθθ=--⎰⎰ln 2ln(1cos )d ππθθ=--⎰2 0 0ln 2ln 2d ln sin d 2ππθπθθ⎛⎫=-- ⎪⎝⎭⎰⎰ 02lnsin d 2πθθ=-⎰2 04lnsin d t tπ=-⎰2ln2π=. 所以 0sin d 2ln 21cos πθθθπθ=-⎰.总练习题111 证明下列等式(1) 110 1d d ,011p px x x x p x x --+∞=>++⎰⎰;证:令1x t =,则21d d x t t =-,于是1111 1112 0 00111d lim d lim d 1111p p p e e e e x x x x t x x t t t ++---→→⎛⎫==⋅⋅-⎪++⎝⎭+⎰⎰⎰1 1 10lim d d 11p p ee t t t t t t +--+∞→==++⎰⎰, 所以110 1d d ,011p px x x x p x x --+∞=>++⎰⎰.(2) 10 0d d ,0111p px x x x p x x --+∞+∞=<<++⎰⎰.证:因为01p <<,所以0x =为瑕点.令1x t =,则21d d x t t =-,于是1 0 12 00111d d d 1111p pp x t x t tx t t t t --+∞+∞-+∞=-⋅⋅=+++⎰⎰⎰所以 10 0d d 11p px x x x x x --+∞+∞=++⎰⎰.2 证明下列不等式(1)12π<<⎰; 证:1x =为瑕点.而12111lim(1)lim 2x x x --→→-==,所以1⎰收敛.又设sin x t =,则d cos d x t t =,于是12 0π=⎰⎰而1≤≤, 所以12π<<⎰. (2)201111d 122x e x e e +∞-⎛⎫-<<+ ⎪⎝⎭⎰. 证:因为22lim 0x x x e -→∞=,所以2d xe x+∞-⎰收敛.而2222110 1d d d d x x x xe x e x e x e x+∞+∞----=+>⎰⎰⎰⎰22 11201d d()2x x xe x e x --≥=--⎰⎰1122e =-.222211d d d 1d x x x xe x e x e x xe x+∞+∞+∞----=+<+⎰⎰⎰⎰()22111d 2x e x +∞-=--⎰112e =+. 故结论成立.3 计算下列反常积分的值. (1) 0cos d (0)ax e bx x a +∞->⎰;解:01cos d d(sin )axaxebx x e bx b +∞+∞--=⎰⎰1sin sin d ax axa e bx e bx x bb +∞+∞--=+⎰2d(cos )ax a e bx b +∞-=-⎰2 22cos cos d ax ax a a e bx e bx xb b +∞+∞--=--⎰222 0cos d ax a a e bx xb b+∞-=-⎰所以22 0cos d ax ae bx x a b +∞-=+⎰为所求.(2) 0sin d (0)ax e bx x a +∞->⎰;解:方法同上可得22 0sin d ax be bx x a b +∞-=+⎰.(3) 2 0ln d 1xx x +∞+⎰;解: 1 222 0 0 1ln ln ln d d d 111x x xx x x xx x +∞+∞=++++⎰⎰⎰,就 2 1ln d 1x x x +∞+⎰作变换1x t =,则21d d x t t =-,于是20 12222 1 1 0ln ln 1ln d d d 111x t t t x t t x t t t +∞⎛⎫=-⋅-=- ⎪+++⎝⎭⎰⎰⎰ 所以 20ln d 01xx x +∞=+⎰. (4)2ln(tan )d πθθ⎰.解:设tan x θ=,则21d d 1x x θ=+,于是2ln(tan )d πθθ⎰2 0ln d 01xx x +∞==+⎰.4 讨论反常积分sin d (0)bxx b x λ+∞≠⎰,λ取何值时绝对收敛,λ取何值时条件收敛.解: 1 0 0 1sin sin sin d d d bx bx bxx x x x x x λλλ+∞+∞=+⎰⎰⎰,就 1 0sin d bxx x λ⎰,当0λ>时,0x =为瑕点.当01λ<<时,sin 1bx x x λλ≤,而 1 01d x x λ⎰收敛, 所以当01λ<<时, 1 0sin d bxx xλ⎰绝对收敛.当12λ≤<时,因为10sin sin lim lim 0x x bx bxx b x x λλ-→→==>,而111d xx λ-⎰收敛,所以当12λ≤<时,10sin d bxx x λ⎰绝对收敛.当2λ≥时,因为10sin sin lim lim 0x x bx bxx b x x λλ-→→==>,而111d xx λ-⎰发散,所以当2λ≥时,10sin d bxx x λ⎰发散.就 1sin d bx x x λ+∞⎰,当0λ≤时, 1sin d bxx x λ+∞⎰发散.当01λ<≤时, 1()sin d uF u bx x=⎰在[1,)+∞上有界,1()g x x λ=单调以零为极限,由狄氏判别法知1sin d bxx x λ+∞⎰收敛.而 22sin sin 1cos bx bx bx x x x x λλλλ≥=-, 所以 1sin d bx x x λ+∞⎰发散,故 1sin d bxx x λ+∞⎰条件收敛. 当1λ>时,因为sin 1bx xx λλ≤, 而 1 01d x x λ⎰收敛,所以当1λ>时,1 0sin d bxx x λ⎰绝对收敛.综上可知,当0λ≤时,或2λ≥时, + 0sin d bxx xλ∞⎰发散;当01λ<≤时, + 0sin d bxx x λ∞⎰条件收敛;当12λ<<时, + 0sin d bxx x λ∞⎰绝对收敛.5 证明:设f 在[0,)+∞上连续,0a b <<. (1) 若lim ()x f x k→+∞=,则()()d ((0))ln f ax f bx bx f k x a +∞-=-⎰;证:令ax t =,则 ()()d d A aA a f ax f t x t x t δδ=⎰⎰,令bx t =,则 ()()d d A bA b f bx f t x t x t δδ=⎰⎰,于是 0()()()()d d d aA bA a b f ax f bx f t f t x t t x t t δδ+∞-=-⎰⎰⎰ ()()()()d d d d b bA aA bA a b bA b f t f t f t f t t t t t t t t t δδδδ=++-⎰⎰⎰⎰()()d d b bA a aA f t f t t t t t δδ=-⎰⎰ ()()d d b b a a f y f Ay y y y y ε=-⎰⎰1[()()]d b a f f A yyδξη=-⎰(积分中值定理,,(,)a b ξη∈)[()()]lnbf f A a δξη=-.令0,A δ+→→+∞得 0()()d ((0))lnf ax f bx bx f k x a +∞-=-⎰.(2) 若 ()d a f x x x +∞⎰收敛,则 0()()d (0)ln f ax f bx bx f x a +∞-=⎰.证:由(1)得()()d f ax f bx x x +∞-⎰()()d d b bA a aA f t f t t tt t δδ=-⎰⎰.因()d af x x x +∞⎰收敛,所以由柯西收敛准则得0,M a ε∀>∃>,2112(),d u u f x u u M x x ε∍>⇒<⎰“”.即 ()lim d 0bA aA A f t t t →∞=⎰. 故 0()()d (0)ln f ax f bx bx f x a +∞-=⎰.6 证明下述命题(1) 设0a >,()f x 为[,)a +∞上的非负连续函数.若 ()d axf x x+∞⎰收敛,则 ()d af x x+∞⎰也收敛.证:因为 ()d axf x x+∞⎰收敛,所以所以由柯西收敛准则得0,M a ε∀>∃>,2112,()d u u u u M xf x x a ε∍>⇒<⎰“”.而1()d ()d aa f x x xf x x a +∞+∞<⎰⎰,于是亦有21()d u u f x x ε<⎰.故 ()d af x x+∞⎰收敛.(2) 设0a >,()f x 为[,)a +∞上的连续可微函数,且当x →+∞时,()f x 递减地趋于0,则 ()d af x x+∞⎰收敛的充要条件为 ()d axf x x+∞'⎰收敛.证:()⇒设 ()d af x x+∞⎰收敛,因()d ()()d |aaaf x x xf x xf x x+∞+∞+∞'=-⎰⎰而lim ()0x xf x →+∞=(本章第二节第8题) 所以 ()d axf x x+∞'⎰收敛.()⇐设 ()d a xf x x +∞'⎰收敛,则0ε∀>,M a ∃>,()d AxA x M tf t t ε'∍>>⇒<⎰“”.因为()f x 递减地趋于0,所以()0f x '≤, 于是由积分中值定理得()d ()d [()()]AAxxtf t t f t t f A f x ξξ''==-⎰⎰,从而 0[()()][()()]x f A f x f A f x ξε≤-≤-<.又lim ()0A f A →+∞=,所以lim ()0x xf x →+∞=.从而()d ()()d |aaaxf x x xf x f x x+∞+∞+∞'=-⎰⎰()()d aaf a f x x+∞=-⎰,故 ()d af x x+∞⎰收敛.反常积分无限区间上的积分或的积分,这两类积分叫作,又名反常积分.1.无限区间上的积分一般地,我们有下列定义定义6.2设函数在区间上连续,如果极限()存在,就称上极限值为在上的广义积分.记作即( 6.24 )这时我们说广义积分存在或收敛;如果不存在,就说不存在、发散或不收敛.类似地,可以定义在及上的广义积分.( 6.25 )其中( 6.26 )对于广义积分,其收敛的充要条件是:与都收敛.广义积分收敛时,具有积分的那些性质与积分方法,如换元法、分部积分法以及等,但有时代数和运算要注意,不要随便拆开.在用广义的牛顿—莱布尼兹公式时,无穷远点应取极限.为方便起见,引入记号,这样,若为的一个原函数,则(其中)注意:这里与是独立变化的,不能合并成 .2.无界函数的积分先给出瑕点或奇点的概念,若(或)时,,则点(或点)称为无界函数的瑕点或奇点. 的无穷间断点就是的瑕点.定义6.3设函数在上连续,左端点为的瑕点,如果存在,就称此极限值为无界函数在上的广义积分.记作( 6.27 )这时我们说广义积分存在或收敛.如果不存在,就说广义积分不存在、不收敛或发散.注:表明从大于0的方向趋于0,已经隐含了 .类似地,设函数在上连续,右端点为的瑕点,如果存在,就称此极限值为无界函数在上的广义积分.记作( 6.28 )这时我们说广义积分存在或收敛.如果不存在,就说广义积分不存在、不收敛或发散.还有,设函数在上连续,左端点、右端点均为的瑕点,如果及均存在,其中为内的一个确定点,且与两者之间是独立变化的,就称存在或收敛,记作如果及中至少有一个不存在,则称不存在、不收敛或发散.对于区间端点、均为的瑕点的广义积分有存在和均存在. 和都存在.其中为内的一个确定点,且与两者之间是独立变化的,另外,设函数在上除一个内部点外连续,且内部点为的瑕点,如果和均存在,也即和都存在,其中与两者之间是独立变化的,就称存在或收敛,记作( 6.29 )如果及中至少有一个不存在,则称不存在、不收敛或发散.对于内部点为的瑕点的广义积分有存在和均存在.和都存在.广义积分收敛时,具有常义积分的那些性质与积分方法,如换元法、分部积分法以及广义牛顿—莱布尼兹公式等,但有时代数和运算要注意,不要随便拆开,参见例5与例6.在用广义的牛顿—莱布尼兹公式时,无界点处原函数应取极限.为方便起见,引入记号左端点为瑕点时,记,这时广义的牛顿—莱布尼兹公式为右端点为瑕点时,记,这时广义的牛顿—莱布尼兹公式为左端点、右端点均为瑕点时,广义的牛顿—莱布尼兹公式为(为内的一个确定点)()( 这里的值有时不必马上算出,可对抵掉. )仅内部点为瑕点时,广义的牛顿—莱布尼兹公式为注意:由于有限区间上的无界函数的广义积分常常会与常义积分混淆,因此求积分时,首先应判断积分区间上有无瑕点.有瑕点的,是广义积分;无瑕点的,是常义积分.若是广义积分,还要保证积分区间仅有一端是瑕点,中间没有瑕点.若不然,要将积分区间分段,使每一段区间仅有一端是瑕点,中间没有瑕点.。

第十一章反常积分

第十一章反常积分

第十一章 反常积分课后习题全解§1 反常积分概念1.讨论下列无穷积分是否收敛?若收敛,则求其值: (1)2.x xe dx +∞-⎰; (2)2x xe dx +∞--∞⎰;(3)0+∞⎰dx; (4) 20(1)dx x x +∞+⎰; (5)2445dxx x +∞-∞++⎰; (6) sin ;0x e xdx -+∞⎰(7)sin ;xe xdx +∞-∞⎰ (8)0+∞⎰解:(1)由于22211(1),lim 0022x u x u u u xe dx e xe dx ---→+∞=-=⎰⎰ 因此该无穷积分收敛,且值为12(2)由于222001(1),lim 02x u x u xe dx e xe dx u u ---→-∞=--=⎰⎰则222000x x x xe dx xe dx xe dx ---+∞+∞=+=-∞-∞⎰⎰⎰因此该无穷积分收敛,且值为0(3)由于2(1lim 2u u u →+∞==⎰⎰ 因此该无穷积分收敛,且值为2(4)由于221(ln ||),lim 1ln 211(1)1(1)u u u dx xdx x x x x x x →+∞=-+=-+++⎰⎰因此该无穷积分收敛,且值为1-ln2(5)22lim 004454454u u dx dx x x x x π→+∞+∞==++++⎰⎰因此该无穷积分收敛,且值为4π(6)由于11sin [1(sin cos )],lim sin 0022x ux u u u e xdx u u e e xdx ---→+∞=-+=⎰⎰ 因此该无穷积分收敛,且积分为12(7)1sin lim sin lim [1(sin cos )]02x x u u u e xdx e adx u u e →+∞→+∞+∞===-=∞⎰则0sin sin sin 0x x xe xdx e adx e xdx +∞+∞=+=∞-∞-∞⎰⎰⎰所以该无穷不收敛(8)由于ln |limu uuu →+∞=+=+∞⎰⎰所以该无穷积分分散2.讨论下列瑕积分是否收敛?若收敛,则求其值 (1)()p b dx a x a -⎰; (2)2101dxx -⎰;(3)2⎰; (4)1⎰;(5)1ln ;0xdx ⎰ (6);⎰(7)1⎰ (8)10(ln )p dxx x ⎰解:(1) 被积函数f(x)=1()px a -在(a,b )上连续,从而在任何[u,b]⊂(a,b)上可积,x=a 为其瑕点,依定义2求得lim ()()p pu a b b dx dxa u x a x a →+=--⎰⎰而1()111lim{()Pb a p p p pu a bdxu x a --<-∞≥→+=-⎰ 当P<1时,该遐积分收敛至1()1pb a p---;当P ≥1时,该瑕积分发散(2) 该积分函数f(x)=211x-在[0,1]上连续,从而在任何[0,u]⊂[0,1]上可积,x=1为其瑕点,依定义2求得221111lim lim [ln(1)ln(1)]00112u u u dx dx u u x x --→→==+--=+∞--⎰⎰因此该瑕积分发散(3) 被积函数[0,1]∪(1,2)上连续,x=1为其瑕点,依定义2得1111lim lim lim(22u u u u u ---→→→===-=⎰⎰⎰111222lim lim lim(221u u u +++→→→===-=⎰⎰⎰则21241=+=⎰⎰⎰,瑕积分收敛(4) 被积函数[0,1]上连续,从而在任何[0,u]⊂[0,1]上可积,x=1为其瑕点,依定义2得111lim lim(11u u u--→→===⎰⎰(5) 被积函数f(x)=lnx 在(0,1)上连续,从而在任何[u ,1]⊂(0,1)上可积,x=0为其瑕点,依定义2得0011ln lim ln lim[1(ln 1)]10u u xdx xdx u u u ++→→==---=-⎰⎰ 因此该瑕积分收敛至-1(6) 令2sin ,[0,],2x t t π=∈则22sin(1cos2)2t t dtππ==-=⎰⎰(7)令2sin,[0,],2x t tπ=∈则21220002dtπππ===⎰⎰⎰(8)被积分函数f(x)=1(ln)px x在(0,1)连续,x=0,1为其瑕点,因1111220001lim lim[(ln2)(ln)](ln)(ln)1p pp puu udx dxux x x x p+--→+→==--=∞-⎰⎰因此该瑕积分分散§2 无穷积分的性质与收敛判别(教材上册P275)1.证明定理11.2及其推论1解:(1)定理11.2的证明;由()g x dxa+∞⎰收敛,根据柯西准则,任给ε>0,存在G≥a,当21u u>>G时,总有21|()|uug x dxε<⎰2211|()|()||()|||()|u uu uf xg x f x dx g x dxε≤⇒≤<⎰⎰在由柯西准则,证得|()|f x dxa+∞⎰收敛(2)推论1的证明:(ī)|()|lim,()0()xf xC g xg x→+∞=>⇒取2cε=,存在M>0,当x>M时,有30()|()|()22c Cg x f x g x<<<<+∞3|()|(),2f x Cg x<由定理11。

(整理)十一章重积分习题参考答案.

(整理)十一章重积分习题参考答案.

重积分习题参考答案习题11-11.(,)DQ x y d μσ=⎰⎰.3.(1)0; (2)0; (3)124I =I4.(1)12I ≥I ; (2) 12I ≤I ; (3)12I ≥I ; (4) 12I ≤I .5.(1)02≤I ≤; (2)20π≤I ≤; (3)28≤I ≤; (4)36100ππ≤I ≤.习题11-2(A)1.(1)40(,)xdx f x y dy ⎰⎰或2404(,)yy dy f x y dx ⎰⎰;(2)12220122(,)(,)x xx x dx f x y dy dx f x y dy +⎰⎰⎰⎰或21220122(,)(,)y y y y dy f x y dx dy f x y dx +⎰⎰⎰⎰;(3)101(,)xdx f x y dy -⎰或11(,)ydy f x y dx -⎰;(4)224(,)x xf x y dy -⎰或2402(,)(,)dy f x y dx dy f x y dx +⎰⎰.2.(1)402(,)x dx f x y dy ⎰⎰; (2) 101(,)ydy f x y dx ⎰⎰;(3)1102(,)y dy f x y dx -⎰⎰; (4)1(,)y eedy f x y dx ⎰⎰.3.(1)203; (2)32π-; (3)655; (4)6415; (5)1e e -- 4.(1)92; (2)21122e e -+.5.335. 6.(1)20(cos ,sin )ba d f r r rdr πθθθ⎰⎰; (2)2cos 202(cos ,sin )d f r r rdr πθπθθθ--⎰⎰; (3)1(cos sin )20(cos ,sin )d f r r rdr πθθθθθ-+⎰⎰;(4)3sec tan cot 44004(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθθπθθθθθθ+++⎰⎰⎰⎰sec tan 304(cos ,sin )d f r r rdr πθθπθθθ+⎰⎰;7.(1)sec csc 440002(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ+⎰⎰⎰⎰;(2)23cos 04()d f r rdr πθπθ⎰⎰;(3)1210cos sin (cos ,sin )d f r r rdr πθθθθθ+⎰⎰;(4)sec 40sec tan (cos ,sin )d f r r rdr πθθθθθθ⎰⎰. 8.(1)434a π; 1. 9.(1)2364π; (2)(2ln 21)4π-; (3)34()33R π-; (4)a .10.4332a π. 习题11-2(B)1.(1)120(,)yy dy f x y dx -⎰⎰; (2) 110(,)dy f x y dx ⎰;(3)10121101(,)(,)(,)xf x y dy dx f x y dy dx f x y dy --++⎰⎰⎰⎰⎰;(4)02420(,)(,)y dy f x y dx dy f x y dx +-+⎰⎰⎰.2.(1)0; (2)430; (3)8)3 (4)1sin1-.3.(1)2sec 41arctan4(cos ,sin )d f r r rdr πθθθθ⎰;(2)4cos 202cos (cos ,sin )d f r r rdr πθθθθθ⎰⎰;4.(1)38π; (2)52π.5.(1)2π; (2)49 (3)22π-; (4)414a ; (5)2π.6.(1) 232a π; (2)22a ; (3)232π-7.(1)43π; (2)7ln 23; (3)12e -; (4)2ab π.8.6π.习题11-3(A)1.(1)22111(,,)x y dx f x y z dz -+⎰⎰;(2)2221212(,,)x x y dx f x y z dz --+⎰⎰;(3)2211(,,)x y dx f x y z dz -+⎰;(4)1111(,,)dx f x y z dz -⎰⎰.2.32;3.15(ln 2)28-; 4.21162π-; 5.(1)1(1)e π--; (2)712π; (3)163π; (4)289a .6.(1)45π; (2)476a π; (3)552()15R a π-; (4)1330π.7.(1)18; (2)8π; (3)10π; (4)ln 3ln 2)π-. 8.4k R π习题11-3(B)1.(1)(,,)aa dx f x y z dz -⎰;200(cos ,sin ,)ad rdr f r r z dz πθθθ⎰⎰;22200s i n (c o s s i n ,s i n s i n,c os )a d d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰⎰;(2)11(,,)dx f x y z dz -⎰;2100(cos ,sin ,)rd rdr f r r z dz πθθθ⎰⎰;22400sin (cos sin ,sin sin ,cos )d d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰.(3)2211(,,)x y dx f x y z dz +-⎰⎰;2200(cos ,sin ,)rr d rdr f r r z dz πθθθ⎰⎰⎰;2csc 220csc cot 4sin (cos sin ,sin sin ,cos )d d f d ππϕπϕϕθϕϕρθϕρθϕρϕρρ⎰⎰⎰;2. 222241()3x y x y f dz --+⎰;2224103r rd f dz πθ-⎰⎰,6π3.202Rd rdr dr πθI =⎰⎰⎰; 23402sin Rd d d πππθϕϕρρI =⎰⎰⎰, 5415R π. 4.(1)835; (2)2845; (3)0; (4)559480R π.5.336π;6.π;7.45π.习题11-4(A)2.1)6π.3.22(2)R π-.4.320. 5.(1)0033(,)58x y ; (2)4(0,)3bπ; (3)22(,0)2()a ab b a b +++. 6.(1)34y a b πI =; 220()4ab a b πI =+(2)725x I =, 967y I =;(3) )33x ab I =, 33y a bI =;7.(1)3(0,0)4; (2)44333()(0,0,)8()A B A B --; (3)2227(,,)5530a a a .8.(1)483a ; (2)27(0,0,)60a ; (3) 611245a . 9.649k R π.习题11-4(B). 2.216R . 3.3535(,)4854.. 5.44()32b a πρ-.6.43512a π. 7.368105ρ. 8.(0,0,54a ).9.222(3)12a h a h π+. 10.2432;327r R R π=.11.2(lnx F G μ=;0y F =; z F Ga πμ=.12.0x y F F ==; 2)z F G h πρ=-.总复习题十一一、1.B 2.C 3.C 4.A 5.B 6.A二、1.(1)()x f x -; 2.(1,1)y y --; 3.54π;4.41(1)2e --; 5.42211()4R a bπ+.三、1.2409π-; 2.314()33R π-; 3.0; 4.2503π;5.200(,)(,)f x y dx f x y dx +-22(,)(,)f x y dx f x y dx -.6.42π-.7.212A .8.8π. 9.5144.10.以球心O 及0P 的连线作为x 轴正方向建立直角坐标系(,0,0)4R-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、若无穷积分 收敛,则 ;
2、若无穷积分 收敛,则 时,无穷积分 ;
3、设 ,函数 , 是其瑕点,且极限 ,若 ,则瑕积分 ;
4、设 ,函数 , ,且极限 ,
若 ,则无穷积分 ;
5、若 收敛,则无穷积分 ;
6、当 时,无穷积分 ;
7、当 时,瑕积分 ;
8、若 收敛,且存在极限 ,则 ;
9、 ; ;
5、若 在 无界,则 发散;()
6、若 不存在,则 发散;()
7、若 单调, 收敛,敛;()
10、如果 收敛, 在 上有界,则 收敛;()
11、若 收敛, ,则 收敛;()
12、如果 绝对收敛, ,则 收敛;()
答案:××× ××× ×
三、填空题(每题2分)
B、 =
C、 =
D、 发散
13、设广义积分 收敛,则 ()
A、 B、 C、 D、
答案:BCDCB DAABD ADB
二、判断题(每题2分)
1、当 时,无穷积分 条件收敛;()
2、当 时,无穷积分 绝对收敛;()
3、若无穷积分 收敛,而函数 在 单调有界,
则无穷积分 收敛;()
4、若 收敛,则 ;()
5、证明:若 收敛,且 在 上一致连续,则必有 。
证:由 在 上一致连续,则 (设 ),当 且 时,总有 ,
又因 收敛,故对上述 , ,当 时,有
现对任何 ,取 ,且使 。此时有
便有 ,这就证得
6、证明:若 绝对收敛, 存在,则 必定绝对收敛
又若把 该为条件收敛,试举出反例说明 不一定收敛。
证:由 可知当 充分大时有
证:由于 = , ,
而 收敛, 在 上单调有界,
故由 判别法证得 收敛.
9、证明:若 收敛, 为单调函数,则 .
证:不妨设 单调减少。先证当 时, 。否则 点 ,使 ,而 时, ,从而
得出 发散,与 收敛矛盾,故 为非负的单调函数.
由 收敛,则 ,使得当 时,恒有
但是
所以当 时, ,即 或 .
当 单调增加时,只要考虑 ,同样可证得 .
解:因为
所以 =
=
7、
解:由
得 =
8、
解: 时,
时,
=
故当 时, =
时, 发散;
9、
解: =
=
=
=
由此求得
10、
解:当 时,
当 时,
=

五、证明题(每题5分)
1、证明
证:令 ,则 =
则有
2、证明 收敛,且
证: = =
又 ,而 收敛,所以
收敛 收敛

3、证明:若 在 上连续,且 收敛,则对任何 ,有
证: 由条件 , 都存在;再由 连续可得
4、设 收敛,证明:(1)若极限 存在,则
(2)若 在 上为单调函数,则
证:(1)设 。若 ,则由极限保号性, ,
当 时满足
于是有
而这与 收敛相矛盾,故 。
(2)若 在 上单调而无界(设为递增而无上界),则 , ,当 时,使 。类似于(1)的证明,推知 ,矛盾。所以 在 上单调而有界,则存在极限 。依据已证得的命题(1),
第十一章反常积分
一、单选题(每题2分)
1、广义积分 =()
A、 B、 C、 D、发散
2、广义积分 =()
A、 B、 C、 D、发散
3、广义积分 =()
A、 B、 C、 D、发散
4、下列广义积分收敛的是()
A、 B、 C、 D、
5、下列广义积分发散的是()
A、 B、 C、 D、
6、下列积分中()是收敛的
10、设 ,则常数 ;
11、如果广义积分 收敛,则 ;
12、如果广义积分 发散,则 ;
答案:1、 2、收敛3、发散4、收敛5、绝对收敛6、绝对收敛
7、发散8、 9、 ; 10、 11、 12、
四、计算题(每题5分)
1、
解: =
=
2、
解:设 ,则 ,
有 =
3、
解: =
=
4、
解: =
5、
解: =
=
=
6、
A、 B、 C、 D、
7、下列广义积分发散的是()
A、 B、 C、 D、
8、 ()
A、 B、 C、 D、
9、已知 ,则 ()
A、 B、 C、 D、
10、广义积分 ()
A、 B、 C、 D、
11、下列积分中绝对收敛的是()
A、 B、 C、 D、
12、已知广义积分 ,则下列答案中正确的是()
A、因为 在 上是奇函数,所以
从而又有
再由 收敛,根据比较法则便证得 收敛。
例如对于条件收敛的 = 和
得到 =
由于 收敛。而
显然是发散的,所以 也是发散的无穷积分。
7、证明当 时, 和 是等价无穷小量。
证: ,又因 ,所以 收敛,
又收敛定义又知
这说明当 时,它们是无穷小量;下面再来证明它们是等价无穷小量
故结论成立。
8、证明:若 收敛,则 也必收敛.
10、设 且单调减少,证明: 与 敛散性相同.
证:(1)若 ,由狄利克雷判别法 收敛,于是由
= =
知 与 敛散性相同.
(2)若 ,则 发散,从而 与 同时发散.
精心搜集整理,只为你的需要
相关文档
最新文档